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Abstract— Ubiquitous powerful personal computing facilities,
such as desktop computers and parked autonomous cars, can
function as micro edge computing servers by leveraging their
spare resources. However, to harvest their resources for service
provisioning, two significant challenges will arise: how to incen-
tivize the server owners to contribute their computing resources,
and how to guarantee the end-to-end (E2E) Quality-of-Service
(QoS) for service buyers? In this paper, we address these two
problems in a holistic way by advocating COMSA. Unlike the
existing double auction schemes for edge computing which mostly
focus on computing resource trading, COMSA addresses the
joint problem of double auction mechanism design and network
resource allocation by explicitly taking spectrum allocation and
data routing into account, thereby providing E2E QoS guarantees
for edge computing services. To handle the design complexity,
COMSA employs a two-step procedure to decouple network
optimization and mechanism design, which hence can be applied
to general network optimization problems for edge computing.
COMSA holds some critical economic properties, i.e., truthful-
ness, budget balance, and individual rationality. Our extensive
simulation studies demonstrate the effectiveness of COMSA.

Index Terms— Edge computing, double auction, spectrum
allocation, service provisioning.

I. INTRODUCTION

THE proliferation of Internet of Things (IoT) and vari-
ous mobile devices has given birth to a broad set of

applications, such as video analytics, environmental monitor-
ing, virtual/augmented reality, and online gaming [1]. These
newly emerging services induce soaring demands for data
analytics and intelligence extraction. To accommodate the
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service demands, multi-access edge computing (MEC) has
been conceived to provide powerful computing capabilities in
the close proximity of end devices [1], [2]. Benefiting from
the short distance between data sources and servers, MEC can
support various data analytics applications with low latency
and high throughput.

The ever-increasing user demands call for dense deploy-
ment of powerful edge servers within the network edge [3],
particularly in populated areas. However, due to the installation
cost, ubiquitous deployment of edge servers is unrealistic at
least in the near future. At the same time, we have witnessed
that various privately-owned facilities, such as personal com-
puters and autonomous cars [4]–[6], are being equipped with
significantly powerful computing capabilities. To address the
aforementioned dilemma, an intuitive and promising solution
is to harvest the abundant computing resources of these per-
sonal devices when they are idle, e.g., when autonomous cars
are parked, to beef up the existing computing infrastructure
for service provisioning.

While it is absolutely compelling to leverage these per-
sonal facilities as edge servers, two fundamental problems
should be addressed before pushing it into reality: how to
stimulate the server owners to contribute their computing
resources, and how to guarantee the service subscribers to get
high-quality end-to-end (E2E) services? To address the first
problem, auction is a natural choice to provide the needed
incentives to the selfish agents because of its efficiency in
bridging supplies and demands without needing prior infor-
mation about the agents’ valuations [7]. The second problem
stems from the fact that MEC service provisioning requires
the appropriate management of both communication and
computing resources. Taking video analytics as an example,
the real-time video processing on edge servers requires not
only considerable computing power, but also high bandwidth
from end devices to edge servers for video transmissions.
As such, an infrastructure should judiciously allocate not only
the harvested computing resource, but also limited network
resource, e.g., spectrum, to support MEC services with E2E
QoS guarantees. Although some prior works have sought to
design double auction mechanisms for MEC [8], [9], they
mostly focus on the aspect of computing resource trading
while implicitly assuming that communication resources are
sufficient. For this reason, the auction could fail to meet
the E2E QoS demands from winning service requests in a
practical network, and service buyers may get charged even
if they do not actually benefit from the trades due to network
congestion.
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Motivated by the above observations, we propose
COMputing Service Auction (COMSA) for MEC. Specifically,
we study the joint problem of double auction and E2E service
provisioning for MEC systems, where the central controller,
called computing service provider (CSP), not only harvests
available computing resource via auction, but also guarantees
the necessary E2E data transmissions between winning buyers
and sellers. In practice, CSP can be part of a mobile network
operator which owns infrastructure and spectrum bands, but
lacks computing resource, thus establishing a double auction to
incentivize computing server owners to contribute. The name
“E2E service auction” indicates that our auction mechanism is
“service-oriented”, which treats E2E edge computing services
as commodities by jointly allocating network and comput-
ing resources to winning buyers to satisfy their E2E QoS
requirements. On the contrary, the existing double auction
mechanisms for MEC mostly focus on the computing aspect.
In particular, while spectrum allocation and data routing form
the basis for E2E QoS guarantees for edge computing services,
they have not been considered in the existing double auction
mechanisms for MEC systems. For the high-level ideas and
broader applications of E2E service auction, please refer to
our tutorial paper [10] for details.

The key contributions of this paper are summarized as
follows.

• To provide E2E QoS guarantees for service buyers,
we propose the first truthful service-oriented double
auction mechanism for MEC which takes network
optimization, particularly spectrum allocation and data
routing, into consideration. To tackle the design com-
plexity, we propose a two-step approach to decouple
network optimization and mechanism design, which can
be applied to general network optimization problems
for MEC.

• In our framework, each buyer is allowed to initiate
multiple requests, and each seller is allowed to serve
multiple requests. We present a novel pair partitioning
method to address the truthful auction mechanism design.
Allowing each buyer to initiate multiple service requests
also distinguishes COMSA from the existing truthful
double auction schemes for MEC.

• Our proposed mechanism is shown to be truthful, indi-
vidually rational, and budget balanced. Extensive simu-
lations demonstrate that our scheme can guarantee the
truthfulness without resulting in significant performance
degradation.

II. RELATED WORK

Regarding the resource allocation and computing offloading
for MEC, most early works study the case of a single server
with a single/multiple users [11]–[13]. In light of the limited
capacity of edge servers and their dense deployment, a few
recent works further consider resource provisioning among a
number of geo-distributed edge servers [3], [14]–[16]. In [3],
Ding et al. study the placement of MEC services in wireless
mesh networks by considering both spectrum allocation and
data routing, where the relay nodes equipped with cognitive

radios deliver the input data from data sources to the assigned
edge servers.

To create incentives for computing server owners and pro-
vide services to end users, double auction is an effective
approach that naturally fits this double-sided market. Our dou-
ble auction mechanism trades “end-to-end services” instead
of pure computing resource to end users, thus requiring the
joint management of computing and network (e.g. spectrum)
resource. Essentially, our double auction mechanism trades
heterogeneous items (service requests) between buyers and
sellers, under networking constraints on the set of buyers and
sellers that can trade with each other. This stems from the fact
that the set of winning requests have to be supported simulta-
neously under E2E QoS constraints over a resource-limited
wireless network. In economic literature, McAfee presents
a truthful budget-balanced double auction mechanism where
buyers and sellers exchange homogeneous items in the sem-
inal work [17]. After that, there are a few works on truth-
ful multi-unit double auction with single or multiple good
types [18]–[21]. However, the aforementioned works do not
impose constraints on the trades. In [22], Dütting et al. develop
a modular approach to designing double auction schemes with
social welfare approximation guarantee under a constraint on
trades. However, their scheme considers homogeneous items,
which cannot be applied to our case either.

