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ABSTRACT

We study the Weighted Min Cut problem in the Adaptive Massively
Parallel Computation (AMPC) model. In 2019, Behnezhad et al. [3]
introduced the AMPC model as an extension of the Massively Par-
allel Computation (MPC) model. In the past decade, research on
highly scalable algorithms has had significant impact on many mas-
sive systems. The MPC model, introduced in 2010 by Karloff et
al. [16], which is an abstraction of famous practical frameworks
such as MapReduce, Hadoop, Flume, and Spark, has been at the
forefront of this research. While great strides have been taken to
create highly efficient MPC algorithms for a range of problems, re-
cent progress has been limited by the 1-vs-2 Cycle Conjecture [20],
which postulates that the simple problem of distinguishing between
one and two cycles requires Q(log n) MPC rounds. In the AMPC
model, each machine has adaptive read access to a distributed hash
table even when communication is restricted (i.e., in the middle of
a round). While remaining practical [4], this gives algorithms the
power to bypass limitations like the 1-vs-2 Cycle Conjecture.

We give the first sublogarithmic AMPC algorithm, requiring
O(loglogn) rounds, for (2 + €)-approximate weighted Min Cut.
Our algorithm is inspired by the divide and conquer approach of
Ghaffari and Nowicki [11], which solves the (2 + €)-approximate
weighted Min Cut problem in O(lognloglogn) rounds of MPC
using the classic result of Karger and Stein [15]. Our work is fully-
scalable in the sense that the local memory of each machine is
O(n€) for any constant 0 < € < 1. There are no o(logn)-round
MPC algorithms for Min Cut in this memory regime assuming
the 1-vs-2 Cycle Conjecture holds. The exponential speedup in the
AMPC runtime is the result of decoupling the different layers of
the divide and conquer algorithm and solving all layers in O(1)
rounds in parallel. Finally, we extend our approach: we present an
O(kloglog n)-round AMPC algorithms for approximating the Min
k-Cut problem with a 4 + € approximation factor.

1 INTRODUCTION

Massively Parallel Computation (MPC) — introduced by Karloff et
al. [16] in 2010 — is an abstract model that captures the capabil-
ities of the modern parallel/distributed frameworks widely used
in practice such as MapReduce [7], Hadoop [10], Flume [6], and
Spark [21]. MPC has been at the forefront of the research on par-
allel algorithms in the past decade, and it is now known as the de
facto standard computation model for the analysis of parallel algo-
rithms.
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In this paper, we focus on sublogarithmic-round algorithms for
the Min Cut problem in the Adaptive Massively Parallel Computa-
tion (AMPC) model, which is a recent extension of MPC. In both
MPC and AMPC, the input data is far larger than the memory of a
single machine, and thus an input of size N is initially distributed
across a collection of P machines. In the MPC model, the algorithm
executes in several synchronous rounds, in which each machine ex-
ecutes local computations isolated from other machines, and the
machines can only communicate at the end of a round. The total
size of incoming/outgoing messages for each machine is limited
by local memory constraints. We are interested in fully-scalable al-
gorithms in which every machine is allocated a local memory of
size O(N€) for any constant 0 < € < 1. Moreover, we can often im-
prove the round complexity! of the massively parallel algorithms
by allowing a super-linear total memory O(N'*€), for example, the
filtering technique of Lattenzi et al. [17] in MPC or the maximal
matching algorithm of Behnezhad et al. [4] in AMPC. So we are
primarily interested in algorithms with O(N) total memory, and
therefore we assume there are P = O (N17€) machines. 2

Recent developments in the hardware infrastructure and new
technologies such as RDMA [8], eRPC, and Farm [9] allow for
high-throughput, low-latency communication among machines in
data centers, such that remote volatile memory accesses are becom-
ing faster than accessing local persistent storage. The concept of a
shared remote memory is in particular useful when machines need
to query data adaptively - i.e., deciding what to query next based
on the previously queried data — which requires a communication
round per query in the MPC model. Behnezhad et al. [3] incorpo-
rates this RDMA-like paradigm of remote memory access into the
MPC model and introduces AMPC. In the new model, the machines
can adaptively query from a distributed hash table, or a shared read-
only memory, during each round. Machines are only allowed to
write to shared memory at the end of each round. There is also
empirical evidence that AMPC algorithms for several problems —
including maximal independent set, maximal matching, and con-
nectivity — obtain significant speedups in running time compared
to state-of-the-art MPC algorithms [4]. This fact, which stems from
the meaningful drop in the number of communication rounds, ver-
ifies the practical power of the AMPC model.

In this paper, we provide the first AMPC-specific algorithms for
the Min Cut problem. The Min Cut of a given graph G = (V,E) is

!The number of rounds is a main complexity of interest since in practice the bottle-
neck is often the communication phase.

2Where O hides polylogarithmic factors, i.e., 5(f(n)) =O(f(n)polylog(n)).
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the minimum number of outgoing edges, §(S), among every subset
of vertices S C V. The celebrated result of Karger and Stein [15]
solves Min Cut by recursively contracting edges in random order.
Specifically, it runs two instances of the contraction process with
different seeds in parallel. Each instance is run in parallel until the
graph size is reduced by a factor of %, at which point each in-

stance recurses (thereby creating a parallel split again). They re-
turn the minimum of the two returned cuts. The algorithm itself
is mainly inspired by another result of Karger [14] for finding the
Min Cut using graph contractions. We also extend our approach to
the Min k-Cut problem, in which we are given a graph G = (V, E)
and an integer k and we want to find a decomposition of V into
k subsets V1, Vs, ..., Vi so that Zle (V) is minimized. We utilize
the greedy algorithm of Saran and Vazirani [18] which gives an
o2 - %)—approximation of the Min k-Cut. Gomuri and Hu give
an alternative algorithm with the same approximation guarantee
with additional features [12].

We study the Min Cut and Min k-Cut problems in the AMPC
model. We give O(loglogn)-round AMPC algorithms for a (2+¢)-
approximation of Min Cut and a (4 + €)-approximation of Min k-
Cut.

1.1 Adaptive Massively Parallel Computation
(AMPC)

Massively Parallel Computation (MPC) and Adaptive Massively
Parallel Computation (AMPC) both sprung out of an interest in
formalizing a theoretical model for the famous MapReduce pro-
gramming framework. The most common problems in MPC and
AMPC are on graph inputs, and since our paper only considers
graph problems, we define these two models in terms of problems
on graphs. Consider a graph G = (V, E) with n = |[V| and m = |E|.

In standard MPC [1, 13, 16, 17], we are given a collection of P
machines and are allowed to compute the solution to a problem in
parallel. As we have already discussed, MPC computation occurs
in synchronous rounds, each consisting of local polynomial-time
computation and ending with machine-machine communication
where all messages sent to and from a machine must fit within
its local memory. Fully-scalable algorithms, the strongest mem-
ory regime in MPC, require the local memory to be constrained
by O(n€) for any given 0 < e < 1. Additionally, we are primar-
ily interested in algorithms that require at most O(logn) rounds.
However, often sublogarithmic - i.e., O(y/logn) or O(loglogn) -
round complexity is much more desirable. In most cases, the to-
tal space must be at most O(n +m), though sometimes we allow
slightly superlinear total space.

AMPC extends MPC to add functionality while remaining im-
plementable on modern hardware. Formally, in the AMPC model,
we are given a set of distributed hash tables Hy, ..., Hj. for each
of the k rounds of computation. These hash tables are each lim-
ited in size by the total space of the model (i.e., 5(n + m)). As in
MPC, we are given a number of machines and computation pro-
ceeds in rounds. In each round, local computations occur and then
messages are sent between machines. The distinction in AMPC is
that during the local computations, machines are allowed simulta-
neous read access to the hash table for that round (i.e., Hj—; for
round i) and during the messaging phase of the round, they are
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allowed to write data to the next hash table, ;. Reading and writ-
ing is limited by machine local memory. The power of the AMPC
model over the MPC model is that, at the beginning of a round,
the machines do not need to choose all the data they will access
during the round. Instead, they can dynamically access the data
stored in the hash table over the course of the local computation,
thus potentially selecting data based on its own local computation.

It is not too hard to see that AMPC is a strictly stronger model
than MPC. In fact, it was formally shown that all MPC algorithms
can be implemented in AMPC with the same round and space com-
plexities [3].

1.2 Our Contributions and Methods

This work is the first to study the Adaptive Massively Parallel Com-
putation (AMPC) model for Min Cut problems on graphs. We mainly
focus on the standard single Min Cut problem, although we also

propose an approximation algorithm for the Min k-Cut problem.

Our main result for the Min Cut problem is a 2 + € approximate

algorithm that uses sublogarithmic O(loglog n) rounds.

TreoreM 1. There is an O (loglog n)-round AMPC algorithm that
uses O(n+ m) total memory and O(n€) memory per machine which
finds a (2 + €)-approximation of Min Cut with high probability.

