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A B S T R A C T   

Predicting in-stream water quality is necessary to support the decision-making process of protecting healthy 
waterbodies and restoring impaired ones. Data-driven modeling is an efficient technique that can be used to 
support such efforts. Our objective was to determine if in-stream concentrations of contaminants, 
nutrients—total phosphorus (TP) and total nitrogen (TN) —total suspended solids (TSS), dissolved oxygen (DO), 
and fecal coliform bacteria (FC) can be predicted satisfactorily using machine learning (ML) algorithms based on 
publicly available datasets. To achieve this objective, we evaluated four modeling scenarios, differing in terms of 
the required inputs (i.e., publicly available datasets (e.g., land-use/land cover)), antecedent conditions, and 
additional in-stream water quality observations (e.g., pH and turbidity). We implemented five ML algo
rithms—Support Vector Machines, Random Forest (RF), eXtreme Gradient Boost (XGB), ensemble RF-XGB, and 
Artificial Neural Network (ANN) —and demonstrated our modeling framework in an inland stream—Bullfrog 
Creek, located near Tampa, Florida. The results showed that, while including additional water quality drivers 
improved overall model performance for all target constituents, TP, TN, DO, and TSS could still be predicted 
satisfactorily using only publicly available datasets (Nash-Sutcliffe efficiency [NSE] > 0.75 and percent bias 
[PBIAS] < 10%), whereas FC could not (NSE < 0.49 and PBIAS >25%). Additionally, antecedent conditions 
slightly improved predictions and reduced the predictive uncertainty, particularly when paired with other water 
quality observations (6.9% increase in NSE for FC, and 2.7% for TP, TN, DO, and TSS). Also, comparable model 
performances of all water quality constituents in wet and dry seasons suggest minimal season-dependence of the 
predictions (<4% difference in NSE and < 10% difference in PBIAS). Our developed modeling framework is 
generic and can serve as a complementary tool for monitoring and predicting in-stream water quality 
constituents.   

1. Introduction 

Elevated levels of in-stream pollutants are linked to water quality 
degradation and pose a significant hazard to human life and biodiversity 
(Alnahit et al., 2022). Despite efforts in water quality restoration over 
the years, ~41,000 waterbodies and 482,000 km of streams and 
shorelines are impaired nationwide as of 2012 (Copeland, 2012; John
son et al., 2013). In 2022—50 years after the establishment of the Clean 
Water Act in 1972, this number has increased to over 1 million kilo
meters (~50% increase) for impaired rivers alone (Kelderman et al., 
2022). Consequently, the average cost of developing and implementing 
Total Maximum Daily Loads (TMDLs) can be as high as ~$4.3 billion/ 

year (USEPA, 2001). 
Water quality management and restoration projects require adequate 

and continuous data for load reduction calculations (Borah et al., 2006, 
2019; Mallya et al., 2020) and efficient modeling tools for timely water 
quality assessments. Non-point sources are the primary drivers of water 
quality degradation in many watersheds, and modeling in-stream 
pollution requires adequate assessments of these sources (Borah et al., 
2006). Thus, the inter-linkage among environmental drivers such as 
watershed characteristics, meteorological, and water quality has been 
widely discussed in the literature (Cho et al., 2016; Fluke et al., 2019). 
While interactions among waterbody pollutants follow different linear 
and non-linear patterns constituting complexities in predictive 

* Corresponding author. 
E-mail addresses: cia16@fsu.edu (I.C. Adedeji), eahmadisharaf@eng.famu.fsu.edu (E. Ahmadisharaf), y.sun@eng.famu.fsu.edu (Y. Sun).  

Contents lists available at ScienceDirect 

Journal of Contaminant Hydrology 

journal homepage: www.elsevier.com/locate/jconhyd 

https://doi.org/10.1016/j.jconhyd.2022.104078 
Received 17 May 2022; Received in revised form 9 September 2022; Accepted 11 September 2022   

mailto:cia16@fsu.edu
mailto:eahmadisharaf@eng.famu.fsu.edu
mailto:y.sun@eng.famu.fsu.edu
www.sciencedirect.com/science/journal/01697722
https://www.elsevier.com/locate/jconhyd
https://doi.org/10.1016/j.jconhyd.2022.104078
https://doi.org/10.1016/j.jconhyd.2022.104078
https://doi.org/10.1016/j.jconhyd.2022.104078
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jconhyd.2022.104078&domain=pdf


Journal of Contaminant Hydrology 251 (2022) 104078

2

modeling, sufficient or unavailable data further complicates these 
complexities. 

Various combinations of environmental predictors have been 
employed in water quality modeling depending on data availability, 
water quality constituents of concern, and the scope of the study. 
Commonly used predictors include publicly available datasets such as 
streamflow, land cover, soil, meteorological (e.g., precipitation and air 
temperature), topography, and animal population, which explain un
derlying physical, chemical, and biological processes for water quality 
constituents (David and Haggard, 2011; Sakizadeh, 2016). Water qual
ity observations are used to calibrate and validate water quality models 
(Khatri et al., 2020; Sakizadeh, 2016). Unlike hydrological data that are 
often obtained continuously, water quality observations are sparse due 
to the costs of monitoring and limited resources (Mallya et al., 2020). 
This is particularly the case for constituents like bacteria; the data are 
even sparser due to relatively more complex and expensive monitoring 
(Holcomb et al., 2018; Yu et al., 2021). Sparse datasets are some of the 
most significant challenges for modeling, especially for data-driven 
water quality modeling such as machine learning (ML) (Mallya et al., 
2020a). Also, data quality comes into question; high concentration 
samples are crucial for pollution control studies like TMDLs, and their 
absence or inadequacy in datasets introduces bias to the water quality 
model predictions (Park and Engel, 2015). Furthermore, while some 
studies have successfully predicted pollutants without using other water 
quality constituents (Abimbola et al., 2020, 2021), other studies have 
suggested that their exclusion can lead to biased results; e.g., an 

overestimation reported by Park and Engel (2015) or underestimation 
found by Abimbola et al. (2021). Antecedent conditions with time 
windows (e.g., days) have been used to represent initial conditions, and 
studies have emphasized their importance in water quality modeling 
(Abimbola et al., 2020, 2021; Kao et al., 2020). 

