

153:2 • Zhao et al.

example, the commercial framework ARKit uses a convolutional neural network that can generate realistic environment maps;

however the corresponding re�ective rendering might not match the physical environments. In this work, we present the

design and implementation of a lighting reconstruction framework called L��AR that enables realistic and visually-coherent

rendering. L��AR addresses several challenges of supporting lighting information for mobile AR.

First, to address the spatial variance problem, L��AR uses two-�eld lighting reconstruction to divide the lighting recon-

struction task into the spatial variance-aware near-�eld reconstruction and the directional-aware far-�eld reconstruction. The

corresponding environment map allows re�ective rendering with correct color tones. Second, L��AR uses two noise-tolerant

data capturing policies to ensure data quality, namely guided bootstrapped movement and motion-based automatic capturing.

Third, to handle the mismatch between the mobile computation capability and the high computation requirement of lighting

reconstruction, L��AR employs two novel real-time environment map rendering techniques called multi-resolution projection

and anchor extrapolation. These two techniques e�ectively remove the need of time-consuming mesh reconstruction while

maintaining visual quality. Lastly, L��AR provides several knobs to facilitate mobile AR application developers making quality

and performance trade-o�s in lighting reconstruction. We evaluated the performance of L��AR using a small-scale testbed

experiment and a controlled simulation. Our testbed-based evaluation shows that L��AR achieves more visually coherent

rendering e�ects than ARKit. Our design of multi-resolution projection signi�cantly reduces the time of point cloud projection

from about 3 seconds to 14.6 milliseconds. Our simulation shows that L��AR, on average, achieves up to 44.1% higher PSNR

value than a recent work Xihe on two complex objects with physically-based materials.

CCS Concepts: • Computing methodologies! Mixed / augmented reality; • Human-centered computing! Ubiq-

uitous and mobile computing systems and tools; • Computer systems organization! Distributed architectures.

Additional Key Words and Phrases: mobile augmented reality; lighting estimation; 3D vision

ACM Reference Format:

Yiqin Zhao, Chongyang Ma, Haibin Huang, and Tian Guo. 2022. L��AR: Visually Coherent Lighting for Mobile Augmented

Reality. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 3, Article 153 (September 2022), 29 pages. https://doi.org/10.

1145/3550291

1 INTRODUCTION

Mobile augmented reality (AR) has attracted increasing interest from academia and industry to better engage

users by allowing seamless integration of physical and virtual environments [3, 27, 35]. The current mobile AR

ecosystem is infused with new hardware development [32], improved frameworks [34], advancing vision and

graphics algorithms [64], as well as end-user facing applications ranging from e-commerce ones to educational

ones [2].

Given the interactive nature of AR applications, users often prefer virtual objects of high visual quality. The

rendered virtual objects should look realistic and feel like they belong to the physical surroundings, a property

commonly referred to as visual coherence. For example, virtual sunglasses that are overlaid on a user’s face

should look like physical sunglasses (realistic) and re�ect the correct physical environment (visually coherent).

To achieve both realistic and visually coherent rendering, mobile AR applications require access to an accurate

representation of omnidirectional environment lighting (often represented as environment map for image-based

lighting) at the user-speci�ed rendering position [47, 64].

However, obtaining a high-quality environmentmap formobile AR has to overcome several key challenges. First,

the inherently spatial variation of indoor environment lighting makes the environment map at the observation

position—which can be more easily reconstructed with more camera observations—a poor approximation of the

rendering position environment map. This challenge was demonstrated in prior work [24, 64] and our motivating

example (see Figure 3). Second, the natural user mobility of mobile AR usage can induce noise to necessary data

(such as 6DoF tracking and RGB image data) for lighting estimation. For example, we observe that the tracking

data provided by ARKit can show that consecutive camera frames are misaligned, although they represent the

same physical space. Third, mobile devices can have heterogeneous sensing capability, e.g., in terms of cameras’

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

L��AR: Visually Coherent Lighting for Mobile Augmented Reality • 153:3

�eld-of-view (FoV) or their depth-sensing ability, which makes it necessary to consider auxiliary components

(such as depth estimation [1, 48, 63]) for obtaining accurate lighting. Fourth, mobile devices have relatively limited

resources compared to their desktop counterpart, while the interactivity nature often requires 30 fps rendering.

The computational limitation makes it challenging to directly use computational-intensive models designed to

run on powerful GPU servers [52], and motivates minimal usage or optimization of time-consuming operations

(such as point cloud registration [9] and mesh reconstruction [8]).

In this work, we investigate the problem of providing high-quality lighting information for mobile AR by

addressing the above four key challenges. Our key goal is to support realistic and visually coherent rendering

of virtual objects with various geometries and materials. Figure 1 compares the visual e�ect of virtual objects

rendered with lighting information obtained with our proposed system called L��AR and ARKit. We show that

L��AR achieves high-quality rendering with structurally similar re�ections with the physical object and more

visually coherent re�ection than objects rendered with ARKit.

L��AR involves a novel technique called two-�eld lighting reconstruction and several complementary compo-

nents that work together to deliver a high-quality environment map with low-performance impact. We design

the two-�eld lighting reconstruction with the insight of dividing the camera observations into two types, i.e., the

near-�eld and far-�eld observations, to speed up lighting reconstruction while maintaining the visual quality.

This technique shares a similar spirit to the well-known screen space re�ection [42] and is tailored to mobile

AR by fully exploring user mobility. Speci�cally, L��AR generates a multi-view dense point cloud to represent

near-�eld observations, corresponding to the portion of the environment map that receives more accurate and

higher con�dence depth information surrounding the rendering position. This design helps produce geometri-

cally accurate lighting transformation between the observation and rendering positions, thus supporting key

rendering features like re�ections and providing visually coherent results. Furthermore, L��AR leverages far-�eld

observations to handle the anisotropic lighting property by reconstructing sparse point clouds to reduce visual

errors.

On top of the two-�eld lighting reconstruction, we incorporate two noise-tolerant data capturing policies,

i.e., guided bootstrapped movement and motion-based automatic capturing, to improve the data quality. The

guided bootstrapped movement policy directs the camera views to capture required near-�eld and far-�eld

observations e�ciently. This policy also brings other bene�ts, such as enlarged FoVs and reduced user movement,

for reconstructing high-quality lighting. It is worth noting that L��AR can leverage new observations, e.g.,

device orientation and user movement, to improve the quality of the environment map progressively. The

motion-based automatic capturing policy leverages multi-sensory information to capture spatially and temporally

new observations. Moreover, we propose two performance optimizations that signi�cantly reduce the time

reconstructing the �nal environment map from the intermediate 3D point clouds. The �rst optimization uses

a lightweight multi-resolution projection instead of the traditional expensive mesh reconstruction to generate

the near-�eld portion. The second optimization uses a unit sphere-based approach called anchor extrapolation

to generate gradient coloring and blurring e�ect of the far-�eld portion. Lastly, L��AR supports reconstruction

quality and time trade-o�s to account for dynamic lighting conditions. By default, L��AR provides three quality

presets for mobile AR developers.

