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One of the oldest results in scheduling theory is that the Shortest Processing Time (SPT) rule finds an 
optimal solution to the problem of scheduling jobs on identical parallel machines to minimize average 
job completion times. We present a new proof of correctness of SPT based on linear programming (LP). 
Our proof relies on a generalization of a single-machine result that yields an equivalence between two 
scheduling problems. We first identify and solve an appropriate variant of our problem, then map its 
solutions to solutions for our original problem to establish SPT optimality. Geometric insights used 
therein may find further uses; we demonstrate two applications of the same principle in generalized 
settings.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Consider the problem of scheduling jobs on identical parallel 
machines to minimize average job completion times. Each job j is 
available at time 0 and requires p j > 0 units in uninterrupted pro-
cessing time. Each machine can only process one job at a time. 
Letting C j denote the completion time of job j, this problem is 
P || ∑C j in the notation of Graham et al. [6]. One of the oldest 
and most widely known results in scheduling theory is that this 
problem is solvable in polynomial time [3]. An optimal schedule 
can be constructed by the Shortest Processing Time (SPT) rule that 
begins processing a job not yet processed with the shortest pro-
cessing time whenever a machine is idle.

We present a new proof of correctness of SPT via linear pro-
gramming (LP). We use an LP formulation previously introduced by 
Balas [1] and further developed by Wolsey [16], Queyranne [11], 
Queyranne and Wang [13], Schulz [14] and Hall, Schulz, Shmoys 
and Wein [7]. Earlier proofs of correctness of the SPT rule rely on 
coefficient matching (see Brucker [2] and Lawler [8,9], for example), 
but to the best of our knowledge, this is the first LP-based proof.

Our proof of correctness of SPT uses a second scheduling prob-
lem that involves job weights w j > 0 for each job j. The gen-
eral problem P || ∑ w jC j is NP-hard [8]. One reaction to this NP-
hardness result is that an LP-based proof for P || ∑C j (and the 
associated structural results then implied by LP duality) should not 
be possible. However, some special cases of the weighted prob-
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lem P || ∑ w jC j are known to be polynomial-time solvable, and 
in fact, one such special case has an equivalence with our main 
problem P || ∑C j . This equivalent weighted problem comes with 
strong structural properties that we are able to exploit using LP 
techniques. The resulting LP solution is then transformed into an 
optimal solution for P || ∑C j , which gives an alternate LP-based 
proof of correctness of SPT.

Identifying an appropriate weighted variant is a critical step in 
our proof. Our methods generalize a single-machine result that has 
been observed by many in the Scheduling field, and are based 
on geometric insights from two-dimensional Gantt charts. Gantt 
charts have already proven useful for tackling various scheduling 
problems [14,7,5], so we expect our methods to also find further 
uses. To demonstrate this, we apply the same principles in more 
generalized settings in the last section of this paper.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the geometric insights from two-dimensional 
Gantt charts that reveal a related scheduling problem. Linear pro-
gramming methods are used to solve this problem and establish 
SPT optimality in Section 3. Section 4 extends the idea in uniform 
and unrelated parallel machine settings.

2. Insights from two-dimensional Gantt charts

Gantt charts are useful for visualizing schedules over time, es-
pecially for a single machine. Traditional Gantt charts are unidi-
mensional in time. In a nonpreemptive schedule, a machine may 
block off p j units in uninterrupted processing time for job j. If job 
j begins processing at time t , then its completion time C j = t+ p j . 
See Fig. 1.
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Fig. 1. A one-dimensional Gantt chart.

Fig. 2. A two-dimensional Gantt chart.

We introduce job weights in two-dimensional Gantt charts. 
With time on the horizontal axis and the total remaining unpro-
cessed job weight on the vertical axis, job j with weight w j is rep-
resented as a rectangular block of width p j and height w j . When 
job j begins processing with coordinate (t, w) on its upper-left 
corner, it completes with coordinate (C j, w − w j) on its lower-
right corner as illustrated in Fig. 2. Letting N denote the set of all 
jobs in a schedule, 

∑
j∈N w jC j is the area under the curve in a 

two-dimensional Gantt chart. Solving the single-machine problem 
1|| ∑ w jC j is therefore equivalent to finding a sequence of jobs 
that minimizes this area under the curve in a two-dimensional 
Gantt chart.

