Operations Research Letters 51 (2023) 99-104

=
Operations
Research
Letters

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl|

Check for
updates

SPT optimality (mostly) via linear programming

Woo-Hyung Cho *, David Shmoys, Shane Henderson

Cornell University, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 4 July 2022

Received in revised form 4 December 2022
Accepted 11 December 2022

Available online 16 December 2022

One of the oldest results in scheduling theory is that the Shortest Processing Time (SPT) rule finds an
optimal solution to the problem of scheduling jobs on identical parallel machines to minimize average
job completion times. We present a new proof of correctness of SPT based on linear programming (LP).
Our proof relies on a generalization of a single-machine result that yields an equivalence between two
scheduling problems. We first identify and solve an appropriate variant of our problem, then map its
solutions to solutions for our original problem to establish SPT optimality. Geometric insights used
therein may find further uses; we demonstrate two applications of the same principle in generalized

Keywords:

Scheduling
Linear programming
Gantt charts

settings.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Consider the problem of scheduling jobs on identical parallel
machines to minimize average job completion times. Each job j is
available at time 0 and requires p; > 0 units in uninterrupted pro-
cessing time. Each machine can only process one job at a time.
Letting C; denote the completion time of job j, this problem is
P||3>°C;j in the notation of Graham et al. [6]. One of the oldest
and most widely known results in scheduling theory is that this
problem is solvable in polynomial time [3]. An optimal schedule
can be constructed by the Shortest Processing Time (SPT) rule that
begins processing a job not yet processed with the shortest pro-
cessing time whenever a machine is idle.

We present a new proof of correctness of SPT via linear pro-
gramming (LP). We use an LP formulation previously introduced by
Balas [1] and further developed by Wolsey [16], Queyranne [11],
Queyranne and Wang [13], Schulz [14] and Hall, Schulz, Shmoys
and Wein [7]. Earlier proofs of correctness of the SPT rule rely on
coefficient matching (see Brucker [2] and Lawler [8,9], for example),
but to the best of our knowledge, this is the first LP-based proof.

Our proof of correctness of SPT uses a second scheduling prob-
lem that involves job weights w; > 0 for each job j. The gen-
eral problem P||) w;C; is NP-hard [8]. One reaction to this NP-
hardness result is that an LP-based proof for P||) C; (and the
associated structural results then implied by LP duality) should not
be possible. However, some special cases of the weighted prob-

* Corresponding author.
E-mail addresses: wc563@cornell.edu (W.-H. Cho), david.shmoys@cornell.edu
(D. Shmoys), sgh9@cornell.edu (S. Henderson).

https://doi.org/10.1016/j.0r.2022.12.007
0167-6377/© 2022 Elsevier B.V. All rights reserved.

lem P||) w;C; are known to be polynomial-time solvable, and
in fact, one such special case has an equivalence with our main
problem P||)"C;. This equivalent weighted problem comes with
strong structural properties that we are able to exploit using LP
techniques. The resulting LP solution is then transformed into an
optimal solution for P||)"C;j, which gives an alternate LP-based
proof of correctness of SPT.

Identifying an appropriate weighted variant is a critical step in
our proof. Our methods generalize a single-machine result that has
been observed by many in the Scheduling field, and are based
on geometric insights from two-dimensional Gantt charts. Gantt
charts have already proven useful for tackling various scheduling
problems [14,7,5], so we expect our methods to also find further
uses. To demonstrate this, we apply the same principles in more
generalized settings in the last section of this paper.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the geometric insights from two-dimensional
Gantt charts that reveal a related scheduling problem. Linear pro-
gramming methods are used to solve this problem and establish
SPT optimality in Section 3. Section 4 extends the idea in uniform
and unrelated parallel machine settings.

2. Insights from two-dimensional Gantt charts

Gantt charts are useful for visualizing schedules over time, es-
pecially for a single machine. Traditional Gantt charts are unidi-
mensional in time. In a nonpreemptive schedule, a machine may
block off p; units in uninterrupted processing time for job j. If job
Jj begins processing at time t, then its completion time Cj =t+pj.
See Fig. 1.

https://doi.org/10.1016/j.orl.2022.12.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2022.12.007&domain=pdf
mailto:wc563@cornell.edu
mailto:david.shmoys@cornell.edu
mailto:sgh9@cornell.edu
https://doi.org/10.1016/j.orl.2022.12.007

W.-H. Cho, D. Shmoys and S. Henderson

: G

jobj | |

processing time

Fig. 1. A one-dimensional Gantt chart.

unprocessed
job weight

(1, w)

Jjobj (G, w-wy)

processing time

Fig. 2. A two-dimensional Gantt chart.

