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Predicting in-stream water quality is necessary to support the decision-making process of protecting healthy
waterbodies and restoring impaired ones. Data-driven modeling is an efficient technique that can be used to
support such efforts. Our objective was to determine if in-stream concentrations of contaminants,
nutrients—total phosphorus (TP) and total nitrogen (TN) —total suspended solids (TSS), dissolved oxygen (DO),
and fecal coliform bacteria (FC) can be predicted satisfactorily using machine learning (ML) algorithms based on
publicly available datasets. To achieve this objective, we evaluated four modeling scenarios, differing in terms of
the required inputs (i.e., publicly available datasets (e.g., land-use/land cover)), antecedent conditions, and
additional in-stream water quality observations (e.g., pH and turbidity). We implemented five ML algo-
rithms—Support Vector Machines, Random Forest (RF), eXtreme Gradient Boost (XGB), ensemble RF-XGB, and
Artificial Neural Network (ANN) —and demonstrated our modeling framework in an inland stream—Bullfrog
Creek, located near Tampa, Florida. The results showed that, while including additional water quality drivers
improved overall model performance for all target constituents, TP, TN, DO, and TSS could still be predicted
satisfactorily using only publicly available datasets (Nash-Sutcliffe efficiency [NSE] > 0.75 and percent bias
[PBIAS] < 10%), whereas FC could not (NSE < 0.49 and PBIAS >25%). Additionally, antecedent conditions
slightly improved predictions and reduced the predictive uncertainty, particularly when paired with other water
quality observations (6.9% increase in NSE for FC, and 2.7% for TP, TN, DO, and TSS). Also, comparable model
performances of all water quality constituents in wet and dry seasons suggest minimal season-dependence of the
predictions (<4% difference in NSE and < 10% difference in PBIAS). Our developed modeling framework is
generic and can serve as a complementary tool for monitoring and predicting in-stream water quality
constituents.

1. Introduction

Elevated levels of in-stream pollutants are linked to water quality
degradation and pose a significant hazard to human life and biodiversity
(Alnahit et al., 2022). Despite efforts in water quality restoration over
the years, ~41,000 waterbodies and 482,000 km of streams and
shorelines are impaired nationwide as of 2012 (Copeland, 2012; John-
son et al., 2013). In 2022—50 years after the establishment of the Clean
Water Act in 1972, this number has increased to over 1 million kilo-
meters (~50% increase) for impaired rivers alone (Kelderman et al.,
2022). Consequently, the average cost of developing and implementing
Total Maximum Daily Loads (TMDLs) can be as high as ~$4.3 billion/
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year (USEPA, 2001).

Water quality management and restoration projects require adequate
and continuous data for load reduction calculations (Borah et al., 2006,
2019; Mallya et al., 2020) and efficient modeling tools for timely water
quality assessments. Non-point sources are the primary drivers of water
quality degradation in many watersheds, and modeling in-stream
pollution requires adequate assessments of these sources (Borah et al.,
2006). Thus, the inter-linkage among environmental drivers such as
watershed characteristics, meteorological, and water quality has been
widely discussed in the literature (Cho et al., 2016; Fluke et al., 2019).
While interactions among waterbody pollutants follow different linear
and non-linear patterns constituting complexities in predictive
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Fig. 1. Schematic of the machine learning-based water quality modeling framework detailing the modeling workflow starting from knowledge-guided feature se-
lection to model performance evaluation and uncertainty analysis and uncertainty analysis. SVM: Support Vector Machines; RF: Random Forest; XGB: eXtreme
Gradient Boosting; ANN: Artificial Neural Network; Tree-SHAP: Tree-based SHAPley Additive exPlanations; FC: Fecal coliform; TN: Total nitrogen; TP: Total

phosphorus; DO: Dissolved oxygen; TSS: Total suspended solids.

modeling, sufficient or unavailable data further complicates these
complexities.

Various combinations of environmental predictors have been
employed in water quality modeling depending on data availability,
water quality constituents of concern, and the scope of the study.
Commonly used predictors include publicly available datasets such as
streamflow, land cover, soil, meteorological (e.g., precipitation and air
temperature), topography, and animal population, which explain un-
derlying physical, chemical, and biological processes for water quality
constituents (David and Haggard, 2011; Sakizadeh, 2016). Water qual-
ity observations are used to calibrate and validate water quality models
(Khatri et al., 2020; Sakizadeh, 2016). Unlike hydrological data that are
often obtained continuously, water quality observations are sparse due
to the costs of monitoring and limited resources (Mallya et al., 2020).
This is particularly the case for constituents like bacteria; the data are
even sparser due to relatively more complex and expensive monitoring
(Holcomb et al., 2018; Yu et al., 2021). Sparse datasets are some of the
most significant challenges for modeling, especially for data-driven
water quality modeling such as machine learning (ML) (Mallya et al.,
2020a). Also, data quality comes into question; high concentration
samples are crucial for pollution control studies like TMDLs, and their
absence or inadequacy in datasets introduces bias to the water quality
model predictions (Park and Engel, 2015). Furthermore, while some
studies have successfully predicted pollutants without using other water
quality constituents (Abimbola et al., 2020, 2021), other studies have
suggested that their exclusion can lead to biased results; e.g., an

overestimation reported by Park and Engel (2015) or underestimation
found by Abimbola et al. (2021). Antecedent conditions with time
windows (e.g., days) have been used to represent initial conditions, and
studies have emphasized their importance in water quality modeling
(Abimbola et al., 2020, 2021; Kao et al., 2020).

Adequate representation of in-stream water quality in watersheds
requires an in-depth understanding of the underlying physical, chemi-
cal, and biological processes (Beven, 2018). Process-based models like
Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011) and Hy-
drological Simulation Program Fortran (HSPF) (Bicknell et al., 2005)
have been widely used in predicting water quality constituents at the
watershed scale. These models are generally complicated and compu-
tationally demanding, particularly for large-scale watersheds and
probabilistic analyses. They are also neither easy to implement, use, nor
scalable. In situations of limited data, simple models, such as Load
Estimator (LOADEST; Runkel et al., 2004), Web-based Load Interpola-
tion Tool (LOADIN; Park and Engel, 2015), SPAtially Referenced Re-
gressions On Watershed attributes (SPARROW; Schwarz et al., 2006),
and load duration curves (Zhang and Quinn, 2019) have been used to
generate water quality data and augment existing observations. These
models are typically limited by many degrees of freedom and the
assumption of linearity. In predicting water quality constituent loads
using LOADEST, Park and Engel (2015) found significant bias in model
predictions (Park and Engel, 2015). Their finding corroborates the study
of Lee et al. (2016), who suggested that regression-based models can
result in high systematic errors in conditions like heteroscedasticity of
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model residuals, poor pollutant/flow correlation, and seasonality (Lee
et al., 2016). In addition to the disadvantages mentioned above, these
simple models do not account for pollution drivers (e.g., suspended
solids and turbidity) and their underlying processes (e.g., settling and
resuspension). These drivers and processes can be harnessed from data
using statistical associations and dependencies in ML modeling (Wang
et al., 2021).