Two-dimensional Gantt charts have been widely explored for 
various single-machine problems, as shown in Hall et al. [7], Schulz 
[14], and Goemans and Williamson [5], for example. In compar-
ison, their applications in parallel-machine settings are relatively 
limited (a notable exception is the paper by Eastman, Even and 
Isaacs [4] that introduced the concept of two-dimensional Gantt 
charts in 1964). Parallel-machine schedules are difficult to inter-
pret graphically when multiple jobs of varying widths are being 
processed at the same time, each on a different machine.

Two observations are used to transform a two-dimensional 
Gantt chart for P || ∑C j for better interpretability. This procedure 
will also reveal a second scheduling problem that has an equiv-
alence relation with P || ∑C j . As will become clear shortly, the 
equal-weighted nature of our objective is a key feature in this pro-
cess.

The first observation is that any feasible parallel-machine 
schedule with m machines may be decomposed into m feasible 
single-machine schedules without altering the objective value. Of 
course, the converse is also true when the set of jobs N is parti-
tioned into m disjoint sets of jobs.

The next insight is due to the fact that reflecting any feasible, 
bounded two-dimensional Gantt chart over the identity line pre-
serves the objective value. This fact has been observed by many 
researchers over the years, becoming a kind of folklore in the 
Scheduling field. More precisely, suppose there is a feasible sched-
ule for 1|| ∑ w jC j where jobs are described by the set of param-
eters {(p j, w j) : j ∈ N }. Then, we can construct an instance that 
shares the same area under the curve by scheduling in reverse or-
der the set of jobs described by {(p̂ j, ŵ j) : j ∈ N }, where p̂ j = w j
and ŵ j = p j for each j. We shall call this the weight–processing 
time flip. See Fig. 3 for an illustration. Another way of arriving at 
this equivalence is by observing that the area under the curve in a 
two-dimensional Gantt chart can also be obtained by having every 
scheduled job j pay p j for the delay it causes itself and all jobs 
scheduled thereafter.
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Now consider any feasible schedule for P || ∑C j with job in-
puts {(p j, w j) : j ∈ N }. In the absence of weights, let w j = p
where p is some constant. We decompose this schedule into m
single-machine schedules, then flip the weights and processing 
times of each job according to the weight–processing time flip. 
Doing so creates a set of jobs with equal processing times and gen-
eral weights described by {(p̂ j, ŵ j) : j ∈ N }, where p̂ j = w j = p
and ŵ j = p j , and reverses the order in which jobs are processed 
on each machine. Putting these m newly created single-machine 
schedules together, we obtain a feasible parallel-machine sched-
ule for the problem P |p j = p| ∑ w jC j : an equal-processing-time 
variant of the weighted problem. The schedules for P || ∑C j and 
P |p j = p| ∑ w jC j share the same objective value.

This bijection between an input to P || ∑ C j and what we shall 
call a flipped input to P |p j = p| ∑ w jC j implies that solving one 
solves the other. Between the two, P |p j = p| ∑ w jC j is a much 
more attractive problem to solve given its equal processing time 
structure. Since all jobs are available at time 0 and require p
units in processing time, job completion times are always at in-
teger multiples of p in an optimal schedule. This problem denoted 
P |p j = p| ∑ w jC j is technically equivalent to P |p j = 1| ∑ w jC j
where all jobs have unit processing time requirements. This equiv-
alence is lost, however, once we relax the assumption that all jobs 
are available at time 0. To highlight this distinction, we retain the 
notation p j = p throughout this paper.

Given our observations, a two-dimensional Gantt chart for 
P |p j = p| ∑ w jC j reads like that of a single-machine problem in 
which each job is a collection of at most m jobs of equal width p. 
Sequencing jobs in order of nonincreasing w j/p j is optimal for the 
single-machine problem 1|| ∑ w jC j by Smith’s Weighted Shortest 
Processing Time (WSPT) rule [15]. By extension, sorting jobs in or-
der of nonincreasing w j and sequencing collections of m jobs in 
sorted order is optimal for P |p j = p| ∑ w jC j . We give a formal 
proof of this in the following section.