We introduce job weights in two-dimensional Gantt charts.
With time on the horizontal axis and the total remaining unpro-
cessed job weight on the vertical axis, job j with weight w; is rep-
resented as a rectangular block of width p; and height w;. When
job j begins processing with coordinate (t, w) on its upper-left
corner, it completes with coordinate (C;, w — wj) on its lower-
right corner as illustrated in Fig. 2. Letting A" denote the set of all
jobs in a schedule, Zje./\/ w;C; is the area under the curve in a
two-dimensional Gantt chart. Solving the single-machine problem
1/|>_"w;C; is therefore equivalent to finding a sequence of jobs
that minimizes this area under the curve in a two-dimensional
Gantt chart.

Two-dimensional Gantt charts have been widely explored for
various single-machine problems, as shown in Hall et al. [7], Schulz
[14], and Goemans and Williamson [5], for example. In compar-
ison, their applications in parallel-machine settings are relatively
limited (a notable exception is the paper by Eastman, Even and
Isaacs [4] that introduced the concept of two-dimensional Gantt
charts in 1964). Parallel-machine schedules are difficult to inter-
pret graphically when multiple jobs of varying widths are being
processed at the same time, each on a different machine.

Two observations are used to transform a two-dimensional
Gantt chart for P||)" C; for better interpretability. This procedure
will also reveal a second scheduling problem that has an equiv-
alence relation with P||)"C;. As will become clear shortly, the
equal-weighted nature of our objective is a key feature in this pro-
cess.

The first observation is that any feasible parallel-machine
schedule with m machines may be decomposed into m feasible
single-machine schedules without altering the objective value. Of
course, the converse is also true when the set of jobs A is parti-
tioned into m disjoint sets of jobs.

The next insight is due to the fact that reflecting any feasible,
bounded two-dimensional Gantt chart over the identity line pre-
serves the objective value. This fact has been observed by many
researchers over the years, becoming a kind of folklore in the
Scheduling field. More precisely, suppose there is a feasible sched-
ule for 1|| >~ w;C; where jobs are described by the set of param-
eters {(pj, w;j): j €). Then, we can construct an instance that
shares the same area under the curve by scheduling in reverse or-
der the set of jobs described by {(pj, Wj): j € N}, where pj =w;
and wj = p; for each j. We shall call this the weight-processing
time flip. See Fig. 3 for an illustration. Another way of arriving at
this equivalence is by observing that the area under the curve in a
two-dimensional Gantt chart can also be obtained by having every
scheduled job j pay p; for the delay it causes itself and all jobs
scheduled thereafter.

100

Operations Research Letters 51 (2023) 99-104

Now consider any feasible schedule for P||)"C; with job in-
puts {(pj,w;): j € N}. In the absence of weights, let wj =p
where p is some constant. We decompose this schedule into m
single-machine schedules, then flip the weights and processing
times of each job according to the weight-processing time flip.
Doing so creates a set of jobs with equal processing times and gen-
eral weights described by {(pj, w;) : j € N}, where p;=w;=p
and W; = pj, and reverses the order in which jobs are processed
on each machine. Putting these m newly created single-machine
schedules together, we obtain a feasible parallel-machine sched-
ule for the problem P|pj= p|) w;C;: an equal-processing-time
variant of the weighted problem. The schedules for P||)_C; and
P|pj=pl|)_w;C; share the same objective value.

This bijection between an input to P||Y" C; and what we shall
call a flipped input to P|p;j = p|)_ w;C; implies that solving one
solves the other. Between the two, P|pj = p|> w;C; is a much
more attractive problem to solve given its equal processing time
structure. Since all jobs are available at time O and require p
units in processing time, job completion times are always at in-
teger multiples of p in an optimal schedule. This problem denoted
Plpj = plY>_w;C; is technically equivalent to P|p; = 1| w;C;
where all jobs have unit processing time requirements. This equiv-
alence is lost, however, once we relax the assumption that all jobs
are available at time 0. To highlight this distinction, we retain the
notation p; = p throughout this paper.