We implement L��AR as an edge-assisted framework that consists of about 2.2K lines of code running on

both the mobile device and the edge server. Speci�cally, the client-side component works with various sensors,

including color, depth, and motion sensors, to capture near-�eld and far-�eld observations. The resulting data is

encoded and sent to the edge server to generate a �xed-size unit sphere point cloud and multi-view dense point

clouds with good alignment and visual pixel continuity. Mobile AR applications built with Unity ARFoundation

can directly use L��AR to render realistic virtual objects. We also implement a reference iOS AR application for

our testbed-based evaluation. To evaluate L��AR in a controlled environment, we develop a simulator based on

Unreal Engine that exposes multiple knobs for controlling physical factors such as camera location and FoV while

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:4 • Zhao et al.

providing ground truth lighting information. The testbed-based system evaluation shows that L��AR achieves

more visually coherent rendering results and higher PSNR/SSIM values than ARKit for three real-world scenes.

The end-to-end latency measurements show that L��AR can generate about 22 environment maps per second,

e�ectively supporting 22 fps which is su�cient for most mobile AR applications [61, 62]. Our simulator-based

evaluations include one realistic indoor scene and six virtual objects of di�erent shapes and materials. We evaluate

the performance of L��AR with various observation-rendering position pairs. We show that it achieves 36.7%

and 17.1% higher rendering PSNR compared to a recent deep learning-based lighting approach [65] and the

environment lighting captured by 360� cameras at the observation position, respectively.

Related work on generating spatially-varying lighting includes classical physical probe-based techniques [15,

16, 47] and learning-based solutions [24, 51, 52, 64]. Physical probe-based techniques often produce high-quality

environment maps but have more constrained usage scenarios since they require additional setup [51]. On the

other hand, the applicability of learning-based solutions is often limited by the access to extensive training

datasets, e.g., Matterport3D [11], and their suitability to run on heterogeneous mobile devices [52]. Another side

e�ect is the di�culty of conducting comprehensive comparisons due to the lack of publicly available source code

and benchmark dataset [51]. In this work, we are interested in designing a mobile-speci�c lighting framework that

circumvents the above-mentioned limitations by considering mobile characteristics from the outset. Compared

to a recent method by Somanath et al. [51] that generates HDR environment maps using a neural network based

on adversarial training, L��AR has the advantage of simplicity yet achieving good visual coherence.

In summary, we make the following key contributions:

• We design a novel technique called two-�eld lighting reconstruction, which generates high-quality environment

maps from mobile cameras with limited FoV. Each environment map consists of near-�eld and far-�eld portions,

separately constructed from near-�eld and far-�eld observations. The resulting environment map captures

spatial and directional variances and is suitable for re�ective rendering.

• We develop several complementary approaches to handle mobility-induced noise, limited mobile sensing

capabilities, and the computation intensity that naturally arises during the lighting reconstruction process.

For example, our multi-resolution projection and anchor extrapolation techniques e�ciently project the

intermediate 3D point clouds to the �nal 2D environment maps. These techniques ensure high data input

quality, good usability, and low reconstruction time.

• We implement the entire framework as an edge-assisted system called L��AR and develop a simulator based on

Unreal Engine for evaluation purposes. The system implementation provides a platform to compare L��AR to

the commercial framework ARKit. The simulator facilitates controlled experiments and allows easy comparisons

between lighting techniques and ground truth lighting. Our source code and related artifacts are available at

https://github.com/cake-lab/LitAR to encourage follow-up research.

• We evaluate the performance of L��AR on a small-scale testbed using the simulator. The testbed-based system

evaluation shows that L��AR (at all three quality presets) outperforms ARKit in three real-world indoor

scenes. L��AR also delivers environment maps at 22 fps or even higher, depending on the quality settings. The

simulation-based evaluation shows that L��AR can achieve up to 36.7% higher PSNR values on objects with

various geometries and materials than a recent lighting framework [65].

2 BACKGROUND: LIGHTING FOR MOBILE AR

Obtaining lighting information is a classic problem in computer vision and computer graphics [20]. Access to

accurate environment lighting information is crucial to many applications related to photorealistic rendering and

image manipulation, such as 3D object composition [23] and portrait relighting [46].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:6 • Zhao et al.

de�ne lighting reconstruction as a task similar to multi-view 3D reconstruction [10, 43] with the key di�erence in

the reconstruction target. Our key insight is that by leveraging multiple captures of the physical environment that

are often required by commercial AR frameworks [25, 34], we can use typical techniques used by 3D reconstruction

to understand the environment lighting. Conceptually simple, we have to address several challenges speci�c to the

mobile AR environment (detailed in §3). Next, we describe the general procedure for the lighting reconstruction

task.

2.1.1 Step 1: Capture Environment Data. Several di�erent types of data, e.g., color images and depth information,

are needed in lighting reconstruction. The common way to obtain these required data is to leverage a modern

mobile device with a reasonable camera directly and to have the mobile AR users move the mobile device to scan

the surroundings manually. The resulting captured data is often in the format of LDR or HDR images, which

can then be used to reconstruct the environment’s appearance and geometry. To improve the reconstruction

quality and performance, one can also resort to additional setups such as using a physical chrome ball [15, 47] or

additional mobile sensors such as depth sensors [31, 32] and accelerometers. Ambient light sensors can also be

used to observe the ambient color, which helps match the object’s color tone with the environment’s lighting. In

this work, we focus on mobile devices that can capture color and depth images and provide device tracking data,

e.g., a LiDAR-equipped iPad Pro. Data will be captured from di�erent viewing positions and used in the next step

for generating a multi-view point cloud.

2.1.2 Step 2: Generate a Point Cloud. Similar to other 3D reconstruction tasks [10, 43], we convert the camera

color, depth images, and device tracking data, into a point cloud-based representation in the world space. The

point cloud data structure allows us to combine the subsequent view data more e�ciently than directly stitching

2D images. Two practical issues often need to be addressed. First, real-world device tracking data can be noisy;

one way to handle this issue is to use point cloud registration techniques such as the iterative closest point

registration [9] to align the points. Second, some points might not have accurate depth information; to ensure the

reconstruction quality, only points with high depth con�dence values, which measure the accuracy of depth data,

should be used. Note that we will update the point cloud based on newer data; conceptually, such an update helps

deal with both spatial and temporal variance by initializing/overriding points in the 3D space at di�erent times.

2.1.3 Step 3: Finalize Environment Lighting. The generated multi-view point cloud consists of rich environment

information and is equivalent to having an enlarged virtual camera FoV at the rendering position. It is worth

noting that enlarging the camera FoV at the observation position can also increase the camera observation

coverage, though less e�ective than multi-view enlargement. To directly use modern rendering engines to support

realistic rendering, we convert the point cloud to lighting formats, such as spherical image format or environment

map. For example, one can project the point cloud into a 2D environment map that captures the omnidirectional

environment lighting.

3 MOTIVATION AND CHALLENGES

3.1 Spatial and Temporal Variance

Indoor lighting can be both spatially and temporally varying [24, 53, 64]. Rendering virtual objects using

lighting information from locations other than the rendering position may lead to potential visual degradation. To

demonstrate the impact of such variances on the rendering e�ect, we compare a virtual object rendered with the

lighting information at the rendering position and at the observation position in Figure 3a. We can see that the

mirror ball on the right does not have the desired visual appearance, i.e., neither of the zoomed-in views contains

the correct re�ections of the chair and the table. Thus, it is crucial to account for spatial variance when designing

the reconstruction framework. Intuitively, lighting can change temporally even at the same rendering position.