When applying double auctions to wireless networks, there
are inherent wireless interference constraints limiting the set
of buyers and sellers that can trade with each other. Along
this line, double auctions with heterogeneous items have
been investigated for dynamic spectrum trading [23]–[25] and
cooperative or device-to-device communications [26], [27].
This kind of mechanisms contain two steps: a bid-independent
assignment process and a winner determination and pricing
process. Enlightened by this line of research, our COMSA
mechanism adopts such a two-step process, while having
variants in both steps. In the first step, COMSA involves
solving a network resource optimization (e.g., a joint spectrum
allocation and request routing) problem, unlike the existing
auction schemes which only focus on buyer-seller assignment.
In the second step, COMSA adopts a novel pair partition-
ing strategy to tackle many-to-many buyer-seller assignment.
In fact, by simple modification, a two-step double auction for
cooperative communications can be applied to our case [26].
Unfortunately, their scheme is designed for one-to-one buyer-
seller assignment, which could underutilize the resources of
edge servers.

In the context of cloud/edge computing, some single-sided
auction schemes have been proposed [28]–[31], which only
consider either bid prices from service buyers or ask prices
from server owners. Unfortunately, the former case does not
consider the incentive issue for server owners, while in the
latter case, it is unclear how to charge buyers properly and
even who and where the service buyers are. Similar to our
work, some truthful double auction mechanisms have been
presented to incentivize individual cloud/edge servers [8],
[9], [32]–[34]. Nonetheless, the aforementioned works do
not consider network resource allocation, particularly spec-
trum allocation and data routing, in their mechanism design.
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Fig. 1. An exemplary paradigm of COMSA.

The only exception is a recent work on double auction
mechanism design for MEC systems, which considers band
allocation [35]. However, in their scheme, every edge server
is assumed to hold independent spectrum resource, which
prevents spectrum reuse among edge servers and might not be
realistic for dense wireless networks. Also, data routing has
not been investigated therein. Considering the fact that there
are multiple servers (sellers) in the double auction market,
appropriate spectrum allocation (reuse) is crucial to mitigate
signal interference and improve resource utilization, while
judicious data routing is essential for flow balancing and E2E
QoS guarantees if considering multi-hop networks.

III. SYSTEM MODEL

A. Network Architecture

As shown in Fig. 1, there are three parties in our system:
Computing Service Provider (CSP) provides edge com-

puting services to service buyers by leveraging the computing
resources from sellers. CSP owns some necessary infrastruc-
ture and radio resources, such as (small) base stations, relays,
and spectrum bands, to support the data delivery between data
sources and edge servers.

Service Sellers are the server owners. We assume that
each seller j ∈ J has one server, which may host multiple
computing services simultaneously according to its resource
availability. The state of the server of seller j is described as
a tuple {Θj, Φj}, where Θj represents the available computing
capability, and Φj represents the available memory space.

Service Buyers are the users who send the computing
service requests to CSP. The input data of each service request
is assumed to be generated from a source node, and needs to
be delivered to an edge server for processing or computing.
We assume that each buyer i ∈ I initiates Ki ≥ 1 service
requests, implying that it has Ki source nodes. The set
of QoS requirements for the k-th service request of buyer
i is described by a tuple Si,k = {ri,k, θi,k, φi,k}, where
ri,k , θi,k, and φi,k denote the E2E data rate requirement (in
bps), the computing requirement (in Hz), and the memory
requirement (in Byte), respectively. It is worth noting that the
service requests with QoS requirements Si,k are exactly the
commodities to be traded in our scheme.

For example, suppose that a surveillance camera generates
continuous video stream with the resolution of 1280×720 and
frame rate 30fps, which needs to be processed at the edge.
This request can be naturally mapped to a set of QoS require-
ments. When H.264 is used for video compression, the request
demands E2E data rate 2Mbps [36]. Assuming 24 bits for the
RGB color values of a pixel, if the adopted algorithm needs
5 CPU cycles to process one bit, it requires the processing
power of 3.3GHz. Also, assume that the request demands
1GB memory. Overall, the corresponding QoS requirements
are ri,k = 2Mbps, θi,k = 3.3GHz, and φi,k = 1GB.

B. Double Auction Model

Next, we illustrate the system in Fig. 1 from an economic
perspective. We characterize the interactions between service
buyers and service sellers as a single-round sealed-bid double
auction, where CSP serves as the auctioneer. Throughout
this paper, we also call both buyers and sellers as agents.
CSP conducts the auction and network optimization at the
beginning of each period, and we only need to focus on one
period.1 Both computing service requests and sellers’ comput-
ing servers are active during the considered period. Let V i =
{vi,1, vi,2, . . . , vi,Ki} be the true valuation vector of buyer i,
where vi,k denotes the true valuation of buyer i towards its k-th
service request,2 which describes the maximum price at which
the buyer is willing to pay for the request. Note that a buyer has
no preference towards different edge servers, because it is only
concerned about whether the QoS requirements of its request
are met. Likewise, let Cj = {c1,j,1, c1,j,2, . . . , c|I|,j,Ki

} be
the true cost vector of seller j, in which ci,j,k denotes the true
cost of seller j for serving buyer i’s k-th service request. For
seller j, its true cost depends on the resource consumption on
its server. Given the fact that the service requests may demand
different amount of resource, a seller has potentially different
true costs for them.

At the beginning of the auction, buyer i offers a bid vector
Bi = {bi,1, bi,2, . . . , bi,Ki} to CSP, where bi,k represents
buyer i’s bid price for its k-th service request. Since V i is
privately known by buyer i, Bi may not be equal to V i. The
utility of buyer i is the total valuation for its winning services
minus its total payment:

U b
i =

∑

1≤k≤Ki

yb
i,k(vi,k − bi,k), ∀i ∈ I, (1)

where yb
i,k = 1 represents that buyer i wins its k-th service

request, and yb
i,k = 0 otherwise; bi,k is the clearing price for

buyer i in terms of its k-th request, which will be determined
by our pricing policy. Besides, we use U b

i,k = yb
i,k(vi,k − bi,k)

to denote the utility that buyer i gains from its k-th request.
Similarly, seller j offers an ask vector

Aj = {a1,j,1, a1,j,2, . . . , a|I|,j,Ki
} to CSP, where ai,j,k

1Once the auction closes, the resource allocation will not be changed over
the whole optimization period. The optimization period depends on the service
type, network scale, and channel state. In general, in a more stationary
network, the optimization period can be longer, and vice versa.

2Another direction is to consider all the requests from a buyer as a single
bid. However, in this model, the buyer can only win either all of them or
nothing, thus decreasing buyers’ opportunities to win.
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represents its ask price for buyer i’s k-th service request.
Again, Aj may not be equal to Cj , as Cj is privately known
by seller j. The utility of seller j is equal to its total reward
minus its total cost for its winning (serving) services:

Us
j =

∑

i∈I

∑

1≤k≤Ki

ys
i,j,k(ai,j,k − ci,j,k), ∀j ∈ J , (2)

where ys
i,j,k = 1 represents that seller j wins buyer i’s k-th

request, and ys
i,j,k = 0 otherwise; ai,j,k is the clearing price for

seller j in terms of buyer i’s k-th request. Moreover, we use
Us

i,j,k = ys
i,j,k(ai,j,k − ci,j,k) to denote the utility that seller j

gains from buyer i’s k-th request.
Given bid vectors Bi for i ∈ I, ask vectors Ai for

j ∈ J , and the network conditions, CSP should allocate the
network resources, make the service assignment decisions (i.e.,
selecting winning bids and asks), and determine the clearing
prices for both sides. The utility of CSP (auctioneer) is equal
to the total service charges collected from the buyers, minus
the expense paid to the sellers:

UA =
∑

i∈I

∑

1≤k≤Ki

yb
i,kbi,k −

∑

i∈I

∑

1≤k≤Ki

∑

J∈J
ys

i,j,kai,j,k. (3)

In our system, the auction mechanism aims to (approx-
imately) maximize the system efficiency, which is defined
as the weighted sum of accepted services in this paper (see
Section IV for details). We assume that CSP is trustworthy,
i.e., executing the auction mechanism faithfully, and therefore
it does not attempt to maximize UA in (3) while just ensuring
UA ≥ 0 to avoid a deficit [23], [25], [26]. This is a reasonable
assumption, since CSP, like a wireless service provider, has the
motivation to maintain its reputation and service acceptance
ratio. For readers’ convenience, the frequently used notations
in this paper are summarized in Table I.