Given our observations, a two-dimensional Gantt chart for
P|pj = pl>_w;C; reads like that of a single-machine problem in
which each job is a collection of at most m jobs of equal width p.
Sequencing jobs in order of nonincreasing w;/p; is optimal for the
single-machine problem 1|| >~ w;C; by Smith’s Weighted Shortest
Processing Time (WSPT) rule [15]. By extension, sorting jobs in or-
der of nonincreasing w; and sequencing collections of m jobs in
sorted order is optimal for P|pj = p|)>_ w;C;. We give a formal
proof of this in the following section.

3. SPT optimality

Consider the following linear program for P|p; = p|> w;Cj,
which refines the frameworks of Wolsey [16] and Queyranne [11].

min Z w;C;j (1)
JEN
st. Y Cj=f(S) forallSCN, 2)
jes
where
S 2
f&="2 ({UW (I8! mod m)
m

1S1 |?
+{FJ -(m—|S|modm) +|S|).

The derivation for the functional form of f(S) builds on ear-
lier works that describe the convex hull of feasible completion
time vectors. Balas [1], Wolsey [16], Queyranne and Wang [13],
Queyranne [11], and Queyranne and Schulz [12] have extensively
studied scheduling polyhedra for single machines. Of particular in-
terest are the valid inequalities

2
1 1
DopiCiz 5 | 2opi| +52 p] forallScy
jes jes jes

(3)

that capture all permutations of completion times as shown by
Wolsey [16] and Queyranne [11]. Valid inequalities have also

W.-H. Cho, D. Shmoys and S. Henderson

unprocessed
job weight

Operations Research Letters 51 (2023) 99-104

unprocessed
job weight

processing time

processing time

Fig. 3. An illustration of the weight-processing time flip.

been derived for parallel machines and subsequently tightened
by Schulz [14] and Hall et al. [7]. We expand on Schulz’'s 1996
derivation [14] to obtain tighter inequalities given equal process-
ing times. For every S € N/, consider any partition S =S; US, U
Y| Sm:

m
D opiCi=)"% pC;

jesS i=1 je§;
2
= % > pj +%ZP§ by (3)
i=1 JeS; JjeSi
2
1
i (ze) +xm

i=1 \je§; jesS

Given p;j = p, it follows that

m
PSEL <Z|Si|2+ |S|).
i=1

jes

Here, we exploit the fact that set cardinalities are integral: the
right-hand side is minimized when the number of jobs assigned to
each machine is as balanced as possible. That is, given |S| =am+b
where a,b € Z, and b < m, then b machines will be assigned a+1
jobs and the remaining m — b machines will be assigned a jobs.
Thus, the following inequalities remain valid for P|pj = p|> w;C},
resulting in (2):

S 2
Yz (['m—'w (S| mod m)

jes
EilE
+ m - (m — |S| mod m) + |S]|

for every S € N, where |x] is the largest integer less than or equal
to x and [x] is the smallest integer greater than or equal to x. In
other words, f(S) is the sum of completion times of |S| jobs that
are balanced on m machines.

101

Definition 3.1. A set function f : 2V SR is supermodular if, for
every ACBC N and j ¢ B,

FBUH — fF(B) = fF(AU{jH — f(A).
Let P be the polyhedron defined by the valid inequalities in (2).

Lemma 3.2. P is a supermodular polyhedron with integer vertices.

Proof. The set function f is integer-valued by definition. For com-
pleteness, suppose |S| =am + b where a,b € Z, and b < m. Then,

o (TISI7?
f(S)_EGWW - (JS| mod m)

2
+ {%J -(m — |S| mod m) + ISl)

_P 2. h4a®(m—
_2<(a+1) b+a“(m b)+am+b)

‘2’ (azm +am + 2ab +2b) - g (@(@a+1)m+ 2@+ 1)b)

which establishes integrality.