Over the last decade, ML algorithms like ensemble ML (EML) and
Artificial Neural Networks (ANN) have received attention in the area of
water quality modeling (Abba et al., 2020; Al-Sulttani et al., 2021; Chen
et al., 2020). This upward trend in the application of ML methods can be
attributed to their ability to model intrinsic relationships in environ-
mental systems while being computationally efficient, easy-to-use and
easily automated (Abbas et al., 2021; Adams et al., 2013). ML algorithms
can be used in conjunction with feature subset selection and model
interpretation techniques, like SHapely Additive exPlanations (SHAP)
and relief-based algorithms (RBA), to explain model outputs and quan-
tify feature importance via a small number of water quality drivers
(Bilali et al., 2021; Wang et al., 2021).

Feature selection varies widely in the literature due to constraints
like data availability, spatiotemporal scale, and scope of the study. To
the best of our knowledge, there are no systematic investigations into
the importance of individual predictor sets, such as water quality drivers
and antecedent conditions for watershed-scale water quality modeling.
Additionally, model uncertainties associated with water quality pre-
dictions are rarely reported in ML-based water quality modeling studies
(Duan et al., 2013; Farnham and Lall, 2015), posing a challenge for risk-
based water quality management (Ahmadisharaf et al., 2019; Ahma-
disharaf and Benham, 2020; Mishra et al., 2018, 2019). Thus, it is crucial
to evaluate the effectiveness and uncertainty of ML-based modeling
frameworks for in-stream water quality predictions using publicly
available datasets alongside additional factors like antecedent condi-
tions and other water quality constituents.

The main objective of this study was to evaluate the performance of
five ML algorithms—Support Vector Machines (SVM), Random Forest
(RF), eXtreme Gradient Boost (XGB), ensemble RF-XGB, and ANN—in
predicting the in-stream concentration of fecal coliform (FC),
nutrients—total phosphorus (TP) and total nitrogen (TN)—total sus-
pended solids (TSS) and dissolved oxygen (DO) at the watershed scale
using publicly available datasets. Through our analyses, we also aimed
to: 1) determine if incorporating additional water quality constituents
and accounting for antecedent conditions assist in improving the pre-
diction of the five constituents; 2) investigate the role of seasonality on
the predictive capability of ML models for the water quality constitu-
ents; and 3) quantify the uncertainty of ML predictions in terms of the
water quality constituents. The model applicability was demonstrated
on an inland stream, Bullfrog Creek Watershed, Tampa, Florida, where
the abovementioned constituents are the primary sources of impair-
ments, like many streams in Florida and the U.S.

2. Methodology

The modeling framework (Fig. 1) shows a sequence of steps,
including identification of critical drivers (features or exploratory vari-
ables) of in-stream pollution in terms of the five water quality constit-
uents, collection of the data representing pertinent processes, selection
of the most important drivers as model features, implementation of ML
algorithms in each scenario and evaluation of modeling scenarios using
a set of fit metrics. Subsequently, seasonality and uncertainty analyses
were conducted.

2.1. Exploratory data analyses and knowledge-guided feature selection
We conducted exploratory data analyses to investigate the relation-

ships between the water quality constituents and their drivers. Here,
“target” refers to a water quality constituent predicted by the ML
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algorithms, and “feature” is a variable that can explain the underlying
physical, chemical, and biological processes of the target water quality
constituent. Generally, increasing model dimension (number of fea-
tures) exponentially increases the number of observations required
(Tripathi and Govindaraju, 2007); hence, careful feature selection is
essential to improve the model accuracy, and robustness and minimize
the introduction of random errors from weak features into the learning
algorithm (Kuhn and Johnson, 2019). Here, we selected the “most
important” or “most informative” features that can explain the maximum
target variability for each target water constituent.

We employed filter and embedded feature selection method-
s—spearman’s rank-order correlation, tree-based Shapely Additive ex-
Planations (TreeSHAP), and relief-based algorithms (RBAs)—to extract
critical features driving in-stream pollution from an initial set of 35
exploratory features. These methods use monotonic rank value (stron-
gest monotonic association), RreliefF (Regression-based Relief) score
(presence of feature value difference in adjacent data instances), and
absolute shapely values (mean absolute SHAP value) in determining
features with the highest importance. We used Spearman’s correlation
to prioritize the initial 35 features. This correlation is non-parametric
and evaluates monotonic associations based on the rating of each vari-
able, and as a result, linear and non-linear statistical dependencies
among the target and features were assessed. One drawback is that
spearman’s ranking does not consider the dependencies between the
target and features. Thus, we also used RreliefF—a relief-based algo-
rithm—that does not assume independence among features, and is
generally robust to missing data instances (Kononenko, 1994),
high-dimensionality (Eiras-Franco et al., 2021), feature interactions
(Urbanowicz et al., 2018), and noise in data (Eiras-Franco et al., 2021;
Urbanowicz et al,, 2018) in datasets. Lastly, we used TreeSHAP
(XGB-SHAP)—a game theory-based method suitable for capturing
complex feature-target relationships, robust to outliers, and provides
interpretations for black box models like RF, XGB, and ANN. XGB-SHAP
has been used in previous water quality prediction studies and found to
be a highly effective model explanation method (e.g., Li et al., 2022). We
repeated the aforementioned feature selection criteria (Spearman’s
correlation, RreliefF and XGB-SHAP) for each target water quality con-
stituent and obtained a set of the “most important features” to be
employed in the models. This multi-method approach was taken to
obtain a credible set of explanatory variables for water quality modeling.