C. Desirable Economic Properties

As in [23], [25], [26], our double auction mechanism should
satisfy the following economic properties:

• Budget Balance: A double auction is budget balanced
if the payment charged from buyers is no less than the
payment paid to the sellers, i.e., UA ≥ 0.

• Individual Rationality: A double auction is individually
rational if no buyer pays more than its bid price for each
winning bid, and no seller is paid less than its ask price
for each winning ask,3 i.e., bi,k ≤ bi,k and ai,j,k ≥ ai,j,k.

• Truthfulness: In a double auction, truthfulness means
that no buyer/seller can improve its utility by claiming
a bid/ask price deviating from its true valuation/cost.
In other words, the optimal strategy for buyer i is to bid
Bi = V i, and the optimal strategy for seller j is to ask
Aj = Cj , no matter how other agents bid/ask.

Budget balance, individual rationality, and truthfulness are
three critical economic properties for a double auction mech-
anism. Budget balance guarantees that there is no deficit for

3Our defined individual rationality is at bid/ask level, which is a stronger
definition than the individual rationality at agent level. Since one agent
can propose multiple bids/asks in our system, only guaranteeing individual
rationality at agent level may discourage an agent from proposing some
bids/asks.

TABLE I

FREQUENTLY USED NOTATIONS

the auctioneer. Individual rationality encourages service buyers
to initiate service requests, and incentivizes sellers to con-
tribute their resources. Truthfulness eliminates the expensive
overhead of agents for strategizing over others. From agents’
perspectives, such cost is pure waste which decreases their
utilities. From the system perspective, the complex strate-
gization and the fear of market manipulation may discourage
many users with less powerful resources from participation,
thus producing very poor auction outcome. This is especially
the case in the context of wireless networks, where end
users generally want to acquire services from a user-friendly
platform with simple operations. Also, since buyers have
no incentives to bid lower than their true valuations and
sellers have no incentives to ask higher than their true costs,
truthfulness can potentially increase the number of trades
under the budget balance requirement. Due to the importance
of these three economic properties, we aim to achieve them
first while approximately maximizing the system efficiency,
which is also a widely-adopted design objective in double
auction [23], [25], [26].

IV. GENERAL SERVICE PROVISIONING PROBLEM

The main challenge in designing COMSA is that, the
truthful double auction design, i.e., winner determination and
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pricing, is intrinsically coupled with the network optimization.
For a single-side auction model, one may adapt the well-
known Vickrey-Clarke-Groves (VCG) scheme to tackle this
kind of joint problem as done in [37]. Unfortunately, the
VCG-style double auction violates budget balance. To make
the considered problem tractable, we devise a two-step proce-
dure to first obtain the “candidate” service assignment result
from a bid-independent service provisioning (ISP) problem
which does not take bid and ask prices into account, and
then make winner determination and pricing for the candidate
services to achieve the desirable economic properties. The ISP
problem avoids the appearance of prices so that buyers and
sellers are unable to affect its solution via market manipu-
lation. To improve interpretability, we first present a general
formulation for the ISP problem in this section, and then get
into the auction mechanism design in the next section.

Let us consider an abstract communication network as
illustrated in Fig. 1, where a set Ns of source nodes and a
set Nd of server (destination) nodes are at fixed positions.
CSP employs a set Nr of relay nodes and a set of bands (e.g.,
cellular bands) to facilitate data transmissions between these
two sides. We denote by L the set of transmission links in the
network, where a wired link (m, n) ∈ L exists only if there
is a direct wireline connection from node m to node n, while
a wireless link (m, n) ∈ L exists only if the received power
at node n is greater than a threshold when the transmitter m
uses the maximum transmit power. Formally, the network can
be represented by a directed graph G = (N ,L), where N is
the overall set of nodes in the network. We define a |N |× |L|
incidence matrix A of the graph such that entry am,l = 1 if
m is the transmitter of link l, −1 if m is the receiver of link
l, and 0 otherwise. We use si,k to denote a vector where the
m-th entry si,k

m = 1 if m is the source node of user i’s k-th
request and si,k

m = 0 otherwise, and hj to denote a vector
where the m-th entry hj

m = 1 if m is the server of seller j
and hj

m = 0 otherwise.
We consider the following decision variables. Let

dj
i,k ∈ {0, 1} be the service assignment variable, where

dj
i,k = 1 only when the k-th service of buyer i is assigned

to seller j. Moreover, we use flow allocation vector
f i,k = [f i,k

1 . . . f i,k
|L| ] to denote the flow rate for user i’s k-th

request over link l, which is a non-negative vector. In addition,
let x be the collection of network resource allocation variables,
such as transmit power allocation and/or spectrum allocation
variables. We formulate a general ISP problem as follows

P1: max
d,x,f

∑

i∈I

∑

1≤k≤Ki

∑

j∈J
Mi,kdj

i,k,

s.t.
∑

j∈J
dj

i,k ≤ 1, ∀i ∈ I, 1 ≤ k ≤ Ki, (4)

Afᵀ
i,k =

∑

j∈J
dj

i,kri,k(si,k − hj)ᵀ,

∀i ∈ I, 1 ≤ k ≤ Ki, (5)∑

i∈I

∑

1≤k≤Ki

f i,k
l ≤ Cl(x), ∀l ∈ L, (6)

∑

i∈I

∑

1≤k≤Ki

dj
i,kθi,k ≤ Θj, ∀j ∈ J , (7)

∑

i∈I

∑

1≤k≤Ki

dj
i,kφi,k ≤ Φj , ∀j ∈ J , (8)

f i,k
l ≥ 0, ∀i ∈ I, 1 ≤ k ≤ Ki, l ∈ L, (9)

dj
i,k ∈ {0, 1}, ∀i ∈ I, 1 ≤ k ≤ Ki, j ∈ J , (10)

Constraints on x, (11)

where d and f are the collections of variables dj
i,k and

f i,k
l , respectively, and Mi,k is the weighting factor for each

service. In particular, when Mi,k = ri,k, the objective is to
maximize the system service throughput (processed bits per
second). When Mi,k = 1 for all services, the objective is
to maximize the number of accepted services. (4) indicates
that a service request is served by at most one edge server.
(5) is the flow conservation equations for data routing [38],
which ensures that the E2E data rate ri,k of buyer i’s k-th
service can be supported.4 (6) means that the aggregated data
flow over each link should not exceed the link capacity, where
the capacity of link l, i.e., Cl(x), is taken over the network
resource allocation decision x. (7) and (8) ensure that each
server should have enough computing and memory resources
to support the assigned service requests. (11) represents the
general constraints for x. To show the broad applicability of
our design, x and Cl(x) are not specified so far. A concrete
P1 with spectrum allocation variables x will be presented in
Section VI.