Next, we show that f is supermodular according to Defini-
tion 3.1. First observe that f(#) = 0. The balancing nature of f
ensures that f(A U {j}) places job j into a machine with ||A|/m]
jobs. All other machines remain unaffected. Job j then has com-
pletion time p (||A|/m] 4 1). By assumption, |B| > |A|, so

FBUH — f(B)=p(LIBl/m]+1) = p(LIA]/m]+1)
= f(AU{jD - f(A),
which establishes supermodularity. O

Theorem 3.3. The valid inequalities in (2) completely describe the
scheduling polyhedron for P|pj = p| >~ w;C;.

Proof. Since we already know the validity of the inequalities in
question, what remains to show is that P is contained in the

W.-H. Cho, D. Shmoys and S. Henderson

scheduling polyhedron for P|p; = p|)_ w;C;. Let C* be an arbi-
trary vertex of P, and let w be a vector such that C* is the unique
solution to the linear program min{wTC : C € P}. Without loss
of generality, suppose jobs are sorted in nonincreasing order of
weights. Given Lemma 3.2, the greedy algorithm for supermodu-
lar polyhedra implies that

(|5

for all j € N. Given our equal-processing-time assumption, all
completion times must occur at multiples of p. We conclude that
C* is a completion time vector in P|pj =p|Y_ w;C;. O

=1

(4)

A direct consequence of Theorem 3.3 is that the solutions in (4)
give the following parallel-machine extension to Smith’s WSPT rule

for Plpj =pl|Y_ w;C;j.

Corollary 3.4. An optimal solution for P|pj = p|»_ w;C; can be con-
structed by processing a job not yet processed with the largest weight
whenever a machine is idle.

Correctness of this extended WSPT rule is an established re-
sult, and it is easy to construct a proof by interchange. This paper
takes a polyhedral approach to this problem instead and offers a
second proof via linear programming, where the proof of Theo-
rem 3.3 implies Corollary 3.4. In particular, the linear inequali-
ties in (2) make explicit a strengthened class of inequalities that
give a complete characterization of the scheduling polyhedron for
P|pj = pl}_ w;C;. Thus, our LP-based derivation of the extended
WSPT rule, as we show next, comes with a built-in certificate of
optimality that an interchange argument does not.

We now construct a feasible solution to the dual of the linear
program (1)-(2), and show that our dual solution obeys comple-
mentary slackness conditions with respect to the completion time
vector given by Corollary 3.4. The dual LP is

max Y f(S)ys
SCN

s.t. Z ys=wj VieN
SCN:jeS

y5s>=0 VSCN

with dual variables ys for each primal constraint S C N Let n =
|A| and suppose without loss of generality that jobs are sorted in
nonincreasing order of w;. The dual solution

Yy =wi1 —wy

Yy =wa—ws

with all other variables set to zero, is feasible. The corresponding
primal constraints that hold with equality are

k
ch:f({l,...,k}) foreachk=1,...,n
j=1

which, as in our earlier discussion, implies that

102

Operations Research Letters 51 (2023) 99-104

()

for each job je N.

Finally, we use the equivalence between an input for P|p; =
pl>_w;C; and a flipped input for P||>" C;, in which p; and w;
are interchanged for every job j and the order in which jobs are
processed is also reversed. This sorts jobs in nondecreasing order of
processing times. SPT optimality follows directly from Theorem 3.3
and Corollary 3.4.

Corollary 3.5. An optimal solution for P|| " C; can be constructed by
processing a job not yet processed with the shortest processing time
whenever a machine is idle.

4. Extensions

Our methods and the geometric insights therein may find fur-
ther uses. We apply the same principle in two generalizations that
are both well known to be polynomial-time solvable [2,8,9].

4.1. Uniform machines

The first extension considers uniform machines, where each ma-
chine i has speed s; > 0 and so processing job j on machine i
takes pj/s; time units. This problem is denoted Q||}_ C;. Much of
the same principle applies in establishing an equivalence between
QlIY_Cjand Q|pj=pl Y w;C;j. A polyhedral approach similar to
Theorem 3.3 can be used to solve the latter problem.