3. SPT optimality

Consider the following linear program for P |p j = p| ∑ w jC j , 
which refines the frameworks of Wolsey [16] and Queyranne [11].

min
∑
j∈N

w jC j (1)

s.t.
∑
j∈S

C j ≥ f (S) for all S ⊆ N , (2)

where

f (S) = p

2

(⌈ |S|
m

⌉2

· (|S| modm)

+
⌊ |S|

m

⌋2

· (m − |S| modm) + |S|
)

.

The derivation for the functional form of f (S) builds on ear-
lier works that describe the convex hull of feasible completion 
time vectors. Balas [1], Wolsey [16], Queyranne and Wang [13], 
Queyranne [11], and Queyranne and Schulz [12] have extensively 
studied scheduling polyhedra for single machines. Of particular in-
terest are the valid inequalities

∑
j∈S

p jC j ≥ 1

2

⎛
⎝∑

j∈S
p j

⎞
⎠

2

+ 1

2

∑
j∈S

p2
j for all S ⊆ N (3)

that capture all permutations of completion times as shown by 
Wolsey [16] and Queyranne [11]. Valid inequalities have also 
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Fig. 3. An illustration of the weight–processing time flip.
been derived for parallel machines and subsequently tightened 
by Schulz [14] and Hall et al. [7]. We expand on Schulz’s 1996 
derivation [14] to obtain tighter inequalities given equal process-
ing times. For every S ⊆ N , consider any partition S = S1 ∪ S2 ∪
· · · ∪ Sm:

∑
j∈S

p jC j =
m∑
i=1

∑
j∈Si

p jC j

≥
m∑
i=1

⎧⎪⎨
⎪⎩

1

2

⎛
⎝∑

j∈Si

p j

⎞
⎠

2

+ 1

2

∑
j∈Si

p2
j

⎫⎪⎬
⎪⎭ by (3)

= 1

2

⎧⎪⎨
⎪⎩

m∑
i=1

⎛
⎝∑

j∈Si

p j

⎞
⎠

2

+
∑
j∈S

p2
j

⎫⎪⎬
⎪⎭ .

Given p j = p, it follows that

∑
j∈S

C j ≥ p

2

(
m∑
i=1

|Si|2 + |S|
)

.

Here, we exploit the fact that set cardinalities are integral: the 
right-hand side is minimized when the number of jobs assigned to 
each machine is as balanced as possible. That is, given |S| = am +b
where a, b ∈Z+ and b <m, then b machines will be assigned a +1
jobs and the remaining m − b machines will be assigned a jobs. 
Thus, the following inequalities remain valid for P |p j = p| ∑ w jC j , 
resulting in (2):

∑
j∈S

C j ≥ p

2

(⌈ |S|
m

⌉2

· (|S| modm)

+
⌊ |S|

m

⌋2

· (m − |S| modm) + |S|
)

for every S ⊆N , where �x� is the largest integer less than or equal 
to x and 	x
 is the smallest integer greater than or equal to x. In 
other words, f (S) is the sum of completion times of |S| jobs that 
are balanced on m machines.
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Definition 3.1. A set function f : 2N → R is supermodular if, for 
every A ⊆ B ⊆N and j /∈ B ,

f (B ∪ { j}) − f (B) ≥ f (A ∪ { j}) − f (A).

Let P be the polyhedron defined by the valid inequalities in (2).

Lemma 3.2. P is a supermodular polyhedron with integer vertices.

Proof. The set function f is integer-valued by definition. For com-
pleteness, suppose |S| = am + b where a, b ∈Z+ and b <m. Then,

f (S) = p

2

(⌈ |S|
m

⌉2

· (|S| modm)

+
⌊ |S|

m

⌋2

· (m − |S| modm) + |S|
)

= p

2

(
(a + 1)2 · b + a2(m − b) + am + b

)
= p

2

(
a2m + am + 2ab + 2b

)
= p

2
(a(a + 1)m + 2(a + 1)b)

which establishes integrality.
Next, we show that f is supermodular according to Defini-

tion 3.1. First observe that f (∅) = 0. The balancing nature of f
ensures that f (A ∪ { j}) places job j into a machine with �|A|/m�
jobs. All other machines remain unaffected. Job j then has com-
pletion time p (�|A|/m� + 1). By assumption, |B| ≥ |A|, so
f (B ∪ { j}) − f (B) = p (�|B|/m� + 1) ≥ p (�|A|/m� + 1)

= f (A ∪ { j}) − f (A),

which establishes supermodularity. �
Theorem 3.3. The valid inequalities in (2) completely describe the 
scheduling polyhedron for P |p j = p| ∑ w jC j .