In addition, in view of the fact that buyers and sellers may
not be willing to relay data for others unless there are extra
incentives to them, we can add the following constraints to
ensure that they are not employed as relays.

∑

l∈Lr
ni,k

∑

i′∈I

∑

1≤k′≤Ki′

f i′,k′

l = 0, ∀i ∈ I, 1 ≤ k ≤ Ki, (12)

∑

l∈Lt
nj

∑

i∈I

∑

1≤k≤Ki

f i,k
l = 0, ∀j ∈ J , (13)

where Lt
n or Lr

n denote the set of links whose transmitter
or receiver is node n, respectively. (12) and (13) mean that
there is no incoming flow of the source node of buyer i’s k-th
request, denoted by ni,k ∈ Ns, and no outgoing flow of the
edge server of seller j, denoted by nj ∈ Nd, respectively.

V. COMPUTING SERVICE AUCTION (COMSA)
MECHANISM

In this section, we present the COMSA mechanism, which
consists of two steps: 1) bid-independent optimization & pair
partitioning, 2) winning pair determination & pricing.

A. Step One: Bid-Independent Optimization & Pair
Partitioning

In this step, we first obtain the service assignment results
from a bid-independent optimization problem, and then divide
these results into three subsets for further operations. We first

4As in done [3], [14], we only consider the input data stream, while not
explicitly considering the computing results that edge servers send back, as the
size of result is typically much smaller than the input data size and hence easy
to handle.
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reformulate Problem P1 by introducing an additional con-
straint (14):

P2: max
d,x,f

∑

i∈I

∑

1≤k≤Ki

∑

j∈J
Mi,kdj

i,k,

s.t. (4) − (13),∑

1≤k≤Ki

dj
i,k ≤ 1, ∀i ∈ I, j ∈ J , (14)

where Constraint (14) ensures that the service requests of the
same buyer are assigned to different server nodes, which is
necessary to prevent market manipulations, and the reason will
be explained in Section V-B.5 We use a set P of buyer-seller
pairs to represent the service assignment outcome d obtained
from Problem P2. Specifically, we characterize a buyer-seller
pair by tuple Pi,j = {i, j, κi,j}, which means that buyer i’s
κi,j-th request is assigned to seller j according to the solution
to Problem P2, where κi,j =

∑
1≤k≤Ki

kdj
i,k. Due to (14),

the buyer-seller pair Pi,j uniquely corresponds to buyer i’s
κi,j-th request. Pi,j ∈ P exists if and only if dj

i,κi,j
= 1,

or equivalently,
∑

1≤k≤Ki
dj

i,k = 1, according to the solution
d. We call P as the set of candidate buyer-seller pairs, and the
final winning pairs will be selected from P in the subsequent
development.

Next, we attempt to devise a winning pair determination &
pricing algorithm for P to guarantee the desired economic
properties, particularly the truthfulness. A major difficulty
in designing COMSA comes from the multi-demand nature,
where each agent has multiple bids or asks. One straightfor-
ward solution is to replace an agent with multiple dummies,
each proposing one bid/ask, and then apply single-demand
double auctions [26] here. Unfortunately, this simple con-
version leaves room for market manipulation, because a
multi-demand agent can manipulate one bid/ask to affect
the outcome of its other bids/asks, thereby violating the
truthfulness.

To tackle the challenging multi-demand double auction
mechanism design, we devise the pair partitioning procedure
to strategically divide P into three independent subsets, which
will then undergo three independent auction processes. The
partitioning produces special bid-ask structures which facilitate
truthful auction design. Specifically, we draw the mapping
between buyers and sellers as a bipartite graph G = (I,J , E)
(see the example in Fig. 2), where edge (i, j) ∈ E and its
associated vertices denote the buyer-seller pair Pi,j ∈ P .
We construct three subgraphs G1 = (IG1 ,JG1 , EG1), G2 =
(IG2 ,JG2 , EG2) and G3 = (IG3 ,JG3 , EG3) of G, whereby we
partition the buyer-seller pairs into three independent subsets
according to the graph structure. Concretely, G1 is formed
by the buyer-seller pairs in G with sellers associated with
multiple buyers. By removing edges (i, j) ∈ EG1 from graph
G, we obtain a new graph G′ = (I,J , E\EG1). Then, G2 is

5The additional constraint (14) may make the optimal solution to Problem
P2 inferior to Problem P1 due to the decrease in assignment flexibility.
However, this impact would be small in many realistic scenarios. For instance,
a multi-request buyer owning multiple data sources (such as surveillance
cameras) usually deploys them at different locations, which are easy to be
associated with different servers. Moreover, in the special case where each
buyer only has one request, (14) can be removed.

Fig. 2. Illustration of buyer-seller pair partitioning. Graph G = (I,J , E)
is partitioned into three subgraphs, i.e.,G1 = (IG1 ,JG1 , EG1 ), G2 =
(IG2 ,JG2 , EG2 ), and G3 = (IG3 ,JG3 , EG3 ).

formed by the pairs in G′ with buyers associated with multiple
sellers, and G3 is formed by the remaining buyer-seller pairs
with buyers and sellers associated with only one agent. Since
each agent can be paired with either one or multiple agents,
these three subgraphs cover all possible pairs in the original
bipartite graph G.6 We use P1, P2 and P3 to represent
the set of pairs in subgraph G1, G2, and G3, respectively.
Clearly, P1, P2 and P3 are mutually exclusive, satisfying
P = P1∪P2∪P3. An example of pair partitioning is illustrated
in Fig. 2, and we will continue using this instance in the
subsequent development.

Note that step one is independent of bid/ask prices. Thus,
any agent is unable to manipulate their bids/asks to impact the
pair partitioning results, i.e., which subgraph their bids/asks
would enter. Moreover, in the following mechanism design,
the winning result and pricing for a bid/ask only hinge on
the subgraph that it enters. Consequently, designing a truthful
winning pair determination and pricing mechanism for P is
boiled down to designing truthful mechanisms for subset P1,
P2 and P3, respectively.

B. Step Two: Winning Pair Determination & Pricing

In this step, we present three winning pair determination
& pricing schemes, namely Subroutine1, Subroutine2, and
Subroutine3, for P1, P2, and P3, respectively. To ensure
truthfulness by considering the multi-demand nature, our basic
idea is to eliminate some pairs and set the clearing prices to the
removed bids/asks or certain thresholds (defined later), so that
the fate of each bid/ask cannot be affected by other bids/asks
proposed by the same agent.