Adequate representation of in-stream water quality in watersheds 
requires an in-depth understanding of the underlying physical, chemi
cal, and biological processes (Beven, 2018). Process-based models like 
Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011) and Hy
drological Simulation Program Fortran (HSPF) (Bicknell et al., 2005) 
have been widely used in predicting water quality constituents at the 
watershed scale. These models are generally complicated and compu
tationally demanding, particularly for large-scale watersheds and 
probabilistic analyses. They are also neither easy to implement, use, nor 
scalable. In situations of limited data, simple models, such as Load 
Estimator (LOADEST; Runkel et al., 2004), Web-based Load Interpola
tion Tool (LOADIN; Park and Engel, 2015), SPAtially Referenced Re
gressions On Watershed attributes (SPARROW; Schwarz et al., 2006), 
and load duration curves (Zhang and Quinn, 2019) have been used to 
generate water quality data and augment existing observations. These 
models are typically limited by many degrees of freedom and the 
assumption of linearity. In predicting water quality constituent loads 
using LOADEST, Park and Engel (2015) found significant bias in model 
predictions (Park and Engel, 2015). Their finding corroborates the study 
of Lee et al. (2016), who suggested that regression-based models can 
result in high systematic errors in conditions like heteroscedasticity of 
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Fig. 1. Schematic of the machine learning-based water quality modeling framework detailing the modeling workflow starting from knowledge-guided feature se
lection to model performance evaluation and uncertainty analysis and uncertainty analysis. SVM: Support Vector Machines; RF: Random Forest; XGB: eXtreme 
Gradient Boosting; ANN: Artificial Neural Network; Tree-SHAP: Tree-based SHAPley Additive exPlanations; FC: Fecal coliform; TN: Total nitrogen; TP: Total 
phosphorus; DO: Dissolved oxygen; TSS: Total suspended solids. 
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model residuals, poor pollutant/flow correlation, and seasonality (Lee 
et al., 2016). In addition to the disadvantages mentioned above, these 
simple models do not account for pollution drivers (e.g., suspended 
solids and turbidity) and their underlying processes (e.g., settling and 
resuspension). These drivers and processes can be harnessed from data 
using statistical associations and dependencies in ML modeling (Wang 
et al., 2021). 

Over the last decade, ML algorithms like ensemble ML (EML) and 
Artificial Neural Networks (ANN) have received attention in the area of 
water quality modeling (Abba et al., 2020; Al-Sulttani et al., 2021; Chen 
et al., 2020). This upward trend in the application of ML methods can be 
attributed to their ability to model intrinsic relationships in environ
mental systems while being computationally efficient, easy-to-use and 
easily automated (Abbas et al., 2021; Adams et al., 2013). ML algorithms 
can be used in conjunction with feature subset selection and model 
interpretation techniques, like SHapely Additive exPlanations (SHAP) 
and relief-based algorithms (RBA), to explain model outputs and quan
tify feature importance via a small number of water quality drivers 
(Bilali et al., 2021; Wang et al., 2021). 

Feature selection varies widely in the literature due to constraints 
like data availability, spatiotemporal scale, and scope of the study. To 
the best of our knowledge, there are no systematic investigations into 
the importance of individual predictor sets, such as water quality drivers 
and antecedent conditions for watershed-scale water quality modeling. 
Additionally, model uncertainties associated with water quality pre
dictions are rarely reported in ML-based water quality modeling studies 
(Duan et al., 2013; Farnham and Lall, 2015), posing a challenge for risk- 
based water quality management (Ahmadisharaf et al., 2019; Ahma
disharaf and Benham, 2020; Mishra et al., 2018, 2019). Thus, it is crucial 
to evaluate the effectiveness and uncertainty of ML-based modeling 
frameworks for in-stream water quality predictions using publicly 
available datasets alongside additional factors like antecedent condi
tions and other water quality constituents. 

The main objective of this study was to evaluate the performance of 
five ML algorithms—Support Vector Machines (SVM), Random Forest 
(RF), eXtreme Gradient Boost (XGB), ensemble RF-XGB, and ANN—in 
predicting the in-stream concentration of fecal coliform (FC), 
nutrients—total phosphorus (TP) and total nitrogen (TN)—total sus
pended solids (TSS) and dissolved oxygen (DO) at the watershed scale 
using publicly available datasets. Through our analyses, we also aimed 
to: 1) determine if incorporating additional water quality constituents 
and accounting for antecedent conditions assist in improving the pre
diction of the five constituents; 2) investigate the role of seasonality on 
the predictive capability of ML models for the water quality constitu
ents; and 3) quantify the uncertainty of ML predictions in terms of the 
water quality constituents. The model applicability was demonstrated 
on an inland stream, Bullfrog Creek Watershed, Tampa, Florida, where 
the abovementioned constituents are the primary sources of impair
ments, like many streams in Florida and the U.S. 

2. Methodology 

The modeling framework (Fig. 1) shows a sequence of steps, 
including identification of critical drivers (features or exploratory vari
ables) of in-stream pollution in terms of the five water quality constit
uents, collection of the data representing pertinent processes, selection 
of the most important drivers as model features, implementation of ML 
algorithms in each scenario and evaluation of modeling scenarios using 
a set of fit metrics. Subsequently, seasonality and uncertainty analyses 
were conducted. 

2.1. Exploratory data analyses and knowledge-guided feature selection 

We conducted exploratory data analyses to investigate the relation
ships between the water quality constituents and their drivers. Here, 
“target” refers to a water quality constituent predicted by the ML 

algorithms, and “feature” is a variable that can explain the underlying 
physical, chemical, and biological processes of the target water quality 
constituent. Generally, increasing model dimension (number of fea
tures) exponentially increases the number of observations required 
(Tripathi and Govindaraju, 2007); hence, careful feature selection is 
essential to improve the model accuracy, and robustness and minimize 
the introduction of random errors from weak features into the learning 
algorithm (Kuhn and Johnson, 2019). Here, we selected the “most 
important” or “most informative” features that can explain the maximum 
target variability for each target water constituent. 

We employed filter and embedded feature selection method
s—spearman’s rank-order correlation, tree-based Shapely Additive ex
Planations (TreeSHAP), and relief-based algorithms (RBAs)—to extract 
critical features driving in-stream pollution from an initial set of 35 
exploratory features. These methods use monotonic rank value (stron
gest monotonic association), RreliefF (Regression-based Relief) score 
(presence of feature value difference in adjacent data instances), and 
absolute shapely values (mean absolute SHAP value) in determining 
features with the highest importance. We used Spearman’s correlation 
to prioritize the initial 35 features. This correlation is non-parametric 
and evaluates monotonic associations based on the rating of each vari
able, and as a result, linear and non-linear statistical dependencies 
among the target and features were assessed. One drawback is that 
spearman’s ranking does not consider the dependencies between the 
target and features. Thus, we also used RreliefF—a relief-based algo
rithm—that does not assume independence among features, and is 
generally robust to missing data instances (Kononenko, 1994), 
high-dimensionality (Eiras-Franco et al., 2021), feature interactions 
(Urbanowicz et al., 2018), and noise in data (Eiras-Franco et al., 2021; 
Urbanowicz et al., 2018) in datasets. Lastly, we used TreeSHAP 
(XGB-SHAP)—a game theory-based method suitable for capturing 
complex feature-target relationships, robust to outliers, and provides 
interpretations for black box models like RF, XGB, and ANN. XGB-SHAP 
has been used in previous water quality prediction studies and found to 
be a highly effective model explanation method (e.g., Li et al., 2022). We 
repeated the aforementioned feature selection criteria (Spearman’s 
correlation, RreliefF and XGB-SHAP) for each target water quality con
stituent and obtained a set of the “most important features” to be 
employed in the models. This multi-method approach was taken to 
obtain a credible set of explanatory variables for water quality modeling. 