Note that this is a vast improvement over the current state-of-
the art algorithms in MPC by Ghaffari and Nowicki [11], which
achieves the same 2 + € approximation in O(log nloglogn) rounds.
Both our algorithm and that of Ghaffari and Nowicki use Karger’s
methods as a general structure for finding the Min Cut. Using this
method, the goal is to recursively execute random graph contrac-
tions. From the results of Karger, the contraction process either
finds a singleton cut that is a 2 + € approximation or preserves a
specific Min Cut with probability dependent on the depth of recur-
sion. To leverage this result, at each step of the recursion process,
we find the best singleton cut on the existing graph. Once the graph
is small enough, the problem can be solved efficiently. Out of all the
singleton solutions found during this process and the final Min Cut
on the small graph, we simply select the best cut. Thisisa 2 + €
approximate Min Cut with high probability.

To implement this approach in a distributed model, both meth-
ods assign random weights to the edges of the input graph and
find a minimum spanning tree (MST). Greedily, selecting edges in
order of decreasing weight, we contract the graph along the cur-
rent edge. This process is equivalent to the same greedy random
contraction process on the original graph. This step, already, cur-
rently requires at least Q(log n) rounds in MPC, but the flexibility
of the AMPC model allows us to achieve this step in a constant
number of rounds.

It remains to show how can one find the best singleton cuts at
each level of recursion. In order to do this, we employ a low-depth
tree decomposition on the minimum spanning tree until it becomes
a set of separated vertices. On top of this recursive divide-and-
conquer process, we design a process to compute and remember
the best singleton cut.

The high level idea of recursively partitioning the tree and ap-
plying a process on top of that to find the best singleton cut is
the same in both our paper and Ghaffari and Nowicki’s paper [11].
However, the processes used to do this in MPC do not yield simple
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improvements in AMPC. Rather, we must use entirely novel tech-
niques that leverage adaptivity to get truly sublogarithmic results.
In fact, this must be done in constant rounds to achieve our re-
sults, whereas Ghaffari and Nowicki do this in O(log n) rounds. In
order to create a tree decomposition, we consider maximal paths of
heavy edges (i.e., edges that go from a parent to its child with the
largest subtree). These paths are replaced by binary trees whose
leaves are the path and the root connects to the path’s parent. Con-
sider labeling the resulting vertices in the graph with their depth.
For each internal node in one of these binary trees, which was not
a vertex in the original tree, we select a specific descendant leaf in
the binary tree expansion of the path to send its depth to. The final
value a vertex receives is then what we call the “label”, which mea-
sures at what level of recursion the tree splits at that vertex. An
entire labeling of the tree encodes an entire tree decomposition.
This is done in constant AMPC rounds.

To compute the singleton cuts at each level, we assign to each
singleton cut formed during the contraction process a vertex that
has the lowest label. We show that such vertices are well-defined,
i.e. there is only one vertex with the lowest label within vertices on
the same side of a singleton cut. Because removing vertices of la-
bels lower than i partitions the tree into disjoint subtrees such that
each subtree contains at most one vertex with label i, we are able
to calculate minimal singleton cuts corresponding to these vertices
with label i in parallel in a constant number of AMPC rounds. Since,
we constructed the low-depth decomposition such that the range
of labels has size O(log? n), thus, by increasing the total memory,
we can perform these computations for all different lables in a con-
stant number of AMPC rounds. For more details, we defer to Sec-
tion 4.

We then show how this work can be leveraged to achieve effi-
cient results for approximate Min k-Cut, generalizing the results
from Saran and Vazirani [18]. At a high level, we start by comput-
ing a Min Cut. Then we add the edges of the cut to a set D. In all
following k — 1 iterations, we calculate the Min Cut on the graph
without edges in D, and add the new cut edges to D for the next
iteration. The set of the first k cuts we compute is our k-cut.

Compared to Saran’s and Vazirani’s technique, our method uses
an approximate Min Cut rather than an exact Min Cut on each split-
ting step. This requires adapted analysis of this general approach.
We employ the structure of Gomory-Hu trees (see [12]) for this
purpose and show the following result:

THEOREM 2. Algorithm APX-SPLIT is an (4 + €) approximation
of the Min k-Cut. Furthermore, it can be implemented in the AMPC
model with O(n€) memory per machine in O(k log log n) rounds and
O(m) total memory.

Therefore, for small values of k, we can achieve efficent algo-
rithms for 4 + € approximate Min k-Cut in AMPC. Note that there
are no existing results in the MPC model, however our methods
applied to the work of Ghaffari and Nowicki [11] yield:

COROLLARY 1. There is an algorithm that achieves a (4 + €) ap-
proximation of the Min k-Cut with high probability that can be im-
plemented in the MPC model with O(n€) memory per machine in
O(k lognloglogn) rounds and O(m) total memory.

Note there is still a logarithmic-in-n improvement in the round
complexity in AMPC over MPC no matter the value of k. Due to
space constraints both these result are presented in the appendix.

2 MINIMUM CUT IN AMPC

Karger and Stein [15] proposed a foundational edge contraction
strategy for solving Min Cut:
o Create two copies of G, and independently on each, contract
edges in a random order until there are at most \% vertices.
e Recursively solve the problem on each contracted copy until
they have constant size.
e Return the minimum of the cuts found on both copies.

LEmMA 1 ([15]). The contraction process executed to the point
where there are only 7} vertices left preserves any fixed minimum

cut with probability Q (tlz)

According to Lemma 1, naively contracting random edges un-
til there are only two vertices remaining preserves at least one

minimum cut with probability Q (%) Thus, we need to repeat
n

the naive contraction process at least O (n2 log n) times so that we
have a high probability of success, i.e., preserving a minimum cut.
However, Karger and Stein [15] show that their recursive strategy
succeeds with probability Q (@ ) In turn, running O (log2 n) in-
stances of the recursive strategy is enough to find a minimum cut
with high probability.

Roughly speaking, the choice of t = V2 as the inverse of the
branching factor assures that a minimum cut is preserved with
probability t—lz = % throughout the contractions in each copy. Thus,
the probability of success, say P(n), for n vertices is bounded by:

1 n 2
P(n)Zl—(1—5~P($)) (1

Note that the random contractions in two copies are assumed
to be independent, and the probability of success for each copy is

at least % - P (%) since we recurse on the resulting contracted
graph with % vertices. Inequality (1) implies that at the k-th level
of recursion (counting from the bottom), the probability of success

is Q (%), and in particular Q (loén

Let us now give some high-level insight into the approach by
Ghaffari’s and Nowicki. Ghaffari and Nowicki [11] observed that if
we only desire a (2+¢€) approximate cut, we can use a better bound
for the probability of preserving a minimum cut, or alternatively,

the success probability.

at the root of recursion. [15].

LEmMA 2 ([11, 15]). On an n-vertex graph G, let C be a minimum
cut with weight A. Fix an arbitrary € € (0,1). The described random
contraction process that contracts G down to % vertices either at some
step creates a singleton cut of size at most (2+¢€)A or preserves C - i.e.,

1

it does not contract any of its edges - with probability at least e

A singleton cut is a partitioning of graph vertices so that there
is only one vertex on one side, i.e., §(S) so that |S| = 1. Assuming
that one is able to verify whether a singleton cut of a small size
has been formed during the contraction process, they show that
this greater probability of success can boost the recursive process.



In short, consider the k-th level of recursion, where level 0 corre-
sponds to the bottom level. Let i be the size of a single recursive
instance at level k, and denote by si the total number of instances

on this level. For all k, they ensure s = tllc_e/3.
Now, let xllc_e/ 3 be the branching factor on level k. That is, the

. 1-€/
recursion produces xk

each of them independently contracts edges in a random order un-
til the number of vertices is bigger than % . ﬁ If we have an algo-
rithm that is able to track whether a small singleton cut appeared
in each of these random processes, we either get a singleton cut
that (2 + €) approximates a minimum cut or a minimum cut is pre-

served with probability xllc_e/ 3 Since we made x' ¢/
similar argument as in Karger’s approach, we get that, in the latter

3 copies of the instance at level k, and on

3 copies, by a

case, the probability of preserving a minimum cut is Q (%)
Finally, observe that on the k-th level of recursion, the most
costly operation is copying a k-th level instance xllc_e/ ® times in
order to contract edges in each of these instances. Since the in-
stance has size &+ and we have si instances, processing these tasks

173
€/

in parallel requires & - s, - xllc_ 3 space. If one want to fit this in

23
O(n) space, then it must be that x; < t,isﬂ)/(l_e/g). Anyway, we
get that the number of contractions we can make on k-th level is
polynomial in the number of contractions we made on higher lev-
els, and if the recurrence is solved, then it follows that it will be
O(loglog n) levels until we reach a graph of a constant size.
Ghaffari and Nowicki [11], use Lemma 2 and the above boost-
ing scheme to show an O(loglogn - log n)-round MPC algorithm
for Min Cut. The main non-trivial part of their algorithm involves
tracking the smallest singleton cut on each recursion level, which
they do in O(logn) rounds because of the divide and conquer na-
ture of their approach. Effectively, they assign all edges random
and unique edge weights, and contract all uncontracted edges in
decreasing order by edge weight. It can then be shown that all that
needs to be done is to compute the MST of this graph and contract
these edges accordingly (all other edges will be automatically con-
tracted when another edge is contracted). We reduce the number
of rounds for singleton cut tracking down to O(1) rounds in the
AMPC model. We aim to prove the following theorem.

