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ABSTRACT

We study theWeighted Min Cut problem in the Adaptive Massively

Parallel Computation (AMPC) model. In 2019, Behnezhad et al. [3]

introduced the AMPC model as an extension of theMassively Par-

allel Computation (MPC) model. In the past decade, research on

highly scalable algorithms has had significant impact onmanymas-

sive systems. The MPC model, introduced in 2010 by Karloff et

al. [16], which is an abstraction of famous practical frameworks

such as MapReduce, Hadoop, Flume, and Spark, has been at the

forefront of this research. While great strides have been taken to

create highly efficient MPC algorithms for a range of problems, re-

cent progress has been limited by the 1-vs-2 Cycle Conjecture [20],

which postulates that the simple problemof distinguishing between

one and two cycles requires Ω(log�푛) MPC rounds. In the AMPC

model, each machine has adaptive read access to a distributed hash

table even when communication is restricted (i.e., in the middle of

a round). While remaining practical [4], this gives algorithms the

power to bypass limitations like the 1-vs-2 Cycle Conjecture.

We give the first sublogarithmic AMPC algorithm, requiring

�푂 (log log�푛) rounds, for (2 + �휖)-approximate weighted Min Cut.

Our algorithm is inspired by the divide and conquer approach of

Ghaffari and Nowicki [11], which solves the (2 + �휖)-approximate

weighted Min Cut problem in �푂 (log�푛 log log�푛) rounds of MPC

using the classic result of Karger and Stein [15]. Our work is fully-

scalable in the sense that the local memory of each machine is

�푂 (�푛�휖) for any constant 0 < �휖 < 1. There are no �표 (log�푛)-round
MPC algorithms for Min Cut in this memory regime assuming

the 1-vs-2 Cycle Conjecture holds. The exponential speedup in the

AMPC runtime is the result of decoupling the different layers of

the divide and conquer algorithm and solving all layers in �푂 (1)
rounds in parallel. Finally, we extend our approach: we present an

�푂 (�푘 log log�푛)-round AMPC algorithms for approximating the Min

�푘-Cut problem with a 4 + �휖 approximation factor.

1 INTRODUCTION

Massively Parallel Computation (MPC) – introduced by Karloff et

al. [16] in 2010 – is an abstract model that captures the capabil-

ities of the modern parallel/distributed frameworks widely used

in practice such as MapReduce [7], Hadoop [10], Flume [6], and

Spark [21]. MPC has been at the forefront of the research on par-

allel algorithms in the past decade, and it is now known as the de

facto standard computation model for the analysis of parallel algo-

rithms.

In this paper, we focus on sublogarithmic-round algorithms for

the Min Cut problem in the Adaptive Massively Parallel Computa-

tion (AMPC) model, which is a recent extension of MPC. In both

MPC and AMPC, the input data is far larger than the memory of a

single machine, and thus an input of size N is initially distributed

across a collection of Pmachines. In theMPCmodel, the algorithm

executes in several synchronous rounds, inwhich eachmachine ex-

ecutes local computations isolated from other machines, and the

machines can only communicate at the end of a round. The total

size of incoming/outgoing messages for each machine is limited

by local memory constraints. We are interested in fully-scalable al-

gorithms in which every machine is allocated a local memory of

size�푂 (N�휖) for any constant 0 < �휖 < 1. Moreover, we can often im-

prove the round complexity1 of the massively parallel algorithms

by allowing a super-linear total memory�푂 (N1+�휖), for example, the

filtering technique of Lattenzi et al. [17] in MPC or the maximal

matching algorithm of Behnezhad et al. [4] in AMPC. So we are

primarily interested in algorithms with �푂 (N) total memory, and

therefore we assume there are P = �푂 (N1−�휖) machines. 2

Recent developments in the hardware infrastructure and new

technologies such as RDMA [8], eRPC, and Farm [9] allow for

high-throughput, low-latency communication among machines in

data centers, such that remote volatilememory accesses are becom-

ing faster than accessing local persistent storage. The concept of a

shared remote memory is in particular useful whenmachines need

to query data adaptively – i.e., deciding what to query next based

on the previously queried data – which requires a communication

round per query in the MPC model. Behnezhad et al. [3] incorpo-

rates this RDMA-like paradigm of remote memory access into the

MPCmodel and introduces AMPC. In the newmodel, themachines

can adaptively query from a distributed hash table, or a shared read-

only memory, during each round. Machines are only allowed to

write to shared memory at the end of each round. There is also

empirical evidence that AMPC algorithms for several problems –

including maximal independent set, maximal matching, and con-

nectivity – obtain significant speedups in running time compared

to state-of-the-art MPC algorithms [4]. This fact, which stems from

the meaningful drop in the number of communication rounds, ver-

ifies the practical power of the AMPC model.

In this paper, we provide the first AMPC-specific algorithms for

the Min Cut problem. The Min Cut of a given graph �퐺 = (�푉 , �퐸) is
1The number of rounds is a main complexity of interest since in practice the bottle-
neck is often the communication phase.
2Where�푂 hides polylogarithmic factors, i.e.,�푂 (�푓 (�푛)) = �푂 (�푓 (�푛)�푝�표�푙~ log(�푛)) .
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theminimum number of outgoing edges, �훿 (�푆), among every subset

of vertices �푆 ⊆ �푉 . The celebrated result of Karger and Stein [15]

solves Min Cut by recursively contracting edges in random order.

Specifically, it runs two instances of the contraction process with

different seeds in parallel. Each instance is run in parallel until the

graph size is reduced by a factor of 1√
2
, at which point each in-

stance recurses (thereby creating a parallel split again). They re-

turn the minimum of the two returned cuts. The algorithm itself

is mainly inspired by another result of Karger [14] for finding the

Min Cut using graph contractions. We also extend our approach to

the Min �푘-Cut problem, in which we are given a graph�퐺 = (�푉 , �퐸)
and an integer �푘 and we want to find a decomposition of �푉 into

�푘 subsets�푉1,�푉2, . . . ,�푉�푘 so that
∑�푘
�푖=1 �훿 (�푉�푖) is minimized. We utilize

the greedy algorithm of Saran and Vazirani [18] which gives an

�푂 (2 − 2
�푘
)-approximation of the Min �푘-Cut. Gomuri and Hu give

an alternative algorithm with the same approximation guarantee

with additional features [12].

We study the Min Cut and Min �푘-Cut problems in the AMPC

model. We give�푂 (log log�푛)-round AMPC algorithms for a (2+�휖)-
approximation of Min Cut and a (4 + �휖)-approximation of Min �푘-

Cut.

1.1 Adaptive Massively Parallel Computation
(AMPC)

Massively Parallel Computation (MPC) and Adaptive Massively

Parallel Computation (AMPC) both sprung out of an interest in

formalizing a theoretical model for the famous MapReduce pro-

gramming framework. The most common problems in MPC and

AMPC are on graph inputs, and since our paper only considers

graph problems, we define these two models in terms of problems

on graphs. Consider a graph�퐺 = (�푉 , �퐸) with �푛 = |�푉 | and�푚 = |�퐸 |.
In standard MPC [1, 13, 16, 17], we are given a collection of P

machines and are allowed to compute the solution to a problem in

parallel. As we have already discussed, MPC computation occurs

in synchronous rounds, each consisting of local polynomial-time

computation and ending with machine-machine communication

where all messages sent to and from a machine must fit within

its local memory. Fully-scalable algorithms, the strongest mem-

ory regime in MPC, require the local memory to be constrained

by �푂 (�푛�휖) for any given 0 < �휖 < 1. Additionally, we are primar-

ily interested in algorithms that require at most �푂 (log�푛) rounds.
However, often sublogarithmic – i.e., �푂 (

√
log�푛) or �푂 (log log�푛) –

round complexity is much more desirable. In most cases, the to-

tal space must be at most �푂 (�푛 +�푚), though sometimes we allow

slightly superlinear total space.

AMPC extends MPC to add functionality while remaining im-

plementable on modern hardware. Formally, in the AMPC model,

we are given a set of distributed hash tables H0, . . . ,H�푘 for each

of the �푘 rounds of computation. These hash tables are each lim-

ited in size by the total space of the model (i.e., �푂 (�푛 +�푚)). As in
MPC, we are given a number of machines and computation pro-

ceeds in rounds. In each round, local computations occur and then

messages are sent between machines. The distinction in AMPC is

that during the local computations, machines are allowed simulta-

neous read access to the hash table for that round (i.e., H�푖−1 for
round �푖) and during the messaging phase of the round, they are

allowed to write data to the next hash table,H�푖 . Reading and writ-

ing is limited by machine local memory. The power of the AMPC

model over the MPC model is that, at the beginning of a round,

the machines do not need to choose all the data they will access

during the round. Instead, they can dynamically access the data

stored in the hash table over the course of the local computation,

thus potentially selecting data based on its own local computation.

It is not too hard to see that AMPC is a strictly stronger model

than MPC. In fact, it was formally shown that all MPC algorithms

can be implemented in AMPCwith the same round and space com-

plexities [3].

1.2 Our Contributions and Methods

Thiswork is the first to study the AdaptiveMassively Parallel Com-

putation (AMPC)model forMinCut problems on graphs.Wemainly

focus on the standard single Min Cut problem, although we also

propose an approximation algorithm for the Min �푘-Cut problem.

Our main result for the Min Cut problem is a 2 + �휖 approximate

algorithm that uses sublogarithmic �푂 (log log�푛) rounds.
Theorem1. There is an�푂 (log log�푛)-roundAMPCalgorithm that

uses�푂 (�푛 +�푚) total memory and�푂 (�푛�휖 ) memory per machine which

finds a (2 + �휖)-approximation of Min Cut with high probability.

Note that this is a vast improvement over the current state-of-

the art algorithms in MPC by Ghaffari and Nowicki [11], which

achieves the same 2+�휖 approximation in�푂 (log�푛 log log�푛) rounds.
Both our algorithm and that of Ghaffari and Nowicki use Karger’s

methods as a general structure for finding the Min Cut. Using this

method, the goal is to recursively execute random graph contrac-

tions. From the results of Karger, the contraction process either

finds a singleton cut that is a 2 + �휖 approximation or preserves a

specific Min Cut with probability dependent on the depth of recur-

sion. To leverage this result, at each step of the recursion process,

we find the best singleton cut on the existing graph. Once the graph

is small enough, the problem can be solved efficiently. Out of all the

singleton solutions found during this process and the final Min Cut

on the small graph, we simply select the best cut. This is a 2 + �휖

approximate Min Cut with high probability.

To implement this approach in a distributed model, both meth-

ods assign random weights to the edges of the input graph and

find a minimum spanning tree (MST). Greedily, selecting edges in

order of decreasing weight, we contract the graph along the cur-

rent edge. This process is equivalent to the same greedy random

contraction process on the original graph. This step, already, cur-

rently requires at least Ω(log�푛) rounds in MPC, but the flexibility

of the AMPC model allows us to achieve this step in a constant

number of rounds.

It remains to show how can one find the best singleton cuts at

each level of recursion. In order to do this, we employ a low-depth

tree decomposition on the minimum spanning tree until it becomes

a set of separated vertices. On top of this recursive divide-and-

conquer process, we design a process to compute and remember

the best singleton cut.