2.2. Machine learning algorithms 

To identify the most suitable models for future water quality appli
cations, five ML algorithms—SVM, RF, XGB, RF-XGB, and ANN—were 
selected and compared in this study. SVM and ANN were chosen due to 
numerous applications in previous environmental modeling studies 
(Banadkooki et al., 2020; Elshorbagy et al., 2005), while EML methods 
like RF and XGB are emerging algorithms in water quality applications 
(Li et al., 2022; Wang et al., 2021; Zounemat-Kermani et al., 2021). 
These methods are known for their adaptability to non-linear problems 
and remarkable modeling performance, as is the case in water quality 
modeling (Alqahtani et al., 2022; Li et al., 2022; Sakizadeh, 2016). In 
this study, we selected different EML methods (RF and XGB) based on 
the literature (Li et al., 2022; Wang et al., 2021; Zounemat-Kermani 
et al., 2021) and the training method employed. RF utilizes parallel 
training where each base learner is built independently using equal 
weights in each leaf node and eventual averaging all tree outputs. In the 
case of XGB, the base learners are generated sequentially, and a gradient 
is used from one learner to the others, thereby updating the leaf weights 
in subsequent trees. This way, each new tree corrects the error from the 
former giving more precise training predictions. 

Although XGB is a stronger algorithm known for more precise 
training predictions over RF, it requires careful parameter tuning and is 
sensitive to overfitting in noisy data conditions (Zounemat-Kermani 
et al., 2021). The strength of XGB is an added advantage due reduction 
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in error propagation when building subsequent base learners, while 
overfitting occurs when the model memorizes random errors (noise) in 
the training data. On the other hand, RF is intrinsically robust to over
fitting due to the random selection of inputs but generally requires 
higher computational time than XGB (Stocker et al., 2022; Zounemat- 
Kermani et al., 2021). In an effort to minimize the limitations and 
leverage the strengths of individual algorithms, we implemented RF- 
XGB using Voting Regressor (a sci-kit learn package). This approach 
was supported by Zounemat-Kermani et al. (2021), who suggested that 
combining multiple ML algorithms through model averaging can 
leverage the strengths of individual algorithms and improve general
ization ability (Zounemat-Kermani et al., 2021). 

2.3. Performance evaluation metrics for machine learning models 

Parameters of each selected ML algorithm were optimized, and their 
predictive performances were evaluated. Employing multiple fit metrics 
is helpful in modeling studies as the strengths and limitations of indi
vidual measures can be leveraged (Ahmadisharaf et al., 2019). Here, we 
used six metrics to evaluate the performance of the ML algorithms in 
terms of bias, error, and correlation. The metrics included the adjusted 
coefficient of determination (Adj R2), Nash-Sutcliffe efficiency (NSE; 
Nash and Sutcliffe, 1970), percent bias (PBIAS), root mean square error 
(RMSE)-observations standard deviation ratio (RSR), and Kling-Gupta 
efficiency (KGE; Gupta et al., 2009). Based on these metrics, the per
formance of each ML algorithm was ranked using suggested guidelines 
for accurate quantification in watershed modeling (Ahmadisharaf et al., 
2022; Ahmadisharaf et al., 2019; Lamontagne et al., 2020; Moriasi et al., 
2015). In addition to these metrics, we used generalization ability (GA) 
to ensure each model performed satisfactorily with the introduction of 
new data (Bilali et al., 2021). A GA value of unity (1) indicates excellent 
model generalization, GA > 1 indicates overfitting, while values less 
than one (<1) indicates an underfitting (Bilali et al., 2021). The term 
‘improvement in model performance’ in this study refers to a significant 
improvement recorded in one or more of the selected objective func
tions. Likewise, the term ‘best model’ used in each modeling scenario was 
selected based on larger Adj R2, NSE, and KGE, and lower RSR and 
PBIAS. Hereafter, “excellent”, “very good”, “good”, and “satisfactory” are 
derived based on Moriasi et al. (2015) and Ahmadisharaf et al. (2019). 
We computed these metrics using Hydrostats and HydroErr packages in 
Python. The reader is referred to the papers mentioned above for details 
of the selected evaluation matrices. 

2.4. Training and testing of machine learning models 

The ML algorithms were evaluated using a cross-validation (CV) 
technique with multiple repetitions (typically five) to assure valid 

prediction results due to the learning algorithm’s stochastic nature, i.e., 
samples are randomly split in each learning scenario. Although 5-fold 
CV (i.e., using 80% of observation for training and the remaining 20% 
for testing) is typically found suitable in many modeling practices, we 
examined 3-, 4- and 7-fold CV train/test ratios alongside the 5-fold for 
all the ML algorithms. Our rationale was that the ML model performance 
increases with data volume, so the ratio of the training and hold-out sets 
was kept constant across the learning scenarios for each target water 
quality constituent to ensure the impartial model and scenario com
parison. Unfitted RF and XGB models were combined using an ensemble 
meta-estimator (voting regressor in Scikit-learn Python library) that 
averages the predictions of each estimator. Also, since adjusting the 
model hyper-parameter (factors that regulate the learning process) 
manually is inefficient due to numerous tunable functions (Table 1), we 
used Levenberg-Marquardt and early stopping optimization techniques 
to perform an exhaustive search and determine the optimum value of the 
model hyperparameters. Levenberg-Marquardt technique, a simple and 
robust function approximation method, was used to optimize ANN 
model performance, while SVM, RF, and XGB were optimized using grid 
search tuning technique and early stopping. Also, due to the size of our 
data—234 for FC, TN, TP, and DO, and 80 for TSS—the learning algo
rithms chosen in this study tended to overfit the observed data; there
fore, to minimize the variance, Levenberg-Marquardt and early stopping 
optimization were used in the ANN and tree-based algorithms respec
tively. While a step size of 0.001 yielded an optimal performance in the 
neural network, increasing either iterations or neuron count above 20 
did not improve the learning performance. Table 1 lists the primary 
hyper-parameters and functions for all the ML algorithms. 