THEOREM 1. There is an O(loglog n)-round AMPC algorithm that
uses O(n+m) total memory and O(n€) memory per machine which
finds a (2 + €)-approximation of Min Cut with high probability.

To track singleton cuts, the first step is to find a low depth de-
composition of the current MST. At a high level, a low depth decom-
position of a tree is a labeling of its vertices with values 1 through
d, where d is the depth. This label must satisfy the following: for
every level i € [d], the connected components induced on vertices
with label at least i must contain at most one vertex for each i. This
defines a recursive splitting process: starting at depth 1, there must
be at most one vertex v with the minimum label, so we can split the
tree into multiple parts by removing v. Then we simply recurse on
each connected component, considering the next set of labels, and
knowing the process will always split each connected component
once at a time. This is the general idea captured by both this and
previous works. However, in order to increase the efficiency of this
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step, we require a new decomposition structure (see Definition 1)
and new methods for finding the decomposition. Notice that it is
always true that at each level, each connected component contains
at most one vertex at the next level.

In Section 3, we show how to find a low depth decomposition
with depth O(log? n) in AMPC in O(1/€) rounds (Lemma 3) with
O(n€) space per machine. Roughly speaking, we create a heavy-
light decomposition of the MST, where we store “heavy paths”
consisting of edges connecting vertices to their children with the
largest number of descendants and isolated “light nodes”. We re-
place each heavy path with a complete binary tree whose leaves
contain the vertices in the path, which gives us an efficient struc-
ture to obtain our labeling. This yields our low depth decomposi-
tion.

In the next step, we compute the size of of every singleton cut
S that is created during the process. Note that the contractions are
inherently sequential and the number of contractions we need to
make at step k is x; € O(n). However, each singleton cut is a
connected component on the MST containing a specific edge e,
whose contraction - in the increasing order of contracting MST
edges - results in subset S, if we only allow the edges that have a
smaller weight than e. We partition these connected components
based on the vertex in the cut with the lowest level in the heavy-
light decomposition of the MST. This way, we can compute ev-
ery level of the low depth decomposition in parallel with only an
O(log? n) blowup in total memory. In Section 4, we show that we
can track every singleton cut in the contraction process in O(1)
AMPC rounds. A high level pseudocode of the main algorithm is
given in Algorithm 1.

Algorithm 1: AMPC-MinCut
(An algorithm that calculates (2 + €) approximation of Min
Cut in G. The novel part is underlined. )
Data: A graph G = (V(G), E(G)), a parameter k.
Result: (2 + €) approximation of Min Cut.
if |G| € n€ then

| return Min Cut of G calculated on a single machine

(RSN

3 end

1 Let Gy, ..., 5/; be copies of G with assigned random weight
on edges (independently for each copy);

In parallel for all i € [k], S; « MinSingletonCut(@);

In parallel for all i € [k], G; < copy of G; after first k
contractions;

In parallel, C; < AMPC-MinCut(G;);

return min(Sy, ..., Sk’ Ci,..., Ck);

«

o

=

®

Note that MinSingletonCut (Algorithm 3) is introduced in Sec-
tion 4 and it leverages LowDepthDecomp (Algorithm 2) from Sec-
tion 3.

3 GENERALIZED LOW DEPTH TREE
DECOMPOSITION

This section and the next address our algorithmic formulation and
analysis. Note that all omitted proofs are deferred to the Appendix.
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In order to efficiently compute the singleton cuts in parallel, we
first need to compute an efficient decomposition of the MST. The
low depth tree decomposition Ghaffari and Nowicki [11] introduce
is a very specific decomposition with i levels such that at each level
¢, any connected component of size s on vertices at that level or
higher has a single vertex at level ¢ that separates the component
into two components with size at least s/3 each. Unfortunately, it
is unclear how to calculate this precise decomposition efficiently
in AMPC. To work around this, we introduce a more generalized
version of the low depth tree decomposition, show that it can be
computed in AMPC, and later show that we can leverage this to
obtain our Min Cut algorithm.

DEFINITION 1. A generalized low depth tree decomposition
of some tree T is a labeling ¢ : V(T) — [h] of vertices with levels
for decomposition height h € O(log® n) such that for each level i, the
connected components induced on T = {v € T : £(v) > i} have at
most one vertex labeled i each.

Notice we do not define how a level is assigned; we simply re-
quire it is assigned to satisfy the property on connected compo-
nents. We describe one way to do that in this section.

To see what such a decomposition looks like, consider a process
where at timestep ¢ we look at the subgraph induced on the vertices
o with £(v) > t (i.e.,, T*). Consider a connected component C and
let v be its minimum level vertex. Then £(v) > t, and it is the only
vertex at that level in C. At timestep £(v) + 1, C becomes separated
into multiple components who all contain a vertex adjacent to v.
This process defines forests with smaller and smaller trees as time
passes, and eventually results in isolated vertices. The completion
time of this process depends on the height of the decomposition,
which in our case is O(log2 n). We will, of course, make this more
efficient in Section 4.

It is not that hard to see that Ghaffari and Nowicki’s low depth
tree decomposition is a specific example of generalized tree decom-
position with depth O(logn). They put a single vertex in the first
level and then simply recurse on the two trees in the remaining
forest. Note that they require additional properties of this decom-
position to obtain their result, specifically that each new compo-
nent has size at least % of the original component, but we will see
later that these are not necessary for finding the singleton cuts.

Like Ghaffari and Nowicki in MPC, we prove this can be com-
puted efficiently in, instead, AMPC.

LEmMA 3. Computing a generalized low depth tree decomposition
of an n-vertex tree can be done in O(1/€) AMPC rounds with O(n€)
memory per machine and O(nlog? n) total memory.

The rest of this section is dedicated to proving Lemma 3. The
formal and complete algorithm is shown in Algorithm 2 and fur-
ther details and definitions can be found later in this section. At a
high level, our algorithm proceeds as follows:
(1) Root the tree and orient the edges [line 2].
(2) Contract heavy paths in a heavy-light decomposition of T
into meta vertices to construct a meta tree, Tys [lines 3 to 5].

(3) For each meta vertex, create a binarized path, a binary tree
whose leaves are the vertices in the heavy path, in order.
Expanding meta vertices in this manner yields our expanded
meta tree [lines 7 to 11].

(4) Label each vertex according to properties of the expanded
meta tree. For all new vertices (i.e., vertices created in step
3) v, label v with the depth of the highest vertex u in the
same meta node such that v is the leftmost leaf descending
from the rightmost child of u in the binarized path of the
meta node [lines 13 to 15].

Each of these steps correspond to the following subsections. For
instance, step 1 corresponds to Section 3.1. All relevant terminol-
ogy related to these steps are additionally found in the correspond-
ing subsections. Lemma 3 is proven at the end of the final subsec-
tion.

Algorithm 2: LowDepthDecomp
(Computing a generalized low depth tree decomposition of
an input tree in AMPC)
Data: Atree T = (V(T), E(T)).
Result: A mapping ¢ : V(T) — N of tree vertices to levels.
Initialize £ : V(T) — N;
Root and orient T;
Let Ty = (V(T),{e € E(T) : e is heavy};
Let P be the connected components of Tgr;
Let Tyy = (P, {(P1,P2) : P1,Py € P,3(u1,uz) €
V(P1) X V(P2) such that (u1,u2) € E(T)});
¢ for v € Ty of heavy path Py in parallel do
7 Let V(Ty) be a vertex set of size 2|Py| — 1 with
associated indices 1,. .., 2|Py| — 1, denoted by iy;
8 | LetTy=(V(To), {(u.pu) : ip, = Liu/21});
9 Pre-order traverse T and sort P, accordingly;

-

N}

@

'S

@«

10 Pre-order traverse T, and let L be its sorted leaves;
11 For all i € [|Pyl|], map Py[i] to L[i];
12 foru € V(T,) do

13 Find path P to the root of the expanded meta-tree;

14 Let u’ € V(T,) N P* be such that u is the leftmost
descendant of u”’s right child (otherwise u’ = u);

15 Label ¢(u) = d(u’);

16 end

17 end

18 return ¢ limited to the original vertices in T;

3.1 Rooting the Tree

Like in Ghaffari and Nowicki, the first thing we need to do in line 2
of Algorithm 2 is compute an orientation of the edges. Fortunately
this, along with rooting the tree, can be done quickly in AMPC by
the results of Behnezhad et al. [3] in their Theorem 7.

LEMMA 4 (BEHNEZHAD ET AL. [3]). Given a forest F on n vertices,
the trees in F can be rooted and edges can be oriented in O(1/€)
AMPC rounds w.h.p. using O(n€) local memory and O(nlogn) total
space w.h.p.

Here, w.h.p. means “with high probability” This completes the
first step of our algorithm.



Figure 1: The heavy-light decomposition of an example tree.