2.2. Machine learning algorithms

To identify the most suitable models for future water quality appli-
cations, five ML algorithms—SVM, RF, XGB, RF-XGB, and ANN—were
selected and compared in this study. SVM and ANN were chosen due to
numerous applications in previous environmental modeling studies
(Banadkooki et al., 2020; Elshorbagy et al., 2005), while EML methods
like RF and XGB are emerging algorithms in water quality applications
(Li et al., 2022; Wang et al., 2021; Zounemat-Kermani et al., 2021).
These methods are known for their adaptability to non-linear problems
and remarkable modeling performance, as is the case in water quality
modeling (Algahtani et al., 2022; Li et al., 2022; Sakizadeh, 2016). In
this study, we selected different EML methods (RF and XGB) based on
the literature (Li et al., 2022; Wang et al., 2021; Zounemat-Kermani
et al., 2021) and the training method employed. RF utilizes parallel
training where each base learner is built independently using equal
weights in each leaf node and eventual averaging all tree outputs. In the
case of XGB, the base learners are generated sequentially, and a gradient
is used from one learner to the others, thereby updating the leaf weights
in subsequent trees. This way, each new tree corrects the error from the
former giving more precise training predictions.

Although XGB is a stronger algorithm known for more precise
training predictions over RF, it requires careful parameter tuning and is
sensitive to overfitting in noisy data conditions (Zounemat-Kermani
et al., 2021). The strength of XGB is an added advantage due reduction
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Table 1

Model main functions and hyper-parameters.
Model Estimators  Layers/NPL/ Kernel  TF Degree/ C Lr Max Subsamples”  MG/GCST/ Bootstrap ~ MSS/ ES®

Iterations Gamma depth® MDS* MSL!
SVM - - rbf - 3/0.25 1 - - - - - - -
RF 100 - - - - - - None - - True 2/1 -
XGB 80 - - - - - 0.1 4 1 1/1/0 - - 10
RF- 100/80 - - - - - —/0.1 None/4 —/1 —/1/1/0 True/— 2/1/— —/10
XGB

ANN - 2/20/20 - Tansig - - 0.001 - - - - - -

SVM: Support Vector Machine, RF: Random Forest; XGB: eXtreme Gradient Boosting, ANN: Artificial neural network. NPL: Neurons per layer, TF: Transfer function,
Degree/Gamma: The coefficient of Radial basis function kernel that specifies the minimum loss reduction required to make a split, C: Regularization parameter, Lr
(Learning rate/eta): The step size shrinkage used to prevent overfitting of the model.

4 Maximum depth of a tree: Used to control overfitting.
b Fraction of observation to be randomly sampled for each tree.

¢ MC/CST/MDS: Minimum child weight/Columns sample by tree /Maximum delta step.

4 MSS/MSL: Minimum sample split/Minimum sample leaF.
¢ ES: Early stopping round; rbf: Radial basis function kernel.

in error propagation when building subsequent base learners, while
overfitting occurs when the model memorizes random errors (noise) in
the training data. On the other hand, RF is intrinsically robust to over-
fitting due to the random selection of inputs but generally requires
higher computational time than XGB (Stocker et al., 2022; Zounemat-
Kermani et al.,, 2021). In an effort to minimize the limitations and
leverage the strengths of individual algorithms, we implemented RF-
XGB using Voting Regressor (a sci-kit learn package). This approach
was supported by Zounemat-Kermani et al. (2021), who suggested that
combining multiple ML algorithms through model averaging can
leverage the strengths of individual algorithms and improve general-
ization ability (Zounemat-Kermani et al., 2021).

2.3. Performance evaluation metrics for machine learning models

Parameters of each selected ML algorithm were optimized, and their
predictive performances were evaluated. Employing multiple fit metrics
is helpful in modeling studies as the strengths and limitations of indi-
vidual measures can be leveraged (Ahmadisharaf et al., 2019). Here, we
used six metrics to evaluate the performance of the ML algorithms in
terms of bias, error, and correlation. The metrics included the adjusted
coefficient of determination (Adj R?), Nash-Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970), percent bias (PBIAS), root mean square error
(RMSE)-observations standard deviation ratio (RSR), and Kling-Gupta
efficiency (KGE; Gupta et al., 2009). Based on these metrics, the per-
formance of each ML algorithm was ranked using suggested guidelines
for accurate quantification in watershed modeling (Ahmadisharaf et al.,
2022; Ahmadisharaf et al., 2019; Lamontagne et al., 2020; Moriasi et al.,
2015). In addition to these metrics, we used generalization ability (GA)
to ensure each model performed satisfactorily with the introduction of
new data (Bilali et al., 2021). A GA value of unity (1) indicates excellent
model generalization, GA > 1 indicates overfitting, while values less
than one (<1) indicates an underfitting (Bilali et al., 2021). The term
‘improvement in model performance’ in this study refers to a significant
improvement recorded in one or more of the selected objective func-
tions. Likewise, the term ‘best model’ used in each modeling scenario was
selected based on larger Adj R? NSE, and KGE, and lower RSR and
PBIAS. Hereafter, “excellent”, “very good”, “good”, and “satisfactory” are
derived based on Moriasi et al. (2015) and Ahmadisharaf et al. (2019).
We computed these metrics using Hydrostats and HydroErr packages in
Python. The reader is referred to the papers mentioned above for details
of the selected evaluation matrices.

2.4. Training and testing of machine learning models

The ML algorithms were evaluated using a cross-validation (CV)
technique with multiple repetitions (typically five) to assure valid

Table 2
Machine learning-based water quality modeling scenarios.
Scenario Drivers Description
S1 LULC, meteorological, pedologic, Evaluates the suitability of using
animal statistics only publicly available dataset.
S2 LULC, meteorological, pedologic, Evaluate the importance of
animal statistics, antecedent accounting for antecedent
condition conditions.
S3 LULC, meteorological, pedologic, Evaluate the importance of
animal statistics, water quality accounting for other in-stream
water quality constituents.
S4 LULC, meteorological, pedologic, Evaluate the importance of

animal statistics, antecedent
condition, water quality

accounting for antecedent
conditions and other in-stream

water quality constituents
(combination of scenarios S1-S3).