In this work, we handle the temporal variance by periodically reconstructing lighting.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:8 • Zhao et al.

4 LITAR DESIGN

4.1 Overview

We design L��AR to address the challenges mentioned above to reconstruct high-quality environment lighting

information. L��AR is an adaptive framework that progressively, e.g., as AR users naturally move around the

indoor environment, reconstructs environment lighting for any user-speci�ed reconstruction positions. In

contrast to prior estimation-based work [22, 39, 52, 64], the core of L��AR lies in how to e�ectively reconstruct

environment lighting information from a sequence of limited camera observations. Our reconstruction-based

approach promises to obtain more accurate lighting information and achieves better visual results without

requiring expensive data collection, model training, or physical setup [47].

Speci�cally, L��AR proposes a novel two-�eld lighting reconstruction technique (§4.2) to produce geometrically

accurate transformations to handle the challenge of spatial variance by transforming indirect scene observations

to the desired lighting information. Figure 4 presents an overview of L��AR. To mitigate the impact of mobility-

induced noise on the reconstruction quality, L��AR proposes two policies for guiding bootstrapped device

movement (§4.3.1) and automatically capturing required data based on motion (§4.3.2). To account for limited

mobile sensing capability, L��AR only requires depth information on some camera observations (i.e., near-�eld

observations that have the reconstruction position in the view) and applies point cloud registration to correct the

device tracking errors (§4.5.2). The resource intensity is dealt with from the outset with a mobile-centered design.

Speci�cally, L��AR divides camera observations and has them go through two separate execution branches

to a multi-view dense point cloud and a �xed-size point cloud. This two-branch design e�ectively reduces

the computational cost and memory consumption of L��AR. We propose two novel performance optimization

techniques, i.e., multi-resolution projection (§4.4) and anchor extrapolation (§4.4.2), to render environment maps

in real time at the edge. While many knobs can impact the quality and e�ciency of lighting reconstruction,

L��AR allows mobile AR developers to make such trade-o�s via a con�gurable design (§4.5.1).

4.2 Two-Field Lighting Reconstruction

At the high level, our two-�eld lighting reconstruction technique divides the task of lighting reconstruction into

two sub-tasks: one that leverages depth information to produce high-quality lighting from near-�eld observations

and one lightweight task for reconstructing lighting from far-�eld observations. In other words, L��AR will

generate two intermediate point clouds from camera observations for rendering environment maps. A multi-view

dense point cloud is the outcome of judiciously applying the geometrically accurate transformation and dense

sampling on near-�eld observations; A unit-sphere point cloud is the sampling outcome of the sparse point clouds

from the far-�eld observations and the dense point clouds. Recall that we divide the camera observations into

two types, near-�eld observation that includes the reconstruction position in the view and far-�eld observation

that does not. As explained below, such division is based on the key insight that camera observations are subject

to varying levels of spatial variance.

Figure 5 illustrates the di�erent importance of considering spatial variance, depending on the relative position

of the interested pixel to the observation and reconstruction positions. Assume a position %4=E in the physical

environment. To render %4=E on a virtual object surface, %4=E should be observable from the reconstruction

position %A42 . To perceive any position %4=E in the environment, one has to observe light emitted/re�ected from

%4=E . Without loss of generality, in Figure 5a, we show the intersection ;A42 of vector h%4=E, %A42i and the surface

of the unisphere (with %A42 being the center) represents the desired re�ection. However, if we directly reconstruct

the light ray from the camera observation position %>1B , we end up with ;>1B , the intersection between vector

h%4=E, %>1Bi and the surface of the %>1B-centered unisphere. If we translate ;>1B to the %A42-centered unisphere

by applying the vector h%>1B , %A42i, we will get a third intersection ; 0
>1B

. Observe that the light ray represented

by h%A42 , ;
0
>1B

i can di�er signi�cantly (i.e., larger �U) from h%A42 , ;A42i, the light ray that should be perceived at

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

L��AR: Visually Coherent Lighting for Mobile Augmented Reality • 153:11

world environment. To address the directional variations, i.e., the anisotropy of environment lighting, LitAR

reconstructs far-�eld lighting by sparsely sampling camera observation to provide omnidirectional lighting.

Even with the recent advancements in hardware, modern cameras still have small FoVs and thus capture

only a small portion of the environment covering limited directions. However, reconstructing a dense point

cloud to address the anisotropic lighting property from far-�eld observations is impractical as generating a

dense point cloud for a far-�eld environment can be potentially unconstrained regarding computation and data

storage. In addition, objects in the far-�eld observations may exceed the range limit of mobile depth sensors,

which makes it di�cult to obtain geometrically accurate transformation. The inherent nature of the far-�eld

environment thus leads to lower con�dent far-�eld depth observations, which makes it ill-suited for dense point

cloud reconstruction.

To address these limitations, we design a lightweight process to reconstruct far-�eld lighting from sparsely

sampled camera images. Recall that a camera observation is considered a far-�eld observation if the reconstruction

position falls outside the camera view. For a far-�eld observation, we sparsely sample a low-resolution camera

image and obtain the current camera transformation matrix, similar to §4.2.1. Note that we do not capture depth

data for the far-�eld observation as its depth information may be inaccurate, and the spatial variance has less

impact.

To generate the sparse point cloud, we assume the depth of all pixels to be one and scale the camera intrinsic

values accordingly. We use a similar design to [65] by projecting the sparse point cloud to a set of uniformly

distributed points, referred to anchors, on a unit sphere. The resulting data structure is a unit sphere-based point

cloud (USPC). As demonstrated in prior work [65], the design of USPC is aware of directional lighting variance

and thus addresses the anisotropy property of environmental lighting. In this work, we set the number of anchors

of the USPC to be 1280, the same as prior work [65]. The anchor points are colored by combining the color

data from the sparse point cloud and ambient light sensor readings. Recall that we want USPC to represent the

lighting from all directions, including near-�eld observations. Therefore, we sparsely sample the dense point

cloud generated from the near-�eld observation; then, the resulting sparse point cloud is similarly projected to

the same USPC. In short, the reconstructed far-�eld lighting is represented as a unit-sphere point cloud with a

much smaller memory footprint (proportional to the anchor size) while still providing su�cient directional-aware

lighting information.

4.3 Noise-tolerant Data Capturing Policies

4.3.1 Guided Bootstrapped Movement. Another key design of L��AR to reconstruct high-quality lighting is to

exploit user movement, a feature of mobile AR. We observe that commercial mobile AR frameworks such as ARKit

have built-in support for explicitly guiding mobile AR users to scan their physical surrounding environment

before using the app. Note such practice is often used for calibrating world tracking data, but not for lighting

estimation [4]. However, this commonly adopted movement practice typically leads to a biased sampling of

environment lighting in concentrated observation directions. This biased sampling is due to the narrow focus on

increasing the observation of the nearby environment around the reconstruction position. Although commercial

frameworks use deep learning-based models to estimate environment lighting from observations, such biased

observations create a barrier to more accurate estimation. As we will show in §6.2.3, increasing observations

with the common practice shows little improvement in rendering results.