Proof. Since we already know the validity of the inequalities in 
question, what remains to show is that P is contained in the 
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scheduling polyhedron for P |p j = p| ∑ w jC j . Let C∗ be an arbi-
trary vertex of P , and let w be a vector such that C∗ is the unique 
solution to the linear program min{wᵀC : C ∈ P}. Without loss 
of generality, suppose jobs are sorted in nonincreasing order of 
weights. Given Lemma 3.2, the greedy algorithm for supermodu-
lar polyhedra implies that

C∗
j = f ({1, . . . , j}) − f ({1, . . . , j − 1})

= p

(⌊
j − 1

m

⌋
+ 1

)
(4)

for all j ∈ N . Given our equal-processing-time assumption, all 
completion times must occur at multiples of p. We conclude that 
C∗ is a completion time vector in P |p j = p| ∑ w jC j . �

A direct consequence of Theorem 3.3 is that the solutions in (4)
give the following parallel-machine extension to Smith’s WSPT rule 
for P |p j = p| ∑ w jC j .

Corollary 3.4. An optimal solution for P |p j = p| ∑ w jC j can be con-
structed by processing a job not yet processed with the largest weight 
whenever a machine is idle.

Correctness of this extended WSPT rule is an established re-
sult, and it is easy to construct a proof by interchange. This paper 
takes a polyhedral approach to this problem instead and offers a 
second proof via linear programming, where the proof of Theo-
rem 3.3 implies Corollary 3.4. In particular, the linear inequali-
ties in (2) make explicit a strengthened class of inequalities that 
give a complete characterization of the scheduling polyhedron for 
P |p j = p| ∑ w jC j . Thus, our LP-based derivation of the extended 
WSPT rule, as we show next, comes with a built-in certificate of 
optimality that an interchange argument does not.

We now construct a feasible solution to the dual of the linear 
program (1)-(2), and show that our dual solution obeys comple-
mentary slackness conditions with respect to the completion time 
vector given by Corollary 3.4. The dual LP is

max
∑
S⊆N

f (S)yS

s.t.
∑

S⊆N : j∈S
yS = w j ∀ j ∈ N

yS ≥ 0 ∀S ⊆ N

with dual variables yS for each primal constraint S ⊆ N . Let n =
|N | and suppose without loss of generality that jobs are sorted in 
nonincreasing order of w j . The dual solution

y{1} = w1 − w2

y{1,2} = w2 − w3

...

y{1,...,n−1} = wn−1 − wn

y{1,...,n} = wn,

with all other variables set to zero, is feasible. The corresponding 
primal constraints that hold with equality are

k∑
j=1

C j = f ({1, . . . ,k}) for each k = 1, . . . ,n

which, as in our earlier discussion, implies that
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C j = f ({1, . . . , j}) − f ({1, . . . , j − 1})
= p

(⌊
j − 1

m

⌋
+ 1

)

for each job j ∈N .
Finally, we use the equivalence between an input for P |p j =

p| ∑ w jC j and a flipped input for P || ∑C j , in which p j and w j
are interchanged for every job j and the order in which jobs are 
processed is also reversed. This sorts jobs in nondecreasing order of 
processing times. SPT optimality follows directly from Theorem 3.3
and Corollary 3.4.

Corollary 3.5. An optimal solution for P || ∑C j can be constructed by 
processing a job not yet processed with the shortest processing time 
whenever a machine is idle.

4. Extensions

Our methods and the geometric insights therein may find fur-
ther uses. We apply the same principle in two generalizations that 
are both well known to be polynomial-time solvable [2,8,9].