The high level idea of recursively partitioning the tree and ap-

plying a process on top of that to find the best singleton cut is

the same in both our paper and Ghaffari and Nowicki’s paper [11].

However, the processes used to do this in MPC do not yield simple
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improvements in AMPC. Rather, we must use entirely novel tech-

niques that leverage adaptivity to get truly sublogarithmic results.

In fact, this must be done in constant rounds to achieve our re-

sults, whereas Ghaffari and Nowicki do this in�푂 (log�푛) rounds. In
order to create a tree decomposition, we consider maximal paths of

heavy edges (i.e., edges that go from a parent to its child with the

largest subtree). These paths are replaced by binary trees whose

leaves are the path and the root connects to the path’s parent. Con-

sider labeling the resulting vertices in the graph with their depth.

For each internal node in one of these binary trees, which was not

a vertex in the original tree, we select a specific descendant leaf in

the binary tree expansion of the path to send its depth to. The final

value a vertex receives is then what we call the “label”, which mea-

sures at what level of recursion the tree splits at that vertex. An

entire labeling of the tree encodes an entire tree decomposition.

This is done in constant AMPC rounds.

To compute the singleton cuts at each level, we assign to each

singleton cut formed during the contraction process a vertex that

has the lowest label. We show that such vertices are well-defined,

i.e. there is only one vertex with the lowest label within vertices on

the same side of a singleton cut. Because removing vertices of la-

bels lower than �푖 partitions the tree into disjoint subtrees such that

each subtree contains at most one vertex with label �푖 , we are able

to calculate minimal singleton cuts corresponding to these vertices

with label �푖 in parallel in a constant number ofAMPC rounds. Since,

we constructed the low-depth decomposition such that the range

of labels has size �푂 (log2 �푛), thus, by increasing the total memory,

we can perform these computations for all different lables in a con-

stant number of AMPC rounds. For more details, we defer to Sec-

tion 4.

We then show how this work can be leveraged to achieve effi-

cient results for approximate Min �푘-Cut, generalizing the results

from Saran and Vazirani [18]. At a high level, we start by comput-

ing a Min Cut. Then we add the edges of the cut to a set �퐷 . In all

following �푘 − 1 iterations, we calculate the Min Cut on the graph

without edges in �퐷 , and add the new cut edges to �퐷 for the next

iteration. The set of the first �푘 cuts we compute is our �푘-cut.

Compared to Saran’s and Vazirani’s technique, our method uses

an approximateMin Cut rather than an exactMin Cut on each split-

ting step. This requires adapted analysis of this general approach.

We employ the structure of Gomory-Hu trees (see [12]) for this

purpose and show the following result:

Theorem 2. Algorithm APX-SPLIT is an (4 + �휖) approximation

of the Min �푘-Cut. Furthermore, it can be implemented in the AMPC

model withO(�푛�휖) memory permachine inO(�푘 log log�푛) rounds and
O(�푚) total memory.

Therefore, for small values of �푘 , we can achieve efficent algo-

rithms for 4 + �휖 approximate Min �푘-Cut in AMPC. Note that there

are no existing results in the MPC model, however our methods

applied to the work of Ghaffari and Nowicki [11] yield:

Corollary 1. There is an algorithm that achieves a (4 + �휖) ap-
proximation of the Min �푘-Cut with high probability that can be im-

plemented in the MPC model with O(�푛�휖 ) memory per machine in

O(�푘 log�푛 log log�푛) rounds and O(�푚) total memory.

Note there is still a logarithmic-in-�푛 improvement in the round

complexity in AMPC over MPC no matter the value of �푘 . Due to

space constraints both these result are presented in the appendix.

2 MINIMUM CUT IN AMPC

Karger and Stein [15] proposed a foundational edge contraction

strategy for solving Min Cut:

• Create two copies of�퐺 , and independently on each, contract

edges in a random order until there are at most �푛√
2
vertices.

• Recursively solve the problem on each contracted copy until

they have constant size.

• Return the minimum of the cuts found on both copies.

Lemma 1 ([15]). The contraction process executed to the point

where there are only �푛
�푡 vertices left preserves any fixed minimum

cut with probability Ω

(
1
�푡2

)
.

According to Lemma 1, naively contracting random edges un-

til there are only two vertices remaining preserves at least one

minimum cut with probability Ω

(
1
�푛2

)
. Thus, we need to repeat

the naive contraction process at least�푂
(
�푛2 log�푛

)
times so that we

have a high probability of success, i.e., preserving a minimum cut.

However, Karger and Stein [15] show that their recursive strategy

succeeds with probability Ω
(

1
log�푛

)
. In turn, running�푂

(
log2 �푛

)
in-

stances of the recursive strategy is enough to find a minimum cut

with high probability.

Roughly speaking, the choice of �푡 =

√
2 as the inverse of the

branching factor assures that a minimum cut is preserved with

probability 1
�푡2

=
1
2 throughout the contractions in each copy. Thus,

the probability of success, say �푃 (�푛), for �푛 vertices is bounded by:

�푃 (�푛) ≥ 1 −
(
1 − 1

2
· �푃

(
�푛
√
2

))2
(1)

Note that the random contractions in two copies are assumed

to be independent, and the probability of success for each copy is

at least 1
2 · �푃

(
�푛√
2

)
since we recurse on the resulting contracted

graph with �푛√
2
vertices. Inequality (1) implies that at the �푘-th level

of recursion (counting from the bottom), the probability of success

is Ω
(
1
�푘

)
, and in particular Ω

(
1

log�푛

)
at the root of recursion. [15].

Let us now give some high-level insight into the approach by

Ghaffari’s and Nowicki. Ghaffari and Nowicki [11] observed that if

we only desire a (2+�휖) approximate cut, we can use a better bound

for the probability of preserving a minimum cut, or alternatively,

the success probability.

Lemma 2 ([11, 15]). On an �푛-vertex graph�퐺 , let�퐶 be a minimum

cut with weight �휆. Fix an arbitrary �휖 ∈ (0, 1). The described random
contraction process that contracts�퐺 down to �푛

�푡 vertices either at some

step creates a singleton cut of size at most (2+�휖)�휆 or preserves�퐶 - i.e.,

it does not contract any of its edges - with probability at least 1
�푡1−n/3

.

A singleton cut is a partitioning of graph vertices so that there

is only one vertex on one side, i.e., �훿 (�푆) so that |�푆 | = 1. Assuming

that one is able to verify whether a singleton cut of a small size

has been formed during the contraction process, they show that

this greater probability of success can boost the recursive process.
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In short, consider the �푘-th level of recursion, where level 0 corre-

sponds to the bottom level. Let �푛
�푡:

be the size of a single recursive

instance at level �푘 , and denote by �푠�푘 the total number of instances

on this level. For all �푘 , they ensure �푠�푘 = �푡
1−�휖/3
�푘

.

Now, let �푥
1−�휖/3
�푘

be the branching factor on level �푘 . That is, the

recursion produces �푥
1−�휖/3
�푘

copies of the instance at level �푘 , and on

each of them independently contracts edges in a random order un-

til the number of vertices is bigger than �푛
�푡:

· 1
�푥:

. If we have an algo-

rithm that is able to track whether a small singleton cut appeared

in each of these random processes, we either get a singleton cut

that (2+ �휖) approximates a minimum cut or a minimum cut is pre-

served with probability �푥
1−�휖/3
�푘

. Since we made �푥
1−�휖/3
�푘

copies, by a

similar argument as in Karger’s approach, we get that, in the latter

case, the probability of preserving a minimum cut is Ω
(
1
�푘

)
.

Finally, observe that on the �푘-th level of recursion, the most

costly operation is copying a �푘-th level instance �푥
1−�휖/3
�푘

times in

order to contract edges in each of these instances. Since the in-

stance has size �푛
�푡:

and we have �푠�푘 instances, processing these tasks

in parallel requires �푛
�푡:

· �푠�푘 · �푥1−�휖/3
�푘

space. If one want to fit this in

�푂 (�푛) space, then it must be that �푥�푘 ≤ �푡
(�휖/3)/(1−�휖/3)
�푘

. Anyway, we

get that the number of contractions we can make on �푘-th level is

polynomial in the number of contractions we made on higher lev-

els, and if the recurrence is solved, then it follows that it will be

�푂 (log log�푛) levels until we reach a graph of a constant size.

Ghaffari and Nowicki [11], use Lemma 2 and the above boost-

ing scheme to show an �푂 (log log�푛 · log�푛)-round MPC algorithm

for Min Cut. The main non-trivial part of their algorithm involves

tracking the smallest singleton cut on each recursion level, which

they do in �푂 (log�푛) rounds because of the divide and conquer na-

ture of their approach. Effectively, they assign all edges random

and unique edge weights, and contract all uncontracted edges in

decreasing order by edge weight. It can then be shown that all that

needs to be done is to compute the MST of this graph and contract

these edges accordingly (all other edges will be automatically con-

tracted when another edge is contracted). We reduce the number

of rounds for singleton cut tracking down to �푂 (1) rounds in the

AMPC model. We aim to prove the following theorem.

Theorem1. There is an�푂 (log log�푛)-roundAMPCalgorithm that

uses�푂 (�푛 +�푚) total memory and�푂 (�푛�휖) memory per machine which

finds a (2 + �휖)-approximation of Min Cut with high probability.

To track singleton cuts, the first step is to find a low depth de-

composition of the current MST. At a high level, a low depth decom-

position of a tree is a labeling of its vertices with values 1 through

�푑 , where �푑 is the depth. This label must satisfy the following: for

every level �푖 ∈ [�푑], the connected components induced on vertices

with label at least �푖 must contain at most one vertex for each �푖 . This

defines a recursive splitting process: starting at depth 1, there must

be at most one vertex �푣 with the minimum label, so we can split the

tree into multiple parts by removing �푣 . Then we simply recurse on

each connected component, considering the next set of labels, and

knowing the process will always split each connected component

once at a time. This is the general idea captured by both this and

previous works. However, in order to increase the efficiency of this

step, we require a new decomposition structure (see Definition 1)

and new methods for finding the decomposition. Notice that it is

always true that at each level, each connected component contains

at most one vertex at the next level.

In Section 3, we show how to find a low depth decomposition

with depth �푂 (log2 �푛) in AMPC in �푂 (1/�휖) rounds (Lemma 3) with

�푂 (�푛�휖) space per machine. Roughly speaking, we create a heavy-

light decomposition of the MST, where we store “heavy paths”

consisting of edges connecting vertices to their children with the

largest number of descendants and isolated “light nodes”. We re-

place each heavy path with a complete binary tree whose leaves

contain the vertices in the path, which gives us an efficient struc-

ture to obtain our labeling. This yields our low depth decomposi-

tion.

In the next step, we compute the size of of every singleton cut

�푆 that is created during the process. Note that the contractions are

inherently sequential and the number of contractions we need to

make at step �푘 is �푥�푘 ∈ �푂 (�푛). However, each singleton cut is a

connected component on the MST containing a specific edge �푒 ,

whose contraction – in the increasing order of contracting MST

edges – results in subset �푆 , if we only allow the edges that have a

smaller weight than �푒 . We partition these connected components

based on the vertex in the cut with the lowest level in the heavy-

light decomposition of the MST. This way, we can compute ev-

ery level of the low depth decomposition in parallel with only an

�푂 (log2 �푛) blowup in total memory. In Section 4, we show that we

can track every singleton cut in the contraction process in �푂 (1)
AMPC rounds. A high level pseudocode of the main algorithm is

given in Algorithm 1.