Instead, we propose a novel yet simple guided movement policy to look at the backward environment, i.e.,

observable from the opposite direction to the virtual object viewing direction. This guided movement is designed

to increase the observation directions rather than the observation overlapping and to help address the anisotropic

lighting property. In other words, our guided movement policy provides bootstrapped data at the AR application

startup time to increase the far-�eld observations. As illustrated in Figure 6, our policy guides the user to look

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:14 • Zhao et al.

system to the Spherical coordinate system. Then, for each point, we calculate its 2D projection coordinate on the

environment map based on the angle values of its spherical coordinates. Then, we assign the point cloud color to

the corresponding pixel on the environment map. As multiple points can be projected to the same pixel of the

environment map, for each pixel, we handle the point occlusion by selecting the shortest-distant projected point

to color the pixel. Figure 7a illustrates an example of three-level projection.

However, when the point cloud density is low, e.g., due to low capturing resolution, projecting point cloud

only onto one environment map image resolution may lead to degraded visual quality. For example, it might

result in an image with discretely projected points rather than a continuous view of the scene, and it might

not adequately represent the inter-point occlusion. To address these issues, we assign di�erent size values for

projected points via multi-resolution image projection. We �rst project the point cloud into a series of images

with decreasing resolutions. Then we scale all the projected images to the largest resolution via the nearest

pixel interpolation. Finally, the multi-resolution projection results are merged into a single environment map by

selecting the shortest-distant projected point to the reconstruction position from each projected image per pixel.

If multiple projections have the same distance, we select the one from the highest resolution as it has more visual

details.

We note that the number of resolution levels and per-level resolution can be adjusted for di�erent combinations

of dense point clouds and reconstruction positions. However, our design of the near-�eld boundary described

previously in §4.2.1 suggests that all reconstructed near-�eld dense point clouds will be con�ned to a cubic space.

Thus, it is possible to have a relatively �xed con�guration to handle various scenes. In this work, we choose two

resolution levels with per-level resolution as 1024x512 and 512x256, unless otherwise speci�ed.

4.4.2 Anchor Extrapolation. Recall that by now, our two-�eld lighting reconstruction has generated a colored

unit sphere-based point cloud (USPC) for the far-�eld lighting. To generate the corresponding environment

map in the equirectangular format, we use the anchor points to color each environment map pixel. However,

the USPC, by design, only has a �xed number of anchor points. Therefore, directly projecting anchor points

to the environment map is likely to lead to many empty pixel values. To address this problem, we design an

anchor extrapolation technique that calculates each pixel value as a weighted average of USPC anchor values.

This technique, in essence, assigns color value to pixels by extrapolating from their nearby anchor colors and

will result in a gradient coloring and blurring e�ect.

Speci�cally, we �rst initialize each pixel of the environment map with a normal vector, i.e., a unit vector from

the sphere center to the pixel position. The initialization is feasible as a pixel in the equirectangular format of

an environment map can be easily presented in the spherical coordinate system. We then calculate the 8C⌘ pixel

color 28 using the following equation:

28 =
2

#

#’

9=1

max(Æ? 9 · Æ=8 , 0)
F2 9 , (1)

where Æ=8 represents the pixel normal vector, # is the number of anchors, Æ? 9 and 2 9 are the normal vector and

color for the 9-th anchor, respectively. Note that the dot product between Æ? 9 · Æ=8 is e�ectively the cosine value of

the angle between these vectors, as | Æ? 9 | = |Æ=8 | = 1. The max function e�ectively �lters out all the anchor points

in the hemisphere opposite the 8C⌘ pixel. Furthermore,F is an exponent controlling the blurring level of far-�eld

reconstruction. Intuitively, a smallerF value will lead to more anchor points used for the pixel calculation. Thus,

a smallerF value will result in a blurrier environment map, while a largerF will produce a clearer environment

map, as demonstrated in Figure 7b. In this work, we setF to be 128.

Note that calculating the pixel color using Equation (1) can be time-consuming as the weighted average has

to iterate through all anchor points. However, anchors do not contribute equally to the pixel color calculation.

Intuitively, an anchor 9 that has a smaller max(Æ? 9 · Æ=8 , 0) decreases more quickly with the powerF . Such anchors

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

L��AR: Visually Coherent Lighting for Mobile Augmented Reality • 153:15

are also farther away from the pixel of interest than anchors with a larger max(Æ? 9 · Æ=8 , 0) value. In fact, we �nd

that when F = 128, only the 32 nearest anchors out of the 1280 contribute signi�cantly (i.e., max(Æ? 9 · Æ=8 , 0) >

0.1). Thus, to speed up the pixel color calculation, we precompute the 32 nearest anchors for each pixel and their

respective cosine values. The precomputation e�ectively reduces the number of anchors by a factor of 40 and

allows the use of cached results for the weighted average calculation. Figure 7b shows that our acceleration has

minimal visual impact.

4.5 L��AR�ality-Performance Configurations

4.5.1 Reconstruction Session Se�ings and Initialization. L��AR uses a lighting reconstruction session to manage

each multi-view reconstruction task. A lighting reconstruction session has the same lifecycle as its corresponding

virtual object; the session is created when a virtual object placement request is issued and is destroyed when the

placed object is removed from the scene. As AR applications might need multiple virtual objects in the view, L��AR

supports multiple active lighting reconstruction session per AR session (i.e., during the AR application’s lifetime).

At the beginning of each session, L��AR collects static device-speci�c information, e.g., camera intrinsic, current

ambient lighting data, and camera image native resolutions, to bootstrap subsequent lighting reconstruction

operations.

L��AR supports con�guring several knobs, including color image sampling rate, number of views, multi-

resolution projection resolution levels, and environment map size, that trade-o� visual quality and reconstruction

performance. These knobs can be categorized into three types, i.e., data capturing, two-�eld lighting reconstruction,

and environment map rendering. Thus, the startup latency of each session and the subsequent near/far-�eld

reconstruction depend on the speci�c con�gurations. The users (e.g., mobile AR developers) can con�gure

each lighting reconstruction session based on performance requirements or select one of the three presets: low,

medium, and high. In §6.1.2, we will show that all three presets achieve better visual quality than ARKit but take

an increasing amount of time to generate an environment map.

4.5.2 Point Cloud Management. To achieve low-latency point cloud operations, L��AR leverages the edge to

generate, manage, and transform both the sparse and multi-view dense point clouds. To exploit the inherent

parallelism of point cloud operations, L��AR performs these operations on the GPU. However, even with uni�ed

memory, the managed memory still must be copied to the GPU memory (by the driver) for data access. A naive

implementation may lead to expensive GPU memory access overhead. Thus, we carefully design the memory

layout using a continuous memory bu�er to store the multi-view dense point cloud and a �xed number of anchor

points. When new view data is processed, L��AR overwrites the point cloud memory bu�er by replacing the

oldest data for temporal consistency or replacing the data with the same view identi�er for spatial consistency.