Table 1 
Model main functions and hyper-parameters.  

Model Estimators Layers/NPL/ 
Iterations 

Kernel TF Degree/ 
Gamma 

C Lr Max 
deptha 

Subsamplesb MC/CST/ 
MDSc 

Bootstrap MSS/ 
MSLd 

ESe 

SVM – – rbf – 3/0.25 1 – – – – – – – 
RF 100 – – – – – – None – – True 2/1 – 
XGB 80 – – – – – 0.1 4 1 1/1/0 – – 10 
RF- 

XGB 
100/80 – – – – – —/0.1 None/4 —/1 —/1/1/0 True/— 2/1/— —/10 

ANN – 2/20/20 – Tansig – – 0.001 – – – – – – 

SVM: Support Vector Machine, RF: Random Forest; XGB: eXtreme Gradient Boosting, ANN: Artificial neural network. NPL: Neurons per layer, TF: Transfer function, 
Degree/Gamma: The coefficient of Radial basis function kernel that specifies the minimum loss reduction required to make a split, C: Regularization parameter, Lr 
(Learning rate/eta): The step size shrinkage used to prevent overfitting of the model. 

a Maximum depth of a tree: Used to control overfitting. 
b Fraction of observation to be randomly sampled for each tree. 
c MC/CST/MDS: Minimum child weight/Columns sample by tree /Maximum delta step. 
d MSS/MSL: Minimum sample split/Minimum sample leaF. 
e ES: Early stopping round; rbf: Radial basis function kernel. 

Table 2 
Machine learning-based water quality modeling scenarios.  

Scenario Drivers Description 

S1 LULC, meteorological, pedologic, 
animal statistics 

Evaluates the suitability of using 
only publicly available dataset. 

S2 LULC, meteorological, pedologic, 
animal statistics, antecedent 
condition 

Evaluate the importance of 
accounting for antecedent 
conditions. 

S3 LULC, meteorological, pedologic, 
animal statistics, water quality 

Evaluate the importance of 
accounting for other in-stream 
water quality constituents. 

S4 LULC, meteorological, pedologic, 
animal statistics, antecedent 
condition, water quality 

Evaluate the importance of 
accounting for antecedent 
conditions and other in-stream 
water quality constituents 
(combination of scenarios S1-S3). 

LULC = Land use/Land cover. 
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2.5. Modeling scenarios 

Modeling scenarios (Table 2) were designed such that each scenario 
represents the water quality processes and data requirement consider
ations. In Scenario 1 (S1), we assessed only the following variables: land 
use/land cover (LULC), meteorological, soil animal statistics, etc. whose 
data are publicly available throughout the U.S. In scenario 2 (S2), we 
considered the role of antecedent conditions, which can influence 
contaminant leaching, water seepage, and overland flow volume. 
Different representations of antecedent conditions have been incorpo
rated in previous studies, such as cumulative rain prior to a water quality 
observation, antecedent dry days, weighted antecedent rainfall, or a 
combination of different factors in one variable (Abimbola et al., 2020; 
Dada and Hamilton, 2016; Farnham and Lall, 2015). Thus, we evaluated 
cumulative rainfall over a range of periods (one to 14 days), antecedent 
dry days, and different sets of three-day weight-adjusted prior to an 
observed water quality constituent as representations of the antecedent 
conditions. 

These conditions can influence in-stream pollutant dynamics; accu
mulated pollutants on the land surface can be mobilized and conveyed 
during a rainfall event and subsequently transported to receiving waters 
via succeeding rainfall events (wash-off). Many antecedent rainfalls can 
pronounce the effect of rainfall on the day of observation due to 
increased soil moisture content, decreased soil infiltration capacity due 
to saturation, and increased surface runoff (Farnham and Lall, 2015). 
Furthermore, in scenario 3 (S3), we evaluated the effect of incorporating 
additional water quality constituents (e.g., pH and turbidity) to repre
sent in-stream water quality processes like settling/resuspension and 
die-off/regrowth without considering antecedent conditions. Since data 
on these additional water quality constituents may be proprietary, 
limited, or unavailable in many watersheds, this scenario is applicable 
only when such data are available, or resources exist to collect them 

through monitoring. Finally, Scenario 4 (S4) combines scenarios S1-S3, 
representing a situation where all data mentioned above are available. 

2.6. Uncertainty quantification 

The uncertainty of ML algorithms was quantified using a robust 
estimator of variance suggested by Wahl (2004) and Ahmadisharaf et al. 
(2016). In this approach, the uncertainty of each ML algorithm is pre
sented in terms of a prediction interval around a hypothetical value of 
unity. The overall methodological sequence includes an initial compu
tation of prediction errors (Eq. (1)), exclusion of outliers from the pre
diction errors series, estimation of the mean and standard deviation of 
the prediction errors, and determination of the confidence band around 
the predicted values of each target water quality constituent (Eq. (2)). 

Prediction error (e) = Log10
(
Ysim)

− Log10
(
Yobs) (1)  

Prediction interval band [Upper limit, Lower limit]

=
[
Ysim*10−emean−2Se , Ysim*10−emean+2Se

]
(2)  

where, e is the prediction error, emean and Se are the mean and standard 
deviation of the prediction error, respectively and ± 2Se provides the 
95% prediction interval. The estimated prediction interval for each 
water quality constituent can be used as multipliers to achieve a range of 
predictions when using the ML models in other water quality modeling 
scenarios. 

2.7. Seasonality analyses 

Seasonal influence on prediction performance is essential, mainly 
when profound seasonal trends are present in the observations. High 
intensity and more frequent precipitations are prevalent in the wet 

Fig. 2. Bullfrog River Watershed.  
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season, which increases the overland flow and transport of contaminants 
to the stream through wash-off processes (Moriasi et al., 2014; Sigleo 
and Frick, 2003). In a dry season, sporadic short and high-intensity 
rainfall events are prevalent, promoting the transport of contaminants 
to adjacent streams and tributaries. Here, we developed the ML algo
rithms for wet and dry seasons following the methodology presented in 
Sections 2.1–2.6. We then compared the performance of these algo
rithms to investigate whether the performance is season dependent. 