LULC = Land use/Land cover.

prediction results due to the learning algorithm’s stochastic nature, i.e.,
samples are randomly split in each learning scenario. Although 5-fold
CV (i.e., using 80% of observation for training and the remaining 20%
for testing) is typically found suitable in many modeling practices, we
examined 3-, 4- and 7-fold CV train/test ratios alongside the 5-fold for
all the ML algorithms. Our rationale was that the ML model performance
increases with data volume, so the ratio of the training and hold-out sets
was kept constant across the learning scenarios for each target water
quality constituent to ensure the impartial model and scenario com-
parison. Unfitted RF and XGB models were combined using an ensemble
meta-estimator (voting regressor in Scikit-learn Python library) that
averages the predictions of each estimator. Also, since adjusting the
model hyper-parameter (factors that regulate the learning process)
manually is inefficient due to numerous tunable functions (Table 1), we
used Levenberg-Marquardt and early stopping optimization techniques
to perform an exhaustive search and determine the optimum value of the
model hyperparameters. Levenberg-Marquardt technique, a simple and
robust function approximation method, was used to optimize ANN
model performance, while SVM, RF, and XGB were optimized using grid
search tuning technique and early stopping. Also, due to the size of our
data—234 for FC, TN, TP, and DO, and 80 for TSS—the learning algo-
rithms chosen in this study tended to overfit the observed data; there-
fore, to minimize the variance, Levenberg-Marquardt and early stopping
optimization were used in the ANN and tree-based algorithms respec-
tively. While a step size of 0.001 yielded an optimal performance in the
neural network, increasing either iterations or neuron count above 20
did not improve the learning performance. Table 1 lists the primary
hyper-parameters and functions for all the ML algorithms.
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Fig. 2. Bullfrog River Watershed.

2.5. Modeling scenarios

Modeling scenarios (Table 2) were designed such that each scenario
represents the water quality processes and data requirement consider-
ations. In Scenario 1 (S1), we assessed only the following variables: land
use/land cover (LULC), meteorological, soil animal statistics, etc. whose
data are publicly available throughout the U.S. In scenario 2 (S2), we
considered the role of antecedent conditions, which can influence
contaminant leaching, water seepage, and overland flow volume.
Different representations of antecedent conditions have been incorpo-
rated in previous studies, such as cumulative rain prior to a water quality
observation, antecedent dry days, weighted antecedent rainfall, or a
combination of different factors in one variable (Abimbola et al., 2020;
Dada and Hamilton, 2016; Farnham and Lall, 2015). Thus, we evaluated
cumulative rainfall over a range of periods (one to 14 days), antecedent
dry days, and different sets of three-day weight-adjusted prior to an
observed water quality constituent as representations of the antecedent
conditions.

These conditions can influence in-stream pollutant dynamics; accu-
mulated pollutants on the land surface can be mobilized and conveyed
during a rainfall event and subsequently transported to receiving waters
via succeeding rainfall events (wash-off). Many antecedent rainfalls can
pronounce the effect of rainfall on the day of observation due to
increased soil moisture content, decreased soil infiltration capacity due
to saturation, and increased surface runoff (Farnham and Lall, 2015).
Furthermore, in scenario 3 (S3), we evaluated the effect of incorporating
additional water quality constituents (e.g., pH and turbidity) to repre-
sent in-stream water quality processes like settling/resuspension and
die-off/regrowth without considering antecedent conditions. Since data
on these additional water quality constituents may be proprietary,
limited, or unavailable in many watersheds, this scenario is applicable
only when such data are available, or resources exist to collect them

through monitoring. Finally, Scenario 4 (S4) combines scenarios S1-S3,
representing a situation where all data mentioned above are available.

2.6. Uncertainty quantification

The uncertainty of ML algorithms was quantified using a robust
estimator of variance suggested by Wahl (2004) and Ahmadisharaf et al.
(2016). In this approach, the uncertainty of each ML algorithm is pre-
sented in terms of a prediction interval around a hypothetical value of
unity. The overall methodological sequence includes an initial compu-
tation of prediction errors (Eq. (1)), exclusion of outliers from the pre-
diction errors series, estimation of the mean and standard deviation of
the prediction errors, and determination of the confidence band around
the predicted values of each target water quality constituent (Eq. (2)).

Prediction error () = Log,,(Y"™") — Log,, (Y*"™") (@)

Prediction interval band  |Upper limit, Lower limit|

— [Ysim * lo—e’”"“” —28, , Y:im *] O—E"‘”“” + 23}] (2)

where, e is the prediction error, €™ and S, are the mean and standard
deviation of the prediction error, respectively and + 2S, provides the
95% prediction interval. The estimated prediction interval for each
water quality constituent can be used as multipliers to achieve a range of
predictions when using the ML models in other water quality modeling
scenarios.

2.7. Seasonality analyses

Seasonal influence on prediction performance is essential, mainly
when profound seasonal trends are present in the observations. High
intensity and more frequent precipitations are prevalent in the wet
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Fig. 3. Global feature importance for: (a) fecal coliform (FC); (b) total nitrogen (TN); (c) total phosphorus (TP); (d) dissolved oxygen (DO); and (e) total suspended
solids (TSS), assessed by the combination of three feature importance methods (XGB-SHAP, ReliefF [a relief-based algorithm] and Spearman correlation). The in-
fluence of water quality constituents is more pronounced for FC, TP, TSS, and TN, while metrological variables dominate for DO. CR5: 5-day antecedent cumulative
rainfall, XGB-SHAP: eXtreme Gradient Boosting Trees-SHapely Additive exPlanations.

season, which increases the overland flow and transport of contaminants
to the stream through wash-off processes (Moriasi et al., 2014; Sigleo
and Frick, 2003). In a dry season, sporadic short and high-intensity
rainfall events are prevalent, promoting the transport of contaminants
to adjacent streams and tributaries. Here, we developed the ML algo-
rithms for wet and dry seasons following the methodology presented in
Sections 2.1-2.6. We then compared the performance of these algo-
rithms to investigate whether the performance is season dependent.

3. Case study

The study area is the freshwater segment of the Bullfrog River
Watershed located in the southern region of Hillsborough County,
Tampa, Florida (Fig. 2). The watershed covers a drainage area of 104.2
km?, corresponding to the Hydrologic Code Unit (HUC031002060401)
according to the U.S Geological Survey classifications. The climate in
this watershed is humid subtropical, where air temperatures range from
daily lows of 8 °C to as high as 34 °C. The watershed has a heterogeneous
landscape with developed, agriculture, wetlands, open waters, barren

land, and forest land covers. Although historically, the watershed was
considered an agricultural watershed dominated by pasturelands, over
the years, there has been substantial urban sprawl across the down-
stream, which is the area closest to Tampa metropolitan area. Urban is
the dominant land cover in the watershed downstream, while the up-
stream part is still predominantly agricultural (pasture and cropland).
The soil is mainly composed of highly permeable soil, with a blend of
hydrologic soil groups A and A/D. The watershed is low-lying (average
ground slope of 2.5%) with an average water table depth of 0 to 1.45 m.
Additional information on data sources and temporal coverage can be
found in the supplementary information document (Table S1).