This �xed-view design keeps the memory layout unchanged, thus avoiding paging setup overhead while still

producing high-quality environment maps.

Additionally, L��AR includes an asynchronous point cloud registration to address the mobility-induced noises,

which can lead to misaligned point positions. In other words, L��AR runs point cloud registration in parallel to

the main two-�eld lighting reconstruction and will update the environment map with the aligned point cloud

once the registration completes. We note that the point misalignment is mainly due to the inaccurate device

tracking data provided by the AR framework, in this case, ARKit. Providing accurate device tracking information

is an essential but orthogonal research question; prior work such as ORB-SLAM2 [44] and Edge-SLAM [7] can

achieve good tracking in about 26ms-50ms. In this work, we use the iterative closest point registration [9] to

mitigate the impact of noisy tracking data on the lighting reconstruction. During our preliminary study, we found

that point cloud registration is not always necessary (e.g., when mobile AR users are relatively static) and can

take signi�cantly longer than other operations (e.g., 200ms for handling �ve views with 1024x768 points). In our

implementation, the point cloud registration is turned o� by default.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:18 • Zhao et al.

information can be expensive or unpractical due to physical limitations on measurement and observation. (ii) it

is easier to study individual factors in isolation by applying controlled changes to the scene environment and

simulated mobile devices.

5.2.1 AR Virtual Object Rendering. We develop a browser-based renderer using the Three.js rendering frame-

work [55] to automate the process of rendering virtual objects of interest. Speci�cally, our renderer uses informa-

tion, including reconstructed lighting, the camera position, and properties, from our synthetic dataset to render a

3D virtual object at the resolution of 1024x768. The renderer then trims empty pixels outside rendered objects

to remove the object-to-frame size impact on PSNR calculation when using di�erent camera FoV settings. The

resulting images of rendered objects serve as the basis for comparing di�erent lighting reconstruction methods.

6 EVALUATION

We evaluate the performance of L��AR using a lab testbed and the simulator. The lab testbed includes a LiDAR-

enabled iPad Pro serving as the client and a Jetson Xavier NX [45] board serving as the edge server. The iPad and

the Jetson board communicate via resident WiFi with an average latency of 7.08 ms (± 3.31 ms) and network

bandwidth of 508 Mbits/sec (± 12 Mbits/sec). For testbed-based experiments, we choose three di�erent indoor

scenes and compare L��AR with three di�erent baselines: (i) ARKit 5 [34], a commercial AR framework developed

by Apple; (ii) L��AR with point cloud registration turned on; (iii) L��AR with mesh reconstruction instead of the

lightweight multi-resolution projection module. We use the Environment Probe [33] feature of ARKit to generate

environment maps. The lighting estimation feature of ARKit is backed up by EnvMapNet [51]. We measure both

the reconstruction time and visual quality for all the methods. We use the Peak signal-to-noise ratio (PSNR) and

Structural Similarity Index (SSIM) for quantitative visual quality comparison. The PSNR and SSIM values of each

method are calculated by comparing the rendered virtual object to the physical object. In this work, we use the

classical physical mirror ball as it can be easily acquired. The higher the values of PSNR and SSIM, the better the

visual performance.

We use the simulator to evaluate L��AR’s performance in a wider range of scenarios. Our simulator allows

easy extraction of ground truth lighting information at any reconstruction position in a photorealistic 3D indoor

scene. For simulation-based evaluations, L��AR is evaluated with six objects of di�erent shapes and materials

and is compared to two baselines: (i) using a 360� camera at the observation position, akin to [57]; and (ii) Xihe, a

recent academic framework that produces real-time low-frequency lighting estimation from RGB-D images [65].

We describe the synthetic dataset used in our study in §6.2.1.

To provide an in-depth evaluation of L��AR’s performance, we also conduct a number of ablation studies that

demonstrate the quality-performance trade-o�s (§6.1.2), highlight our design choices for near-�eld and far-�eld

reconstructions, as well as identify applicable scenarios (§6.2.3 and 6.2.4). The three quality presets for near-�eld

reconstruction are con�gured as following: (i) L��AR (low): number of views is 3, color image resolution is

256x192, multi-resolution projection resolutions are [512x256, 256x128, 64x32], environment map resolution

is 512x256; (ii) L��AR (medium): number of views is 4, color image resolution is 512x384, multi-resolution

projection resolutions are [768x384, 384x192], environment map resolution is 512x256; (iii) L��AR (high): number

of views is 5, color image resolution is 1024x768, multi-resolution projection resolutions are [1024x512, 512x256],

environment map resolution is 1024x512. All three presets for far-�eld reconstruction have the color image

resolution of 32x24 and share the same environment map resolution con�gurations as near-�eld reconstruction.

6.1 Testbed-Based System Performance

6.1.1 End-to-end Evaluation. We compare the end-to-end rendering visual results and the runtime performance

of L��AR and ARKit. As shown in Figure 10 (last two columns), the virtual mirror balls rendered with L��AR

have more re�ection details and better color tune than those rendered with ARKit’s learning-based method.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:20 • Zhao et al.

represent the ground truth lighting as they are often distorted but can serve as a visual guide of the panorama

view at the reconstruction position. By comparing the environment maps generated by L��AR to the unwrapped

images, we see that L��AR can accurately reconstruct scene elements from near-�eld observations while faithfully

recovering environmental geometry and color tone information from far-�eld observations.

Figure 11 quanti�es the visual quality using two commonly used image metrics, i.e., PSNR and SSIM, by

comparing the rendered object to a physical mirror ball image at the same reconstruction position. We see that

L��AR outperforms ARKit on all three real-world captured scenes, with up to 14.3% higher PSNR and 5.5% higher

SSIM. When replacing our lightweight multi-resolution projection component of L��AR with the Ball-Pivoting

surface mesh reconstruction [8], we only notice a minor increase in the PSNR/SSIM values. This observation

demonstrates the e�ectiveness of multi-resolution projection for generating high-quality near-�eld re�ections.

Similarly, we do not observe signi�cant improvement when running L��AR with the point cloud registration

component. We suspect this is because AR frameworks such as ARKit can provide reasonable device tracking

data in most cases with slow movement. We observe that the tracking data of ARKit often drifts in cases of fast

movement, making the point cloud registration component integral. We omit their visual e�ect comparisons as

both of the L��AR’s variations do not show noticeable visual quality di�erences to L��AR.

Finally, the average end-to-end latency of near-�eld and far-�eld reconstruction is 134.4 ms and 57.5 ms,

respectively. Detailed component-wise time breakdown is discussed in the next section. These latencies translate

to updating high-quality lighting roughly at 22 fps, i.e., every 134.4 ms L��AR can provide one near-�eld and two

far-�eld environment maps. Such update frequency should be su�cient for most AR applications [61, 62]. For AR

applications that require higher update frequency, we can either resort to more powerful edge servers (currently

using an energy-e�cient Jetson board) or use a lower quality setting, as discussed in the next section.