3.2 Meta Tree Construction

We also leverage Ghaffari and Nowicki’s notion of heavy-light de-
compositions for our AMPC algorithm, which can be found from
lines 3 through 5 in Algorithm 2. This process allows us to quickly
decompose the tree into a set of disjoint paths of heavy edges, which
are defined as follows (note that our definition slightly deviates
from Ghaffari and Nowicki [11], where the heavy edge must ex-
tend to the child with the largest subtree without requiring this
subtree to be that large, though it is the same as the definition used
by Sleator and Tarjan [19]):

DEFINITION 2 (SLEATOR AND TARJAN [19]). Given a treeT and a
vertexv € T, let {u;};ci be the set of children of v where the subtree
rooted at uy is the largest out of allu;. If there is no strictly largest sub-
tree, we arbitrarily choose exactly one of the children with a largest
subtree. Then (u1,0) is a heavy edge and (u;,v) is a light edge for
alll1 <i<k.

Then the definition of a heavy path follows quite simply.

DEFINITION 3 (GHAFFARI AND NowICKI [11]). Given a tree T, a
heavy path is a maximal length path consisting only of heavy edges
inT.

Ghaffari and Nowicki then make the observation that the num-
ber of light edges and heavy paths is highly limited in a tree. This
comes from a simple counting argument, where if you consider the
path from root r to some vertex v, any time you cross a light edge,
the size of the current subtree is reduced by at least a factor of 2.
This holds even with our different notion of heavy edges since sub-
trees rooted at children of light edges are still much smaller com-
pared to the subtree rooted at the parent vertex. This bounds the
number of light edges between r and v, where each pair of light
edges are separated by at most one heavy path, and therefore it
also bounds the number of heavy paths.

OBSERVATION 1 (GHAFFARI AND Nowickt [11]). Consider a tree
T oriented towards root r. For each vertex v, there are only O(logn)
light edges and only O(log n) heavy paths on the path fromv tor.

Using the definition of heavy edge from Sleator and Tarjan [19]
instead of from Ghaffari and Nowicki, we get an additional nice
property. This is because in our definition, every internal vertex
has one descending heavy edge to one child.
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Figure 2: The meta-tree of the same tree from Figure 1 is
demonstrated in this figure.

OBSERVATION 2 (SLEATOR AND TARJAN [19]). Given a tree T and
an internal vertex v € T, v must be on exactly one heavy path. For a
leaft € T, ¢ must be on at most one heavy path.

Our first goal is to compute what we call a meta tree. This is a
decomposition of our tree that will allow us to effectively handle
heavy edges. It is quite analogous to Ghaffari and Nowicki’s notion
of the heavy-light decomposition, which partitions the tree into

heavy and light edges.

DEFINITION 4. Given a tree T, the meta tree of T, denoted Ty,
comes from contracting all the heavy paths in T. We call the vertices
of T original vertices and the vertices of Ty meta vertices.

Note that contracting all heavy paths simultaneously is valid
because, by Observation 2, all heavy paths must be disjoint. Addi-
tionally, all internal meta vertices are contracted heavy paths (as
opposed to original vertices), again by Observation 2. We note that
in AMPC, since connectivity is easy, it is additionally quite easy to
contract the heavy paths of T into single vertices.

LEMMA 5. Given a tree T, the meta tree Ty; can be computed,
rooted, and oriented in AMPC in O(1/€) rounds with O(n€) mem-
ory per machine and O(nlog? n) total space w.h.p.

This completes the second step of our decomposition algorithm.

3.3 Expanding Meta Vertices

In order to label the vertices, we need a way to handle the heavy
paths corresponding to each meta vertex. Let v € Ty be a meta
vertex, and P, be the heavy path of original vertices in T corre-
sponding to v. Note that we have no stronger bound on the length
of a heavy path than O(n). Therefore, a recursive partitioning, or
labeling of vertices that has polylogarithmic depth must be able to
cleverly divide heavy paths. We can do this with a new data struc-
ture.

DEFINITION 5. Given some path P, a binarized path is an al-
most complete binary tree T with |P| leaves where there is a one-to-
one mapping between P and the leaves of T such that the pre-order
traversal of P and T limited to its leaves agree.

By “agree”, we mean that if a vertex v € P comes before a vertex
u € P in the pre-order traversal of P, then it also does in the pre-
order traversal of T. To characterize this tree, we make a quick
observation:
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OBSERVATION 3. An almost complete binary tree on n leaves has
2n — 1 vertices, |log, n] + 1 max depth, and every layer is full except
the last, which has 2n — 2 Llog n]+1 yerpices.

Additionally, we can find a relationship between the ancestry of
triplets in P based off of the order of the three vertices. While this
is not required for expanding meta vertices, it is a property of the
binarized path that will be useful when we label vertices later.

OBSERVATION 4. Given a binarized path T of a path P, for any
u,u’,u’” € P that appear in that order (or reversed), if v is the lowest
common ancestor of u and u’ and v’ is the lowest common ancestor
ofu andu”, thenv’ is an ancestor of v orv’ = v.

To create the tree, we do the following for every v € Ty;:

(1) Create an almost complete binary tree T, with |P,| leaves,
linking children to parents and noting if a vertex is a left or
right child [lines 7 and 8].

(2) Do a pre-order traversal of T, and P, and map the vertices
in P, to the leaves of T, such that the pre-order traversal of
P, and of T, limited to its leaves agree. [lines 9 to 11].

Next, it is pretty direct to see that the produced tree is a bina-
rized path.

OBSERVATION 5. The process described above produces a bina-
rized path T, of Py for allv.

We prove that this can be done in the proper constraints.

LEMMA 6. The heavy paths of a tree can be converted into bina-
rized paths in O(1/e) AMPC rounds with O(n€) local memory and
O(nlogn) total space w.h.p.

3.4 Labeling Vertices

Our next goal is to label the vertices with the level they should
be split on. Consider, hypothetically, expanding the meta tree Ty
such that every heavy path for a meta vertex v is replaced with
its binarized path (which is an almost complete binary tree) Ty,
and the tree continues at the leaves corresponding to the nodes in
the heavy path. Note that only some vertices in the hypothetical
tree correspond to vertices in the original tree T. Specifically, the
internal nodes of each component subtree T, are not vertices in T,
but the leaves correspond exactly to the vertices in T.

Ultimately, for a vertex u € T in meta vertex v, let u” be the
vertex in T, such that u is the leftmost leaf-descendant of the right
child of u” in T,,, (or if this doesn’t exist, u’ = u). Then we will
label £(u) = d(u’) where d is the depth in the expanded meta tree.
Following this, our vertex labeling process will be as follows for
eachov € Tyyand u € Ty:

(1) Vertex u finds the path P¥ from u to the root of Ty, assuming
the meta vertices are expanded [line 13].

(2) Let u’ be the highest vertex in T, such that u is the leftmost
descendant of the right child of u. If there is no such vertex,
let u” = u [line 14].

(3) Label u with the depth (assuming roots have depth 1) of v’
in the expanded Ty [line 15].

We start by making a quick observation that comes directly
from Observations 1 and 3.

OBSERVATION 6. The max depth of Ty; with meta nodes expanded
(“the expanded Ty; ) into binary trees is O(log® n).

This will be greatly helpful in showing the efficiency of our al-
gorithm. We now show that this final part can be implemented
efficiently, which is sufficient to prove our main lemma.

LEMMA 7. The process described above finds a generalized low
depth tree decomposition of original tree T of height h € O(log? n)
in 1 round with O(n€) local memory and O(nlog? n) total space.

4 CALCULATING THE SMALLEST
SINGLETON CUT

In this section, we show a O(1/¢) round AMPC algorithm that ex-
ecutes a series of contractions and outputs the size of the smallest
singleton cut that appeared during the contraction process. That
is we prove the following result.

THEOREM 3. There exists an AMPC algorithm that given a graph
G with unique weights on edges calculates the minimum singleton
cut that appears during the contraction process in O(1/€) rounds us-
ing O(n€) local memory and O((n + m)log? n) total space.

4.1 Contraction process

We view the contraction process of a weighted graph G = (V,E, w :
E — [n®]) as a sequential process in which we iterate over mul-
tiple timesteps 0 to n3. For a given time i, we contract the edge
e having w(e) = i to a single vertex. Let G, ...,G,3 be the se-
quence of graphs created in the process, where Gy denotes the
graph before any contraction and G,;3 denotes the graph after all
contractions. Via a quick comparison to Kruskal’s algorithm, it is
clear that the edges whose contraction changed the topology of the
graph must belong to the minimum spanning tree of the weighted
graph G (since weights are unique, the MST is unique as well). Let
T = (V,Ep,w : Ep — [n®]) be the minimum spanning tree of G.

From the previous observation, it is enough to consider only
contracting edges from tree T, which we will focus on in the rest of
this section. It will also be convenient visualize vertices as simply
being grouped instead of fully contracted.

DEFINITION 6. A bag of vertex v at time t € [n3], which we
denotebag(v, t), is the set of vertices that can be reached from v using
only edges of tree T of weight at most t. We denote nbr_bag(v, t) for
set of neighbors of a bag, that is set of these vertices u that do not
belong to the bag and there exists an edge connecting u and any vertex
of the bag of weight greater than t. The degree of a bag, denoted
Abag(v, 1), is the size of the set nbr_bag(v, t).