Algorithm 1: AMPC-MinCut

(An algorithm that calculates (2+�휖) approximation of Min

Cut in �퐺 . The novel part is underlined. )

Data: A graph�퐺 = (�푉 (�퐺), �퐸 (�퐺)), a parameter �푘 .

Result: (2 + �휖) approximation of Min Cut.

1 if |�퐺 | ∈ �푛�휖 then

2 returnMin Cut of�퐺 calculated on a single machine

3 end

4 Let �퐺1, . . .,�퐺�푘 be copies of�퐺 with assigned random weight

on edges (independently for each copy);

5 In parallel for all �푖 ∈ [�푘], �푆�푖 ←MinSingletonCut(�퐺�푖 );
6 In parallel for all �푖 ∈ [�푘], �퐺�푖 ← copy of�퐺�푖 after first �푘

contractions;

7 In parallel, �퐶�푖 ← AMPC-MinCut(�퐺�푖 );
8 return min(�푆1, . . . , �푆�푘 ,�퐶1, . . . ,�퐶�푘 );

Note that MinSingletonCut (Algorithm 3) is introduced in Sec-

tion 4 and it leverages LowDepthDecomp (Algorithm 2) from Sec-

tion 3.

3 GENERALIZED LOW DEPTH TREE
DECOMPOSITION

This section and the next address our algorithmic formulation and

analysis. Note that all omitted proofs are deferred to the Appendix.
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In order to efficiently compute the singleton cuts in parallel, we

first need to compute an efficient decomposition of the MST. The

low depth tree decompositionGhaffari and Nowicki [11] introduce

is a very specific decompositionwith �푖 levels such that at each level

ℓ , any connected component of size �푠 on vertices at that level or

higher has a single vertex at level ℓ that separates the component

into two components with size at least �푠/3 each. Unfortunately, it
is unclear how to calculate this precise decomposition efficiently

in AMPC. To work around this, we introduce a more generalized

version of the low depth tree decomposition, show that it can be

computed in AMPC, and later show that we can leverage this to

obtain our Min Cut algorithm.

Definition 1. A generalized low depth tree decomposition

of some tree �푇 is a labeling ℓ : �푉 (�푇 ) → [ℎ] of vertices with levels

for decomposition height ℎ ∈ �푂 (log2 �푛) such that for each level �푖 , the
connected components induced on �푇 �푖

= {�푣 ∈ �푇 : ℓ (�푣) ≥ �푖} have at
most one vertex labeled �푖 each.

Notice we do not define how a level is assigned; we simply re-

quire it is assigned to satisfy the property on connected compo-

nents. We describe one way to do that in this section.

To see what such a decomposition looks like, consider a process

where at timestep �푡 we look at the subgraph induced on the vertices

�푣 with ℓ (�푣) ≥ �푡 (i.e., �푇 �푡 ). Consider a connected component �퐶 and

let �푣 be its minimum level vertex. Then ℓ (�푣) ≥ �푡 , and it is the only

vertex at that level in�퐶 . At timestep ℓ (�푣) + 1,�퐶 becomes separated

into multiple components who all contain a vertex adjacent to �푣 .

This process defines forests with smaller and smaller trees as time

passes, and eventually results in isolated vertices. The completion

time of this process depends on the height of the decomposition,

which in our case is �푂 (log2 �푛). We will, of course, make this more

efficient in Section 4.

It is not that hard to see that Ghaffari and Nowicki’s low depth

tree decomposition is a specific example of generalized tree decom-

position with depth �푂 (log�푛). They put a single vertex in the first

level and then simply recurse on the two trees in the remaining

forest. Note that they require additional properties of this decom-

position to obtain their result, specifically that each new compo-

nent has size at least 1
3 of the original component, but we will see

later that these are not necessary for finding the singleton cuts.

Like Ghaffari and Nowicki in MPC, we prove this can be com-

puted efficiently in, instead, AMPC.

Lemma 3. Computing a generalized low depth tree decomposition

of an �푛-vertex tree can be done in �푂 (1/�휖) AMPC rounds with �푂 (�푛�휖)
memory per machine and �푂 (�푛 log2 �푛) total memory.

The rest of this section is dedicated to proving Lemma 3. The

formal and complete algorithm is shown in Algorithm 2 and fur-

ther details and definitions can be found later in this section. At a

high level, our algorithm proceeds as follows:

(1) Root the tree and orient the edges [line 2].

(2) Contract heavy paths in a heavy-light decomposition of �푇

into meta vertices to construct a meta tree, �푇�푀 [lines 3 to 5].

(3) For each meta vertex, create a binarized path, a binary tree

whose leaves are the vertices in the heavy path, in order.

Expandingmeta vertices in this manner yields our expanded

meta tree [lines 7 to 11].

(4) Label each vertex according to properties of the expanded

meta tree. For all new vertices (i.e., vertices created in step

3) �푣 , label �푣 with the depth of the highest vertex �푢 in the

same meta node such that �푣 is the leftmost leaf descending

from the rightmost child of �푢 in the binarized path of the

meta node [lines 13 to 15].

Each of these steps correspond to the following subsections. For

instance, step 1 corresponds to Section 3.1. All relevant terminol-

ogy related to these steps are additionally found in the correspond-

ing subsections. Lemma 3 is proven at the end of the final subsec-

tion.

Algorithm 2: LowDepthDecomp

(Computing a generalized low depth tree decomposition of

an input tree in AMPC)

Data: A tree �푇 = (�푉 (�푇 ), �퐸 (�푇 )).
Result: A mapping ℓ : �푉 (�푇 ) → N of tree vertices to levels.

1 Initialize ℓ : �푉 (�푇 ) → N;
2 Root and orient �푇 ;

3 Let �푇�퐻 = (�푉 (�푇 ), {�푒 ∈ �퐸 (�푇 ) : �푒 is heavy};
4 Let P be the connected components of�푇�퐻 ;

5 Let �푇�푀 = (P, {(�푃1, �푃2) : �푃1, �푃2 ∈ P,∃(�푢1, �푢2) ∈
�푉 (�푃1) ×�푉 (�푃2) such that (�푢1, �푢2) ∈ �퐸 (�푇 )});

6 for �푣 ∈ �푇�푀 of heavy path �푃�푣 in parallel do

7 Let �푉 (�푇�푣) be a vertex set of size 2|�푃�푣 | − 1 with

associated indices 1, . . . , 2|�푃�푣 | − 1, denoted by �푖�푢 ;

8 Let �푇�푣 = (�푉 (�푇�푣), {(�푢, �푝�푢) : �푖�푝D = ⌊�푖�푢/2⌋});
9 Pre-order traverse �푇 and sort �푃�푣 accordingly;

10 Pre-order traverse �푇�푣 and let �퐿 be its sorted leaves;

11 For all �푖 ∈ [|�푃�푣 |], map �푃�푣 [�푖] to �퐿[�푖];
12 for �푢 ∈ �푉 (�푇�푣) do
13 Find path �푃�푢 to the root of the expanded meta-tree;

14 Let �푢 ′ ∈ �푉 (�푇�푣) ∩ �푃�푢 be such that �푢 is the leftmost

descendant of �푢 ′’s right child (otherwise �푢 ′ = �푢);

15 Label ℓ (�푢) = �푑 (�푢 ′);
16 end

17 end

18 return ℓ limited to the original vertices in �푇 ;

3.1 Rooting the Tree

Like in Ghaffari and Nowicki, the first thing we need to do in line 2

of Algorithm 2 is compute an orientation of the edges. Fortunately

this, along with rooting the tree, can be done quickly in AMPC by

the results of Behnezhad et al. [3] in their Theorem 7.

Lemma 4 (Behnezhad et al. [3]). Given a forest �퐹 on �푛 vertices,

the trees in �퐹 can be rooted and edges can be oriented in �푂 (1/�휖)
AMPC rounds w.h.p. using�푂 (�푛�휖) local memory and�푂 (�푛 log�푛) total
space w.h.p.

Here, w.h.p. means “with high probability.” This completes the

first step of our algorithm.
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Figure 1: The heavy-light decomposition of an example tree.

3.2 Meta Tree Construction

We also leverage Ghaffari and Nowicki’s notion of heavy-light de-

compositions for our AMPC algorithm, which can be found from

lines 3 through 5 in Algorithm 2. This process allows us to quickly

decompose the tree into a set of disjoint paths of heavy edges, which

are defined as follows (note that our definition slightly deviates

from Ghaffari and Nowicki [11], where the heavy edge must ex-

tend to the child with the largest subtree without requiring this

subtree to be that large, though it is the same as the definition used

by Sleator and Tarjan [19]):

Definition 2 (Sleator and Tarjan [19]). Given a tree�푇 and a

vertex �푣 ∈ �푇 , let {�푢�푖}�푖 ∈�푘 be the set of children of �푣 where the subtree

rooted at�푢1 is the largest out of all�푢�푖 . If there is no strictly largest sub-

tree, we arbitrarily choose exactly one of the children with a largest

subtree. Then (�푢1, �푣) is a heavy edge and (�푢�푖 , �푣) is a light edge for
all 1 < �푖 ≤ �푘 .

Then the definition of a heavy path follows quite simply.

Definition 3 (Ghaffari and Nowicki [11]). Given a tree �푇 , a

heavy path is a maximal length path consisting only of heavy edges

in �푇 .

Ghaffari and Nowicki then make the observation that the num-

ber of light edges and heavy paths is highly limited in a tree. This

comes from a simple counting argument, where if you consider the

path from root �푟 to some vertex �푣 , any time you cross a light edge,

the size of the current subtree is reduced by at least a factor of 2.

This holds even with our different notion of heavy edges since sub-

trees rooted at children of light edges are still much smaller com-

pared to the subtree rooted at the parent vertex. This bounds the

number of light edges between �푟 and �푣 , where each pair of light

edges are separated by at most one heavy path, and therefore it

also bounds the number of heavy paths.

Observation 1 (Ghaffari and Nowicki [11]). Consider a tree

�푇 oriented towards root �푟 . For each vertex �푣 , there are only �푂 (log�푛)
light edges and only �푂 (log�푛) heavy paths on the path from �푣 to �푟 .

Using the definition of heavy edge from Sleator and Tarjan [19]

instead of from Ghaffari and Nowicki, we get an additional nice

property. This is because in our definition, every internal vertex

has one descending heavy edge to one child.

3

1 2 10

7

64 5

8 9

Figure 2: The meta-tree of the same tree from Figure 1 is

demonstrated in this figure.

Observation 2 (Sleator and Tarjan [19]). Given a tree�푇 and

an internal vertex �푣 ∈ �푇 , �푣 must be on exactly one heavy path. For a

leaf ℓ ∈ �푇 , ℓ must be on at most one heavy path.

Our first goal is to compute what we call a meta tree. This is a

decomposition of our tree that will allow us to effectively handle

heavy edges. It is quite analogous to Ghaffari and Nowicki’s notion

of the heavy-light decomposition, which partitions the tree into

heavy and light edges.