In our design, CSP introduces thresholds bmin
th and amax

th to
ensure that all the effective bids fall in the range of [bmin

th , +∞),
and all the effective asks fall in the range of (0, amax

th ]. The bids

6One can change the order of constructing G1, G2, and G3. The desirable
economic properties can still be guaranteed, because each agent cannot control
the pair partitioning procedure no matter which construction order is used.
However, since the buyer-seller pairs appear in the previous subgraph(s) will
not appear in the later subgraph(s), the final auction result may vary across
different construction orders.
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and asks out of the above intervals will be directly rejected.7

In practice, bmin
th and amax

th can be determined by the auctioneer
based on the historical information. Notice that COMSA is
still applicable to the cases where appropriate bmin

th and amax
th

are hard to obtain due to the lack of prior information, for
which the auctioneer can simply set bmin

th to 0 and amax
th to

+∞. However, we will show later that one can significantly
boost the system performance by employing proper bmin

th
and amax

th .
1) Subroutine1: Subroutine1 is designed for P1. As illus-

trated in Fig. 3, graph G1 is a forest formed by multiple trees,
where each seller is the root of each tree. The winner determi-
nation and pricing are conducted for each tree independently.
We define Gj

1 = {IGj
1
, {j}, EGj

1
} as the tree whose root is seller

j ∈ JG1 . Let sj = argmini∈I
Gj
1
bi,κi,j be the buyer index with

the lowest bid price in tree Gj
1 . If bsj ,κsj,j ≥ amax

th , it is known
that all the sellers’ ask prices are lower than or equal to the
lowest bid price bsj ,κsj,j , since they are lower than or equal
to amax

th . In this case, all the buyer-seller pairs in tree Gj
1 win,

and the clearing prices for all the winning bids/asks in Gj
1 are

set to amax
th . If bsj ,κsj,j < amax

th , the pair involving the lowest
buyer, i.e., sj , is first sacrificed. Then, the remaining pairs in
tree Gj

1 with ask prices not higher than bsj ,κsj,j win, while the
pairs with ask prices higher than bsj ,κsj,j lose. The clearing
prices for these winning bids/asks are all set to bsj ,κsj,j .
We observe that the lowest buyer may not necessarily be
sacrificed if bsj ,κsj,j ≥ amax

th . As a consequence, a scheme with
a proper amax

th may perform better than that with amax
th = +∞.

We remark that amax
th is predetermined by CSP, and cannot be

affected by buyers or sellers.
Now we can explain why Constraint (14) is necessary to

resist market manipulation. If we remove (14) from Problem
P2, a tree of graph G1 may contain multiple bids of the same
buyer. In such a case, the buyer can deliberately make one of
its bids losing by changing it to the lowest bid price in this tree.
Since the clearing price equals the lowest bid bsj ,κsj,j in the
case of bsj ,κsj,j < amax

th , the buyer can lower this value to gain
more benefit for its remaining bids. A similar phenomenon can
also be found in Subroutine2.

To facilitate understanding, let us consider the example in
Fig. 3, where graph G1 is derived from Fig. 2. In this case,
graph G1 is formed by two trees, i.e., G5

1 and G6
1 . Suppose

that CSP sets amax
th = 4.5. In tree G5

1 , buyer 4 offers the lowest
bid price b4,κ4,5 . Since b4,κ4,5 < amax

th , pair P4,5 should be
sacrificed. Moreover, as a2,5,κ2,5 < b4,κ4,5 and a6,5,κ6,5 <
b4,κ4,5 , pair P2,5 and pair P6,5 win. The clearing prices are
set to b4,κ4,5 , i.e., b2,κ2,5 = a2,5,κ2,5 = b6,κ6,5 = a6,5,κ6,5 = 4.
In tree G6

1 , since the lowest bid price b5,κ5,6 > amax
th , both

pairs in G6
1 win, where the clearing prices are set to amax

th , i.e.,
b5,κ5,6 = a5,6,κ5,6 = b9,κ9,6 = a9,6,κ9,6 = 4.5.

It is worthy of attention that Subroutine1 should sacrifice at
least one buyer-seller pair in tree Gj

1 if bsj ,κsj,j < amax
th . As a

result, Subroutine1 yields no winning pair for P2 and P3 in
the case of amax

th = +∞, where each seller is only paired with

7In non-trivial cases, there is amax
th > bmin

th .

Fig. 3. An example of Subroutine1. The solid lines represent the winning
pairs, and the dash line represents the losing pair.

Fig. 4. An example of Subroutine2. The solid lines represent the winning
pairs, and the dot line represents the losing pair.

one buyer. This observation implies that Subroutine1 cannot
be applied to P2 and P3.

2) Subroutine2: Subroutine2 is developed for P2. Note that
in the special case where each buyer only has one request,
P2 is empty so that subroutine2 will not be executed. Subrou-
tine2 is symmetric to Subroutine1, where the only difference
is that that buyers are the roots instead (see the example in
Fig. 4). We define Gi

2 = {{i},JGi
2
, EGi

2
} as the tree whose root

is buyer i ∈ IG2 . Denote ti as the index of the seller offering
the highest ask price in JGi

2
, i.e., ti = arg maxj∈JGi

2
ai,j,κi,j .

If ai,t,κi,ti
≤ bmin

th , all the buyers’ bid prices must be higher
than or equal to the highest ask price ai,t,κi,ti

. In this case,
all the pairs in tree Gi

2 win, where the clearing prices for all
the bids/asks in Gi

2 are set to bmin
th . If ai,ti,κi,ti

> bmin
th , the pair

containing seller ti is first eliminated. Among the remaining
pairs in Gi

2, the pairs with bid prices not lower than ai,ti,κi,ti

win, whereas other pairs lose. The clearing prices for all the
winning bids/asks are set to ai,ti,κi,ti

.
For clarity, Fig. 4 gives an instance of Subroutine2. Graph

G2 is formed by two trees, i.e., G7
2 and G10

2 . Suppose that CSP
sets bmin

th to 2. In tree G7
2 , the highest ask price a7,4,κ7,4 =

4.2 > bmin
th . Thus, the auctioneer sacrifices pair P7,4. Since both

b7,κ7,7 and b7,κ7,10 are higher than a7,4,κ7,4 , P7,7 and P7,10

are admitted as the winning pairs, and the clearing prices are
uniformly set to a7,4,κ7,4 , i.e., b7,κ7,7 = b7,κ7,10 = a7,7,κ7,7 =
a7,10,κ7,10 = 4.2. In tree G10

2 , since the highest ask price
a10,12,κ10,12 = 2 ≤ bmin

th , both pair P10,11 and pair P10,12 win,
with clearing price b10,κ10,11 = b10,κ10,12 = a10,11,κ10,11 =
a10,12,κ10,12 = bmin

th = 2.
3) Subroutine3: Subroutine3 is devised for P3. Since there

is a simple one-to-one mapping in P3 (see the example in
Fig. 5), we use b(i) and a(j) to represent the bid price of
buyer i and the ask price of seller j in P3, respectively,
to simplify the notation. Without loss of generality, we sort
the buyers in non-increasing order in terms of their bids,
i.e., I = {i1, i2, i3, . . . , i|P3|}, the sellers in non-decreasing

Authorized licensed use limited to: University of Florida. Downloaded on April 30,2023 at 20:09:27 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: END-TO-END SERVICE AUCTION: GENERAL DOUBLE AUCTION MECHANISM FOR EDGE COMPUTING SERVICES 2623

order in terms of their asks, i.e., J = {j1, j2, j3 . . . , j|P3|}.
The winning buyer-seller pairs in P3 is determined by a
“boundary” (x̂, ŷ), in the way that only the pairs containing
buyer ix that x ≤ x̂ and the sellers y that jy ≤ ŷ win.
We adopt uniform pricing policy for either side, and let B
denote the clearing price for all the bids, and A denote the
clearing price for all the asks. We search for the maximum g
such that b(ig) ≥ a(jg), and then determine the boundary and
clearing prices by the following conditions:

• If g = |P3|, we set B = min{b(ig), a
max
th }, A =

max{a(jg), b
min
th } and (x̂, ŷ) =

(
g − (b(ig) < amax

th ), g −
(a(jg) > bmin

th )
)
, where (·) is an indicator function

returning 1 if the condition is true and returning 0 other-
wise.