If we proceed with our edge contraction process, where an edge
with weight ¢ is contracted at time ¢, then bag(v, t) is the set of
all vertices that have been contracted with v at time ¢. The value
Abag(v,t) is simply the degree of the vertex that corresponds to
contracted vertices. Therefore, the following simple observations

holds.

OBSERVATION 7. The value of the minimum singleton cut in the
contraction process of the weighted graph G is equal to the following:

min  Abag(v, t).

veV,te[n?]



4.2 Simulating tree contractions with low
depth decomposition

By Observation 7 our goal is to calculate the value of

min  Abag(v, t).
veV,te[n3]

To find this, we could calculate the value min, ¢[,3) Abag(v, t) for
every vertex v independently in parallel. However, this would re-
quire a minimum of Q(n - (n + m)) total space, which roughly
corresponds to replicating the whole graphs for each independent
instance. There are two key observations that will allow us to re-
duce the space complexity. First, bags are determined solely from
the topology of tree T. Second, for larger ¢, it is likely the case that
bag(u,t) = bag(v,t), so we would like to remove this redundant
computation. Therefore, we will exploit tree properties and the low
depth decomposition to partition the work and avoid redundancy.
Let £ : V — [h],h € O(log? n) be the labeling from the gener-
alized low depth decomposition of tree T (see Definition 1). Let us

asses to each bag a uniquely chosen vertex.

DEFINITION 7. The leader of a bag, denoted bagleader(v,t), is
the vertex u with the smallest label £(u) among all vertices from
bag(v,t). We define a number Idr_time(v) to be the greatest num-
ber0 < t’ < n® such that bagLeader(v,t’) = 0.

Let us first argue the correctness of the above definitions.

LEMMA 8. The leader of every bag can be determined uniquely.
Also, for every vertex v € V it holds: the number |dr_time(v) exists,
Idr_time(v) > 0, and for every 0 < t’ < Idr_time(v) we have that
baglLeader(v, t’') = v.

Using the fact that each bag has exactly one leader, we can re-
formulate the expression min,cy ;e[n3] Abag(v, t) as follows

Abag(ov, t).

min  Abag(v, t) = min min
veV,te[n?] eV 0<¢<Idr_time(v)
We then will distribute the work needed to calculate the right-hand
side of the above equality by requiring each vertex to calculate the
minimal degree among bags for which it is the leader:
min Abag(v, t).
0<¢<ldr_time(v) g( )

Let i be a number in [[logzn]]. Let L; (the ith level) be the set
of vertices v € V with low depth decomposition label £(v) = i,
and L<; be that with label £(v) < i (for convenience we assume
that L<g = 0). Let T be the tree T with L<;_; removed. The fol-
lowing observation, derived from the fact that a bag is a connected
subgraph of T and the leader has lowest value ¢(-), relates bag lo-
cation to the topology of the low depth decomposition.

OBSERVATION 8. For every i € [[logzn]], v€Lj,and0 <t <
Idr_time(v), the set bag(v,t) belongs to a single connected compo-
nent of graph T!. For any two u,v € L;, sets bag(u, Idr_time (u)) and
bag(v, Idr_time(v)) belong to different components of graph T*.

Recall, that we wanted to calculate the value

min Abag(v,t)

0<¢<lIdr_time(v)

for every v € V, which we rewrote as
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min min
veV 0<t<Idr_time(o)

Abag(v, t).

Grouping by vertices in the same layers, we get

min min Abag(v,t)
veV 0<¢t<Idr_time(o)

= min min min
i€[[log?n]] vEL; 0<t<ldr_time(v)

Abag(v, t).

By Observations 8, we can hope that computing the value

min min
v€L; 0<t<Idr_time(o)

Abag(v, t),

can be done in parallel without exceeding global memory limit
of O(mlog? n), since for different v € L;, their bags up to time
Idr_time(v) belong to different components of T%, thus we might
avoid redundant work. The details of computing this value are pre-
sented in the next section. Let us now formalize the progress so far.

LEMMA 9. Given a tree T and a graph G = (V,E,w : E — [n%])
as an input, calculating the value min, ey ;c[,3] Abag(v,t) can be

reduced to O(log? n) instances of calculating values

min min
veL; 0<t<Idr_time(v)

Abag(v, t),

forie [flogzn]]. The reduction can be implemented in AMPC with
O(1/e) rounds, O((n+m)log? n) total space, and O(n€) local mem-
ory.

ProoF. The correctness follows from the above discussion. For
the implementation, the generalized low depth decomposition of T
can be determined in O(1/€) rounds with O(nlog? n) total space
by Lemma 3. Consider now O(log?) tuples of format (T, ¢,E, L;).
Preparing them requires O((n+m) log? n) total space and the above
discussion shows that the value

min min
veL; 0<t<Idr_time(o)

Abag(v, t)

foreveryi € [[log2 n]] can be computed from the tuple (T, ¢, E, L;),
thus the lemma follows. ]

4.3 Resolving the problem for vertices on the
same level.

Following Lemma 9, we fix i € [[logzn]] and set L;. We calculate:

min min
veL; 0<t<Idr_time(o)

Abag(v, t).

In this approach, we will frequently query the minimum value over
a path in a tree, thus the following result is helpful.

THEOREM 4 (BEHNEZHADET AL. [5]). Consider a rooted, weighted
tree T, the heavy-light decomposition of this tree together with an
RMQ data structure that supports queries on heavy paths can be
computed in O(1/e) AMPC rounds using O(n€) local memory and
O(nlogn) total space. If the aforementioned data structures are pre-
computed, then obtaining a minimum value on a path of a tree can
be calculated with O(log n) queries to global memory.

We will also make use of the following theorem.
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THEOREM 5 (BEHNEZHAD ET AL. [2]). For a given sequence of inte-
ger numbers S of length n, computing the minimum prefix sum over
all prefix sums can be done in O(1/e) AMPC rounds using O(n€)
local memory and O(nlogn) total space.

Finally, we show that the construction of the low depth decom-
position provided in Section 3 gives easy access to edges that con-
nect vertices of higher labels with vertices of smaller labels.

LEMMA 10. For any connected component C* in T, there are at
most 2 tree edges between C' and V \ T' according to the low depth
decomposition ¢ given in Lemma 7. Moreover, both edges can be cal-
culated in O(1/e) AMPC rounds with O(n€) memory per machine
and O(nlog? n) total memory.

Let us now turn to the proper part of this subsection. First, we
show how to compute values Idr_time(v) for all v € L;.

LEMMA 11. Given a tuple (T,¢,E,L;) for tree T, low depth de-
composition £, set of weighted edges E, and levels L; for some i €
[[og? n1], there exists an AMPC algorithm that calculates the value
Idr_time(v) for every v € L;, in O(1/€) rounds using O(n€) local
memory and O((n +m) log? n) global memory.

Proor. Consider vertex v € L;. Vertex v ceases to be the leader
of a bag at the first time ¢ when its bag is contracted with another
bag containing at least one vertex of the set L<;—1. According to the
tree contraction process, time ¢ is equal to the largest weight of tree
edges between v’s connected component in graph T* and the set of
vertices L<;—1. By Lemma 10, these edges can be extracted with at
most O(log? n) queries to the low depth decomposition structure.
We then simply find the minimum. Thus, all values Idr_time(v) for
vertices from L; can be computed in constant number of rounds
assumed the conditions stated in the lemma. o

We can assume that values Idr_time(v) € L; are known. We
would like to efficiently compute
Abag(v, t),

min
0<¢<ldr_time(v)

for each v € L;. For this, we make the following observation.

LEMMA 12. Consider an edge (x,y) =: e € E and a vertexv €
L;. All possible values 0 < t’ < Idr_time(v) at which e belongs
to set nbr_bag(v, t") form a consecutive (possible empty) interval of
integers [ae, be] C [0, ..., ldr_time(v)], called also a time interval
with respect to v.

Proor. The lemma follows immediately from the fact that
bag(v,0) C bag(v,1) C ... C bag(v, n%). m

Additionally, the following observation shows, given edge time
intervals, how to derive ming<;<|dr time(v) Abag(v, ) and clarifies
the purpose of time intervals.

OBSERVATION 9. Fix a vertexv € V and consider time intervals
[ae, be] with respect to v, for all e € E. Denote the set of all intervals
containing value x by L. Then, computing the value

min Abag(v, t),

0<¢<ldr_time(v)

is equivalent to computing the minimum over all values |Iy| for x in
the range [0, Idr_time(0)].

o o
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Figure 3: A sample structure of an MST tree. Firm edges
are tree edges, while dotted are non-tree edges. The number
inside vertices denote their levels. Different colors symbol-
ize different binarized paths. The numbers underlined are
times of contraction of corresponding edges. Next to these
number the time intervals of these edges with respect to ver-
tex v are given. Since Idr_time(v) = 2, thus all these intervals
are contained in [0, 2].

Since this task is ‘linear’, it can be computed efficiently in AMPC.
We now discuss how to compute the intervals for all edges in E.