Definition 4. Given a tree �푇 , the meta tree of �푇 , denoted �푇�푀 ,

comes from contracting all the heavy paths in�푇 . We call the vertices

of �푇 original vertices and the vertices of �푇�푀 meta vertices.

Note that contracting all heavy paths simultaneously is valid

because, by Observation 2, all heavy paths must be disjoint. Addi-

tionally, all internal meta vertices are contracted heavy paths (as

opposed to original vertices), again by Observation 2. We note that

in AMPC, since connectivity is easy, it is additionally quite easy to

contract the heavy paths of �푇 into single vertices.

Lemma 5. Given a tree �푇 , the meta tree �푇�푀 can be computed,

rooted, and oriented in AMPC in �푂 (1/�휖) rounds with �푂 (�푛�휖) mem-

ory per machine and �푂 (�푛 log2 �푛) total space w.h.p.

This completes the second step of our decomposition algorithm.

3.3 Expanding Meta Vertices

In order to label the vertices, we need a way to handle the heavy

paths corresponding to each meta vertex. Let �푣 ∈ �푇�푀 be a meta

vertex, and �푃�푣 be the heavy path of original vertices in �푇 corre-

sponding to �푣 . Note that we have no stronger bound on the length

of a heavy path than �푂 (�푛). Therefore, a recursive partitioning, or
labeling of vertices that has polylogarithmic depth must be able to

cleverly divide heavy paths. We can do this with a new data struc-

ture.

Definition 5. Given some path �푃 , a binarized path is an al-

most complete binary tree �푇 with |�푃 | leaves where there is a one-to-

one mapping between �푃 and the leaves of �푇 such that the pre-order

traversal of �푃 and �푇 limited to its leaves agree.

By “agree”, we mean that if a vertex �푣 ∈ �푃 comes before a vertex

�푢 ∈ �푃 in the pre-order traversal of �푃 , then it also does in the pre-

order traversal of �푇 . To characterize this tree, we make a quick

observation:
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Observation 3. An almost complete binary tree on �푛 leaves has

2�푛 − 1 vertices, ⌊log2 �푛⌋ + 1max depth, and every layer is full except

the last, which has 2�푛 − 2 ⌊log2 �푛⌋+1 vertices.

Additionally, we can find a relationship between the ancestry of

triplets in �푃 based off of the order of the three vertices. While this

is not required for expanding meta vertices, it is a property of the

binarized path that will be useful when we label vertices later.

Observation 4. Given a binarized path �푇 of a path �푃 , for any

�푢,�푢 ′, �푢 ′′ ∈ �푃 that appear in that order (or reversed), if �푣 is the lowest

common ancestor of �푢 and �푢 ′ and �푣 ′ is the lowest common ancestor

of �푢 and �푢 ′′, then �푣 ′ is an ancestor of �푣 or �푣 ′ = �푣 .

To create the tree, we do the following for every �푣 ∈ �푇�푀 :

(1) Create an almost complete binary tree �푇�푣 with |�푃�푣 | leaves,
linking children to parents and noting if a vertex is a left or

right child [lines 7 and 8].

(2) Do a pre-order traversal of �푇�푣 and �푃�푣 and map the vertices

in �푃�푣 to the leaves of�푇�푣 such that the pre-order traversal of

�푃�푣 and of�푇�푣 limited to its leaves agree. [lines 9 to 11].

Next, it is pretty direct to see that the produced tree is a bina-

rized path.

Observation 5. The process described above produces a bina-

rized path �푇�푣 of �푃�푣 for all �푣 .

We prove that this can be done in the proper constraints.

Lemma 6. The heavy paths of a tree can be converted into bina-

rized paths in �푂 (1/�휖) AMPC rounds with �푂 (�푛�휖) local memory and

�푂 (�푛 log�푛) total space w.h.p.

3.4 Labeling Vertices

Our next goal is to label the vertices with the level they should

be split on. Consider, hypothetically, expanding the meta tree �푇�푀
such that every heavy path for a meta vertex �푣 is replaced with

its binarized path (which is an almost complete binary tree) �푇�푣 ,

and the tree continues at the leaves corresponding to the nodes in

the heavy path. Note that only some vertices in the hypothetical

tree correspond to vertices in the original tree �푇 . Specifically, the

internal nodes of each component subtree�푇�푣 are not vertices in �푇 ,

but the leaves correspond exactly to the vertices in �푇 .

Ultimately, for a vertex �푢 ∈ �푇 in meta vertex �푣 , let �푢 ′ be the

vertex in�푇�푣 such that �푢 is the leftmost leaf-descendant of the right

child of �푢 ′ in �푇�푢" (or if this doesn’t exist, �푢 ′ = �푢). Then we will

label ℓ (�푢) = �푑 (�푢 ′) where �푑 is the depth in the expanded meta tree.

Following this, our vertex labeling process will be as follows for

each �푣 ∈ �푇�푀 and �푢 ∈ �푇�푣 :

(1) Vertex�푢 finds the path�푃�푢 from�푢 to the root of�푇�푀 , assuming

the meta vertices are expanded [line 13].

(2) Let �푢 ′ be the highest vertex in�푇�푣 such that �푢 is the leftmost

descendant of the right child of �푢 . If there is no such vertex,

let �푢 ′ = �푢 [line 14].

(3) Label �푢 with the depth (assuming roots have depth 1) of �푢 ′

in the expanded �푇�푀 [line 15].

We start by making a quick observation that comes directly

from Observations 1 and 3.

Observation 6. The max depth of�푇�푀 with meta nodes expanded

(“the expanded �푇�푀 ”) into binary trees is �푂 (log2 �푛).

This will be greatly helpful in showing the efficiency of our al-

gorithm. We now show that this final part can be implemented

efficiently, which is sufficient to prove our main lemma.

Lemma 7. The process described above finds a generalized low

depth tree decomposition of original tree �푇 of height ℎ ∈ �푂 (log2 �푛)
in 1 round with �푂 (�푛�휖) local memory and �푂 (�푛 log2 �푛) total space.

4 CALCULATING THE SMALLEST
SINGLETON CUT

In this section, we show a�푂 (1/�휖) round AMPC algorithm that ex-

ecutes a series of contractions and outputs the size of the smallest

singleton cut that appeared during the contraction process. That

is we prove the following result.

Theorem 3. There exists an AMPC algorithm that given a graph

�퐺 with unique weights on edges calculates the minimum singleton

cut that appears during the contraction process in�푂 (1/�휖) rounds us-
ing�푂 (�푛�휖) local memory and �푂 ((�푛 +�푚) log2 �푛) total space.

4.1 Contraction process

We view the contraction process of a weighted graph�퐺 = (�푉 , �퐸,�푤 :

�퐸 → [�푛3]) as a sequential process in which we iterate over mul-

tiple timesteps 0 to �푛3. For a given time �푖 , we contract the edge

�푒 having �푤 (�푒) = �푖 to a single vertex. Let �퐺0, . . . ,�퐺�푛3 be the se-

quence of graphs created in the process, where �퐺0 denotes the

graph before any contraction and �퐺�푛3 denotes the graph after all

contractions. Via a quick comparison to Kruskal’s algorithm, it is

clear that the edges whose contraction changed the topology of the

graph must belong to the minimum spanning tree of the weighted

graph�퐺 (since weights are unique, the MST is unique as well). Let

�푇 = (�푉, �퐸�푇 ,�푤 : �퐸�푇 → [�푛3]) be the minimum spanning tree of�퐺 .

From the previous observation, it is enough to consider only

contracting edges from tree�푇 , which we will focus on in the rest of

this section. It will also be convenient visualize vertices as simply

being grouped instead of fully contracted.

Definition 6. A bag of vertex �푣 at time �푡 ∈ [�푛3], which we

denote bag(�푣, �푡), is the set of vertices that can be reached from �푣 using

only edges of tree�푇 of weight at most �푡 . We denote nbr_bag(�푣, �푡) for
set of neighbors of a bag, that is set of these vertices �푢 that do not

belong to the bag and there exists an edge connecting�푢 and any vertex

of the bag of weight greater than �푡 . The degree of a bag, denoted

Δbag(�푣, �푡), is the size of the set nbr_bag(�푣, �푡).

If we proceed with our edge contraction process, where an edge

with weight �푡 is contracted at time �푡 , then bag(�푣, �푡) is the set of

all vertices that have been contracted with �푣 at time �푡 . The value

Δbag(�푣, �푡) is simply the degree of the vertex that corresponds to

contracted vertices. Therefore, the following simple observations

holds.

Observation 7. The value of the minimum singleton cut in the

contraction process of the weighted graph�퐺 is equal to the following:

min
�푣∈�푉 ,�푡 ∈[�푛3 ]

Δbag(�푣, �푡).
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4.2 Simulating tree contractions with low
depth decomposition

By Observation 7 our goal is to calculate the value of

min
�푣∈�푉 ,�푡 ∈[�푛3 ]

Δbag(�푣, �푡).

To find this, we could calculate the value min�푡 ∈[�푛3 ] Δbag(�푣, �푡) for
every vertex �푣 independently in parallel. However, this would re-

quire a minimum of Ω(�푛 · (�푛 + �푚)) total space, which roughly

corresponds to replicating the whole graphs for each independent

instance. There are two key observations that will allow us to re-

duce the space complexity. First, bags are determined solely from

the topology of tree�푇 . Second, for larger �푡 , it is likely the case that

bag(�푢, �푡) = bag(�푣, �푡), so we would like to remove this redundant

computation. Therefore, we will exploit tree properties and the low

depth decomposition to partition the work and avoid redundancy.

Let ℓ : �푉 → [ℎ], ℎ ∈ �푂 (log2 �푛) be the labeling from the gener-

alized low depth decomposition of tree�푇 (see Definition 1). Let us

asses to each bag a uniquely chosen vertex.

Definition 7. The leader of a bag, denoted bagLeader(�푣, �푡), is
the vertex �푢 with the smallest label ℓ (�푢) among all vertices from

bag(�푣, �푡). We define a number ldr_time(�푣) to be the greatest num-

ber 0 ≤ �푡 ′ ≤ �푛3 such that bagLeader(�푣, �푡 ′) = �푣 .

Let us first argue the correctness of the above definitions.

Lemma 8. The leader of every bag can be determined uniquely.

Also, for every vertex �푣 ∈ �푉 it holds: the number ldr_time(�푣) exists,
ldr_time(�푣) ≥ 0, and for every 0 ≤ �푡 ′ ≤ ldr_time(�푣) we have that
bagLeader(�푣, �푡 ′) = �푣 .

Using the fact that each bag has exactly one leader, we can re-

formulate the expression min�푣∈�푉 ,�푡 ∈[�푛3 ] Δbag(�푣, �푡) as follows

min
�푣∈�푉 ,�푡 ∈[�푛3 ]

Δbag(�푣, �푡) = min
�푣∈�푉

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡).

We thenwill distribute the work needed to calculate the right-hand

side of the above equality by requiring each vertex to calculate the

minimal degree among bags for which it is the leader:

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡).