3. Case study 

The study area is the freshwater segment of the Bullfrog River 
Watershed located in the southern region of Hillsborough County, 
Tampa, Florida (Fig. 2). The watershed covers a drainage area of 104.2 
km2, corresponding to the Hydrologic Code Unit (HUC031002060401) 
according to the U.S Geological Survey classifications. The climate in 
this watershed is humid subtropical, where air temperatures range from 
daily lows of 8 ◦C to as high as 34 ◦C. The watershed has a heterogeneous 
landscape with developed, agriculture, wetlands, open waters, barren 

land, and forest land covers. Although historically, the watershed was 
considered an agricultural watershed dominated by pasturelands, over 
the years, there has been substantial urban sprawl across the down
stream, which is the area closest to Tampa metropolitan area. Urban is 
the dominant land cover in the watershed downstream, while the up
stream part is still predominantly agricultural (pasture and cropland). 
The soil is mainly composed of highly permeable soil, with a blend of 
hydrologic soil groups A and A/D. The watershed is low-lying (average 
ground slope of 2.5%) with an average water table depth of 0 to 1.45 m. 
Additional information on data sources and temporal coverage can be 
found in the supplementary information document (Table S1). 

4. Results and discussion 

4.1. Statistical analyses and feature importance 

Log transformations were applied to all target time series to remove 
skewness in the distributions and deemphasize outliers, thereby 
improving statistical validity of the observations for our predictions. 

Fig. 3. Global feature importance for: (a) fecal coliform (FC); (b) total nitrogen (TN); (c) total phosphorus (TP); (d) dissolved oxygen (DO); and (e) total suspended 
solids (TSS), assessed by the combination of three feature importance methods (XGB-SHAP, ReliefF [a relief-based algorithm] and Spearman correlation). The in
fluence of water quality constituents is more pronounced for FC, TP, TSS, and TN, while metrological variables dominate for DO. CR5: 5-day antecedent cumulative 
rainfall, XGB-SHAP: eXtreme Gradient Boosting Trees-SHapely Additive exPlanations. 
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Descriptive statistics such as minimum, maximum, mean, and quantiles 
of log-transformed target constituents are shown in Fig. S3. Additional 
analyses of the time series show that the distribution of rainfall, five-day 
antecedent rainfall (CR5), FC, DO, and TSS had no significant trend from 
1998 to 2016. Conversely, TP had a significant decreasing trend (p- 
value = 0) whereas a slightly increasing trend was observed for TN (p- 
value = 0.02). 

Furthermore, seventeen ‘most important’ features were selected and 

implemented in the ML algorithms. We examined the cumulative rain
fall over a range of periods (one to 14 days), antecedent dry days, and 
different sets of 3-day weight-adjusted prior to an observed water 
quality constituent to represent the most crucial antecedent conditions 
in terms of each of the five water quality constituents. Our results 
showed that CR5 was more important than other antecedent condition 
features for all the water quality constituents. Subsequently, we ob
tained a union feature set of the top 17 features after combining the 

Fig. 4. Machine learning model performances—coefficient of determination (R2), root mean square error-observations standard deviation ratio (RSR), Nash-Sutcliffe 
efficiency (NSE), Kling-Gupta efficiency (KGE), and percent bias (PBIAS)—in the test phases of the four modeling scenarios (S1-S4) for: (a) fecal coliform (FC), (b) 
total nitrogen (TN), (c) total phosphorus (TP); (d) dissolved oxygen (DO); and (e) total suspended solids (TSS). The predictions of TN, TP, TSS, and DO were 
satisfactory in all modeling scenarios. SVR: Support Vector Machines; RF: Random Forest; XGB: eXtreme Gradient Boosting Trees; RF-XGB: Coupled RF and XGB; 
ANN: Artificial Neural Network. 
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results from features importance analyses of each target water quality 
constituent. Fig. 3 shows that the final selection of ‘most important fea
tures’ (top 17 features) was consistent across target variables, except for 
the inclusion of ‘forest area’ in predicting TN, TP, DO and TSS. Also, 
meteorological variables were more significant for TN and DO, while the 
inclusion of additional water quality constituents (Scenarios S3 and S4) 
dominated in predicting FC, TP, and TSS. Agricultural area (combined 
pasture, cropland, and grassland), forest area, and human population 
were the most important factors in predicting FC, TN, and DO, while 
surface imperviousness was more important for TP and TSS predictions. 
Similarly, antecedent conditions were more important than rainfall for 
FC, TP, and TSS, further highlighting the importance of accounting for 
infiltration/runoff effect and soil memory in watershed-scale water 
quality predictions. 

Despite the low-lying characteristic of the study watershed, baseflow 
was not found to be an important feature and was excluded from the 
final feature set. Likewise, animal population was excluded due to its 
relatively weaker importance than other features, which can stem from 
significant temporal and spatial approximation in the data. Other 
excluded variables included soil moisture, wind speed, atmospheric 
pressure, and vapor pressure deficit. It is important to note that limiting 
factors can present unavoidable bias in our modeling framework. Such 
factors include but are not limited to insufficient temporal coverage for 
some features and inadequate information on others, including septic 
tanks, wildlife population, animal grazing patterns, proximity to the 
stream, and fertilizer application. 

4.2. Model performance 

In this section, we evaluated the selected methods in terms of their 
overall effectiveness in predicting target water quality constituents for 
each modeling scenario. Fig. 4 and Fig. 5 detail the performance of each 
model in terms of the five water quality constituents using the six model 
fit metrics while Fig. 6 reveals the average percent improvement from 

scenarios S1 to S4. The reader is referred to Fig. S1 for information on 
training performance and Fig. S2 for Quantile-Quantile probability plots 
of observed and predicted values in all scenarios. 

4.2.1. Fecal coliform (FC) 
We found that FC cannot be satisfactorily by solely using publicly 

available datasets (NSE = 0.5 and PBIAS = 24.5 in Scenario S1). How
ever, the performance of ML algorithms improved from Scenario S1 to 
S4, suggesting that satisfactorily prediction of this water quality con
stituent can only be achieved when additional water quality constituents 
(turbidity, TN, TP, water temperature, DO, pH, specific conductivity, 
and TSS) are used along the publicly available datasets. Overall, there 
was a 1.8%, 24.0%, and 30.9% improvement in R2 in Scenarios S2, S3, 
and S4 (Fig. 6). PBIAS values averaged between 24.5% (S1) and 15.5% 
(S3) for most ML models, while ANN had the lowest PBIAS (13.4%) in 
Scenario S4. According to RSR values in Fig. 4a, prediction errors 
decreased considerably from Scenario S1 to S4 (20.1% and 22.2%) 
reduction in RSR for training and test phases, respectively, with RF-XGB 
and ANN having the lowest values in Scenario S4 (0.48 and 0.49, 
respectively). In Scenarios S1 and S2, error values were generally 
satisfactory (0.6 < RSR < 0.7), and good in Scenarios S3 and S4 (0 <
RSR < 0.5). Similarly, GA values indicated good generalizability without 
significant overtraining across all the modeling scenarios (~1.4 on 
average), except for SVR with an average GA of 2.6 (Fig. 5). 