• If g < |P3| and a(ig) ≤ v ≤ b(jg), we set B = A = v,

(x̂, ŷ) = (g, g), where v =
b(ig+1)+a(jg+1)

2 . If g < |P3|
and a(ig) > v or v > b(jg), we set B = b(ig), A = a(jg).
(x̂, ŷ) = (g − 1, g − 1).

From the above, we can see how the bid/ask thresholds can
potentially enhance the auction performance in the case of
g = |P3|. For the buyer side, when b(ig) ≥ amax

th , B is set
to amax

th ; whereas if b(ig) < amax
th , B is determined by b(ig).

Therefore, buyer ig can be selected as a winner in the former
case while having to be sacrificed in the latter case to guarantee
the truthfulness, implying that the scheme with a proper amax

th
may yield one more winning pair than that with amax

th = +∞.
The same phenomenon can be also found for the seller side.

In summary, the clearing prices are determined by





A = B = v,

if a(ig) ≤ v ≤ b(jg) and g < |P3|, (15)
A = max{a(jg), b

min
th }, B = min{b(ig), a

max
th },

otherwise, (16)

Subroutine3 is enlightened by the TASC scheme [26].
However, unlike TASC, Subroutine3 exploits thresholds bmin

th
and amax

th to enhance the system efficiency.
To illustrate the idea of Subroutine3, we give two examples

in Fig. 5, where the mapping relationships are the same
with graph G3 in Fig. 2. In both subfigures, the buyers are
sorted in non-increasing order according to their bid prices,
i.e., {i1, i2, i3, i4, i5} = {1, 2, 4, 5, 8}, and the sellers are
sorted in non-decreasing order according to their ask prices,
i.e., {j1, j2, j3, j4, j5} = {1, 9, 3, 2, 8}. Assume that CSP
sets bmin

th = 2.0 and amax
th = 4.5. In Fig. 5 (a), we have

g = 5 = |P3|, b(i5) = b(8) ≥ amax
th and a(j5) = a(8) > bmin

th .
Therefore, we obtain that (x̂, ŷ) = (5, 4), yielding the winning
pairs P1,3, P2,1, P4,9 and P8,2. P5,8 loses because seller 8 is
at the right hand side of boundary (5, 4). The clearing prices
are determined by B = amax

th = 4.5 and A = a(8) = 3.3.
In Fig. 5(b), we have g = 4 < |P3| and a(i4) = a(2) ≤ v ≤
b(j4) = b(5), where v = b(8)+a(8)

2 = 4.3. Therefore, we obtain
the boundary (x̂, ŷ) = (4, 4), yielding the winning pairs P1,3,
P2,1 and P4,9, with the clearing prices B = A = v = 4.3.

After step two, the resource allocation and routing strategy
x and f obtained from P2 may result in resource wastage,
because some candidate pairs are eliminated to ensure the

Fig. 5. Two examples of Subroutine3. In each subfigure, the dash rectangle
marks the pair (ig , jg) with the maximum g that b(ig) ≥ a(jg), the solid
rectangle marks the boundary (x̂, ŷ), the solid lines denote the winning pairs,
and the dash lines denote the losing pairs.

desired economic properties. Therefore, we can withdraw the
network resources allocated to the losing candidate pairs.
Specifically, based on the solution f to Problem P2 and the
winning pair determination outcome, we set f

i,κi,j

l to 0 for
each transmission link l if candidate pair Pi,j fails, yielding
the final flow routing strategy f∗. Then, based on the solution
x to Problem P2, we minimize the network resource usage
(e.g., spectrum allocation) for each transmission link l while
still supporting f∗ over link l, leading to the final resource
allocation strategy x∗.

VI. CASE STUDY: EDGE COMPUTING OVER WIRELESS

MESH NETWORKS

Problem P1 in Section IV is a general formulation that can
be easily adapted to various scenarios. To show a concrete P1,
let us study a wireless mesh network where relay nodes are
wirelessly interconnected to deliver data streams from buyers’
data sources to sellers’ servers. We also allow a source node to
directly communicate with an edge server in close proximity.
We consider x as spectrum allocation variables and present
the constraints on x below.

Let W be the set of spectrum bands in the system. Define
xw

l ∈ {0, 1} as the spectrum allocation variable, where xw
l =

1 if band w ∈ W is allocated to link l, and xw
l = 0 oth-

erwise. A node cannot transmit to or receive from multiple
neighboring nodes on the same band, i.e.,

∑

{l∈Lt
m|w∈Wnr

l
}

xw
l ≤ 1, ∀m ∈ N , w ∈ Wm, (17)

∑

{l∈Lr
n|w∈Wnt

l
}

xw
l ≤ 1, ∀n ∈ N , w ∈ Wn, (18)

where Lt
n or Lr

n is the set of links whose transmitter or
receiver is node n. nt

l or nr
l denotes the transmitter or receiver

of link l. Wm is the set of bands available around node m.
To avoid self interference, a node cannot use the same band
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for transmission and reception simultaneously, i.e.,

xw
l +

∑

{l′∈Lt
n|w∈Wnr

l′
}

xw
l′ ≤ 1,

∀n ∈ N , l ∈ Lr
n, w ∈ Wn ∩Wnt

l
. (19)

In addition, the interference from other nodes should be
mitigated. Specifically, if node n ∈ N is receiving data on
band w ∈ Wm, neighboring nodes that may interfere with
node n on band w should not use this band, i.e.,

xw
l +

∑

{l′∈Lt
m′ |w∈Wnr

l′
}

xw
l′ ≤ 1, ∀m ∈ N , l ∈ Lt

m,

w ∈ Wm ∩Wnr
l
, m′ ∈ {m′|nr

l ∈ Υm′ , m′ *= m, w ∈ Wm′},
(20)

where Υm′ denotes the set of nodes within the interference
range of node m′. The protocol interference model is adopted
here [39]: given the transmit power, the interference range is
derived in the way that the received power within the range
exceeds a certain threshold, and the interference is assumed
to be negligible out of this range.

Furthermore, given x, the aggregated data flow over each
link is feasible only when it does not exceed the link capacity,
i.e.,

∑

i∈I

∑

1≤k≤Ki

f i,k
l ≤

∑

w∈Wnt
l
∩Wnr

l

xw
l elBw, l ∈ L (21)

where Bw is the bandwidth of band w, and el is the spectral
efficiency of link l, depending on the transmit power of the
transmitter and path loss over link l.

By replacing (6) with (21), and (11) with (17)-(20) in
Problem P1, we obtain a joint service routing and spectrum
allocation problem. At step one of COMSA, adding the linear
constraint (14) produces the concrete form of Problem P2,
which is a mixed integer linear program (MILP). While MILP
is generally NP-hard, the solution to MILP has been exten-
sively studied in the literature. For example, one can exploit
the branch and bound scheme to find the global optimum [40]
or coarse-grained fixing algorithm to obtain the suboptimal
solution [3], [41]. With the solution to Problem P2, we can
then go through the procedure in Section V to obtain the
auction outcome.

VII. MECHANISM ANALYSIS

In this section, we first analyze the computational complex-
ity of COMSA, and then show that COMSA is individually
rational, budget balanced, and truthful.