Observe that machines in Q [pj = p|)_ w;C; become idle at the
following multiset of possible job completion times:

(2. |

Let t1 <ty <--- <ty be the n smallest numbers in the above mul-
tiset. We use the following linear program for Q |p;j =p|) w;C;j:

min ijCj

po2p
ity

2p

, e
Sm

np
POREEE

np

’Sm

JeEN
IS]
s.t.ZCsztj forallS C V. (5)
jes j=1

The validity of the inequalities in (5) is immediate.

Theorem 4.1. The valid inequalities in (5) define a supermodular poly-
hedron that completely describes Q |pj = p|Y_ w;C;.

Proof. For ease of exposition, let g(S) = Z‘j‘ill tj. We first show
that g is supermodular according to Definition 3.1. Observe that
g(®) = 0. By assumption, |B| > |A|, so

g(BU{j} — g(B) =t1j+1 = tjal+1 = 8(AU{j}) — g(A),

which establishes supermodularity.

Without loss of generality, suppose jobs are sorted in nonin-
creasing order of weights. The greedy algorithm for supermodular
polyhedra implies that

for all j € NV, so C is indeed a completion time vector in Q|p; =
plY>w;Cj. O

W.-H. Cho, D. Shmoys and S. Henderson

By Theorem 4.1, an optimal schedule for Q|p; = p|>_ w;C;
sorts jobs in nonincreasing order of weights and processes job k
for completion at time t;. When t;, takes the form t, = £p/s;, job
k is the ¢th job scheduled on a machine with speed s;. We there-
fore conclude that job k is the £th last job scheduled on machine i
in an optimal schedule for Q||)" Cj.

4.2. Eligibility constraints

Consider a generalization of P||) C; in which each job j is
compatible only with a subset of machines M;. We denote this
problem P|M;|}" C; (this problem may also be denoted R|p;; €
{pj. 00} > C; as a special case of scheduling on unrelated machines
where processing job j on machine i takes p; units if i € M; and
oo otherwise). Then, the same principle from Section 2 can be used
to establish an equivalence with P|M;, p;j =p| > w;C;.

We present a new result on SPT optimality given the follow-
ing highly structured set of inputs where machine eligibility sets
M are nested, and the highest-weight jobs are also the least re-
strictive, i.e, wq < wy <--- <wy and |[Mq| < My <+ < | My
hold.

Theorem 4.2. Suppose machine eligibility sets M j are nested and jobs
are sorted such that wq < wy <--- < wp and |[Mq| < | Mz| <--- <
| M| hold. For this highly structured set of inputs, an optimal solution
for PIM;j, pj = plY_w;C; can be constructed by inserting jobs over
time, in sorted order, into the first slot in an eligible machine with the
smallest sum of job weights.

Proof. For a proof by contradiction, consider an optimal schedule
that cannot be produced by this procedure. We show that we can
always construct a schedule that follows this procedure that is as
good as the optimal schedule.

Let W;; denote the sum of job weights in machine i when job
j is about to be scheduled. Let job j be the maximum-weight job
in an optimal schedule that could not have been placed there in a
schedule generated by the procedure. More precisely, we assume
that job j is assigned to machine i when there exists some ma-
chine 7 # i such that i = argmingeaq; Wy;. Let job j be the job
scheduled where job j should have been, that is, the first job
scheduled in machine 7 after job j. If no such job j exists, then
job j must be the maximum-weight job in machine i: job j is the
maximum-weight job that violates the procedure, and since M is
nested, any job that comes after job j that is eligible for machine
i is also eligible for machine 7. Finally, W;j < Wi <Wij+wj, so a
job must be scheduled in 7 before another can be scheduled in ma-
chine i. Reassigning job j into the first slot of machine 7 places job
j into a position compatible with the procedure and changes the
objective by (—W;; + W;;)p <0, which establishes a contradiction.

Suppose job j exists, and let C; and C; be the completion times
of jobs j and j in an optimal schedule, respectively. If C; < Cj;,
swapping jobs j and ; changes the objective by

w;iC; +w;Cj— (W;Cj+w;C;)=(wj—w;)(C; —Cj) <0.