4. Results and discussion
4.1. Statistical analyses and feature importance
Log transformations were applied to all target time series to remove

skewness in the distributions and deemphasize outliers, thereby
improving statistical validity of the observations for our predictions.
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Fig. 4. Machine learning model performances—coefficient of determination (R?), root mean square error-observations standard deviation ratio (RSR), Nash-Sutcliffe
efficiency (NSE), Kling-Gupta efficiency (KGE), and percent bias (PBIAS)—in the test phases of the four modeling scenarios (S1-S4) for: (a) fecal coliform (FC), (b)
total nitrogen (TN), (c) total phosphorus (TP); (d) dissolved oxygen (DO); and (e) total suspended solids (TSS). The predictions of TN, TP, TSS, and DO were
satisfactory in all modeling scenarios. SVR: Support Vector Machines; RF: Random Forest; XGB: eXtreme Gradient Boosting Trees; RF-XGB: Coupled RF and XGB;
ANN: Artificial Neural Network.

Descriptive statistics such as minimum, maximum, mean, and quantiles implemented in the ML algorithms. We examined the cumulative rain-
of log-transformed target constituents are shown in Fig. S3. Additional fall over a range of periods (one to 14 days), antecedent dry days, and
analyses of the time series show that the distribution of rainfall, five-day different sets of 3-day weight-adjusted prior to an observed water
antecedent rainfall (CR5), FC, DO, and TSS had no significant trend from quality constituent to represent the most crucial antecedent conditions
1998 to 2016. Conversely, TP had a significant decreasing trend (p- in terms of each of the five water quality constituents. Our results
value = 0) whereas a slightly increasing trend was observed for TN (p- showed that CR5 was more important than other antecedent condition
value = 0.02). features for all the water quality constituents. Subsequently, we ob-

Furthermore, seventeen ‘most important” features were selected and tained a union feature set of the top 17 features after combining the
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Fig. 5. Generalization ability (GA) of the machine learning algorithms in the four modeling scenarios (S1 - S4) in terms of generalization ability (GA) during training
and test phases (combined) for: (a) fecal coliform (FC); (b) total nitrogen (TN); (c) total phosphorus (TP); (d) dissolved oxygen (DO); and (e) total suspended solids
(TSS). Rf-XGB and ANN were the best generalizable models, while DO and TSS had the best GA values. SVR: Support Vector Machines; RF: Random Forest; XGB:
eXtreme Gradient Boosting Trees; RF-XGB: Coupled RF and XGB. ANN: Artificial Neural Network.

results from features importance analyses of each target water quality
constituent. Fig. 3 shows that the final selection of ‘most important fea-
tures’ (top 17 features) was consistent across target variables, except for
the inclusion of ‘forest area’ in predicting TN, TP, DO and TSS. Also,
meteorological variables were more significant for TN and DO, while the
inclusion of additional water quality constituents (Scenarios S3 and S4)
dominated in predicting FC, TP, and TSS. Agricultural area (combined
pasture, cropland, and grassland), forest area, and human population
were the most important factors in predicting FC, TN, and DO, while
surface imperviousness was more important for TP and TSS predictions.
Similarly, antecedent conditions were more important than rainfall for
FC, TP, and TSS, further highlighting the importance of accounting for
infiltration/runoff effect and soil memory in watershed-scale water
quality predictions.

Despite the low-lying characteristic of the study watershed, baseflow
was not found to be an important feature and was excluded from the
final feature set. Likewise, animal population was excluded due to its
relatively weaker importance than other features, which can stem from
significant temporal and spatial approximation in the data. Other
excluded variables included soil moisture, wind speed, atmospheric
pressure, and vapor pressure deficit. It is important to note that limiting
factors can present unavoidable bias in our modeling framework. Such
factors include but are not limited to insufficient temporal coverage for
some features and inadequate information on others, including septic
tanks, wildlife population, animal grazing patterns, proximity to the
stream, and fertilizer application.

4.2. Model performance

In this section, we evaluated the selected methods in terms of their
overall effectiveness in predicting target water quality constituents for
each modeling scenario. Fig. 4 and Fig. 5 detail the performance of each
model in terms of the five water quality constituents using the six model
fit metrics while Fig. 6 reveals the average percent improvement from

scenarios S1 to S4. The reader is referred to Fig. S1 for information on
training performance and Fig. S2 for Quantile-Quantile probability plots
of observed and predicted values in all scenarios.

4.2.1. Fecal coliform (FC)

We found that FC cannot be satisfactorily by solely using publicly
available datasets (NSE = 0.5 and PBIAS = 24.5 in Scenario S1). How-
ever, the performance of ML algorithms improved from Scenario S1 to
S4, suggesting that satisfactorily prediction of this water quality con-
stituent can only be achieved when additional water quality constituents
(turbidity, TN, TP, water temperature, DO, pH, specific conductivity,
and TSS) are used along the publicly available datasets. Overall, there
was a 1.8%, 24.0%, and 30.9% improvement in R? in Scenarios S2, S3,
and S4 (Fig. 6). PBIAS values averaged between 24.5% (S1) and 15.5%
(S3) for most ML models, while ANN had the lowest PBIAS (13.4%) in
Scenario S4. According to RSR values in Fig. 4a, prediction errors
decreased considerably from Scenario S1 to S4 (20.1% and 22.2%)
reduction in RSR for training and test phases, respectively, with RF-XGB
and ANN having the lowest values in Scenario S4 (0.48 and 0.49,
respectively). In Scenarios S1 and S2, error values were generally
satisfactory (0.6 < RSR < 0.7), and good in Scenarios S3 and S4 (0 <
RSR < 0.5). Similarly, GA values indicated good generalizability without
significant overtraining across all the modeling scenarios (~1.4 on
average), except for SVR with an average GA of 2.6 (Fig. 5).