Let �푖 be a number in
[
⌈�푙�표�푔2�푛⌉

]
. Let �퐿�푖 (the �푖th level) be the set

of vertices �푣 ∈ �푉 with low depth decomposition label ℓ (�푣) = �푖 ,

and �퐿≤�푖 be that with label ℓ (�푣) ≤ �푖 (for convenience we assume

that �퐿≤0 = ∅). Let �푇 �푖 be the tree �푇 with �퐿≤�푖−1 removed. The fol-

lowing observation, derived from the fact that a bag is a connected

subgraph of �푇 and the leader has lowest value ℓ (·), relates bag lo-

cation to the topology of the low depth decomposition.

Observation 8. For every �푖 ∈
[
⌈�푙�표�푔2�푛⌉

]
, �푣 ∈ �퐿�푖 , and 0 ≤ �푡 ≤

ldr_time(�푣), the set bag(�푣, �푡) belongs to a single connected compo-

nent of graph�푇 �푖 . For any two �푢, �푣 ∈ �퐿�푖 , sets bag(�푢, ldr_time(�푢)) and
bag(�푣, ldr_time(�푣)) belong to different components of graph �푇 �푖 .

Recall, that we wanted to calculate the value

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡)

for every �푣 ∈ �푉 , which we rewrote as

min
�푣∈�푉

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡).

Grouping by vertices in the same layers, we get

min
�푣∈�푉

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡)

= min
�푖 ∈[ ⌈�푙�표�푔2�푛⌉ ]

min
�푣∈�퐿8

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡).

By Observations 8, we can hope that computing the value

min
�푣∈�퐿8

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡),

can be done in parallel without exceeding global memory limit

of �푂 (�푚 log2 �푛), since for different �푣 ∈ �퐿�푖 , their bags up to time

ldr_time(�푣) belong to different components of �푇 �푖 , thus we might

avoid redundant work. The details of computing this value are pre-

sented in the next section. Let us now formalize the progress so far.

Lemma 9. Given a tree �푇 and a graph �퐺 = (�푉 , �퐸,�푤 : �퐸 → [�푛3])
as an input, calculating the value min�푣∈�푉 ,�푡 ∈[�푛3 ] Δbag(�푣, �푡) can be

reduced to �푂 (log2 �푛) instances of calculating values

min
�푣∈�퐿8

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡),

for �푖 ∈
[
⌈�푙�표�푔2�푛⌉

]
. The reduction can be implemented in AMPC with

�푂 (1/�휖) rounds,�푂 ((�푛 +�푚) log2 �푛) total space, and�푂 (�푛�휖) local mem-

ory.

Proof. The correctness follows from the above discussion. For

the implementation, the generalized low depth decomposition of�푇

can be determined in �푂 (1/�휖) rounds with �푂 (�푛 log2 �푛) total space
by Lemma 3. Consider now �푂 (log2) tuples of format (�푇, ℓ, �퐸, �퐿�푖 ).
Preparing them requires�푂 ((�푛+�푚) log2 �푛) total space and the above
discussion shows that the value

min
�푣∈�퐿8

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡)

for every �푖 ∈
[
⌈�푙�표�푔2�푛⌉

]
can be computed from the tuple (�푇, ℓ, �퐸, �퐿�푖 ),

thus the lemma follows. �

4.3 Resolving the problem for vertices on the
same level.

Following Lemma 9, we fix �푖 ∈
[
⌈�푙�표�푔2�푛⌉

]
and set �퐿�푖 . We calculate:

min
�푣∈�퐿8

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡).

In this approach, wewill frequently query theminimum value over

a path in a tree, thus the following result is helpful.

Theorem 4 (Behnezhad et al. [5]). Consider a rooted, weighted

tree �푇 , the heavy-light decomposition of this tree together with an

RMQ data structure that supports queries on heavy paths can be

computed in �푂 (1/�휖) AMPC rounds using �푂 (�푛�휖) local memory and

�푂 (�푛 log�푛) total space. If the aforementioned data structures are pre-

computed, then obtaining a minimum value on a path of a tree can

be calculated with �푂 (log�푛) queries to global memory.

We will also make use of the following theorem.



Adaptive Massively Parallel Algorithms for Cut Problems

Theorem 5 (Behnezhad et al. [2]). For a given sequence of inte-

ger numbers �푆 of length �푛, computing the minimum prefix sum over

all prefix sums can be done in �푂 (1/�휖) AMPC rounds using �푂 (�푛�휖)
local memory and �푂 (�푛 log�푛) total space.

Finally, we show that the construction of the low depth decom-

position provided in Section 3 gives easy access to edges that con-

nect vertices of higher labels with vertices of smaller labels.

Lemma 10. For any connected component �퐶�푖 in �푇 �푖 , there are at

most 2 tree edges between �퐶�푖 and �푉 \ �푇 �푖 according to the low depth

decomposition ℓ given in Lemma 7. Moreover, both edges can be cal-

culated in �푂 (1/�휖) AMPC rounds with �푂 (�푛�휖) memory per machine

and �푂 (�푛 log2 �푛) total memory.

Let us now turn to the proper part of this subsection. First, we

show how to compute values ldr_time(�푣) for all �푣 ∈ �퐿�푖 .

Lemma 11. Given a tuple (�푇, ℓ, �퐸, �퐿�푖) for tree �푇 , low depth de-

composition ℓ , set of weighted edges �퐸, and levels �퐿�푖 for some �푖 ∈
[⌈log2 �푛⌉], there exists an AMPC algorithm that calculates the value

ldr_time(�푣) for every �푣 ∈ �퐿�푖 , in �푂 (1/�휖) rounds using �푂 (�푛�휖) local
memory and �푂 ((�푛 +�푚) log2 �푛) global memory.

Proof. Consider vertex �푣 ∈ �퐿�푖 . Vertex �푣 ceases to be the leader

of a bag at the first time �푡 when its bag is contracted with another

bag containing at least one vertex of the set �퐿≤�푖−1. According to the
tree contraction process, time �푡 is equal to the largest weight of tree

edges between �푣’s connected component in graph�푇 �푖 and the set of

vertices �퐿≤�푖−1. By Lemma 10, these edges can be extracted with at

most �푂 (log2 �푛) queries to the low depth decomposition structure.

We then simply find the minimum. Thus, all values ldr_time(�푣) for
vertices from �퐿�푖 can be computed in constant number of rounds

assumed the conditions stated in the lemma. �

We can assume that values ldr_time(�푣) ∈ �퐿�푖 are known. We

would like to efficiently compute

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡),

for each �푣 ∈ �퐿�푖 . For this, we make the following observation.

Lemma 12. Consider an edge (�푥,~) =: �푒 ∈ �퐸 and a vertex �푣 ∈
�퐿�푖 . All possible values 0 ≤ �푡 ′ ≤ ldr_time(�푣) at which �푒 belongs

to set nbr_bag(�푣, �푡 ′) form a consecutive (possible empty) interval of

integers [�푎�푒 , �푏�푒 ] ⊆ [0, . . . , ldr_time(�푣)], called also a time interval

with respect to �푣 .

Proof. The lemma follows immediately from the fact that

bag(�푣, 0) ⊆ bag(�푣, 1) ⊆ . . . ⊆ bag(�푣, �푛3). �

Additionally, the following observation shows, given edge time

intervals, how to derive min0≤�푡≤ldr_time(�푣) Δbag(�푣, �푡) and clarifies
the purpose of time intervals.

Observation 9. Fix a vertex �푣 ∈ �푉 and consider time intervals

[�푎�푒 , �푏�푒 ] with respect to �푣 , for all �푒 ∈ �퐸. Denote the set of all intervals

containing value �푥 by �퐼�푥 . Then, computing the value

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡),

is equivalent to computing the minimum over all values |�퐼�푥 | for �푥 in

the range [0, ldr_time(�푣)].
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Figure 3: A sample structure of an MST tree. Firm edges

are tree edges, while dotted are non-tree edges. The number

inside vertices denote their levels. Different colors symbol-

ize different binarized paths. The numbers underlined are

times of contraction of corresponding edges. Next to these

number the time intervals of these edgeswith respect to ver-

tex �푣 are given. Since ldr_time(�푣) = 2, thus all these intervals

are contained in [0, 2].

Since this task is ‘linear’, it can be computed efficiently inAMPC.

We now discuss how to compute the intervals for all edges in �퐸.

Lemma 13. Given a tuple (�푇, ℓ, �퐸, �퐿�푖), there exists an AMPC algo-

rithm that for every vertex �푣 ∈ �퐿�푖 and every edge �푒 ∈ �퐸 calculates the

maximal, non-empty time interval [�푒�푎 , �푒�푏] ⊆ [0, . . . , ldr_time(�푣)]
of �푒 with respect to �푣 . The algorithm works in �푂 (1/�휖) rounds, uses
�푂 (�푛�휖) local memory and �푂 ((�푛 +�푚) log2 �푛) global memory.

Proof. The algorithm starts by removing vertices �퐿≤�푖−1 with
all edges adjacent to them from tree �푇 which gives us �푇 �푖 . Given

decomposition ℓ , this can be done in �푂 (1) rounds. By definition 1,

vertices �퐿�푖 = {�푣1, . . . , �푣�푞} belong to different trees. Next, the algo-

rithm roots these trees that contain vertices from �퐿�푖 in �푣1, . . . , �푣�푞
and calculates heavy-light decompositions of each tree together

with an RMQ structure on heavy paths. By Theorem 4, this can be

done in �푂 (1/�휖) within our memory constraints.

Let us now fix an edge (�푥,~) =: �푒 ∈ �퐸. Importantly, we consider

here all edges of the graph �퐺 , not only tree edges �퐸�푇 . Let �푟�푥 ∈
{⊥, �푣1, . . . , �푣�푞 } be the root of this tree in �푇 �푖 to which the vertex

�푥 belongs. If the vertex �푥 does not belong to any tree, that is �푥 ∈
�퐿≤�푖−1 since these are the vertices that have been removed, wewrite

�푟�푥 =⊥. Let mw(�푥) be the minimum weight over edges of path that

connects vertex �푥 with vertex �푟�푥 in graph �푇 �푖 . Observe, that unless

�푟�푥 =⊥ this value is well defined as �푇 �푖 is a collection of tree and

there is exactly one path connecting is �푥 and �푟�푥 in this graph. We

extend the above definitions on ~ in the natural way.

By Theorem 4, computing �푟�푥 , �푟~,mw(�푥),mw(~) takes �푂 (log�푛)
queries to the memory for a single edge. Therefore, we can com-

pute these values for all edges �푒 ∈ �퐸 in �푂 (1) round under the con-
ditions assumed in this lemma.

Observe that edge �푒 = (�푥,~) can have non-empty time intervals

only with vertices �푟�푥 and �푟~ . Any other vertex from �퐿�푖 belongs to

a different connected component in graph �푇�푖 and therefore its bag

cannot contain �푥 nor ~ while the vertex is the leader of its bag.

Thus, all that is left to show is howmw(�푥) andmw(~) can help de-

termine the time intervals in which edge �푒 belongs to nbr_bag(�푟�푥 )
and nbr_bag(�푟~). We consider the following cases.
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Case 1. �푟�푥 =⊥, �푟~ =⊥. In this case, edge (�푥,~) has no effect on

degrees of bags of vertices �푟�푥 and �푟~ at any time. The algorithm

skips such edges.