6.1.2 Trade-O�s Between Rendering �ality and Runtime Performance . We compare the rendering quality and

latency of L��AR under di�erent presets. Figure 12a shows the corresponding visual results. We note that the

environment maps generated at all three settings present visually coherent near-�eld re�ection and correct

anisotropic far-�eld color tones. We can observe some pixelation e�ects in the environment map and the rendered

mirror ball object for the low-quality preset due to low capturing resolution. All three settings achieve better

quality than ARKit in terms of PSNR and SSIM values. For example, the low-quality preset has a 4.5% higher

SSIM value than ARKit. Moreover, the di�erence in visual quality among the three presets is marginal, with only

up to 3.5% between low and high quality.

Furthermore, we measure the time breakdown of L��AR’s near-�eld and far-�eld reconstructions. Table 12c

shows the average performance over three runs. For near-�eld reconstruction, the processing time of each

component increases with the quality setting. For example, the time to encode the camera observations sees

similar increases as the capturing resolutions, about 10X with 16X more pixels. We note that with the high-quality

setting, the total time to encode and upload data takes 68.4 ms, about 1.9X of the environment map downloading

time, even though the uploading/downloading resolution ratio is 1.5X. In contrast, in the medium-quality setting,

with the same uploading/downloading resolution ratio, it is 21.7% faster to encode and upload data than to

download. This is because the device data is uploaded in the format of YCbCr 4:2:0, which has a smaller data size

than the RGB environment map under the same resolution. Note that we are sending back the uncompressed RGB

environment map for quality consideration. This observation suggests an interesting trade-o� presented by the

data encoding scheme in a real-world deployment. Moreover, this result also demonstrates that network-related

operations (an artifact of using the GPU-based edge device) take up most of the end-to-end time, at 62.6%, 72.6%,

and 77.5% for low, medium, and high-quality settings, respectively. The network performance bottleneck implies

an immediate performance gain by directly using mobile GPU to run the entire reconstruction pipeline.

The far-�eld reconstruction presents a similar but slower upward increase in total time with the quality presets.

In particular, the time to decode/o�oad image data and generate a sparse point cloud is the same for all three

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:22 • Zhao et al.

First, we observe that our motion-based automatic capturing policy successfully detected the movement and

resulted in six captured views (captured when the participant was static). Second, when comparing the generated

environment map to the ground truth environment map captured by the mirror ball (at the same placement

position), we did not observe noticeable visual quality di�erences for all three timer values. For example, the

PSNR values for the timer=300 ms stayed relatively the same for the entire experiment, at 13.37 db (± 0.25 db).

Our observations suggest that L��AR can provide visually coherent renderings under user movement when the

physical scene is static. Additionally, increasing the number of views (i.e., from one to six) provides limited visual

quality improvement. This is intuitive as most near-�eld observations can be captured in a single view when the

environment is simple and static.

In a second experiment, we created a simple dynamic scene by manually moving the physical object within the

near-�eld observations. Speci�cally, the participant was asked to �x the iPad’s position and select the placement

position on a math book (similar to Figure 1). While using the AR app, the participant moved the book in various

directions. We observed that L��AR could update the virtual object re�ection to present details of di�erent parts

of the book. Even though the lighting reconstruction task does not block the rendering task, we still observed

slightly choppy re�ections. Please refer to the accompanying video for the visual quality demonstration. Two

key factors impact the choppiness: (i) the physical scene change rate and (ii) the reconstruction time. If the

physical scene changes very rapidly (e.g., faster than the reconstruction time), the virtual object re�ection will be

perceived to lag. In addition to further speed up the lighting reconstruction, we suspect techniques that smooth

the transition between two distinct environment maps (e.g., image fade in) and policies that pipeline the lighting

reconstruction requests to mask network latency can also improve the user-perceived performance. We leave

such investigations as future work.

6.2 Simulation-Based Performance Evaluation

6.2.1 Synthetic Dataset Generation. We describe the methodology we followed to generate a synthetic dataset

using the Unity-based simulator (see Figure 9). In a synthetic indoor scene, we �rst manually choose ten reasonable

positions to be considered as lighting reconstruction positions for placing virtual objects. Example reconstruction

positions include on the �oor or table. We vary several factors for each reconstruction position, including the

number of capturing positions, mobile user/device height, and observation distance, to generate 72 camera

observations. Speci�cally, we set up a circular capturing trajectory with eight positions by evenly dividing the

trajectory. We decide the height and radius of the capturing trajectory by simulating possible scenarios when the

mobile user is holding the device at chest height from a reasonable distance to the reconstruction position. We

choose three typical human height values at {160, 170, 180} centimeters and calculate the height of the trajectory

by multiplying the user’s height by 0.8 [17]. We further measure the radius of the trajectory using the number

of steps and choose three possible values of {0.5, 1, 1.5} steps and use the height multiplied by 0.3 as the step

length [49]. For each camera observation, we export the camera HDR observation image, depth image, position,

orientation, and ground truth lighting in the format of an equirectangular panorama image.

6.2.2 End-to-end Visual �ality Comparison. We compare the end-to-end rendering performance quantitatively

and qualitatively on six di�erent virtual objects. For this experiment, we con�gure the simulator to run the

two-�eld lighting reconstruction to process one near-�eld observation and nine far-�eld observations based on the

guided movement policy. For near-�eld reconstruction, we use mesh reconstruction instead of multi-resolution

projection to support the high-quality point projection. The following results showcase the upper bound of visual

quality that L��AR can achieve.

Figure 13 shows the comparisons of PSNR values. Speci�cally, on complex objects with physically-based

materials (i.e., Damaged Helmet and Flight Helmet), L��AR achieves 44.1% and 12.1% higher values of PSNR than

a recent deep learning-based AR lighting estimation system [65] and the lighting information captured by a

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:26 • Zhao et al.

and depth-sensing accuracy while still achieving visually coherent rendering for various objects, including

re�ective ones.

8 CONCLUSION

In this work, we introduced an end-to-end lighting reconstruction system called L��AR that generates high-

quality environment maps for mobile AR applications. As quantitatively and qualitatively demonstrated, AR

applications can use environment maps reconstructed by L��AR to render objects of various properties, including

re�ective materials, with 14.3%/5.5% higher PSNR/SSIM and better visual coherence than ARKit. We showed

that L��AR could produce virtual objects with more realistic and visually coherent re�ection, as well as �ne-

grained visual details. We used physical object images for testbed-based experiments to serve as the basis of

desired visual quality. Furthermore, using our simulator, we compared against other techniques, including

Xihe and 360� camera, by having access to ground truth lighting. We have released our research artifacts at

https://github.com/cake-lab/LitAR to facilitate future research work in our community.

Aside from the realistic and visually coherent rendering goal, we designed L��AR with mobile-speci�c con-

straints, e.g., limited sensing and data noise, in mind. By exploring mobile user behaviors and working within

mobile sensing constraints, we proposed the two-�eld lighting reconstruction scheme that divides camera obser-

vations into near-�eld and far-�eld observations based on pixels’ relative distance to the reconstruction position.

L��AR can work with as few as one camera observation and can progressively improve the quality of generated

environment maps, especially for metallic objects, with more camera observations. Keeping usability in mind, we

further introduced the motion-based automatic capture and guided bootstrapped movement policies to help AR

users capture higher quality data and more suitable camera observations. L��AR signi�cantly speeds up both

the near-�eld and far-�eld reconstructions by two novel point cloud techniques, i.e., multi-resolution projection

and anchor extrapolation. Last but not least, L��AR provides three quality presets and exposes several knobs for

mobile AR applications to make reconstruction quality and time trade-o�s based on their speci�c use cases.