4.2.2. Total nitrogen (TN) and total phosphorous (TP) 
TN and TP predictions were satisfactory and similar across the four 

modeling scenarios, suggesting that these nutrients can be predicted 
satisfactorily by solely using the publicly available data (NSE = 0.68 and 
0.69 for TN and TP, respectively). The prediction accuracy, however, 
improved from Scenario S1 to S2, with more improvement evident for 
TP (NSE = 0.69 and 0.73 for TN and TP, respectively) in the test phases, 
as shown in (Fig. 6, Fig. 7b and Fig. 7c). Likewise, prediction accuracy 
was significantly improved in Scenario S3 (17.0% for TP and 14.8% for 

Fig. 5. Generalization ability (GA) of the machine learning algorithms in the four modeling scenarios (S1 - S4) in terms of generalization ability (GA) during training 
and test phases (combined) for: (a) fecal coliform (FC); (b) total nitrogen (TN); (c) total phosphorus (TP); (d) dissolved oxygen (DO); and (e) total suspended solids 
(TSS). Rf-XGB and ANN were the best generalizable models, while DO and TSS had the best GA values. SVR: Support Vector Machines; RF: Random Forest; XGB: 
eXtreme Gradient Boosting Trees; RF-XGB: Coupled RF and XGB. ANN: Artificial Neural Network. 
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TN) and peaked in Scenario S4 (21.1% for TP and 18.5% for TN). As 
observed for FC, the performance improvement from Scenario S3 to S4 
was more prominent than that from Scenario S1 to S2, suggesting that 
the influence of antecedent conditions was more significant when 
combined with additional water quality constituents (turbidity, water 
temperature, dissolved oxygen, pH, specific conductivity, and total 
suspended solids). 

4.2.3. Dissolved oxygen (DO) and total suspended solids (TSS) 
The predictions of DO and TSS were very good (R2 > 0.7) in all the 

modeling scenarios. Though there were no significant differences in the 
training accuracies of DO and TSS predictions for all the ML models, 
PBIAS was greatly improved in Scenario S4, particularly for TSS (11% in 
DO and 21.2% in TSS; Fig. 6). XGB and RF-XGB slightly outperformed 
other models in the test phases of DO predictions. 

4.2.4. Fecal coliform (FC), total nitrogen (TN), total phosphorous (TP), 
dissolved oxygen (DO), and total suspended solids (TSS) 

While the RSR values of TN, TP, DO, and TSS were minimal in all the 
modeling scenarios, there was a notable decrease in RSR values in sce
narios S3 and S4 from S1 (average values of 17.4 in S3 and 18.6 in S4; 
Fig. 6). This decrease was more pronounced for FC, TP, DO, and TSS 
than other target variables. Even though TP was better predicted than 
TN, TN predictions had smaller RSR values than TP. This can be due to a 
larger standard deviation of the TN observations. Furthermore, the 
average PBIAS across all modeling scenarios were marginal in the 
testing phase, with values of 8.7%, 5.5%, 2.2%, and 8.4% for TN, TP, 
DO, and TSS, respectively. A closer look at PBIAS variability across all 

the target constituents revealed a similar pattern as seen in the predic
tion uncertainty, where FC, TSS, and TN had the largest PBIAS. For TN, 
TP, and DO, model overfitting reduced was as indicated by the decrease 
in GA value in Scenarios S3 and S4 (Fig. 7). Decreasing GA value in the 
same experiment can be localized to a larger training error suggesting 
that the prediction improvement (decrease in variance) observed in 
these scenarios was more prominent in the test phase than the training 
phase. Conversely, unity values of GA in all the modeling scenarios were 
observed for TSS, suggesting that TSS predictions have more general
izability than all other constituents. Furthermore, although SVM had 
significant overfitting for FC, TN, and TP (average GA = 3.4), average 
values of GA were excellent in predicting TSS (GA = 1), while DO’s 
prediction had a slight overfitting problem DO (GA = 1.7). Despite 
considerable effort to minimize variance in test predictions, consider
able overfitting was observed in the predicted results of the XGB model 
across all scenarios (GA = 2.7 for FC, GA = 3.7 for TN, GA = 2.6 for TP, 
GA = 2 for DO, and GA = 1.3 for TSS; Fig. 5). On the other hand, RF-XGB 
presented the most generalizable predictions (GA = 1.2 for FC, GA = 2 
for TN, GA = 1.5 for TP, GA = 1.9 for DO, and GA = 1 for TSS; Fig. 5) 
across all modeling scenarios compared to RF (GA = 1.7 for FC, GA = 2.4 
for TN, GA = 2.2 for TP, GA = 2 for DO, and GA = 1.5 for TSS; Fig. 5). 
Based on average GA values for FC, TP, TN, DO, and TSS (across sce
narios), RF-XGB provided a 36% and 22.4% reduction in model over
fitting for XGB and RF-XGB models, respectively. In conclusion, among 
the five ML models, ANN and RF-XGB had the lowest overfitting prob
lems (Fig. 5). 

Fig. 6. Average percent improvement (%) of the machine learning algorithms in terms of Adjusted R2 (Adj R2), Nash Sutcliffe Efficiency (NSE), Kling Gupta Ef
ficiency (KGE), root mean square error (RMSE)-observations standard deviation ratio (RSR), and Percent bias (PBIAS) for modeling scenarios S2, S3 and S4 compared 
to scenario S1 (solely using publicly available data). 
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Fig. 7. Observed and predicted instantaneous time series of: (a) fecal coliform (FC); (b) total nitrogen (TN); (c) total phosphorus (TP); (d) dissolved oxygen (DO); and 
(e) total suspended solids (TSS) showing performance of the “best-performing” machine learning algorithm in the four modeling scenarios (S1 - S4). Overall, the 
modeling scenario S4 led to a better match with the observations. This is evident for FC, where high concentrations are better captured in this modeling scenario 
(introducing additional water quality constituents). 
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4.3. Importance of additional water quality constituents and antecedent 
conditions 