Case 2. �푟�푥 =⊥, �푟~ ≠⊥, (or symmetrically �푟�푥 ≠⊥, �푟~ =⊥). Since �푇 �푖 is

a subset of the minimum spanning tree�푇 , thus the first time when

vertex �푥 belongs to �푟�푥 ’s bag is the time mw(�푥). Now, ~ starts to

belong to �푟�푥 ’s bag either at the time being equal to the maximal

weight on the path between �푟�푥 and ~. Observer however, that this

path has to contain vertices that does not belong to �푇 �푖 and there-

fore the maximal weight has to be greater than ldr_time(�푟�푥 ). What

follows the correct interval in this case is:

[mw(�푥), ldr_time(�푟�푥 )],
or an empty interval if mw(�푥) > ldr_time(�푟�푥 ).
Case 3. �푟�푥 ≠⊥, �푟~ ≠⊥. We distinguish two sub-cases:

Subcase �푎) �푟�푥 ≠ �푟~ . Since the path between �푟�푥 and �푟~ does not

belong to�푇 �푖 we can proceed analogously to theCase 2.. The correct

interval for vertex �푥 is

[mw(�푥), ldr_time(�푟�푥 )],
or an empty interval if mw(�푥) > ldr_time(�푟�푥 ), while for vertex ~
it is

[mw(~), ldr_time(�푟~)],
or an empty interval if mw(~) > ldr_time(�푟~)

Subcase �푏) �푟�푥 = �푟~ . Since�푇
�푖 is a subgraph of the minimum span-

ning tree �푇 , we have that min(mw(�푥),mw(~)) is the first time

when at least one of �푥 and ~ belongs to �푟�푥 ’s bag, while the first

time when both belong to �푟�푥 ’s bag is max(mw(�푥),mw(~)). Thus,
the proper time interval for this edge:

[min(mw(�푥),mw(~)),max(mw(�푥),mw(~))]
∩ [1, . . . , ldr_time(�푟�푥 )]

We obtain that for every edge �푒 ∈ �퐸 all non-empty time inter-

vals in which this edge belong to nbr_bag of some vertex �푣 can be

computed in�푂 (log(�푛)) queries to the memory. Therefore, comput-

ing these values for all edges can be done in constant number of

rounds assumed �푂 (�푚 log�푛) total memory. �

Implementing Observation 9 is purely technical.

Lemma 14. There exist an AMPC algorithm that given a set of

integer intervals �퐼 = {[�푝1, �푘1], . . . , [�푝�푛, �푘�푛]}, ∀�푖 ∈[�푛 ] [�푝�푖 , �푘�푖] ⊆ [0, �푅]
finds the minimal number of intersecting intervals in�푂 (1/�휖) rounds
using �푂 (�푛�휖) local memory and �푂 (�푛 log2 �푛) total memory.

Proof. First, the algorithm sorts the set {�푝1, �푘1, . . . , �푝�푛, �푘�푛} of

all endpoints of these intervals in non-increasing order (ties are

resolved with priority for endpoints �푝�푖 ) obtaining a sequence �푆 .

Consider assigning to every endpoint �푝�푖 , �푖 ∈ [�푛] from sequence

�푆 value +1 and to every endpoint �푘�푖 , �푖 ∈ [�푛] value −1. This oper-
ation leads to a sequence �푆 ′ of pairs of format (endpoint, value).
Finally, let �푆 ′′ be a sequence constructed from �푆 ′ in which all con-

secutive pairs that have the same first coordinate are compressed

to a single pair in which the first coordinate is preserved and the

second is the sum of second coordinates of contracted pairs. It can

be observed that finding the minimal prefix sum of sequence made

from second coordinates of pairs in �푆 ′′ is equivalent to theminimal

number of intersecting intervals. The construction of sequence �푆 ′′

requires only sorting and contracting consecutive pairs which can

be implemented in�푂 (1/�휖) rounds in AMPC with the memory con-

strains stated in the lemma. To find the minimal prefix sum we use

Theorem 5 which completes the proof. �

The above discussion is summarized in the following lemma.

Lemma 15. There exists an AMPC algorithm that given a tuple

(�푇, ℓ, �퐸, �퐿�푖 ) calculates the value
min
�푣∈�퐿8

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡)

in �푂 (1/�휖) rounds using �푂 (�푛�휖) local memory and �푂 ((�푛 +�푚) log2 �푛)
total memory.

Proof. Using Lemma 11 we are able to calculate value ldr_time

for every �푣 ∈ �퐿�푖 in constant number of rounds. By Lemma 13 we

can calculate time all non-empty time intervals for every �푒 ∈ �퐸 and

every �푣 ∈ �퐿�푖 . This requires�푂 (�푚 log2 �푛) total memory. Each time in-

terval [�푎, �푏] can be assigned a vertex �푣 with respect to whom it was

calculated. Then, we group time intervals with respect to vertices

from �퐿�푖 they were calculated. This can be done in a single round

with �푂 (�푚 log2 �푛) global memory since there are only �푂 (�푚) non-
empty time intervals. Finally, Lemma 14 guarantees that we can

compute, for every �푣 ∈ �퐿�푖 , the minimum number of intersecting

intervals in �푂 (1/�휖) rounds with total memory proportional to the

number of these intervals. Therefore, assumed �푂 (�푚 log2 �푛) global
memory we can extend the last computation to a parallel compu-

tation for �푣 ∈ �퐿�푖 while preserving the round complexity. By Obser-

vation 9 this is equivalent to calculating

min
0≤�푡≤ldr_time(�푣)

Δbag(�푣, �푡),

for every �푣 ∈ �퐿�푖 . Since theminimum of the above values over �푣 ∈ �퐿�푖
can be computed in a single round, the lemma is proven. �

4.4 The final algorithm.

We are now able to prove Theorem 3 and present the final algo-

rithm, SmallestSingletonCut, that calculates the smallest singleton

cut that appears in the contraction process of�퐺 . The pseudcode can

be found in Figure 3, while the proof of correctness is below.

Algorithm 3: SmallestSingletonCut

Data: Graph�퐺 = (�푉 , �퐸,�푤 : �푉 → [�푛3]).
Result: Size of the smallest singleton cut.

1 Compute the minimum spanning tree �푇 of�퐺 ;

2 Compute the low depth decomposition �퐷�푇 of �푇 ;

3 Prepare �푂 (log2 �푛) tuples (�푇,�퐷�푇 , �퐸, �퐿�푖), �푖 ∈
[
⌈�푙�표�푔2�푛⌉

]
;

4 foreach tuple (�푇,�퐷�푇 , �퐸, �퐿�푖 ) do
5 Compute: lc�푖 ← min�푣∈�퐿8 min0≤�푡≤ldr_time(�푣) Δbag(�푣, �푡);
6 end

7 return min(lc1, . . . , lc[ ⌈�푙�표�푔2�푛⌉ ]);

Proof of Theorem 3. The correctness follows from Observa-

tion 7 and Lemmas 9 and 15. Also the implementation details of

lines 3 − 7 are discussed in the these two lemmas. To calculate
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minimum spanning tree in line 1 we use Lemma 4 while the im-

plementation of the low depth decomposition from the next line is

given by Lemma 3. �

5 AMPC ALGORITHM FOR APPROXIMATED
MINIMUM �푘-CUT

In this section, we show that given an algorithm that calculates

2+�휖 approximation of a min cut, one can construct 4+�휖 approxima-

tion of minimum k-cut. Consider the following greedy algorithm,

called APX-SPLIT, that extends the classic result of Saran and Vazi-

rani [18]. The algorithm works sequentially. In each iteration, it

extends the approximated solutionwith the smallest non-trivial ap-

proximation of the minimum cut of the graph available at a given

moment. Being precise, assume that at the beginning �푖-th itera-

tion the algorithm has split the graph �퐺 into ℓ�푖 connected compo-

nents (we start with �푐1 = 1). Then the algorithm calculates (2 + �휖)-
approximation of the minimum cut in each connected component

and enlarges the solution by the smallest of these cuts, thereby in-

creasing the number of components by at least 1. The algorithm

ends after the first iteration such that the number of connected

components after this iteration is at least �푘 . The pseudocode of the

algorithm is given in the Algorithm 4.

Algorithm 4: APX-SPLIT

(A greedy algorithm computing an approximation of the

minimum �푘-cut in AMPC)

Data: A graph�퐺 = (�푉 (�퐺), �퐸 (�퐺)) and a parameter �푘 .

Result: A (4 + �휖)-approximation of minimum �푘-cut.

1 Initialize �퐷 → ∅;
2 while �퐺 ′ := (�푉 (�퐺), �퐸 (�퐺) \⋃�푑 ∈�퐷 �푑) has less than �푘

connected components do

3 Let �퐶1, . . . ,�퐶�푙 be the set connected of components of

�퐺 ′;
4 �푑∗�푖 ← AMPC-MinCut(�퐶�푖) for all �푖 ∈ [�푙];
5 �푗 ← argmin�푖 ∈[�푙 ]�푤�푒�푖�푔ℎ�푡 (�푑�푖);
6 Add �푑∗�푗 to �퐷;

7 end

8 return set of cuts �퐷;

We will show by generalizing the idea of Saran and Vazirani

that the aforementioned greedy algorithm is (4+�휖)-approximation

minimum �푘-cut.

Theorem 2. Algorithm APX-SPLIT is an (4 + �휖) approximation

of the Min �푘-Cut. Furthermore, it can be implemented in the AMPC

model withO(�푛�휖) memory permachine inO(�푘 log log�푛) rounds and
O(�푚) total memory.

We define �푐�표�푚�푝�푠 (�푐1 ∪ . . . ∪ �푐�푘 ) the number of components of

the graph�퐺 after removing all edges from the set �푐1 ∪ . . . ∪ �푐�푘 .

Proof. The standard line of proof, proposed in [18] for the case

whe exact minimum cut is used at each splitting step, is to compare

the cut selected by the APX-SPLIT algorithm to the approximated

minimum �푘-cut obtained from the Gomory-Hu tree. The main dif-

ficulty is that in our case, we use only (2+�휖) approximation in each

splitting step. This makes our proof different and novel compared

to [18]. Let us set a Gomory-Hu tree �퐻 = (�푉 (�퐻 ) = �푉 (�퐺), �퐸 (�퐺)) of
the graph�퐺 . The Gomory-Hu tree is defined as follows.

Definition 8 (Gomory and Hu [12]). Consider an arbitrary

graph �퐺 . A weighted tree �퐻 = (�푉 (�퐻 ), �퐸 (�퐻 )) with the set of ver-

tices being equal �푉 (�퐺) is called a Gomory-Hu tree of �퐺 , if for every

pair of different vertices �푠, �푡 ∈ �푉 (�퐺) the minimum weight on the

path between �푠 and �푡 in the tree �퐻 is equal to the minimum �푠-�푡 cut

in graph �퐺 . The existence and construction of Gomory-Hu trees was

shown in [12].