We evaluated L��AR’s performance with a lab-based testbed and a game engine-based simulator. We observed

that L��AR could generate higher-quality environment maps than ARKit and result in rendered objects with

up to 14.3%/5.5% higher PSNR/SSIM compared to the physical counterpart. Furthermore, we showed that multi-

resolution projection signi�cantly reduces the point cloud projection from 3 seconds (using mesh reconstruction)

to 14.6ms. Overall, L��AR can generate about 22 high-quality environment maps per second when point cloud

registration is not required. As we design the point cloud registration to run asynchronously, the registration

step will not block the main reconstruction pipeline; once completed, L��AR will send an updated environment

map to the mobile device. As part of the future work, we will explore techniques to improve the details of the

generated environment maps and design runtime policies to handle temporally variant lighting more robustly.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive reviews. This work is partly supported by NSF Grants

CNS-1815619, NGSDI-2105564, and VMWare.

REFERENCES

[1] Ibraheem Alhashim and Peter Wonka. 2018. High Quality Monocular Depth Estimation via Transfer Learning. arXiv e-prints

abs/1812.11941, Article arXiv:1812.11941 (2018). arXiv:1812.11941 https://arxiv.org/abs/1812.11941

[2] Amazon. 2020. Amazon AR View. https://www.amazon.com/adlp/arview. Accessed: 2020-7-2.

[3] Christopher Andrews, Michael K Southworth, Jennifer N A Silva, and Jonathan R Silva. 2019. Extended Reality in Medical Practice. Curr.

Treat. Options Cardiovasc. Med. 21, 4 (March 2019), 18.

[4] Apple. 2022. ARCoachingOverlayView. https://developer.apple.com/documentation/arkit/arcoachingoverlayview.

[5] Apple. 2022. iPhone 13 Pro Tech Specs. https://www.apple.com/iphone-13-pro/specs/.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

L��AR: Visually Coherent Lighting for Mobile Augmented Reality • 153:27

[6] Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse path tracing for joint material and lighting

estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Long Beach, CA, 2447–2456.

[7] Ali J Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM: edge-assisted visual simultaneous localization and

mapping. In Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services (MobiSys ’20). 325–337.

[8] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE

Transactions on Visualization and Computer Graphics 5, 4 (1999), 349–359. https://doi.org/10.1109/2945.817351

[9] Paul J Besl and Neil D McKay. 1992. Method for registration of 3-D shapes. In Sensor fusion IV: control paradigms and data structures,

Vol. 1611. Spie, 586–606.

[10] Dan Cernea. 2020. OpenMVS: Multi-View Stereo Reconstruction Library. (2020). https://cdcseacave.github.io/openMVS

[11] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda

Zhang. 2017. Matterport3D: Learning from RGB-D Data in Indoor Environments. In 2017 International Conference on 3D Vision (3DV).

IEEE Computer Society, 667–676.

[12] Dachuan Cheng, Jian Shi, Yanyun Chen, Xiaoming Deng, and Xiaopeng Zhang. 2018. Learning Scene Illumination by Pairwise Photos

from Rear and Front Mobile Cameras. Comput. Graph. Forum 37, 7 (2018), 213–221. http://dblp.uni-trier.de/db/journals/cgf/cgf37.html#

ChengSCDZ18

[13] RidgeRun Embedded Linux Developer Connection. 2022. NVIDIA CUDA Memory Management. https://developer.ridgerun.com/wiki/

index.php?title=NVIDIA_CUDA_Memory_Management.

[14] Massimiliano Corsini, Marco Callieri, and Paolo Cignoni. 2008. Stereo light probe. In Computer Graphics Forum, Vol. 27. Wiley Online

Library, 291–300.

[15] Paul Debevec. 2006. Image-based lighting. In ACM SIGGRAPH 2006 Courses. 4–es.

[16] Paul Debevec. 2008. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination

and high dynamic range photography. In ACM SIGGRAPH 2008 classes. 1–10.

[17] Devin Larson. 2014. Standard Proportions of the Human Body. https://www.makingcomics.com/2014/01/19/standard-proportions-

human-body/. Accessed: 2021-11-5.

[18] Ufuk Dilek and Mustafa Erol. 2018. Detecting position using ARKit II: generating position-time graphs in real-time and further

information on limitations of ARKit. Physics Education 53, 3 (2018), 035020.

[19] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian, Joao Afonso, Jose Pascoal, Josh Gladstone, Nuno

Cruces, Shahram Izadi, Adarsh Kowdle, Konstantine Tsotsos, and David Kim. 2020. DepthLab: Real-Time 3D Interaction With Depth

Maps for Mobile Augmented Reality. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST).

ACM, 15 pages. https://doi.org/10.1145/3379337.3415881

[20] Farshad Einabadi, Jean-Yves Guillemaut, and Adrian Hilton. 2021. Deep neural models for illumination estimation and relighting: A

survey. Comput. Graph. Forum 40, 6 (Sept. 2021), 315–331.

[21] Epic Games. 2021. Unreal Engine - Real-Time 3D Creation Tool. https://www.unrealengine.com. Accessed: 2021-11-5.

[22] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gambaretto, Christian Gagné, and Jean-François Lalonde.

2017. Learning to Predict Indoor Illumination from a Single Image. ACM Transactions on Graphics (2017).

[23] Marc-Andre Gardner, Yannick Hold-Geo�roy, Kalyan Sunkavalli, Christian Gagne, and Jean-Francois Lalonde. 2019. Deep Parametric

Indoor Lighting Estimation.

[24] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-François Lalonde. 2019. Fast Spatially-Varying Indoor Lighting

Estimation. CVPR (2019).

[25] Google. 2020. ARCore. https://developers.google.com/ar.

[26] Google. 2022. Pixel 6 Tech Specs. https://store.google.com/product/pixel_6_specs?hl=en-US.

[27] Google for Education. 2022. Bringing virtual and augmented reality to school | Google for Education. https://edu.google.com/products/vr-

ar/?modal_active=none. Accessed: 2020-7-24.

[28] Thorsten Grosch, Tobias Eble, and Stefan Mueller. 2007. Consistent interactive augmentation of live camera images with correct

near-�eld illumination. In Proceedings of the 2007 ACM symposium on Virtual reality software and technology. 125–132.

[29] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,

Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,

Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy. Nature 585, 7825 (Sept. 2020),

357–362. https://doi.org/10.1038/s41586-020-2649-2

[30] Vlastimil Havran, Miloslaw Smyk, Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel. 2005. Interactive System for Dynamic

Scene Lighting using Captured Video Environment Maps.. In Rendering Techniques. 31–42.

[31] HUAWEI. 2021. HUAWEI Mate 30 Pro Speci�cations | HUAWEI Global. https://consumer.huawei.com/en/phones/mate30-pro/specs/.

Accessed: 2020-7-8.

[32] Apple Inc. 2020. iPad Pro 2020. https://www.apple.com/ipad-pro/specs/.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

153:28 • Zhao et al.