Otherwise, if Cj > C;, we can swap the segment [0, C;) in machine
i with the segment [0, C;) in machine #, which changes the objec-
tive by (—=Wij + W;;)(Cj — C;) <0. In both cases, we place job j
into a position compatible with the procedure and obtain a contra-
diction. Repeating this process for every job not compatible with
the procedure gives an optimal solution. O

By the equivalence created by flipped inputs, an optimal so-
lution for P|M;|} Cj can be constructed by processing jobs in
sorted order in an eligible machine with the shortest total pro-
cessing time.

103

Operations Research Letters 51 (2023) 99-104

4.2.1. A primal-dual interpretation

We conclude by outlining an LP-based approach for solving
P|Mj,pj=plY_ w;C; for general inputs. This problem requires
a new LP formulation that explicitly considers job-to-machine as-
signments. Define a binary variable x;j, where x;j =1 if job j is
the kth job processed on machine i, and 0 otherwise. Let c;j. de-
note the cost of this assignment such that c;j = wjkp. Then the
integer program for P|M, p;j = p| Zj w;Cj is

n n
min Z Z ZC,‘ij,'jk

j=1lieM; k=1
n
sty Y xg=1 Vj=1...n (6)
ieM;jk=1
Z Xijk < 1 Vi=1,...,m; k=1...,n (7)
jiieM;
xijk € {0, 1} Vi=1,...,n;ieM;j k=1...,n.

Constraint (6) ensures that every job is scheduled. By constraint
(7), a machine can process at most one job at any given time. This
is a bipartite matching problem with n jobs on one hand and nm
machine-slot pairs on the other. It is well known that integral-
ity constraints may be relaxed without altering the feasible region.
The dual of the LP relaxation is

n m n
max 0= 3" v
j=1

i=1 k=1
S.t. uj <Cijk + Vik Vj:l,...,n;ie./\/ij; k=1...,n (8)

Vik =0 Vi=1,....m; k=1...,n.

Dual variables u; and v both have natural pricing interpreta-
tions: u; is the total cost of assignment for job j, which includes
both a baseline cost ¢;jx and a premium vy attached to the kth
slot in machine i. Naturally, job j ultimately chooses an assign-
ment that minimizes its total cost.

Primal-dual algorithms that solve minimum cost bipartite
matching problems have been widely studied in the literature [10].
In what follows, we describe an iterative approach that led to the
insights behind Theorem 4.2.

For each j=1,...,n, define a bipartite graph G; = (Lj, R, E})
where Lj ={1,..., j} is a subset of jobs, R =M x A is the set of
machine-slot pairs, and E; = {(¢,ik)| £ € Lj, (i,k) € R}. We initial-
ize with an empty set of assignments M = (and a dual feasible
solution u = v =0, and run a primal-dual matching algorithm on
G1. At each iteration j=2,...,n, we run the same algorithm on
G; with solutions obtained in the previous iteration as our initial
feasible solutions. Upon termination, correctness follows automati-
cally if [M|=n.

Acknowledgements

This paper is dedicated to the memory of our friend and col-
league Gerhard Woeginger. It would have been nice to share it
with him, since he worked on many closely related problems. We
would like to believe that this is the sort of result that would
prompt his wry smile in response.

References

[1] E. Balas, On the facial structure of scheduling polyhedra, in: Mathematical
Programming Essays in Honor of George B. Dantzig Part I, Springer Berlin Hei-
delberg, 1985, pp. 179-218.

[2] P. Brucker, Scheduling Algorithms, Springer Berlin Heidelberg, 2007.

http://refhub.elsevier.com/S0167-6377(22)00179-1/bibF506D0FB5742658BEB905866889BEF1Ds1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibF506D0FB5742658BEB905866889BEF1Ds1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibF506D0FB5742658BEB905866889BEF1Ds1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib49A79ECA7C2487CCDD1BA5E6CB9BE77Bs1

W.-H. Cho, D. Shmoys and S. Henderson

[3] RW. Conway, W.L. Maxwell, LW. Miller, Theory of Scheduling, Addison-Wesley
Publishing Company, 1967.

[4] W.L. Eastman, S. Even, .M. Isaacs, Bounds for the optimal scheduling of n jobs
on m processors, Manag. Sci. 11 (1964) 268-279.

[5] M.X. Goemans, D.P. Williamson, Two-dimensional Gantt charts and a schedul-
ing algorithm of Lawler, SIAM]. Discrete Math. 13 (2000) 281-294.