4.1. Uniform machines

The first extension considers uniform machines, where each ma-
chine i has speed si > 0 and so processing job j on machine i
takes p j/si time units. This problem is denoted Q || ∑C j . Much of 
the same principle applies in establishing an equivalence between 
Q || ∑C j and Q |p j = p| ∑ w jC j . A polyhedral approach similar to 
Theorem 3.3 can be used to solve the latter problem.

Observe that machines in Q |p j = p| ∑ w jC j become idle at the 
following multiset of possible job completion times:{

p

s1
, . . . ,

p

sm
,
2p

s1
, . . . ,

2p

sm
, . . . ,

np

s1
, . . . ,

np

sm

}
.

Let t1 ≤ t2 ≤ · · · ≤ tn be the n smallest numbers in the above mul-
tiset. We use the following linear program for Q |p j = p| ∑ w jC j :

min
∑
j∈N

w jC j

s.t.
∑
j∈S

C j ≥
|S|∑
j=1

t j for all S ⊆ N . (5)

The validity of the inequalities in (5) is immediate.

Theorem 4.1. The valid inequalities in (5) define a supermodular poly-
hedron that completely describes Q |p j = p| ∑ w jC j .

Proof. For ease of exposition, let g(S) = ∑|S|
j=1 t j . We first show 

that g is supermodular according to Definition 3.1. Observe that 
g(∅) = 0. By assumption, |B| ≥ |A|, so
g(B ∪ { j}) − g(B) = t|B|+1 ≥ t|A|+1 = g(A ∪ { j}) − g(A),

which establishes supermodularity.
Without loss of generality, suppose jobs are sorted in nonin-

creasing order of weights. The greedy algorithm for supermodular 
polyhedra implies that

C j = g ({1, . . . , j}) − g ({1, . . . , j − 1})
= t j

for all j ∈ N , so C is indeed a completion time vector in Q |p j =
p| ∑ w jC j . �
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By Theorem 4.1, an optimal schedule for Q |p j = p| ∑ w jC j
sorts jobs in nonincreasing order of weights and processes job k
for completion at time tk . When tk takes the form tk = �p/si , job 
k is the �th job scheduled on a machine with speed si . We there-
fore conclude that job k is the �th last job scheduled on machine i
in an optimal schedule for Q || ∑C j .

4.2. Eligibility constraints

Consider a generalization of P || ∑C j in which each job j is 
compatible only with a subset of machines M j . We denote this 
problem P |M j | ∑C j (this problem may also be denoted R|pij ∈
{p j, ∞}| ∑C j as a special case of scheduling on unrelated machines
where processing job j on machine i takes p j units if i ∈ M j and 
∞ otherwise). Then, the same principle from Section 2 can be used 
to establish an equivalence with P |M j, p j = p| ∑ w jC j .

We present a new result on SPT optimality given the follow-
ing highly structured set of inputs where machine eligibility sets 
M j are nested, and the highest-weight jobs are also the least re-
strictive, i.e., w1 ≤ w2 ≤ · · · ≤ wn and |M1| ≤ |M2| ≤ · · · ≤ |Mn|
hold.

Theorem 4.2. Suppose machine eligibility sets M j are nested and jobs 
are sorted such that w1 ≤ w2 ≤ · · · ≤ wn and |M1| ≤ |M2| ≤ · · · ≤
|Mn| hold. For this highly structured set of inputs, an optimal solution 
for P |M j, p j = p| ∑ w jC j can be constructed by inserting jobs over 
time, in sorted order, into the first slot in an eligible machine with the 
smallest sum of job weights.

Proof. For a proof by contradiction, consider an optimal schedule 
that cannot be produced by this procedure. We show that we can 
always construct a schedule that follows this procedure that is as 
good as the optimal schedule.

Let Wij denote the sum of job weights in machine i when job 
j is about to be scheduled. Let job j be the maximum-weight job 
in an optimal schedule that could not have been placed there in a 
schedule generated by the procedure. More precisely, we assume 
that job j is assigned to machine i when there exists some ma-
chine ı̂ �= i such that ı̂ = argmink∈M j Wkj . Let job ĵ be the job 
scheduled where job j should have been, that is, the first job 
scheduled in machine ı̂ after job j. If no such job ĵ exists, then 
job j must be the maximum-weight job in machine i: job j is the 
maximum-weight job that violates the procedure, and since M j is 
nested, any job that comes after job j that is eligible for machine 
i is also eligible for machine ı̂ . Finally, W ı̂ j ≤ Wij ≤ Wij + w j , so a 
job must be scheduled in ı̂ before another can be scheduled in ma-
chine i. Reassigning job j into the first slot of machine ı̂ places job 
j into a position compatible with the procedure and changes the 
objective by (−Wij +W ı̂ j)p ≤ 0, which establishes a contradiction.