Let us order edges of the tree �퐻 (or equivalently cuts in the �퐺

graph)with respect to non-decreasing weights. Denote�푏∗1, . . . , �푏
∗
�푙−1

the sequence of the first �푙 ≤ �푘 − 1 edges (cuts equivalently) from

this order such that corresponding cuts split �퐺 graph into at least

�푘 connected components. Let �푏1, . . . , �푏�푘−1 be a dual sequence of

cuts corresponding to that sequence of edges �푏∗1, . . . , �푏
∗
�푙−1, with this

addition that we put each cut �푏�푖 this number of times it increases

the number of connected components in �퐺 and possibly cut some

suffix of such generated sequence to obtain exactly �푘 − 1 cuts. For

such construction we have the following.

Observation 10 (Saran and Vazirani [18]). The sequence of

cuts �푏1, . . . , �푏�푘−1 satisfies:
(1) the sequence |�푏1 |, . . . , |�푏�푘−1 | is non-decreasing,
(2) ∀�푖 ∈[�푘−1]�푐�표�푚�푝�푠 (�푏1 ∪ . . . ∪ �푏�푖 ) > �푖 .

Saran and Vazirani also proved that such selected (and possibly

refactored) sequence of cuts is (2 − 2
�푘
)-approximation of the mini-

mum �푘-cut.

Theorem 6 (Saran and Vazirani [18]). The cut
⋃

�푖 ∈[�푘−1] �푏�푖 is
(2 − 2

�푘
) approximation of the minimum �푘-cut of�퐺 .

Having established the crucial properties of Gomory-Hu trees

and corresponding cuts we can proceed to the proof of correctness

of the APX-SPLIT algorithm.

Let �푑1, . . . , �푑�푚 be the successive cuts selected by the APX-SPLIT

algorithm. Note that with each new cut, at least one new com-

ponent appears in the graph thus �푚 ≤ �푘 − 1. We will show that

the sum of these cuts’ sizes is not greater than the sum of sizes of

cuts �푏1, . . . , �푏�푘−1. Let #�푐1, . . . , #�푐�푚 be a sequence of numbers where

#�푐�푖 := �푐�표�푚�푝�푠 (�푑1 ∪ . . . ∪ �푑�푖). We will show by induction that

∀�푗 ∈[�푚] |�푑1 ∪ . . . �푑 �푗 | ≤ (2 + �휖) |�푏1 ∪ . . . ∪ �푏min(�푘−1,#�푐 9 ) |,
.

The idea behind the induction step defined in the previous line

can be explained as follows: inclusion of cuts from �푑1 to �푑�푖 are at

least (2+�휖) approximation of cut generated by inclusion of cuts of

such prefix of sequence �푏1, . . . , �푏�푘 that split�퐺 on #�푐�푖 for connected

components.

For the basis of induction we see that in the first step of the APX-

SPLIT algorithm chooses (2+�휖)-approximation of the smallest cut

in the whole graph�퐺 . The �푏1 is an �푠-�푡 cut therefore we have |�푑1 | ≤
(2 + �휖) |�푏1 | which implies that |�푑1 | ≤ (2 + �휖) |�푏1 ∪ . . . �푏min(�푘−1,#�푐1) |.

Now consider �푖 ∈ [�푚 − 1]. Since �푖 < �푚, we observe that #�푐�푖 <

�푘 . Otherwise the algorithm APX-SPLIT would have executed only

�푚 − 1 iterations instead of �푚. Consider cuts �푏1, . . . , �푏#�푐8+1. From
the Observation 10 we have that �푐�표�푚�푝�푠 (�푏1∪ . . .∪�푏#�푐 (�푖)+1) > #�푐 (�푖).
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On the other hand �푐�표�푚�푝�푠 (�푑1∪ . . . �푑�푖) = #�푐�푖 . Since �푐�표�푚�푝�푠 (�푏1∪ . . .∪
�푏#�푐8+1) > �푐�표�푚�푝�푠 (�푑1∪. . . �푑�푖) then theremust be a cut�푏 �푗 , �푗 ∈ [#�푐�푖+1]
that is not covered by the first �푖 cuts from the sequence �푑1, . . . , �푑�푚 .

Namely, we can choose �푗 such that �푏 �푗 * �푑1 ∪ . . . ∪ �푑�푖 . Moreover,

since �푏 �푗 is an �푠-�푡 cut in the graph�퐺 (with all edges included), thus

it must split at least one connected component of the graph �퐺 =

(�푉 , �퐸 \ (�푑1 ∪ . . . �푑�푖)) into two non-empty parts. Thus this cut is

considered in the �푖 + 1-th iteration of the APX-SPLIT algorithm,

which implies that |�푑�푖+1 | ≤ (2 + �휖) |�푏 �푗 | ≤ (2 + �휖) |�푏#�푐8+1 |. Since
#�푐�푖 + 1 ≤ #�푐�푖+1, we conclude that |�푑1 ∪ . . . �푑�푖+1 | ≤ (2 + �휖) |�푏1 ∪
. . .∪�푏min(�푘−1,#�푐8+1) |, which proves the inductive step. Now, we see

from Theorem 2 that the solution of �푏1, . . . , �푏�푘−1 is an (2 − 2
�푘
)-

approximation of theminimum �푘-cut. Thus the solution�푑1 . . . �푑�푘−1
is (2+�휖)(2− 2

�푘
) = approximation of theminimum �푘-cut. This proves

the correctness of the algorithm.

It remains to be noted that a single iteration of the algorithm

can be performed in O(log log�푛) rounds in the AMPC model with

O(�푛�휖 ) memory per machine and in total memory O(�푚). The dom-

inant operation is the calculation of a (2+ �휖) approximation of the

minimum cut in each of the components. Its performance is ana-

lyzed in Theorem 1. The calculation of the smallest of all approx-

imated cuts corresponding to different components is a standard

operation and can be performed in �푂 (1) rounds. Also, Behnezhad
et. al in [4] showed that the number of components of a graph can

be determined in O(1) rounds in AMPC with O(�푛�휖) memory per

machine and O(�푚) total memory. This completes the performance

analysis of the algorithm. �
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6 MISSING PROOFS FROM SECTION 3

Proof of Lemma 5. First off, we know subtree size can be com-

puted in �푂 (1/�휖) low-memory AMPC rounds on trees as shown by

Behnezhad et al. [3], and the child of a vertex �푣 with minimum

subtree can then be found in �푂 (1/�휖) rounds by dividing the chil-

dren amongst machines and iteratively finding the smallest. Next,

consider removing all light edges from �푇 to create a forest �퐹 . Run

Behnezhad et al.’s AMPC connectivity algorithm [4], which satis-

fies the round and space constraints, to identify the components

and contract them. Add the light edges back in to connect con-

tracted nodes. This clearly is �푇�푀 . Additionally, as before, we run

Behnezhad et al.’s [3] AMPC algorithm for orienting the tree. This

too falls within the constraints. �

Proof of Observation 4. Consider such a �푢,�푢 ′, �푢 ′′ ∈ �푃�푣 that

appear in this order (or reversed), and let �푣 and �푣 ′ be the lowest

common ancestors of�푢 and�푢 ′, and�푢 and�푢 ′′ respectively. Consider
traversing from �푢 up the tree from child to parent, and let �푝 be

the current vertex. We start with �푝 = �푢 and thus the leaf set of

the subtree rooted at �푝 is �퐿�푝 = {�푢}. As we traverse upwards, we

add sets of leaves to �퐿�푝 that are contiguous in �푃�푣 . Additionally, one

vertex is directly adjacent to a vertex from �퐿�푝 in �푃�푣 because �푃�푣 was

mapped to the leaves of �푇�푣 according to the pre-order traversal.

Therefore, �퐿�푝 is a contiguous chunk of �푃�푣 . Thus, when �푢 ′′ gets
added to the subtree (i.e., when �푝 = �푣 ′) �푢 ′ must be in �퐿�푝 too, either

because it was added previously or it is being added at the same

time. In the former case, �푣 must have happened before �푣 ′ and thus
�푣 ′ is an ancestor of �푣 , and in the latter case, �푣 = �푣 ′. �

Proof of Lemma 6. Correctness of the process described in this

section is seen in Observation 5. Thus we simply need to show how

to implement it in AMPC. For the first step, we must construct a

generic almost complete binary tree with |�푃�푣 | leaves. Call this tree
�푇�푣 . By Observation 3, this has 2|�푃�푣 | − 1 vertices, ⌊log2 |�푃�푣 |⌋ + 1

max depth, and each layer is full except the last which has 2|�푃�푣 | −

https://doi.org/10.1145/3323165.3323208
http://www.jstor.org/stable/2098881
http://dl.acm.org/citation.cfm?id=313559.313605
https://doi.org/10.1137/S0097539792251730
https://doi.org/10.1145/800076.802464
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2 ⌊log2 |�푃E | ⌋+1 vertices. Thus, it is fairly simple to, in parallel, create

the set of all vertices in the tree and then connect each vertex to

its parent. Each vertex can be given an index: a unique identifier

for vertices numbered 1, . . . , 2|�푃�푣 | − 1. This is going to represent

the order of the vertices in a breadth-first traversal of the tree. For

a vertex with index 1 < �푖 < 2|�푃�푣 |, its parent’s index �푗 can be com-

puted as �푗 = ⌊�푖/2⌋. Whether or not a vertex is a left or right child

is simply determined by the parity of its pre-order index.

Note that the size of the tree is�푂 ( |�푃�푣 |) but each individual pro-

cessor computation (i.e., computing the size of the tree, and then

having each index connect itself to its parent) can be done in con-

stant space and 2 rounds. Thus in 2 rounds, we can create such a

tree. Note that we have to construct these trees in parallel, but it

is not hard to see that this will only require �푂 (�푛 log�푛) total space
which can be divided appropriately amongst machines.

For the second step, we can use Behnezhad et al.’s [3] algorithm

for pre-order numbering with �푂 (1/�휖) AMPC rounds w.h.p. using

�푂 (�푛�휖) local memory and �푂 (�푛) total space. Let �퐿 be a list of the

leaves of �푇�푣 in pre-order. To map �푃�푣 to the leaves, one can simply

do a direct map between �푃�푣 and �퐿 in one round. �

Proof of Lemma 7. First, note that �푃�푢 can be stored entirely on

one machine by Observation 6, and additionally, since both�푇�푀 and

�푇�푣 for all �푣 ∈ �푀 is oriented, it is quite simple to adaptively query the

path from �푢 to the root in one round within the space constraints.

Assuming the orientations also labels if the vertex is a left or right

child, �푢 ′ can be found simply by searching the path. Finally, the

depth of �푢 ′, which is the label of �푢 , can also be found quite simply

given access to all of �푃�푢 .

It is quite simple to show the height is bounded by �푂 (log2 �푛):
all labels are depths in the expanded�푇�푀 and Observation 6 bounds

the max depth. All that is left is to show the connected components

induced on�푇 �푖
= {�푣 ∈ �푇 : ℓ (�푣) ≥ �푖} contain exactly one vertex with

label �푖 each.

We show this by induction on the level. At the 1st level, we

should only partition the graph once. Let�푢 be a vertex labeled 1 and

�푃�푢 be its path. For �푢 to be given depth 1, it must have received its

label from the root �푟�푀 of the expanded �푇�푀 , since we are counting

depth starting at 1. Thus, it must be the leftmost descendant of the

right child of �푟�푀 . This is clearly unique, thus�푢 is unique. Therefore,

there is exactly one vertex at the 1st level.