LEmMA 13. Given a tuple (T, ¢, E, L;), there exists an AMPC algo-
rithm that for every vertexv € L; and every edge e € E calculates the
maximal, non-empty time interval [eq,e,] € [0,...,Idr_time(v)]
of e with respect to v. The algorithm works in O(1/¢€) rounds, uses
0(n®) local memory and O((n + m) log? n) global memory.

Proor. The algorithm starts by removing vertices L<;—1 with
all edges adjacent to them from tree T which gives us T’. Given
decomposition ¢, this can be done in O(1) rounds. By definition 1,
vertices L; = {vy,.. .,Uq} belong to different trees. Next, the algo-
rithm roots these trees that contain vertices from L; in o1, ..., vg
and calculates heavy-light decompositions of each tree together
with an RMQ structure on heavy paths. By Theorem 4, this can be
done in O(1/€) within our memory constraints.

Let us now fix an edge (x,y) =: e € E. Importantly, we consider
here all edges of the graph G, not only tree edges ET. Let ry €
{L,01,.. .,Uq} be the root of this tree in T? to which the vertex
x belongs. If the vertex x does not belong to any tree, that is x €
L<;j—1 since these are the vertices that have been removed, we write
rx =L. Let mw(x) be the minimum weight over edges of path that
connects vertex x with vertex ry in graph T?. Observe, that unless
ry =L this value is well defined as T! is a collection of tree and
there is exactly one path connecting is x and rx in this graph. We
extend the above definitions on y in the natural way.

By Theorem 4, computing ry, ry, mw(x), mw(y) takes O(logn)
queries to the memory for a single edge. Therefore, we can com-
pute these values for all edges e € E in O(1) round under the con-
ditions assumed in this lemma.

Observe that edge e = (x, y) can have non-empty time intervals
only with vertices ry and ry. Any other vertex from L; belongs to
a different connected component in graph T; and therefore its bag
cannot contain x nor y while the vertex is the leader of its bag.
Thus, all that is left to show is how mw(x) and mw(y) can help de-
termine the time intervals in which edge e belongs to nbr_bag(ry)
and nbr_bag(ry). We consider the following cases.



Case 1. rx =L,ry =L. In this case, edge (x,y) has no effect on
degrees of bags of vertices ry and ry at any time. The algorithm
skips such edges.

Case2.ry =L,ry #1, (or symmetrically ry #1, ry =1). Since Tiis
a subset of the minimum spanning tree T, thus the first time when
vertex x belongs to ry’s bag is the time mw(x). Now, y starts to
belong to ry’s bag either at the time being equal to the maximal
weight on the path between ry and y. Observer however, that this
path has to contain vertices that does not belong to T? and there-
fore the maximal weight has to be greater than Idr_time(rx). What
follows the correct interval in this case is:

[mw(x), Idr_time(ry)],

or an empty interval if mw(x) > Idr_time(ry).
Case3.rx #L,ry #1. We distinguish two sub-cases:

Subcase a) rx # ry. Since the path between ry and ry does not
belong to T we can proceed analogously to the Case 2.. The correct
interval for vertex x is

[mw(x), Idr_time(rx)],

or an empty interval if mw(x) > Idr_time(ry), while for vertex y
it is

[mw(y), Idr_time(ry)],
or an empty interval if mw(y) > Idr_time(ry)

Subcase b) ry = ry. Since T' is a subgraph of the minimum span-
ning tree T, we have that min(mw(x), mw(y)) is the first time
when at least one of x and y belongs to ry’s bag, while the first
time when both belong to ry’s bag is max(mw(x), mw(y)). Thus,
the proper time interval for this edge:

[min(mw(x), mw(y)), max(mw(x), mw(y))]
N[1,...,Idr_time(ry)]

We obtain that for every edge e € E all non-empty time inter-
vals in which this edge belong to nbr_bag of some vertex v can be
computed in O(log(n)) queries to the memory. Therefore, comput-
ing these values for all edges can be done in constant number of
rounds assumed O(mlog n) total memory. O

Implementing Observation 9 is purely technical.

LEMMA 14. There exist an AMPC algorithm that given a set of
integer intervals I = {[p1, k1], ..., [pn.knl}, Vie[n) [pi, ki] < [0,R]
finds the minimal number of intersecting intervals in O(1/€) rounds
using O(n€) local memory and O(nlog? n) total memory.

Proor. First, the algorithm sorts the set {p1,k1,..., pn, kn} of
all endpoints of these intervals in non-increasing order (ties are
resolved with priority for endpoints p;) obtaining a sequence S.
Consider assigning to every endpoint p;,i € [n] from sequence
S value +1 and to every endpoint k;,i € [n] value —1. This oper-
ation leads to a sequence S’ of pairs of format (endpoint, value).
Finally, let S”” be a sequence constructed from S’ in which all con-
secutive pairs that have the same first coordinate are compressed
to a single pair in which the first coordinate is preserved and the
second is the sum of second coordinates of contracted pairs. It can
be observed that finding the minimal prefix sum of sequence made
from second coordinates of pairs in $”/ is equivalent to the minimal
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number of intersecting intervals. The construction of sequence S’
requires only sorting and contracting consecutive pairs which can
be implemented in O(1/¢) rounds in AMPC with the memory con-
strains stated in the lemma. To find the minimal prefix sum we use
Theorem 5 which completes the proof. O

The above discussion is summarized in the following lemma.

LEMMA 15. There exists an AMPC algorithm that given a tuple
(T, t,E, L;) calculates the value

min min
veL; 0<t<Idr_time(o)

Abag(v, t)

in O(1/€) rounds using O(n€) local memory and O((n + m) log® n)
total memory.

Proor. Using Lemma 11 we are able to calculate value Idr_time
for every v € L; in constant number of rounds. By Lemma 13 we
can calculate time all non-empty time intervals for every e € E and
every o € L;. This requires O(mlog? n) total memory. Each time in-
terval [a, b] can be assigned a vertex v with respect to whom it was
calculated. Then, we group time intervals with respect to vertices
from L; they were calculated. This can be done in a single round
with O(mlog? n) global memory since there are only O(m) non-
empty time intervals. Finally, Lemma 14 guarantees that we can
compute, for every v € L;, the minimum number of intersecting
intervals in O(1/¢€) rounds with total memory proportional to the
number of these intervals. Therefore, assumed O(mlog? n) global
memory we can extend the last computation to a parallel compu-
tation for v € L; while preserving the round complexity. By Obser-
vation 9 this is equivalent to calculating

min Abag(v, t),

0<t<lIdr_time(ov)

for every v € L;. Since the minimum of the above values overv € L;
can be computed in a single round, the lemma is proven. O

4.4 The final algorithm.

We are now able to prove Theorem 3 and present the final algo-
rithm, SmallestSingletonCut, that calculates the smallest singleton
cut that appears in the contraction process of G. The pseudcode can
be found in Figure 3, while the proof of correctness is below.

Algorithm 3: SmallestSingletonCut

Data: Graph G = (V,E,w : V — [n%]).
Result: Size of the smallest singleton cut.
1 Compute the minimum spanning tree T of G;

2 Compute the low depth decomposition Dt of T;

s Prepare O(log? n) tuples (T, Dr,E, L;),i € [flogzn]];

4 foreach tuple (T,D7,E, L;) do

5 | Compute: Ic; < minger, ming<;<idr_time(v) Abag(v, t);
¢ end

7 return min(lcy, ..., chlogzn”);

Proor oF THEOREM 3. The correctness follows from Observa-
tion 7 and Lemmas 9 and 15. Also the implementation details of
lines 3 — 7 are discussed in the these two lemmas. To calculate
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minimum spanning tree in line 1 we use Lemma 4 while the im-
plementation of the low depth decomposition from the next line is
given by Lemma 3. O

5 AMPC ALGORITHM FOR APPROXIMATED
MINIMUM k-CUT

In this section, we show that given an algorithm that calculates
2+€ approximation of a min cut, one can construct 4+€ approxima-
tion of minimum k-cut. Consider the following greedy algorithm,
called APX-SPLIT, that extends the classic result of Saran and Vazi-
rani [18]. The algorithm works sequentially. In each iteration, it
extends the approximated solution with the smallest non-trivial ap-
proximation of the minimum cut of the graph available at a given
moment. Being precise, assume that at the beginning i-th itera-
tion the algorithm has split the graph G into ¢; connected compo-
nents (we start with ¢; = 1). Then the algorithm calculates (2 + €)-
approximation of the minimum cut in each connected component
and enlarges the solution by the smallest of these cuts, thereby in-
creasing the number of components by at least 1. The algorithm
ends after the first iteration such that the number of connected
components after this iteration is at least k. The pseudocode of the
algorithm is given in the Algorithm 4.

Algorithm 4: APX-SPLIT

(A greedy algorithm computing an approximation of the

minimum k-cut in AMPC)
Data: A graph G = (V(G), E(G)) and a parameter k.
Result: A (4 + €)-approximation of minimum k-cut.