Suppose job ĵ exists, and let C j and C ĵ be the completion times 
of jobs j and ĵ in an optimal schedule, respectively. If C j ≤ C ĵ , 
swapping jobs j and ĵ changes the objective by

w jC ĵ + w ĵC j − (w jC j + w ĵC ĵ ) = (w j − w ĵ )(C ĵ − C j) ≤ 0.

Otherwise, if C j > C ĵ , we can swap the segment [0, C j) in machine 
i with the segment [0, C ĵ ) in machine ı̂ , which changes the objec-
tive by (−Wij + W ı̂ j)(C j − C ĵ ) ≤ 0. In both cases, we place job j
into a position compatible with the procedure and obtain a contra-
diction. Repeating this process for every job not compatible with 
the procedure gives an optimal solution. �

By the equivalence created by flipped inputs, an optimal so-
lution for P |M j | ∑C j can be constructed by processing jobs in 
sorted order in an eligible machine with the shortest total pro-
cessing time.
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4.2.1. A primal-dual interpretation
We conclude by outlining an LP-based approach for solving 

P |M j, p j = p| ∑ w jC j for general inputs. This problem requires 
a new LP formulation that explicitly considers job-to-machine as-
signments. Define a binary variable xijk where xijk = 1 if job j is 
the kth job processed on machine i, and 0 otherwise. Let ci jk de-
note the cost of this assignment such that ci jk = w jkp. Then the 
integer program for P |M j, p j = p| ∑ j w jC j is

min
n∑
j=1

∑
i∈M j

n∑
k=1

ci jkxi jk

s.t.
∑
i∈M j

n∑
k=1

xijk = 1 ∀ j = 1, . . . ,n (6)

∑
j:i∈M j

xi jk ≤ 1 ∀i = 1, . . . ,m; k = 1 . . . ,n (7)

xijk ∈ {0,1} ∀ j = 1, . . . ,n; i ∈ M j; k = 1 . . . ,n.

Constraint (6) ensures that every job is scheduled. By constraint 
(7), a machine can process at most one job at any given time. This 
is a bipartite matching problem with n jobs on one hand and nm
machine-slot pairs on the other. It is well known that integral-
ity constraints may be relaxed without altering the feasible region. 
The dual of the LP relaxation is

max
n∑
j=1

u j −
m∑
i=1

n∑
k=1

vik

s.t. u j ≤ ci jk + vik ∀ j = 1, . . . ,n; i ∈ M j; k = 1 . . . ,n (8)

vik ≥ 0 ∀i = 1, . . . ,m; k = 1 . . . ,n.

Dual variables u j and vik both have natural pricing interpreta-
tions: u j is the total cost of assignment for job j, which includes 
both a baseline cost ci jk and a premium vik attached to the kth
slot in machine i. Naturally, job j ultimately chooses an assign-
ment that minimizes its total cost.

Primal-dual algorithms that solve minimum cost bipartite 
matching problems have been widely studied in the literature [10]. 
In what follows, we describe an iterative approach that led to the 
insights behind Theorem 4.2.

For each j = 1, . . . , n, define a bipartite graph G j = (L j, R, E j)

where L j = {1, . . . , j} is a subset of jobs, R = M ×N is the set of 
machine-slot pairs, and E j = {(�, ik)| � ∈ L j, (i, k) ∈ R}. We initial-
ize with an empty set of assignments M = ∅ and a dual feasible 
solution u = v = 0, and run a primal-dual matching algorithm on 
G1. At each iteration j = 2, . . . , n, we run the same algorithm on 
G j with solutions obtained in the previous iteration as our initial 
feasible solutions. Upon termination, correctness follows automati-
cally if |M| = n.
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