Although the performance of each ML model somehow improved 
with the addition of antecedent conditions and water quality features, 
overall, the performance without their addition was satisfactory for all 
the constituents, except for FC. The model performance improved 
marginally (4.2% for FC, 2.2% for TP, and 1.2% for TN) with the in
clusion of antecedent conditions in Scenario S2, consistent with previous 
studies that emphasized the association of water quality constituents 
like bacteria with prior rainstorm events due to sediment resuspension 
in the water column (Abimbola et al., 2020; Farnham and Lall, 2015; 
Motamarri and Boccelli, 2012). Furthermore, the inclusion of water 
quality data in Scenario S3 significantly improved the prediction accu
racy (21.1% for FC, 17% for TP, and 14.8% for TN), as observed in other 
water quality studies (Abimbola et al., 2021; Park and Engel, 2015, 
2014). Horowitz et al. (2001) also stated that limited water quality data 
could lead to imprecise waterbody pollutant predictions, further 
alluding to the importance of water quality data. In this study, when 
additional water quality constituents were included in the ML pre
dictions (Scenario S3), there was a 24% increase in Adj R2, 23% decrease 
in RSR, and 42% decrease in PBIAS, respectively, compared to Scenario 
S1 (Fig. 6). Similarly, when antecedent conditions were considered 
alongside additional water quality constituents (Scenario S4), there was 

an additional 6.9% increase in Adj R2, 4% decrease in RSR, and 6.9% 
decrease in PBIAS, respectively, from Scenario S3 to S4 (Fig. 6). 
Compared to Scenario S4, R2 and RSR only improved by 1.8% and 2.9% 
when antecedent conditions were considered, and no additional water 
quality constituents were included (Scenario S2). Similarly, higher 
peaks in the FC time series were better captured in Scenarios S3 and S4, 
as shown in Fig. 7a. These findings suggest that the importance of 
antecedent conditions becomes more pronounced when used in 
conjunction with additional water quality constituents. Across all the 
four modeling scenarios, the models were found to overestimate FC 
concentration values <800 CFU/100 mL and underestimate concentra
tions >1360 CFU/100 mL. On average, there was an underestimation 
bias across all the modeling scenarios due to the underestimation of high 
FC concentrations, which was significantly reduced when additional 
water quality constituents and antecedent conditions were accounted 
for in Scenarios S3 and S4 (Fig. 7a). Underestimation of large FC con
centrations could be due to the unbalanced observation dataset since 
concentrations >1320 CFU/100 mL cover only 29% of the entire ob
servations. Nevertheless, GA fluctuated across the modeling scenarios 
without a clear pattern suggesting that prediction generalization does 
not necessarily improve with the inclusion of additional water quality 
constituents alone but through the combination of additional water 
quality constituents with antecedent conditions. 

Similarly, model performance for TN and TP (Fig. 6, Fig. 7b, and 

Fig. 7. (continued). 
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Fig. 7c) showed improvements in Scenarios S3 and S4, with the intro
duction of antecedent conditions and additional water quality constit
uents, although to a lesser degree compared to FC, suggesting that 
nutrients are less reliant on these factors than FC. In Scenario S3 (Fig. 4c 
and Fig. 7c), TN was less reliant on including additional water quality 
constituents than TP (Fig. 4b and Fig. 7b). The trend from Scenario S1 to 
S4 for TN showed that PBIAS did not significantly decrease with the 
introduction of additional water quality constituents. TN predictions 
had a slightly larger bias than TP, DO, and TSS in all the modeling 
scenarios’ training phases, while FC had the largest PBIAS (~7.3%) in 
the training phase (Fig. 4c, Fig. 4d, and Fig. 7e). All evaluation criteria 
suggested that additional water quality constituents and antecedent 
conditions significantly improved the model performance for FC, TP, 
and TN; however, their influence in predicting DO and TSS was small (<
2% and < 1% improvement in R2 for DO and TSS, respectively). Thus, 
using only publicly accessible datasets was sufficient to predict DO and 
TSS. 

4.4. Seasonality of the water quality predictions 

Predictive performances of water quality constituents were evalu
ated for wet (May to October) and dry (November to April) seasons 
across all the modeling scenarios. Table 3 shows that the average sea
sonal concentrations (1998–2016) were larger for FC and DO during the 
dry season but smaller for TP, TN, and TSS in this season. Almost 
identical model performances of all the water quality constituents dur
ing the wet and dry seasons suggested that the season-dependency of our 

predictions was minimal (<4% difference). Nevertheless, seasonal 
model performances showed that FC and TN had greater seasonal 
disparity compared to other target water quality constituents (Fig. 8). 
Considering the fit metrics in scenarios S1- S4, TN, and DO were slightly 
better predicted during the wet season, while FC, TP, and TSS were 
slightly better predicted during the dry season. Also, there was a clear 
seasonal differentiation for the nutrients. For TP, model performance 
was more profound in the dry season for three scenarios (S2, S3, and S4), 
while superior performances were found for the wet season for TN. This 
suggests that TN is greatly affected by season regardless of the modeling 
scenario. The effects of meteorologic features (rainfall, CR5, air tem
perature, and relative humidity) were more substantial during the dry 
season (i.e., leading to a better model performance). However, because 
there were no apparent differences in the seasonal importance of 
meteorological features for TP, the superior performance during the wet 
season cannot be directly attributed to meteorologic features. The su
perior predictive performance of all the water quality constituents in 
Scenario S1 can be attributed to more profound importance of rainfall in 
this scenario. From Scenario S1 to S4, the importance of rainfall 
dampens with the subsequent introduction of antecedent conditions and 
water quality constituents, and more prominently during the wet season 
for Scenario S4. This can explain why prediction performance for all 
target constituents, excluding TN, was superior during the dry season for 
Scenario S4. Similarly, although FC’s concentration was higher during 
the dry season, there was more underestimation of large FC concentra
tions during the wet season; this provides an additional possible expla
nation for a poorer prediction performance during the dry season. Also, 
TSS and turbidity were notably prominent for improving FC, TP, and 
TSS predictions (Scenarios S3 and S4), highlighting the role of sediment 
transport during the dry season. This suggests that the effect of short 
intermittent rainfall events during the wet season are stronger drivers of 
these water quality constituents than more frequent and intense ones 
during the dry season. 

4.5. Uncertainty quantification 

Predictive uncertainties of the best ML models for each target con
stituent are presented in Fig. 9. The findings showed that FC and DO 
predictions were the most and least uncertain, respectively. Aside from 
DO, the predictions of water quality constituents were least uncertain for 
Scenario S4. Incorporating antecedent conditions and additional water 
quality constituents (Scenarios S2-S4) reduced the predictive uncer
tainty around predictions of all water quality constituents. This reduc
tion was most significant for FC and TSS (Fig. 9a), corroborating the 
earlier evidence of accounting for water quality processes like bacteria 
resuspension that can be explained by water quality constituents like 
turbidity and TSS. Although TP predictions were more uncertain than 
TN, TN had a larger PBIAS on average (8.6% for TN, 5.5% for TP). 
Nevertheless, TP experienced greater improvements in PBIAS from 
Scenario S1 to S4 alongside FC and TSS (Fig. 6). Also, while DO and TSS 
had outstanding performances (Adj R2 > 0.9; Fig. 9e and Fig. 9f), pre
dictive uncertainties were larger for TSS. This can be attributed to the 
relatively small observation dataset of TSS (about one-third of the other 
water quality constituents). The uncertainties can be attributed to 
learning/optimization algorithm biases, water quality measurements, 
the approximation of features across time and space (when the data were 
not available), and inadequate features to capture specific watershed 
processes such as atmospheric deposition, nitrification/denitrification, 
among others (Mallya et al., 2020). 