4.2.2. Total nitrogen (TN) and total phosphorous (TP)

TN and TP predictions were satisfactory and similar across the four
modeling scenarios, suggesting that these nutrients can be predicted
satisfactorily by solely using the publicly available data (NSE = 0.68 and
0.69 for TN and TP, respectively). The prediction accuracy, however,
improved from Scenario S1 to S2, with more improvement evident for
TP (NSE = 0.69 and 0.73 for TN and TP, respectively) in the test phases,
as shown in (Fig. 6, Fig. 7b and Fig. 7c). Likewise, prediction accuracy
was significantly improved in Scenario S3 (17.0% for TP and 14.8% for
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Fig. 6. Average percent improvement (%) of the machine learning algorithms in terms of Adjusted R2 (Adj R2), Nash Sutcliffe Efficiency (NSE), Kling Gupta Ef-
ficiency (KGE), root mean square error (RMSE)-observations standard deviation ratio (RSR), and Percent bias (PBIAS) for modeling scenarios S2, S3 and S4 compared

to scenario S1 (solely using publicly available data).

TN) and peaked in Scenario S4 (21.1% for TP and 18.5% for TN). As
observed for FC, the performance improvement from Scenario S3 to S4
was more prominent than that from Scenario S1 to S2, suggesting that
the influence of antecedent conditions was more significant when
combined with additional water quality constituents (turbidity, water
temperature, dissolved oxygen, pH, specific conductivity, and total
suspended solids).

4.2.3. Dissolved oxygen (DO) and total suspended solids (TSS)

The predictions of DO and TSS were very good (R? > 0.7) in all the
modeling scenarios. Though there were no significant differences in the
training accuracies of DO and TSS predictions for all the ML models,
PBIAS was greatly improved in Scenario S4, particularly for TSS (11% in
DO and 21.2% in TSS; Fig. 6). XGB and RF-XGB slightly outperformed
other models in the test phases of DO predictions.

4.2.4. Fecal coliform (FC), total nitrogen (TN), total phosphorous (TP),
dissolved oxygen (DO), and total suspended solids (TSS)

While the RSR values of TN, TP, DO, and TSS were minimal in all the
modeling scenarios, there was a notable decrease in RSR values in sce-
narios S3 and S4 from S1 (average values of 17.4 in S3 and 18.6 in S4;
Fig. 6). This decrease was more pronounced for FC, TP, DO, and TSS
than other target variables. Even though TP was better predicted than
TN, TN predictions had smaller RSR values than TP. This can be due to a
larger standard deviation of the TN observations. Furthermore, the
average PBIAS across all modeling scenarios were marginal in the
testing phase, with values of 8.7%, 5.5%, 2.2%, and 8.4% for TN, TP,
DO, and TSS, respectively. A closer look at PBIAS variability across all

the target constituents revealed a similar pattern as seen in the predic-
tion uncertainty, where FC, TSS, and TN had the largest PBIAS. For TN,
TP, and DO, model overfitting reduced was as indicated by the decrease
in GA value in Scenarios S3 and S4 (Fig. 7). Decreasing GA value in the
same experiment can be localized to a larger training error suggesting
that the prediction improvement (decrease in variance) observed in
these scenarios was more prominent in the test phase than the training
phase. Conversely, unity values of GA in all the modeling scenarios were
observed for TSS, suggesting that TSS predictions have more general-
izability than all other constituents. Furthermore, although SVM had
significant overfitting for FC, TN, and TP (average GA = 3.4), average
values of GA were excellent in predicting TSS (GA = 1), while DO’s
prediction had a slight overfitting problem DO (GA = 1.7). Despite
considerable effort to minimize variance in test predictions, consider-
able overfitting was observed in the predicted results of the XGB model
across all scenarios (GA = 2.7 for FC, GA = 3.7 for TN, GA = 2.6 for TP,
GA = 2 for DO, and GA = 1.3 for TSS; Fig. 5). On the other hand, RF-XGB
presented the most generalizable predictions (GA = 1.2 for FC, GA = 2
for TN, GA = 1.5 for TP, GA = 1.9 for DO, and GA = 1 for TSS; Fig. 5)
across all modeling scenarios compared to RF (GA = 1.7 for FC, GA = 2.4
for TN, GA = 2.2 for TP, GA = 2 for DO, and GA = 1.5 for TSS; Fig. 5).
Based on average GA values for FC, TP, TN, DO, and TSS (across sce-
narios), RF-XGB provided a 36% and 22.4% reduction in model over-
fitting for XGB and RF-XGB models, respectively. In conclusion, among
the five ML models, ANN and RF-XGB had the lowest overfitting prob-
lems (Fig. 5).
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Fig. 7. Observed and predicted instantaneous time series of: (a) fecal coliform (FC); (b) total nitrogen (TN); (c) total phosphorus (TP); (d) dissolved oxygen (DO); and
(e) total suspended solids (TSS) showing performance of the “best-performing” machine learning algorithm in the four modeling scenarios (S1 - S4). Overall, the
modeling scenario S4 led to a better match with the observations. This is evident for FC, where high concentrations are better captured in this modeling scenario
(introducing additional water quality constituents).
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Fig. 7. (continued).

4.3. Importance of additional water quality constituents and antecedent
conditions

Although the performance of each ML model somehow improved
with the addition of antecedent conditions and water quality features,
overall, the performance without their addition was satisfactory for all
the constituents, except for FC. The model performance improved
marginally (4.2% for FC, 2.2% for TP, and 1.2% for TN) with the in-
clusion of antecedent conditions in Scenario S2, consistent with previous
studies that emphasized the association of water quality constituents
like bacteria with prior rainstorm events due to sediment resuspension
in the water column (Abimbola et al., 2020; Farnham and Lall, 2015;
Motamarri and Boccelli, 2012). Furthermore, the inclusion of water
quality data in Scenario S3 significantly improved the prediction accu-
racy (21.1% for FC, 17% for TP, and 14.8% for TN), as observed in other
water quality studies (Abimbola et al., 2021; Park and Engel, 2015,
2014). Horowitz et al. (2001) also stated that limited water quality data
could lead to imprecise waterbody pollutant predictions, further
alluding to the importance of water quality data. In this study, when
additional water quality constituents were included in the ML pre-
dictions (Scenario S3), there was a 24% increase in Adj R2, 23% decrease
in RSR, and 42% decrease in PBIAS, respectively, compared to Scenario
S1 (Fig. 6). Similarly, when antecedent conditions were considered
alongside additional water quality constituents (Scenario S4), there was