Theorem 1: COMSA has the complexity of O(T + |I||J |+
|I| log |I|+|J | log |J |), where T is the complexity for solving
the optimization problem P2 at step one.

Proof: COMSA consists of two steps. At step one,
COMSA solves Problem P2 and then determines the
buyer-seller pair partitioning as done in Fig. 2. Since the
complexity of solving P2 depends on the specific problem
formulation and solution approach, we denote it by O(T ) for
generality. In our simulations, we adapt the coarse-grained
fixing algorithm in [3] to obtain the approximate solution

to Problem P2 with the configurations in Section VI, which
solves a series of linear programs (LPs) and a small-scale
MILP (please refer to Section VIII-A for details). Given that
an LP can be solved with the complexity of O(n3) [42],
where n is the number of variables, the complexity of the
coarse-grained fixing algorithm is O((|Ns|(|J | + |L|) +
|L||W|)3|L||W| + 2|Ns||J |(|L||Ns|)3) (the proof is omitted).
The second term in O(·) follows from the fact that the
MILP can be solved by the branch and bound approach,
which, in the worst case, degenerates to exhaustive search on
|Ns||J | binary variables together with solving LPs. However,
since the branch and bound approach prunes the search space
by eliminating candidate solutions that will not contain the
optimal solution, the average computation complexity is far
less than this. In fact, the coarse-grained fixing algorithm can
solve P2 with practical network scale efficiently, as validated
by simulations in Section VIII-B. After obtaining the solution
to P2, the pair partitioning process takes O(max{|I|, |J |}),
which involves finding buyers and sellers associated with
multiple agents. Then, at step two, COMSA is composed of
three subroutines. In Subroutine1, finding the minimum bid
price at each tree takes at most O(|I|), and comparing the
asks prices with the minimum bid price at each tree also
takes at most O(|I|). The number of trees is at most |J |.
The analysis for subroutine2 is similar to subroutine1. There-
fore, the complexity of both subroutine1 and subroutine2 are
O(|I||J |). In subroutine3, sorting the buyers and sellers take
O(|I| log |I|) and O(|J | log |J |), respectively, while search-
ing for the boundary and determining the winning pairs take
O(min{|I|, |J |}). Consequently, the complexity of COMSA
is O(T +max{|I|, |J |}+ |I||J |+ |I| log |I|+ |J | log |J |+
min{|I|, |J |}) = O(T + |I||J | + |I| log |I| + |J | log |J |).
The proof is completed. As can be observed, step two of
COMSA is computationally efficient, whereas the complexity
of step one depends on the specific problem and solution
approach. !

Theorem 2: COMSA is individually rational.
Proof: To prove the individual rationality of COMSA,

we should demonstrate that Subroutine1, Subroutine2, and
Subroutine3 are individually rational.

Subroutine1 determines the winning pairs and pricing for
each tree of graph G1 independently. In tree Gj

1 , the clearing
price for both buyers and sellers, denoted by P j

1 , is Pj =
min{bsj ,κsj,j , a

max
th }. Since bsj ,κsj,j is the lowest bid price in

Gj
1 , any winning buyer in Gj

1 is charged no more than this bid
price. Meanwhile, if a seller in Gj

1 asks more than bsj ,κsj,j or
amax

th , it will lose. Overall, a winning seller is paid no less than
its ask price. Therefore, Subroutine1 is individually rational.
The proof for Subroutine2 is similar.

In Subroutine3, the clearing prices for buyers, i.e., B, and
for sellers, i.e., A, are determined by (15) or (16). According
to the winner determination policy, the winning buyer should
bid no less than B, and the winning sellers should ask no more
than A. Therefore, Subroutine3 is individually rational, which
completes the proof. !

Theorem 3: COMSA achieves budget balance.
Proof: Clearly, COMSA achieves budget balance if the

three subroutines ensure budget balance, respectively.
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In Subroutine1 and Subroutine2, the clearing price are the
same for both the buyer and the seller in any winning buyer-
seller pair. Thus, the profit of the auctioneer equals zero.

In Subroutine3, if the payment is determined by (15), the
clearing price are the same for winning buyers and sellers.
Thus, the profit of the auctioneer equals zero. If the payment
is determined by (16), the profit of the auctioneer is UA =∑

Pi,j∈S3
(min{b(ig), a

max
th } − max{a(jg), b

min
th }) ≥ 0, where

S3 is the set of winning pairs obtained from Subroutine3. Since
b(ig) ≥ a(jg), amax

th > bmin
th , amax

th ≥ a(jg) and bmin
th ≤ b(ig),

the auctioneer gains non-negative profit, which completes the
proof. !

To show the truthfulness of COMSA, we should prove a
series of lemmas.

Lemma 1: COMSA is truthful if Subroutine1, Subroutine2
and Subroutine3 are truthful, respectively.

Proof: The first step of COMSA is independent of bid/ask
prices in the sense that a buyer/seller cannot gain control of
the solution to the bid-independent optimization problem P2
and the pair partitioning via bid manipulation. In other words,
both buyers and sellers cannot control which subroutine their
bids/asks enter. After the ungameable step one, the auction
result (winning or not and pricing) of a bid/ask hinges on
the corresponding subroutine while being independent of other
subroutines. As a result, COMSA is truthful if Subroutine1,
Subroutine2 and Subroutine3 are truthful, respectively. The
proof is completed. !

Lemma 2: In Subroutine1, the auction result of pair Pi,j is
independent of buyer i’s other bid prices and seller j’s other
ask prices, i.e., the bid price vector B−(i,j)

i = Bi\{bi,κi,j}
and the ask price vector A−(i,j)

j = Aj\{ai,j,κi,j}.
Proof: As aforementioned, the first step is independent of

bids/asks. At the second step, suppose that pair Pi,j falls into
set P1 (hence in tree Gj

1 of graph G1). On the one hand, the
only bid price of buyer i in tree Gj

1 is bi,κi,j . On the other
hand, although seller j may have multiple ask prices in Gj

1 ,
the auction outcome of Pi,j only depends on ai,j,κi,j and the
bid prices in Gj

1 . Therefore, it is impossible for buyer i and
seller j to manipulate their bid/ask prices other than bi,κi,j and
ai,j,κi,j to affect the auction outcome of pair Pi,j . The proof
is completed. !

Lemma 3: Subroutine1 is truthful for buyers and sellers.
Proof: We first prove that Subroutine1 is truthful for

buyers. To show the truthfulness, it is sufficient to demonstrate
that buyer i ∈ I can maximize its utility in terms of any of
its services, i.e., U b

i,k = yb
i,k(vi,k −bi,k), by bidding truthfully.

Without loss of generality, let us consider k = κi,j . With
Lemma 2, we only need to investigate the impact of bi,κi,j on
U b

i,κi,j
. Let Û b

i,κi,j
denote the value of U b

i,κi,j
when buyer i

revealing its true valuation vi,κi,j , and let Ũ b
i,κi,j

denote the
value of U b

i,κi,j
when it bids untruthfully. We examine all the

possible cases listed in Table II to show that Û b
i,κi,j

≥ Ũ b
i,κi,j

.

• Case 1: Buyer i loses its κi,j-th service regardless of its
behavior, leading to Û b

i,κi,j
= Ũ b

i,κi,j
= 0.

• Case 2: Due to the individual rationality that has proven
in Theorem 2, we have Û b

i,κi,j
≥ Ũ b

i,κi,j
= 0.