Consider a connected component �퐶 in �푇 �푖
= {�푣 ∈ �푇 : ℓ (�푣) ≥

�푖} for some level �푖 ∈ ℎ. Let the “neighborhood” �푁 (�퐶) be all the

vertices in�푇 \�퐶 that are adjacent to some vertex in�퐶 . We will first

show that for the largest level �푗 of a vertex in�푁 (�퐶), there is exactly
one vertex in�푁 (�퐶) of level �푗 . Note �푗 < �푖 , otherwise a vertex of level

�푗 in �푁 (�퐶) would actually be included in the component �퐶 .

Assume for contradiction there are at least two such vertices,

�푢, �푣 ∈ �푁 (�퐶)with level �푗 . Let�푢 ′ and �푣 ′ be their respective neighbors
in �퐶 . Since �퐶 is a connected component, there is a path �푃 from �푢 ′

to �푣 ′ containing only vertices in �퐶 . All of these vertices have level

�푖 or higher by the definition of �퐶 . Tacking on �푢 and �푣 to the start

and end of �푃 respectively, there is a path from �푢 to �푣 consisting of

vertices {�푢, �푣} ∪ �푃 . Since �푢 and �푣 are at level �푗 , that means every

vertex in this path has level �푗 or higher. Therefore, �푢 and �푣 must

have been in the same connected component�퐶 ′ in the earlier level

�푇 �푗 . By induction, that component must have had only one vertex

at level �푗 . This is a contradiction. Thus �푁 (�퐶) must have exactly

one vertex in level �푗 .

Let �푣 ∈ �푁 (�퐶) be the vertex at level �푗 , and let �푢 be its neighbor in

�퐶 (note there can only be one since �푇 is a tree). We consider three

cases.

Case 1. �푢 is a child of �푣 and they are not on the same heavy

path. Let �푢�푀 and �푣�푀 be the meta vertices in�푇�푀 containing �푢 and �푣

respectively, �푢 ′ and �푣 ′ be the corresponding nodes found in step 2

for �푢 and �푣 (whose depths are the labels of �푢 and �푣), and �푟�푢" be the

root of the binarized path for �푢�푀 . Clearly, �푢�푀 is a child of �푣�푀 since

�푢 is a child of �푣 and �푢�푀 ≠ �푣�푀 . Moreover, �푟�푢" must be the child

of �푣 in the expanded �푇�푀 . Since �푣 ′ is an ancestor of �푣 , that means

its depth in the expanded �푇�푀 satisfies �푑 (�푣 ′) < �푑 (�푟�푢" ). Since this
defines the label of �푣 ′, ℓ (�푣) ≤ �푑 (�푟�푢" ) − 1.

Consider any leaf �푙 ∈ �푇�푢" . Its label is the depth of some vertex

�푤 ∈ �푇�푢" , which must be deeper than the root �푟�푢" . Thus ℓ (�푙) ≥
�푑 (�푟�푢" ) ≥ ℓ (�푣) + 1, then implying all of �푇�푢" is in �퐶 . Additionally,

since only one �푙 ∈ �푇�푢" is labeled by �푟�푢" , i.e. ℓ (�푙) = �푑 (�푟�푢" ), it must

have a unique (and smallest) label out of all vertices in �푃�푢" . It turns

out this ℓ (�푙) will be our �푗 .
Now, consider �푙 ’s placement in the original tree �푇 . It is on a

heavy path containing �푢 , and it has the smallest label on the heavy

path. Vertex�푢 is also directly adjacent to �푣 . Thus in level �푖 when we

consider the tree induced on�푇 �푖 , it must be in the same component

as�푢 since the path from �푙 to�푢 is contained in�푇 �푖 . Additionally, since

�푇 is a tree, the only vertex in �푁 (�퐶) above the component itself is

�푣 . Therefore, all of �퐶 is a descendant of �푣 , and thus they must also

be descendants of �푢 . Thus, in �푇�푀 , they must have been in meta

vertices at the depth of or below �푢�푀 . By a similar logic as before,

their label must be strictly greater than �푙 ’s label. This implies that

ℓ (�푙) = �푗 , and it is the only vertex in �푇�푢" with such a label.

Case 2. �푢 is the parent of �푣 and they are not on the same heavy

path. Using �푢�푀 and �푣�푀 as before and with the same logic as before

but with reversed roles, we find that ℓ (�푣) > ℓ (�푢) so ℓ (�푢) < �푖 . This

contradicts that �푢 is in �푇 �푖 , and thus this case is impossible. Note

that this also shows that �퐶 cannot contain a vertex in an ancestor

�푢�푀 of �푣�푀 in �푇�푀 , because by connectivity, this would imply that

there is some �푢 that is the parent of the root of �푇�푣" . A similar

argument will hold.

Case 3. �푢 and �푣 are on the same heavy path corresponding to

meta vertex �푢�푀 whose binarized path �푇�푢" has root �푟�푢" . Let �푃 ⊆
�푃�푢" be the connected subpath of this heavy path that contains �푢

if we remove all vertices of level �푖 − 1 or lower. Obviously, �푃 =

�퐶 ∩ �푃�푢" ⊆ �퐶 . Assume for contradiction that two vertices �푝, �푝 ′ ∈ �푃

have level �푖 , so ℓ (�푝) = ℓ (�푝 ′) = �푖 . Let �푎 = �푙�푐�푎�푀 (�푝, �푝 ′) be the least
commonancestor of �푝 and �푝 ′ in�푇�푢" . Because�푎 is the least common

ancestor, one of its children must contain �푝 and the other �푝 ′ in its

subtree. Without loss of generality, assume �푝 is a descendant of the

left child and �푝 ′ is a descendant of the right child.
Let �푤 and �푤 ′ be the (possibly internal) vertices of �푇�푢" such

that �푝 and �푝 ′ are labeled with their expanded meta tree depths in

step 3 respectively (ℓ (�푝) = �푑 (�푤) and ℓ (�푝 ′) = �푑 (�푤 ′)). This means

�푖 = �푑 (�푤) = �푑 (�푤 ′). Also, notice that �푤 is an ancestor of �푝 and

�푤 ′ is an ancestor of �푝 ′, so they are on the respective paths from

�푝 and �푝 ′ to the root of �푇�푢" , call it �푟�푢" . Additionally, �푎 is on both
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paths, and specifically the paths must merge at �푎. Since �푤 and �푤 ′

only pass their depth to exactly one leaf of�푇�푢" each, they must be

distinct. Therefore, they cannot be at depth �푑�푢" (�푎) or lower, else
they would both be �푎. Thus, �푤 and �푤 ′ are strict descendants of �푎,
so �푑 (�푤), �푑 (�푤 ′) > �푑 (�푎), meaning that ℓ (�푝), ℓ (�푝 ′) > �푑 (�푎).

Let �푝 be the leftmost leaf descendant of the right child of �푎. Then

�푝 was labeled by �푎, thus ℓ (�푝) = �푑 (�푎). Therefore, ℓ (�푝), ℓ (�푝 ′) > ℓ (�푝).
Since �푝 and �푝 ′ are at level �푖 , ℓ (�푝) < �푖 . Additionally, note that by

the structure of �푇�푢" , �푝 is necessarily located between �푝 and �푝 ′

in the leaf set, thus it must come between them in the pre-order

traversal of�푇�푢" by Observation 4. Since �푇�푢" is the binarized path

of �푃�푢" , this also implies �푝 comes between �푝 and �푝 ′ in �푃�푢" , and by

extension �푃 . Note, however, that �푃 ⊆ �퐶 ⊆ �푇 �푖 , and thus its vertices

must all have level �푖 or greater. This contradicts that ℓ (�푝) < �푖 . Thus,

it must be the case that there is at most vertex in �푃 that has level �푖 .

Finally, all that needs to be shown is that for every vertex �푐 ∈
�퐶 \ �푃 , ℓ (�푐) > �푖 . For any such �푐 , let �푐∗ be its lowest ancestor in �푃�푢" .

Since ℓ (�푐∗) ≥ �푖 , we can make the same argument as Case 1 to show

that �푐 must have label �푖 + 1 or larger. �

Proof of Lemma 3. By combining Lemmas 4, 5, 6, and 7, we

have our result. �

7 MISSING PROOFS FROM SECTION 4

Proof of Lemma 8. Consider bag(�푣, �푡) for some �푣 ∈ �푉 , �푡 ∈ [�푛3].
Because �푣 ∈ bag(�푣, �푡), this bag cannot be empty. Let�푢 be the vertex

with the smallest label among all vertices from bag(�푣, �푡). Assume

for contradiction that there exists another vertex �푢 ′ ∈ bag(�푣, �푡)
such that ℓ (�푢) = ℓ (�푢 ′). Observe, that there exists only one path

between �푢 and �푢 ′ in tree �푇 and all vertices of this path must be

contained in bag(�푣, �푡) since bag(�푣, �푡) always forms a connected

component when viewed as a subtree of �푇 , c.f. Definition 6. From

the properties of the low depth decomposition, we get that there

is a vertex �푧 on the path with label smaller than both ℓ (�푢) and
ℓ (�푢 ′) which contradicts with the choice of �푢 . This also proves the

uniqueness of the leader. Let us now argue about ldr_time(�푣). First,
for every �푣 ∈ �푉 we have that �푏�푎�푔(�푣, 0) = �푣 as there is no edge with

weight smaller than 1. This already proves two first properties. Sec-

ond, it holds: bag(�푣, 0) ⊆ bag(�푣, 1), . . . , bag(�푣, �푛3) as a bag defined
for larger time can expand more edges. Therefore, if �푣 is the leader

of bag(�푣, �푡) for some 0 ≤ �푡 ≤ �푛3, it has to be the leader of any

subset of this bag. �

Proof of Lemma 10. Let �푣 be a vertex of this component with

lowest value ℓ (�푣). By the construction of the low depth decompo-

sition, the component �퐶�푖 consists of some connected part �푃1 of

binarized path �푃 to which �푣 belongs and all binarized paths inci-

dent to the part �퐹 that contain vertices with larger values ℓ , denote

this set �푃2. Note, that each vertex �푣 ∈ �푃2 has no edged to the part

of graph�푉 \�푇 �푖 . Thus, only vertices from part �푃1 can be connected

with vertices of smaller labels than �푖 . However, since �푃1 forms a

path, and we consider only tree edges, then there can be at most

two such edges.

The above proof instructs also how to compute these two edges.

First, the vertex �푣 can determined in �푂 (1/�휖) rounds, since it re-

quires computing max function only over labels of vertices belong-

ing to�퐶�푖 . Assume, that for each vertex of a tree, we store not only

its value ℓ (�푣), but also its position and the length of the binarized

path to which it belongs. Then the first vertex to the left with label

smaller than �푣 and the first vertex to the right with label smaller

than �푣 on �푣’s binarized path can be computed in constant time in

local memory of a single machine, since their positions in the bi-

narized path are functions of only the length of the path and the

position of �푣 . Assumed, that in the global memory all binarized

paths are stored, then the corresponding edges can be found in

�푂 (1) queries to the global memory. �
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