11

an additional 6.9% increase in Adj R?, 4% decrease in RSR, and 6.9%
decrease in PBIAS, respectively, from Scenario S3 to S4 (Fig. 6).
Compared to Scenario S4, R? and RSR only improved by 1.8% and 2.9%
when antecedent conditions were considered, and no additional water
quality constituents were included (Scenario S2). Similarly, higher
peaks in the FC time series were better captured in Scenarios S3 and S4,
as shown in Fig. 7a. These findings suggest that the importance of
antecedent conditions becomes more pronounced when used in
conjunction with additional water quality constituents. Across all the
four modeling scenarios, the models were found to overestimate FC
concentration values <800 CFU/100 mL and underestimate concentra-
tions >1360 CFU/100 mL. On average, there was an underestimation
bias across all the modeling scenarios due to the underestimation of high
FC concentrations, which was significantly reduced when additional
water quality constituents and antecedent conditions were accounted
for in Scenarios S3 and S4 (Fig. 7a). Underestimation of large FC con-
centrations could be due to the unbalanced observation dataset since
concentrations >1320 CFU/100 mL cover only 29% of the entire ob-
servations. Nevertheless, GA fluctuated across the modeling scenarios
without a clear pattern suggesting that prediction generalization does
not necessarily improve with the inclusion of additional water quality
constituents alone but through the combination of additional water
quality constituents with antecedent conditions.

Similarly, model performance for TN and TP (Fig. 6, Fig. 7b, and
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Table 3
Seasonal concentrations of the observed water quality constituents.
Season FC (CFU/100 TN (mg/ TP (mg/ DO (mg/ TSS (mg/
mL) L) L) L) L)
Wet 1603.16 1.48 0.31 6.76 8.58
Dry 2003.03 1.37 0.19 8.71 6.93

Fecal coliform (FC) total nitrogen (TN); total phosphorus (TP); dissolved oxygen
(DO); and total suspended solids (TSS).

Fig. 8. Comparison of prediction performances of the best machine learning
model—Artificial Neural Network (ANN), for all target water quality constitu-
ents, in the best modeling scenario (S4) during the wet and dry seasons. Ac-
cording to R?, the prediction was more satisfactory for dry seasons for all the
water quality constituents except TN. FC: Fecal coliform; TN: Total nitrogen;
TP: Total phosphorus; DO: Dissolved oxygen; and TSS: Total suspended solids.

Fig. 7c¢) showed improvements in Scenarios S3 and S4, with the intro-
duction of antecedent conditions and additional water quality constit-
uents, although to a lesser degree compared to FC, suggesting that
nutrients are less reliant on these factors than FC. In Scenario S3 (Fig. 4c
and Fig. 7c), TN was less reliant on including additional water quality
constituents than TP (Fig. 4b and Fig. 7b). The trend from Scenario S1 to
S4 for TN showed that PBIAS did not significantly decrease with the
introduction of additional water quality constituents. TN predictions
had a slightly larger bias than TP, DO, and TSS in all the modeling
scenarios’ training phases, while FC had the largest PBIAS (~7.3%) in
the training phase (Fig. 4c, Fig. 4d, and Fig. 7e). All evaluation criteria
suggested that additional water quality constituents and antecedent
conditions significantly improved the model performance for FC, TP,
and TN; however, their influence in predicting DO and TSS was small (<
2% and < 1% improvement in R? for DO and TSS, respectively). Thus,
using only publicly accessible datasets was sufficient to predict DO and
TSS.

4.4. Seasonality of the water quality predictions

Predictive performances of water quality constituents were evalu-
ated for wet (May to October) and dry (November to April) seasons
across all the modeling scenarios. Table 3 shows that the average sea-
sonal concentrations (1998-2016) were larger for FC and DO during the
dry season but smaller for TP, TN, and TSS in this season. Almost
identical model performances of all the water quality constituents dur-
ing the wet and dry seasons suggested that the season-dependency of our
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predictions was minimal (<4% difference). Nevertheless, seasonal
model performances showed that FC and TN had greater seasonal
disparity compared to other target water quality constituents (Fig. 8).
Considering the fit metrics in scenarios S1- S4, TN, and DO were slightly
better predicted during the wet season, while FC, TP, and TSS were
slightly better predicted during the dry season. Also, there was a clear
seasonal differentiation for the nutrients. For TP, model performance
was more profound in the dry season for three scenarios (S2, S3, and S4),
while superior performances were found for the wet season for TN. This
suggests that TN is greatly affected by season regardless of the modeling
scenario. The effects of meteorologic features (rainfall, CR5, air tem-
perature, and relative humidity) were more substantial during the dry
season (i.e., leading to a better model performance). However, because
there were no apparent differences in the seasonal importance of
meteorological features for TP, the superior performance during the wet
season cannot be directly attributed to meteorologic features. The su-
perior predictive performance of all the water quality constituents in
Scenario S1 can be attributed to more profound importance of rainfall in
this scenario. From Scenario S1 to S4, the importance of rainfall
dampens with the subsequent introduction of antecedent conditions and
water quality constituents, and more prominently during the wet season
for Scenario S4. This can explain why prediction performance for all
target constituents, excluding TN, was superior during the dry season for
Scenario S4. Similarly, although FC’s concentration was higher during
the dry season, there was more underestimation of large FC concentra-
tions during the wet season; this provides an additional possible expla-
nation for a poorer prediction performance during the dry season. Also,
TSS and turbidity were notably prominent for improving FC, TP, and
TSS predictions (Scenarios S3 and S4), highlighting the role of sediment
transport during the dry season. This suggests that the effect of short
intermittent rainfall events during the wet season are stronger drivers of
these water quality constituents than more frequent and intense ones
during the dry season.