1 Initialize D — 0;

2 while G’ := (V(G), E(G) \ Ugep d) has less than k

connected components do
3 Let Cy, ..., Cj be the set connected of components of
G’;

4 d} < AMPC-MinCut(C;) for all i € [I];

5 Jj < argmin; () weight(d;);

6 Add d;f to D;

7 end

8 return set of cuts D;

We will show by generalizing the idea of Saran and Vazirani
that the aforementioned greedy algorithm is (4 +¢€)-approximation
minimum k-cut.

THEOREM 2. Algorithm APX-SPLIT is an (4 + €) approximation
of the Min k-Cut. Furthermore, it can be implemented in the AMPC
model with O(n€) memory per machine in O(k loglog n) rounds and
O(m) total memory.

We define comps(c1 U ... U cg) the number of components of
the graph G after removing all edges from the set ¢; U ... U c.

Proor. The standard line of proof, proposed in [18] for the case
whe exact minimum cut is used at each splitting step, is to compare
the cut selected by the APX-SPLIT algorithm to the approximated
minimum k-cut obtained from the Gomory-Hu tree. The main dif-
ficulty is that in our case, we use only (2+¢) approximation in each

splitting step. This makes our proof different and novel compared
to [18]. Let us set a Gomory-Hu tree H = (V(H) = V(G), E(G)) of
the graph G. The Gomory-Hu tree is defined as follows.

DEFINITION 8 (GoMORY AND Hu [12]). Consider an arbitrary
graph G. A weighted tree H = (V(H),E(H)) with the set of ver-
tices being equal V(G) is called a Gomory-Hu tree of G, if for every
pair of different vertices s,t € V(G) the minimum weight on the
path between s and t in the tree H is equal to the minimum s-t cut
in graph G. The existence and construction of Gomory-Hu trees was
shown in [12].

Let us order edges of the tree H (or equivalently cuts in the G
graph) with respect to non-decreasing weights. Denote b7, ..., b;
the sequence of the first [ < k — 1 edges (cuts equivalently) from
this order such that corresponding cuts split G graph into at least
k connected components. Let by,...,br_; be a dual sequence of
cuts corresponding to that sequence of edges b7, . . ., b;‘_l, with this
addition that we put each cut b; this number of times it increases
the number of connected components in G and possibly cut some
suffix of such generated sequence to obtain exactly k — 1 cuts. For

such construction we have the following.

OBSERVATION 10 (SARAN AND VAZIRANI [18]). The sequence of
cuts by, ..., by_; satisfies:

(1) the sequence |b1],...,|bg_1]| is non-decreasing,

(2) Yiek—1jcomps(b1 U ... Ub;) > i.

Saran and Vazirani also proved that such selected (and possibly
refactored) sequence of cuts is (2 — %)—approximation of the mini-
mum k-cut.

THEOREM 6 (SARAN AND VAZIRANTI [18]). The cut U;e[—1] bi is
(2- %) approximation of the minimum k-cut of G.

Having established the crucial properties of Gomory-Hu trees
and corresponding cuts we can proceed to the proof of correctness
of the APX-SPLIT algorithm.

Let dy, ..., dm be the successive cuts selected by the APX-SPLIT
algorithm. Note that with each new cut, at least one new com-
ponent appears in the graph thus m < k — 1. We will show that
the sum of these cuts’ sizes is not greater than the sum of sizes of
cuts by, ..., by_q. Let #cq,. .., #cm be a sequence of numbers where
#ci = comps(di U ... U d;). We will show by induction that

Vje[m]|d1 U...dj| < (2+¢)|byuU... mein(k—l,#cj)L

The idea behind the induction step defined in the previous line
can be explained as follows: inclusion of cuts from d; to d; are at
least (2 +¢€) approximation of cut generated by inclusion of cuts of
such prefix of sequence by, . . ., by that split G on #c; for connected
components.

For the basis of induction we see that in the first step of the APX-
SPLIT algorithm chooses (2 +€)-approximation of the smallest cut
in the whole graph G. The by is an s-t cut therefore we have |d;| <
(2 + €)|b1| which implies that |d1| < (2+€)|b1 U ... bin(k-1,4¢,) |-

Now consider i € [m — 1]. Since i < m, we observe that #¢; <
k. Otherwise the algorithm APX-SPLIT would have executed only
m — 1 iterations instead of m. Consider cuts by, ..., bgc;41. From
the Observation 10 we have that comps(b1U...Ubyc(i)11) > #c(i).



On the other hand comps(di U. . .d;) = #c;. Since comps(b1U...U
byc;+1) > comps(diU. . .d;) then there mustbeacutbj, j € [#c;+1]
that is not covered by the first i cuts from the sequence di, . . ., dpm.
Namely, we can choose j such that b; ¢ d; U ... U d;. Moreover,
since b; is an s-t cut in the graph G (with all edges included), thus
it must split at least one connected component of the graph G =
(V,E\ (d1 U ...d;)) into two non-empty parts. Thus this cut is
considered in the i + 1-th iteration of the APX-SPLIT algorithm,
which implies that |dj4+1] < (2 + €)[bj| < (2 + €)|byc;+1]. Since
#cj + 1 < #cjy1, we conclude that |[dy U ... diy1| < (2+¢€)|b1 U
-+ -Ubmin(k-1,4¢;5,) [, Which proves the inductive step. Now, we see

from Theorem 2 that the solution of by,...,bg_; is an (2 — %)—
approximation of the minimum k-cut. Thus the solutiond; ... dr_;
is (2+€)(2— %) = approximation of the minimum k-cut. This proves
the correctness of the algorithm.

It remains to be noted that a single iteration of the algorithm
can be performed in O(loglog n) rounds in the AMPC model with
O(n€) memory per machine and in total memory O(m). The dom-
inant operation is the calculation of a (2 + €) approximation of the
minimum cut in each of the components. Its performance is ana-
lyzed in Theorem 1. The calculation of the smallest of all approx-
imated cuts corresponding to different components is a standard
operation and can be performed in O(1) rounds. Also, Behnezhad
et. al in [4] showed that the number of components of a graph can
be determined in O(1) rounds in AMPC with O(n€) memory per
machine and O(m) total memory. This completes the performance
analysis of the algorithm. O
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6 MISSING PROOFS FROM SECTION 3

Proor oF LEMMA 5. First off, we know subtree size can be com-
puted in O(1/¢) low-memory AMPC rounds on trees as shown by
Behnezhad et al. [3], and the child of a vertex v with minimum
subtree can then be found in O(1/¢) rounds by dividing the chil-
dren amongst machines and iteratively finding the smallest. Next,
consider removing all light edges from T to create a forest F. Run
Behnezhad et al’s AMPC connectivity algorithm [4], which satis-
fies the round and space constraints, to identify the components
and contract them. Add the light edges back in to connect con-
tracted nodes. This clearly is Tys. Additionally, as before, we run
Behnezhad et al’s [3] AMPC algorithm for orienting the tree. This
too falls within the constraints. O

PROOF OF OBSERVATION 4. Consider such a u,u’,u’”’ € P, that
appear in this order (or reversed), and let v and v’ be the lowest
common ancestors of u and u’, and u and u”’ respectively. Consider
traversing from u up the tree from child to parent, and let p be
the current vertex. We start with p = u and thus the leaf set of
the subtree rooted at p is L, = {u}. As we traverse upwards, we
add sets of leaves to L, that are contiguous in P,. Additionally, one
vertex is directly adjacent to a vertex from Ly, in P, because P, was
mapped to the leaves of T, according to the pre-order traversal.
Therefore, Ly is a contiguous chunk of P,. Thus, when u”" gets
added to the subtree (i.e., when p = v") 4’ must be in L too, either
because it was added previously or it is being added at the same
time. In the former case, v must have happened before v’ and thus
v’ is an ancestor of v, and in the latter case, v = v’. O

ProoF oF LEMMA 6. Correctness of the process described in this
section is seen in Observation 5. Thus we simply need to show how
to implement it in AMPC. For the first step, we must construct a
generic almost complete binary tree with |Py| leaves. Call this tree
Ty. By Observation 3, this has 2|Py| — 1 vertices, |log, |Py|] + 1
max depth, and each layer is full except the last which has 2|P,| —
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2llog; [PolI+1 yertices. Thus, it is fairly simple to, in parallel, create
the set of all vertices in the tree and then connect each vertex to
its parent. Each vertex can be given an index: a unique identifier
for vertices numbered 1,...,2|P,| — 1. This is going to represent
the order of the vertices in a breadth-first traversal of the tree. For
a vertex with index 1 < i < 2|P,|, its parent’s index j can be com-
puted as j = [i/2]. Whether or not a vertex is a left or right child
is simply determined by the parity of its pre-order index.

Note that the size of the tree is O(|P,|) but each individual pro-
cessor computation (i.e., computing the size of the tree, and then
having each index connect itself to its parent) can be done in con-
stant space and 2 rounds. Thus in 2 rounds, we can create such a
tree. Note that we have to construct these trees in parallel, but it
is not hard to see that this will only require O(nlogn) total space
which can be divided appropriately amongst machines.

