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ABSTRACT

Lighting understanding plays an important role in virtual object

composition, including mobile augmented reality (AR) applications.

Prior work often targets recovering lighting from the physical en-

vironment to support photorealistic AR rendering. Because the

common work�ow is to use a back-facing camera to capture the

physical world for overlaying virtual objects, we refer to this usage

pattern as back-facing AR. However, existing methods often fall

short in supporting emerging front-facing mobile AR applications,

e.g., virtual try-on where a user leverages a front-facing camera

to explore the e�ect of various products (e.g., glasses or hats) of

di�erent styles. This lack of support can be attributed to the unique

challenges of obtaining 360
� HDR environment maps, an ideal for-

mat of lighting representation, from the front-facing camera and

existing techniques. In this paper, we propose to leverage dual-

camera streaming to generate a high-quality environment map by

combining multi-view lighting reconstruction and parametric direc-

tional lighting estimation. Our preliminary results show improved

rendering quality using a dual-camera setup for front-facing AR

compared to a commercial solution.
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1 INTRODUCTION

Lighting estimation is an important and long-standing task in com-

puter vision and graphics communities [6, 14, 21]. Over the past

few years, we have observed a wide adoption of lighting estima-

tion methods for end-user-facing applications. For example, scene

lighting estimation is essential to render visually-coherent virtual

objects in mobile AR applications [21, 26]; in computational pho-

tography, lighting estimation is useful because photos can be post-

edited to have di�erent lighting conditions [14]. In this work, we

explore the key research questions in lighting understanding for

an emerging application domain, front-facing mobile AR, particu-

larly try-on applications where end users leverage handheld mobile

devices such as smartphones to overlay products of interest on

their faces. Mobile AR try-on apps promote online shopping and

often require photorealism to provide user experiences on par with

physical try-on.

Front-Facing mobile AR try-on shares many practical challenges

with other lighting estimation apps, e.g., limited �eld-of-views

(FoVs), but also has its own unique challenges and opportunities.

For instance, even though commercial AR SDKs support the world-

space device pose tracking via back-facing cameras, they do not

currently support such tracking via the front-facing camera. Adding

such support is not a mere integration of front-facing camera

streams to existing algorithms but requires solving challenges that

are rooted in moving objects (face in this case) and limited over-

laps between images. On the other hand, front-facing mobile AR

try-on is less sensitive to spatial variance because of the proxim-

ity of the observation (the phone camera) and the rendering (the

face) positions [25]. This insensitivity allows us to operate in the

2D image space—rather than the more computation-intensive 3D

space [25]—when generating the proper lighting information.

Providing a photorealistic and visually-coherent try-on expe-

rience can be boiled down to supporting re�ection, shadow, and

correct color tone [26]. All three features can be achieved by uti-

lizing a 360� HDR environment map [4]. However, obtaining such

an environment map on mobile devices is di�cult for key reasons,

including small FoVs and limited support for HDR streaming. Even

in cases when high-end phones could capture HDR videos, they

do not support simultaneous multi-camera streaming. Furthermore,

front-facing AR, compared to back-facing AR, has an even more

limited FoV, and the camera often fails to observe important en-

vironmental information that is useful for re�ective rendering. In

short, it is challenging to obtain high-quality environment maps

even on modern mobile devices.

This paper outlines a research roadmap that leverages multi-

camera to deliver high-quality lighting information for front-facing
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To ease the user experiences, we propose to design an onscreen

instruction for guiding the users to keep their head static while

moving the mobile device along the trajectory of the great circle

(with the radius of the user’s arm length)7. Figure 4 illustrates the

idea of controlled movement. We only ask the user to perform this

guided movement at the app launch time and when signi�cant

movement is detected while using the app.

Stitching Image Views for Environment Maps. To leverage

the additional environment observations for improving re�ection

rendering quality, we �rst stitch the front and back camera images

into a partial 360� environment map. Speci�cally, we assume the

front-facing and back-facing cameras share the same origin and

map the camera image pixels to an environment map based on

camera physical parameters and the pinhole camera model [22].

To bootstrap the user experiences when the AR application starts,

we initialize the environment map data from the guided control

movement at the beginning of the try-on app. During application

usage, we progressively update the environment map using image

feature matching methods, e.g., [9], and merge new back-facing

camera images into the reconstructed environment map. For front-

facing camera image, as the user’s head pose and facial expressions

might change during the app usage, we propose to only use the

current frame for environment map reconstruction.

Analysis of Environment Observation. We present an analy-

sis of the environment observation increase when combing multi-

frame images. To test the observation increase, we manually created

a setup in Blender with 3 back-facing camera images, each with

120� FoV. We set the image pose along a horizontal movement

trajectory to simulate a ±30� movement. We used the same obser-

vation coverage measurement metric as in §3 and found that the

environment observation can be increased to cover 50% directions,

1.3x of using one back-facing camera image alone.