[6] R.L. Graham, E.L. Lawler,]J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and

approximation in deterministic sequencing and scheduling: a survey, in: Dis-

crete Optimization II, in: Annals of Discrete Mathematics, vol. 5, Elsevier, 1979,

pp. 287-326.

L.A. Hall, AS. Schulz, D.B. Shmoys, J. Wein, Scheduling to minimize average

completion time: off-line and on-line approximation algorithms, Math. Oper.

Res. 22 (1997) 513-544.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and

scheduling: algorithms and complexity, in: Logistics of Production and Inven-

tory, in: Handbooks in Operations Research and Management Science, vol. 4,

Elsevier, 1993, pp. 445-522, Chapter 9.

17

8

104

Operations Research Letters 51 (2023) 99-104

[9] J.K. Lenstra, D.B. Shmoys, Elements of scheduling, CoRR, 2020.

[10] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice Hall, 1982.

[11] M. Queyranne, Structure of a simple scheduling polyhedron, Math. Program. 58
(1993) 263-285.

[12] M. Queyranne, A.S. Schulz, Polyhedral approaches to machine scheduling, Tech.
Rep., 1994.

[13] M. Queyranne, Y. Wang, Single-machine scheduling polyhedra with precedence
constraints, Math. Oper. Res. 16 (1991) 1-20.

[14] A.S. Schulz, Polytopes and Scheduling, PhD thesis, TU Berlin, 1996.

[15] W.E. Smith, Various optimizers for single-stage production, Nav. Res. Logist. Q.
3 (1956) 59-66.

[16] L.A. Wolsey, Mixed integer programming formulations for production planning
and scheduling problems, in: 12th International Symposium on Mathematical
Programming, 1985.

http://refhub.elsevier.com/S0167-6377(22)00179-1/bib56030441B690DA4F423D77B6DF7EE0A3s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib56030441B690DA4F423D77B6DF7EE0A3s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibD30CA73CBE65B20D10B20CF8917711FFs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibD30CA73CBE65B20D10B20CF8917711FFs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib4746358293072E5A822EBF8D1A38284Bs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib4746358293072E5A822EBF8D1A38284Bs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibC0FAEB3987BFDA02DB123E4FCCA03427s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibC0FAEB3987BFDA02DB123E4FCCA03427s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibC0FAEB3987BFDA02DB123E4FCCA03427s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibC0FAEB3987BFDA02DB123E4FCCA03427s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibF65729DF3FF2D1F314B75E11502E2C63s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibF65729DF3FF2D1F314B75E11502E2C63s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibF65729DF3FF2D1F314B75E11502E2C63s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib9EC02447090480456D4684B1F14A842Fs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib9EC02447090480456D4684B1F14A842Fs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib9EC02447090480456D4684B1F14A842Fs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib9EC02447090480456D4684B1F14A842Fs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib8DFE06E69A483C75CF18CE6B43EB50FEs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib8DFE06E69A483C75CF18CE6B43EB50FEs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib6E7E3362E3790517EE10A58ECE32229Cs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib6E7E3362E3790517EE10A58ECE32229Cs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibBF8348E18E4F85AA3508BCC6EF0587D1s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bibBF8348E18E4F85AA3508BCC6EF0587D1s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib5DCDDCD66F4C6A3930BD8D70E75F9B96s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib5DCDDCD66F4C6A3930BD8D70E75F9B96s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib94987309AD798331693276BB71858B3As1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib486F6045D157C916608A8C257E4691F9s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib486F6045D157C916608A8C257E4691F9s1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib5A43603237D06DD7EC6C9D30FA7A1BDAs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib5A43603237D06DD7EC6C9D30FA7A1BDAs1
http://refhub.elsevier.com/S0167-6377(22)00179-1/bib5A43603237D06DD7EC6C9D30FA7A1BDAs1

	SPT optimality (mostly) via linear programming
	1 Introduction
	2 Insights from two-dimensional Gantt charts
	3 SPT optimality
	4 Extensions
	4.1 Uniform machines
	4.2 Eligibility constraints
	4.2.1 A primal-dual interpretation

	Acknowledgements
	References