For the second step, we can use Behnezhad et al’s [3] algorithm
for pre-order numbering with O(1/e) AMPC rounds w.h.p. using
O(n€) local memory and O(n) total space. Let L be a list of the
leaves of T, in pre-order. To map P, to the leaves, one can simply
do a direct map between P, and L in one round. O

ProOOF oF LEMMA 7. First, note that P“ can be stored entirely on
one machine by Observation 6, and additionally, since both Ty; and
T, forallv € M is oriented, it is quite simple to adaptively query the
path from u to the root in one round within the space constraints.
Assuming the orientations also labels if the vertex is a left or right
child, 4" can be found simply by searching the path. Finally, the
depth of u’, which is the label of u, can also be found quite simply
given access to all of P“.

It is quite simple to show the height is bounded by O(log? n):
all labels are depths in the expanded Ty and Observation 6 bounds
the max depth. All that is left is to show the connected components
inducedon T? = {v € T : £(v) > i} contain exactly one vertex with
label i each.

We show this by induction on the level. At the 1st level, we
should only partition the graph once. Let u be a vertex labeled 1 and
PY be its path. For u to be given depth 1, it must have received its
label from the root rys of the expanded Ty, since we are counting
depth starting at 1. Thus, it must be the leftmost descendant of the
right child of rps. This is clearly unique, thus u is unique. Therefore,
there is exactly one vertex at the 1st level.

Consider a connected component Cin T! = {v € T : £(0) >
i} for some level i € h. Let the “neighborhood” N(C) be all the
vertices in T \ C that are adjacent to some vertex in C. We will first
show that for the largest level j of a vertex in N (C), there is exactly
one vertex in N (C) of level j. Note j < i, otherwise a vertex of level
j in N(C) would actually be included in the component C.

Assume for contradiction there are at least two such vertices,
u,v € N(C) withlevel j. Let u” and v’ be their respective neighbors
in C. Since C is a connected component, there is a path P from u’
to v’ containing only vertices in C. All of these vertices have level
i or higher by the definition of C. Tacking on u and v to the start
and end of P respectively, there is a path from u to v consisting of
vertices {u,v} U P. Since u and v are at level j, that means every
vertex in this path has level j or higher. Therefore, v and v must
have been in the same connected component C’ in the earlier level
T/ . By induction, that component must have had only one vertex

at level j. This is a contradiction. Thus N(C) must have exactly
one vertex in level j.

Let v € N(C) be the vertex at level j, and let u be its neighbor in
C (note there can only be one since T is a tree). We consider three
cases.

Case 1. u is a child of v and they are not on the same heavy
path. Let ups and vy be the meta vertices in Ty containing u and v
respectively, u” and v” be the corresponding nodes found in step 2
for u and v (whose depths are the labels of u and v), and ry,,, be the
root of the binarized path for uy;. Clearly, uyy is a child of vy since
u is a child of v and ups # vpr. Moreover, ry,,, must be the child
of v in the expanded Ty;. Since v’ is an ancestor of v, that means
its depth in the expanded Ty satisfies d(v”) < d(ry,,). Since this
defines the label of o', £(v) < d(ry,,) — 1.

Consider any leaf [ € Ty,,. Its label is the depth of some vertex
w € Ty,,, which must be deeper than the root ry,,. Thus ¢(I) >
d(ru,) = £(v) + 1, then implying all of Ty, is in C. Additionally,
since only one [ € Ty, is labeled by ry,,, i.e. £(I) = d(ry,,), it must
have a unique (and smallest) label out of all vertices in Py,,,. It turns
out this £() will be our j.

Now, consider I’s placement in the original tree T. It is on a
heavy path containing u, and it has the smallest label on the heavy
path. Vertex u is also directly adjacent to v. Thus in level i when we
consider the tree induced on T, it must be in the same component
as u since the path from I to u is contained in T?. Additionally, since
T is a tree, the only vertex in N(C) above the component itself is
v. Therefore, all of C is a descendant of v, and thus they must also
be descendants of u. Thus, in Ty, they must have been in meta
vertices at the depth of or below uy;. By a similar logic as before,
their label must be strictly greater than I’s label. This implies that
£(I) = j, and it is the only vertex in T,,,, with such a label.

Case 2. u is the parent of v and they are not on the same heavy
path. Using uy and vy as before and with the same logic as before
but with reversed roles, we find that £(v) > £(u) so £(u) < i. This
contradicts that u is in T%, and thus this case is impossible. Note
that this also shows that C cannot contain a vertex in an ancestor
upr of vpr in Ty, because by connectivity, this would imply that
there is some u that is the parent of the root of Ty,,. A similar
argument will hold.

Case 3. u and v are on the same heavy path corresponding to
meta vertex up; whose binarized path T,,, has root ry,,. Let P C
Py,, be the connected subpath of this heavy path that contains u
if we remove all vertices of level i — 1 or lower. Obviously, P =
CN Py, C C.Assume for contradiction that two vertices p, p’ € P
have level i, so £(p) = £(p’) = i. Let a = lcap(p, p’) be the least
common ancestor of p and p” in T,,,. Because a is the least common
ancestor, one of its children must contain p and the other p’ in its
subtree. Without loss of generality, assume p is a descendant of the
left child and p’ is a descendant of the right child.

Let w and w’ be the (possibly internal) vertices of Ty, such
that p and p’ are labeled with their expanded meta tree depths in
step 3 respectively (¢(p) = d(w) and €(p”) = d(w’)). This means
i = d(w) = d(w’). Also, notice that w is an ancestor of p and
w’ is an ancestor of p’, so they are on the respective paths from
p and p’ to the root of Ty,,, call it ry,,. Additionally, a is on both



paths, and specifically the paths must merge at a. Since w and w’
only pass their depth to exactly one leaf of T, each, they must be
distinct. Therefore, they cannot be at depth dy,,,(a) or lower, else
they would both be a. Thus, w and w’ are strict descendants of a,
so d(w),d(w’) > d(a), meaning that £(p), £(p’) > d(a).

Let p be the leftmost leaf descendant of the right child of a. Then
p was labeled by a, thus £(p) = d(a). Therefore, £(p), £(p’) > £(p).
Since p and p’ are at level i, £(p) < i. Additionally, note that by
the structure of Ty,,, p is necessarily located between p and p’
in the leaf set, thus it must come between them in the pre-order
traversal of T,,,, by Observation 4. Since Ty, is the binarized path
of Py,,, this also implies p comes between p and p’ in P,,,, and by
extension P. Note, however, that P C C C T%, and thus its vertices
must all have level i or greater. This contradicts that £(p) < i. Thus,
it must be the case that there is at most vertex in P that has level i.

Finally, all that needs to be shown is that for every vertex ¢ €
C\ P, £(c) > i. For any such c, let ¢* be its lowest ancestor in Py,,.
Since £(c¢*) > i, we can make the same argument as Case 1 to show
that ¢ must have label i + 1 or larger. O

ProoF oF LEMMA 3. By combining Lemmas 4, 5, 6, and 7, we
have our result. O

7 MISSING PROOFS FROM SECTION 4

PRroOF OF LEMMA 8. Consider bag(u, t) for someo € V, t € [n?].
Because v € bag(v, t), this bag cannot be empty. Let u be the vertex
with the smallest label among all vertices from bag(v, t). Assume
for contradiction that there exists another vertex u’ € bag(v,t)
such that £(u) = ¢(u’). Observe, that there exists only one path
between u and u’ in tree T and all vertices of this path must be
contained in bag(v,t) since bag(v, t) always forms a connected
component when viewed as a subtree of T, c.f. Definition 6. From
the properties of the low depth decomposition, we get that there
is a vertex z on the path with label smaller than both ¢(u) and
¢(u”) which contradicts with the choice of u. This also proves the
uniqueness of the leader. Let us now argue about Idr_time(v). First,
for every v € V we have that bag(v, 0) = v as there is no edge with
weight smaller than 1. This already proves two first properties. Sec-
ond, it holds: bag(v, 0) C bag(v,1),..., bag(v, n3) as a bag defined
for larger time can expand more edges. Therefore, if v is the leader
of bag(v, t) for some 0 < t < n3, it has to be the leader of any
subset of this bag. O

ProOOF oF LEMMA 10. Let v be a vertex of this component with
lowest value £(v). By the construction of the low depth decompo-
sition, the component C; consists of some connected part P; of
binarized path P to which v belongs and all binarized paths inci-
dent to the part F that contain vertices with larger values ¢, denote
this set P2. Note, that each vertex v € P, has no edged to the part
of graph V' \ T%. Thus, only vertices from part P; can be connected
with vertices of smaller labels than i. However, since P; forms a
path, and we consider only tree edges, then there can be at most
two such edges.

The above proof instructs also how to compute these two edges.
First, the vertex v can determined in O(1/¢) rounds, since it re-
quires computing max function only over labels of vertices belong-
ing to C;. Assume, that for each vertex of a tree, we store not only
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its value #(v), but also its position and the length of the binarized
path to which it belongs. Then the first vertex to the left with label
smaller than v and the first vertex to the right with label smaller
than v on ©’s binarized path can be computed in constant time in
local memory of a single machine, since their positions in the bi-
narized path are functions of only the length of the path and the
position of v. Assumed, that in the global memory all binarized
paths are stored, then the corresponding edges can be found in
O(1) queries to the global memory. m]
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