4.3 Parametric Directional Light Estimation

HDR environment maps are commonly used for rendering shadows

of virtual objects. However, directly reconstructing 360� HDR envi-

ronment maps requires prolonged user engagement for scanning

and can be prone to quality issues. Furthermore, our prior work

shows that using learning-based models to inpaint camera views

to 360� HDR environment maps can be highly inaccurate for com-

plex real-world indoor scenes [26]. To address these limitations, we

propose to approximate the HDR environment maps by combining

reconstructed LDR environment maps and estimated parametric

directional lights. At a high level, our proposed directional light

estimation model will work in tandem with the environment map

reconstruction pipeline described in previous sections. The esti-

mation model will improve the prediction of the color tone and

the completeness of the environment map, as well as supporting

shadow rendering.

Speci�cally, we propose to extend the estimation model [14] to

use the back-facing camera images to improve the lighting color

estimation accuracy. We expect that this design will improve the

estimation accuracy of the environment color even when unseen

7Guided movement is a common design for mobile applications such as taking
panorama [11].

objects or unnatural environmental lighting appear in the image.

This is because back-facing camera images greatly enriches the

environment lighting information in the input data, leading to

more accurate light color estimation. Besides parametric directional

lights, our estimation model also outputs a low-resolution environ-

ment map. We plan to use the estimated environment map to �ll

unseen regions on the reconstructed environment map. This design

will further improve the re�ection rendering and overall color tone

accuracy. As the reconstructed environment map is re�ned pro-

gressively during AR app usage, we expect the completeness of the

environment map and directional light color to also be improved.

5 RELATED WORK

Lighting Estimation. Recent deep learning-based work has inves-

tigated recovering lighting information in both outdoor and indoor

scenes [6], leverages images of arbitrary scenes, portraits [14], and

shadows [16]. Although DL-based approaches can often deliver

good visual appearances, they require training on large datasets

with the lighting ground truth and can have a longer than hun-

dreds of milliseconds inference time [24]. Prior mobile-oriented

work, including our own [25, 26], addressed the above two issues

by either forgoing the DL route [19, 26] or exploring the advance-

ment in the mobile camera system for the back-facing mobile AR

applications [2, 21, 25]. Our proposed work combines a promising

set of existing lighting estimation techniques to deliver tailored

experiences for mobile AR try-on applications.

Virtual Try-On Applications. Recent work on virtual try-on has

demonstrated good progress in overlaying clothes on a human

body with little deformation and correct occlusion [17]. Earlier

work on image-based try-on takes two inputs, images of a person

and the desired clothes, and generates a new image where the same

person is now wearing the desired clothes [8]. Other fashion items,

such as shoes, cosmetics, and glasses, have recently received more

attention [12]. For example, ARShoe proposed a real-time mobile

AR-based shoe try-on system [1] that improved upon PIVTONS [3].

Despite the growing interest in virtual try-on applications, very

few works address the visual coherency of the rendered fashion

items, which is the focus of our work.

Multi-Camera Mobile System. To address the limitation of low

FoV associated with a single camera, several works have proposed

to fuse the inputs from multiple cameras to improve the quality

of lighting estimation. GLEAM supported an optional feature that

allows di�erent mobile devices (hence cameras) to share lighting

information [19]. Li et al. proposed to use a 360� panoramic stereo

installed in the targeted indoor scene to estimate the scene proper-

ties, including lighting [15]. Multi-camera systems have also been

proposed for other tasks, such as removing face blurs [13] and

estimating depth [23]. Our proposed work shares the key idea of

leveraging multiple cameras to increase the scene observations but

tackles three unsolved challenges for front-facing mobile AR.

6 CONCLUSION

Lighting estimation has attracted a lot of attention over the past

few years to improve the realism and visual details of AR apps [5,
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6, 24, 25]. In this paper, we aim to bring photorealism to front-

facing mobile AR try-on apps, a promising method for empowering

consumers with a try-before-purchase experience in e-commerce.

Our proposed techniques take inspiration from our prior work in

lighting estimation [14, 15, 24, 25] and will address the unique chal-

lenges in front-facing mobile AR. Two baselines we plan to compare

against include dual-camera LitAR and EnvMapnet, variants based

on their single-camera designs [21, 26]. We expect the �rst baseline

to generate lower-quality environment maps and does not support

shadow and the second baseline to output environment maps that

do not match the physical environments.

We believe the key idea of employing multi-camera can open

many interesting directions for mobile AR applications. This pa-

per focuses on a speci�c case of front-facing and back-facing dual-

camera streaming to improve lighting understanding. Our proposed

techniques could also bene�t other deployment scenarios, such as

dual back-facing cameras and edge-based 360
� cameras. As the

number of cameras increases, obtaining high-quality environment

maps will become easier via coordinated streaming. However, ques-

tions regarding the energy and quality trade-o�s remain unclear

and need to be studied further.
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