4.5. Uncertainty quantification

Predictive uncertainties of the best ML models for each target con-
stituent are presented in Fig. 9. The findings showed that FC and DO
predictions were the most and least uncertain, respectively. Aside from
DO, the predictions of water quality constituents were least uncertain for
Scenario S4. Incorporating antecedent conditions and additional water
quality constituents (Scenarios S2-S4) reduced the predictive uncer-
tainty around predictions of all water quality constituents. This reduc-
tion was most significant for FC and TSS (Fig. 9a), corroborating the
earlier evidence of accounting for water quality processes like bacteria
resuspension that can be explained by water quality constituents like
turbidity and TSS. Although TP predictions were more uncertain than
TN, TN had a larger PBIAS on average (8.6% for TN, 5.5% for TP).
Nevertheless, TP experienced greater improvements in PBIAS from
Scenario S1 to S4 alongside FC and TSS (Fig. 6). Also, while DO and TSS
had outstanding performances (Adj R? > 0.9 Fig. 9e and Fig. 9f), pre-
dictive uncertainties were larger for TSS. This can be attributed to the
relatively small observation dataset of TSS (about one-third of the other
water quality constituents). The uncertainties can be attributed to
learning/optimization algorithm biases, water quality measurements,
the approximation of features across time and space (when the data were
not available), and inadequate features to capture specific watershed
processes such as atmospheric deposition, nitrification/denitrification,
among others (Mallya et al., 2020).

Since the uncertainty reported in this study depended on the existing
data in our case study, the reliability of extrapolating the findings to a
similar study area (low-lying with similar land cover distribution) de-
pends on knowledge of watershed processes and data quality. However,
our presented modeling framework is generic and applicable to
modeling in-stream water quality at the watershed scale.



L.C. Adedeji et al.

Journal of Contaminant Hydrology 251 (2022) 104078

@) 3 H Fc
= E 1N
% 2.5 O Tp
b= O oo
; 24 O 1SS
.2
S 15
._qs)
M) s, & 1 E
©,_
- I 0.5
8 FC N P DO TSS
S 3 1.5
5 (b)
= 2 1.6
Q
- p— 1_
s
R ] 1.4+ l l
[
gl & 12 0.5
d S1 S2 S3 S4 T T T T
@ 1{ SI $2 S3 sS4
1.2 @
'TE l 0.8+ l
2_
5 T T
= 061 — : : :
= S1 S2 S3 S4 1.5
21 L
k3
§ (e) 11
A 0.9+
__l_— 0.5+ T
S S2 S3 S4 S S2 S3 S4

Fig. 9. Comparison of the ML models’ uncertainty (prediction interval around hypothetical value ‘1), of ‘best model scenario (54)’ (a) and ‘all model scenarios (S1, S2,
S3, and S4)’ of each target water quality constituents: fecal coliform (FC) (b), total nitrogen (TN) (c), total phosphorus (TP), dissolved oxygen (DO) (d) and total
suspended solids (TSS) (e). Overall, FC and DO predictions had the largest and smallest uncertainties, respectively; meanwhile, the model uncertainty was always

smallest in scenario S4 except for DO.

5. Summary and conclusions

This study demonstrated a ML-based framework to predict five in-
stream water quality constituents—TP, TN, TSS, and DO—at the
watershed scale. The framework used water quality drivers (meteoro-
logic, hydrologic, geomorphologic, land cover, and pedologic), which
represent pertinent physical, chemical, and biological processes, and are
publicly available throughout the US alongside antecedent conditions
and other water quality constituents that explain physical processes (pH
and turbidity). We evaluated the performance of five ML algo-
rithms—SVM, RF, XGB, RF-XGB, and ANN—using various fit metrics
(Adj Rz, NSE, PBIAS, KGE, and GA). Explanatory variables representing
water quality processes were identified using tree-based SHAP, ReliefF
ranking, and spearman rank-order correlation. Feature analyses
revealed that water quality constituents (TSS and turbidity) were the
most important drivers of FC, TP, and TSS, while antecedent conditions
(CR5) and meteorological factors like rainfall and air temperature were
the most important for TN and DO’s predictions. This finding, in addi-
tion to the model performance, generally revealed that:

1) Though including additional water quality drivers improved overall
model performance for all target constituents, TP, TN, DO, and TSS
could still be predicted satisfactorily using only publicly available
datasets (Nash-Sutcliffe efficiency [NSE] > 0.75 and percent bias
[PBIAS] < 10%), whereas FC could not (NSE < 0.49 and PBIAS
>25%).
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2) Water quality data and antecedent conditions are influential in
improving the predictive performance, capturing high concentra-
tions, and in reducing predictive uncertainties for all target water
quality constituents (FC, TP, TN, DO, and TSS). Despite these ad-
vantages, they were generally not necessary in predicting TP, TN,
DO, and TSS (Adj R? > 0.71, NSE > 0.69, KGE > 0.72, and PBIAS
<10%). In contrast, they are a necessity to achieve satisfactorily
prediction for FC (Adj R? < 0.68, NSE < 0.68, KGE < 0.69, and PBIAS
<14.3%) and even better when used in conjunction with antecedent
conditions (Adj R? < 0.72, NSE < 0.7, KGE < 0.7, and PBIAS
<13.4%).

The most remarkable model improvement was observed for FC,
followed by TP, TN, DO, and TSS based on Adj R? and NSE, whereas
with regards to PBIAS, the most significant improvement was
observed for FC, TP, and TSS.

Prediction uncertainties decreased for all target constituents and

most prominent for FC and TSS, and the smallest predictive uncer-

tainty was found for DO, followed by TN, TP, TSS, and FC. This
showed that FC and DO predictions were the most and least uncer-
tain, respectively.

4) Although there were disparities in the prediction performances of
target water quality constituents during the wet and dry seasons,
these differences were only marginal (<4% difference in the fit
metrics) and more pronounced for FC and TN. Also, FC, TP, and TSS
had better predictions during the dry season, while superior perfor-
mances were obtained for TN and DO during the wet season. Thus,

3

-
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short, sporadic dry season rainfall was more important in predicting
FC, TP, and TSS, whereas longer and more frequent rainfall domi-
nated in the predictions of TN and DO.

5) While all the examined ML algorithms performed adequately for all
the target water quality constituents, RF-XGB and ANN produced
more accurate and generalizable outputs.

This study shed insights into important water quality drivers and
pertinent processes, using ML algorithms for predicting in-stream water
quality, seasonality of these models, and the predictive uncertainties.
The models can also serve as an alternative tool when process-based
models cannot be implemented. This, in turn, can support water qual-
ity restoration projects like TMDLs in the U.S. and, more broadly, water
quality restoration efforts. Future research should focus on evaluating
the prediction performance of other ML algorithms like recurrent and
attention-based neural networks, as well as autoregressive algorithms
for water quality predictions. Similarly, evaluating other water quality
constituents at different spatial scales and examining other watersheds
with different spatiotemporal characteristics (e.g., tidally influenced
and predominantly urban or agricultural) are potential research areas
that needs to be explored.
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