Since the uncertainty reported in this study depended on the existing 
data in our case study, the reliability of extrapolating the findings to a 
similar study area (low-lying with similar land cover distribution) de
pends on knowledge of watershed processes and data quality. However, 
our presented modeling framework is generic and applicable to 
modeling in-stream water quality at the watershed scale. 

Table 3 
Seasonal concentrations of the observed water quality constituents.  

Season FC (CFU/100 
mL) 

TN (mg/ 
L) 

TP (mg/ 
L) 

DO (mg/ 
L) 

TSS (mg/ 
L) 

Wet 1603.16 1.48 0.31 6.76 8.58 
Dry 2003.03 1.37 0.19 8.71 6.93 

Fecal coliform (FC) total nitrogen (TN); total phosphorus (TP); dissolved oxygen 
(DO); and total suspended solids (TSS). 

Fig. 8. Comparison of prediction performances of the best machine learning 
model—Artificial Neural Network (ANN), for all target water quality constitu
ents, in the best modeling scenario (S4) during the wet and dry seasons. Ac
cording to R2, the prediction was more satisfactory for dry seasons for all the 
water quality constituents except TN. FC: Fecal coliform; TN: Total nitrogen; 
TP: Total phosphorus; DO: Dissolved oxygen; and TSS: Total suspended solids. 
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5. Summary and conclusions 

This study demonstrated a ML-based framework to predict five in- 
stream water quality constituents—TP, TN, TSS, and DO—at the 
watershed scale. The framework used water quality drivers (meteoro
logic, hydrologic, geomorphologic, land cover, and pedologic), which 
represent pertinent physical, chemical, and biological processes, and are 
publicly available throughout the US alongside antecedent conditions 
and other water quality constituents that explain physical processes (pH 
and turbidity). We evaluated the performance of five ML algo
rithms—SVM, RF, XGB, RF-XGB, and ANN—using various fit metrics 
(Adj R2, NSE, PBIAS, KGE, and GA). Explanatory variables representing 
water quality processes were identified using tree-based SHAP, ReliefF 
ranking, and spearman rank-order correlation. Feature analyses 
revealed that water quality constituents (TSS and turbidity) were the 
most important drivers of FC, TP, and TSS, while antecedent conditions 
(CR5) and meteorological factors like rainfall and air temperature were 
the most important for TN and DO’s predictions. This finding, in addi
tion to the model performance, generally revealed that:  

1) Though including additional water quality drivers improved overall 
model performance for all target constituents, TP, TN, DO, and TSS 
could still be predicted satisfactorily using only publicly available 
datasets (Nash-Sutcliffe efficiency [NSE] > 0.75 and percent bias 
[PBIAS] < 10%), whereas FC could not (NSE < 0.49 and PBIAS 
>25%).  

2) Water quality data and antecedent conditions are influential in 
improving the predictive performance, capturing high concentra
tions, and in reducing predictive uncertainties for all target water 
quality constituents (FC, TP, TN, DO, and TSS). Despite these ad
vantages, they were generally not necessary in predicting TP, TN, 
DO, and TSS (Adj R2 > 0.71, NSE > 0.69, KGE > 0.72, and PBIAS 
<10%). In contrast, they are a necessity to achieve satisfactorily 
prediction for FC (Adj R2 < 0.68, NSE < 0.68, KGE < 0.69, and PBIAS 
<14.3%) and even better when used in conjunction with antecedent 
conditions (Adj R2 < 0.72, NSE < 0.7, KGE < 0.7, and PBIAS 
<13.4%). 

The most remarkable model improvement was observed for FC, 
followed by TP, TN, DO, and TSS based on Adj R2 and NSE, whereas 
with regards to PBIAS, the most significant improvement was 
observed for FC, TP, and TSS.  

3) Prediction uncertainties decreased for all target constituents and 
most prominent for FC and TSS, and the smallest predictive uncer
tainty was found for DO, followed by TN, TP, TSS, and FC. This 
showed that FC and DO predictions were the most and least uncer
tain, respectively.  

4) Although there were disparities in the prediction performances of 
target water quality constituents during the wet and dry seasons, 
these differences were only marginal (<4% difference in the fit 
metrics) and more pronounced for FC and TN. Also, FC, TP, and TSS 
had better predictions during the dry season, while superior perfor
mances were obtained for TN and DO during the wet season. Thus, 

Fig. 9. Comparison of the ML models’ uncertainty (prediction interval around hypothetical value ‘1’), of ‘best model scenario (S4)’ (a) and ‘all model scenarios (S1, S2, 
S3, and S4)’ of each target water quality constituents: fecal coliform (FC) (b), total nitrogen (TN) (c), total phosphorus (TP), dissolved oxygen (DO) (d) and total 
suspended solids (TSS) (e). Overall, FC and DO predictions had the largest and smallest uncertainties, respectively; meanwhile, the model uncertainty was always 
smallest in scenario S4 except for DO. 
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short, sporadic dry season rainfall was more important in predicting 
FC, TP, and TSS, whereas longer and more frequent rainfall domi
nated in the predictions of TN and DO.  

5) While all the examined ML algorithms performed adequately for all 
the target water quality constituents, RF-XGB and ANN produced 
more accurate and generalizable outputs. 

This study shed insights into important water quality drivers and 
pertinent processes, using ML algorithms for predicting in-stream water 
quality, seasonality of these models, and the predictive uncertainties. 
The models can also serve as an alternative tool when process-based 
models cannot be implemented. This, in turn, can support water qual
ity restoration projects like TMDLs in the U.S. and, more broadly, water 
quality restoration efforts. Future research should focus on evaluating 
the prediction performance of other ML algorithms like recurrent and 
attention-based neural networks, as well as autoregressive algorithms 
for water quality predictions. Similarly, evaluating other water quality 
constituents at different spatial scales and examining other watersheds 
with different spatiotemporal characteristics (e.g., tidally influenced 
and predominantly urban or agricultural) are potential research areas 
that needs to be explored. 
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