[33] Apple Inc. 2022. Adding Realistic Re�ections to an AR Experience. https://developer.apple.com/documentation/arkit/camera_lighting_

and_e�ects/adding_realistic_re�ections_to_an_ar_experience.

[34] Apple Inc. 2022. Introducing ARKit 5. https://developer.apple.com/augmented-reality/arkit/.

[35] Inter IKEA Systems B. V. 2017. IKEA Place. https://apps.apple.com/us/app/ikea-place/id1279244498. Accessed: 2020-7-2.

[36] Brian Karis and Epic Games. 2013. Real shading in unreal engine 4. Proc. Physically Based Shading Theory Practice 4, 3 (2013).

[37] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based Python JIT Compiler. In Proceedings of the Second

Workshop on the LLVM Compiler Infrastructure in HPC (Austin, Texas) (LLVM ’15). Association for Computing Machinery, New York, NY,

USA, Article 7, 6 pages. https://doi.org/10.1145/2833157.2833162

[38] Junxuan Li, Hongdong Li, and Yasuyuki Matsushita. 2021. Lighting, Re�ectance and Geometry Estimation From 360deg Panoramic

Stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10591–10600.

[39] Zhengqin Li, Mohammad Sha�ei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2020. Inverse rendering for

complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2475–2484.

[40] Z Liu, G Lan, J Stojkovic, Y Zhang, C Joe-Wong, and M Gorlatova. 2020. CollabAR: Edge-assisted Collaborative Image Recognition

for Mobile Augmented Reality. In 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN).

301–312.

[41] Robert Maier, Kihwan Kim, Daniel Cremers, Jan Kautz, and Matthias Nießner. 2017. Intrinsic3D: High-Quality 3D Reconstruction by

Joint Appearance and Geometry Optimization with Spatially-Varying Lighting. (Aug. 2017). arXiv:1708.01670 [cs.CV]

[42] Morgan McGuire and Michael Mara. 2014. E�cient GPU screen-space ray tracing. Journal of Computer Graphics Techniques (JCGT) 3, 4

(2014), 73–85.

[43] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Renaud Marlet. 2016. OpenMVG: Open multiple view geometry. In International

Workshop on Reproducible Research in Pattern Recognition. Springer, 60–74.

[44] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE

Transactions on Robotics 33, 5 (2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[45] Nvidia. 2022. Jetson AGX Xavier Developer Kit. https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit.

[46] Rohit Pandey, Sergio Orts Escolano, Chloe Legendre, Christian Häne, So�en Bouaziz, Christoph Rhemann, Paul Debevec, and Sean

Fanello. 2021. Total relighting: learning to relight portraits for background replacement. ACM Trans. Graph. 40, 4 (July 2021), 1–21.

[47] Siddhant Prakash, Alireza Bahremand, Linda D Nguyen, and Robert LiKamWa. 2019. Gleam: An illumination estimation framework

for real-time photorealistic augmented reality on mobile devices. In Proceedings of the 17th Annual International Conference on Mobile

Systems, Applications, and Services. 142–154.

[48] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. 2020. Towards Robust Monocular Depth Estimation:

Mixing Datasets for Zero-shot Cross-dataset Transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2020).

[49] Science Buddies. 2013. Stepping Science: Estimating Someone’s Height from Their Walk. https://www.scienti�camerican.com/article/

bring-science-home-estimating-height-walk/. Accessed: 2021-11-5.

[50] Scott Stein. 2021. Lidar is one of the iPhone and iPad’s coolest tricks. Here’s what else it can do. https://www.cnet.com/tech/mobile/lidar-

is-one-of-the-iphone-ipad-coolest-tricks-its-only-getting-better/. Accessed: 2021-11-5.

[51] Gowri Somanath and Daniel Kurz. 2021. HDR Environment Map Estimation for Real-Time Augmented Reality. CVPR (2021).

[52] Shuran Song and Thomas Funkhouser. 2019. Neural Illumination: Lighting Prediction for Indoor Environments. CVPR (2019).

[53] Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, and Noah Snavely. 2020. Lighthouse:

Predicting Lighting Volumes for Spatially-Coherent Illumination. In CVPR. 8077–8086. https://doi.org/10.1109/CVPR42600.2020.00810

[54] Tiancheng Sun, Jonathan T Barron, Yun-Ta Tsai, Zexiang Xu, Xueming Yu, Graham Fy�e, Christoph Rhemann, Jay Busch, Paul Debevec,

and Ravi Ramamoorthi. 2019. Single image portrait relighting. ACM Trans. Graph. 38, 4 (July 2019), 1–12.

[55] Three.js Organization. 2021. Three.js - JavaScript 3D library. https://threejs.org. Accessed: 2021-11-5.

[56] TornadoWeb. 2022. Tornado Web Server. https://www.tornadoweb.org/en/stable/.

[57] Mihran Tuceryan et al. 2019. AR360: dynamic illumination for augmented reality with real-time interaction. In 2019 IEEE 2nd International

Conference on Information and Computer Technologies (ICICT). IEEE, 170–174.

[58] Jonas Unger, Joel Kronander, Per Larsson, Stefan Gustavson, and Anders Ynnerman. 2013. Temporally and spatially varying image

based lighting using HDR-video. In 21st European Signal Processing Conference (EUSIPCO 2013). IEEE, Marrakech, Morocco, 1–5.

[59] Unity. 2020. AR Foundation 4.2.0-preview.5. https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html.

[60] Unity3D. 2022. Unity3D. https://docs.unity3d.com/. Accessed: 2022-5-14.

[61] Jingao Xu, Guoxuan Chi, Zheng Yang, Danyang Li, Qian Zhang, Qiang Ma, and Xin Miao. 2021. FollowUpAR: enabling follow-up

e�ects in mobile AR applications. In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services

(Virtual Event, Wisconsin) (MobiSys ’21). Association for Computing Machinery, New York, NY, USA, 1–13.

[62] Juheon Yi and Youngki Lee. 2020. Heimdall: mobile GPU coordination platform for augmented reality applications. In Proceedings of

the 26th Annual International Conference on Mobile Computing and Networking (London, United Kingdom) (MobiCom ’20, Article 35).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

L��AR: Visually Coherent Lighting for Mobile Augmented Reality • 153:29

Association for Computing Machinery, New York, NY, USA, 1–14.

[63] Yunfan Zhang, Tim Scargill, Ashutosh Vaishnav, Gopika Premsankar, Mario Di Francesco, and Maria Gorlatova. 2022. InDepth: Real-Time

Depth Inpainting for Mobile Augmented Reality. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 1, Article 37 (mar 2022),

25 pages. https://doi.org/10.1145/3517260

[64] Yiqin Zhao and Tian Guo. 2020. PointAR: E�cient Lighting Estimation for Mobile Augmented Reality. In Computer Vision – ECCV 2020,

Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International Publishing, Cham, 678–693.

[65] Yiqin Zhao and Tian Guo. 2021. Xihe: A 3D Vision-Based Lighting Estimation Framework for Mobile Augmented Reality. In Proceedings

of the 19th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys ’21). 28–40.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 153. Publication date: September 2022.