TABLE II

LOGIC OF CASE ANALYSIS.
√

REPRESENTS THAT THE AGENT WINS,
X REPRESENTS THAT THE AGENT LOSES

• Case 3: There are two possible reasons that buyer i loses
when bidding truthfully: 1) ai,j,κi,j is higher than the
lowest bid price in Gj

1 , i.e., ai,j,κi,j > bsj ,κsj,j ; 2) vi,κi,j

equals the lowest bid price in E1
j , and vi,κi,j < amax

th .
In scenario 1), it is impossible for buyer i to win its κi,j-th
service by manipulating its bid price. In scenario 2), buyer
i has to bid higher than the second lowest bid price in Gj

1
or amax

th to win. In such a case, the clearing price equals
min{b′, amax

th }, where b′ denotes the lowest bid price in Gj
1

other than bi,κi,j , satisfying b′ > vi,κi,j . It therefore fol-
lows that Ũ b

i,κi,j
= vi,κi,j − min{b′, amax

th } ≤ 0 ≤ Û b
i,ki,j

.
• Case 4: Recall that b′ denote the lowest bid price in Gj

1
except the bid of buyer i. If b′ < amax

th , buyer i should
bid no less than b′ to win, and is charged b′. If b′ ≥ amax

th ,
buyer i should bid no less than amax

th , and is charged amax
th .

The clearing price does not change no matter how buyer
i bids. Thus, we obtain Û b

i,κi,j
= Ũ b

i,κi,j
.

From the above, we show that Û b
i,κi,j

≥ Ũ b
i,κi,j

always
holds. Therefore, Subroutine1 is truthful for buyers. Since the
reasoning for the truthfulness of sellers is symmetric to that
of buyers, we omit the detailed proof for sellers. The proof is
completed. !

Lemma 4: In Subroutine2, the auction result of pair Pi,j is
independent of buyer i’s other bid prices and seller j’s other
ask prices, i.e., the bid price vector B−(i,j)

i = Bi\{bi,κi,j}
and the ask price vector A−(i,j)

j = Aj\{ai,j,κi,j}.
Proof: The proof is similar to that for Lemma 2, and

hence is omitted. !
Lemma 5: Subroutine2 is truthful for buyers and sellers.

Proof: With Lemma 4, we can prove Lemma 5 following
a procedure similar to that for Lemma 3. The detail is omitted.

!
Lemma 6: In Subroutine3, the auction result of pair Pi,j

(winning or not and pricing) is independent of buyer i’s other
bid prices and seller j’s other ask prices, the bid price vector
B−(i,j)

i = Bi\{bi,κi,j} and A−(i,j)
j = Aj\{ai,j,κi,j}.

Proof: In graph G3, the only bid price from buyer i is
bi,κi,j , and the only ask price from seller j is ai,j,κi,j . Thus, the
auction outcome of pair Pi,j is obviously independent of buyer
i’s and seller j’s other prices, i.e., B−(i,j)

i = Bi\{bi,ki,j} and
A−(i,j)

j = Aj\{ai,j,ki,j}. The proof is completed. !
Lemma 7: In Subroutine3, if buyer i can win its κi,j-th

service by bidding both vi,κi,j and b̃i,κi,j , where b̃i,κi,j *=
vi,κi,j , it is charged the same price.

Proof: Let g denote the maximum index that b(ig) ≥ a(jg)

when buyer i bidding vi,ki,j . According to (15) and (16), there
are three possible values for buyer i’s clearing price when it
bids vi,ki,j : 1) amax

th ; 2) b(ig); and 3) v. In case 1), we know
that all the bid prices of the buyers in the sorting I are higher
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than amax
th . As a result, buyer i has to bid b̃i,ki,j > amax

th to win,
in which case it is charged amax

th . In case 2), buyer i will be
charged b(ig) if bidding b̃i,κi,j ≥ b(ig), and will lose otherwise.
In case 3), buyer i will be charged v if bidding b̃i,κi,j ≥ v,
and will lose otherwise. As a consequence, if buyer i wins,
it will be charged the same price when bidding either vi,ki,j

or b̃i,ki,j . !
Lemma 8: In Subroutine3, if seller j can win the κ-th

service of buyer i by both asking ci,j,κi,j and ãi,j,κi,j , where
ãi,j,κi,j *= ci,j,κi,j , it is paid the same price.

Proof: The proof is similar to that for Lemma 7, and
hence is omitted. !

Lemma 9: Subroutine3 is truthful for buyers and sellers.
Proof: We first show that Subroutine3 is truthful for

buyers. Again, we examine all the possible cases listed in
Table II to prove that Û b

i,κi,j
≥ Ũ b

i,κi,j
holds.

• Case 1: We have Û b
i,κi,j

= Ũ b
i,κi,j

= 0.
• Case 2: Due to the individual rationality, we obtain

Û b
i,κi,j

≥ Ũ b
i,κi,j

= 0.
• Case 3: According to (15) and (16), there are three

possible values for buyer i’s clearing price when it bids
b̃i,κi,j : 1) amax

th ; 2) b(ig̃), where g̃ is the maximum index
that b(ig̃) ≥ a(jg̃) when buyer i bids b̃i,κi,j ; 3) v. Recall
that buyer i loses by bidding vi,κi,j . Therefore, subcase
1) occurs only if b̃i,κi,j ≥ amax

th > vi,κi,j , which follows
that Ũ b

i,κi,j
= vi,κi,j − amax

th < 0 = Û b
i,κi,j

. Subcase 2)
happens only when b̃i,κi,j ≥ b(ig̃) ≥ vi,κi,j , yielding
Ũ b

i,κi,j
= vi,κi,j − b(ig̃) ≤ 0 = Û b

i,κi,j
. Subcase 3)

occurs only when b̃i,κi,j ≥ v ≥ vi,κi,j , leading to
Ũ b

i,κi,j
= vi,κi,j−v ≤ 0 = Û b

i,κi,j
. For all the subcases,

we obtain Û b
i,κi,j

≥ Ũ b
i,κi,j

.
• Case 4: According to Lemma 7, the clearing prices are

the same for both cases, leading to Û b
i,κi,j

= Ũ b
i,κi,j

.
Then, we should prove that Subroutine3 is truthful for

sellers. As shown in Subroutine3, sellers are symmetric to
buyers in terms of both winner determination and pricing.
Therefore, the proof for sellers’ truthfulness is similar to that
for buyers, and hence is omitted. The proof is completed. !

Using the above lemmas, we show the final result on
COMSA’s truthfulness.

Theorem 4: COMSA is truthful.
Proof: Lemma 1, Lemma 3, Lemma 5 and Lemma 9

together proves that COMSA is truthful. !

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the system performance of
COMSA, and study the economic and network impact on the
MEC service provisioning.

A. Simulation Setup and Overview

We conduct the performance evaluation based on the wire-
less mesh network in Section VI. We consider a network where
4 relay nodes, J sellers (each owning one edge server), and
I buyers (each having 2 source nodes) are deployed in a
1000×1000m2 area. The transmission range and interference

TABLE III

THE PROCESSED BITS PER SECOND VERSUS THE NUMBER OF BANDS
W OBTAINED FROM PROBLEM P1 AND PROBLEM P2, WITH I = 5

(10 REQUESTS) AND J = 4

range of source nodes are set to 200m and 300m, while the
transmission range and interference range of relay nodes are
set to 500m and 600m. For illustrative purpose, all the nodes
are assumed to have the same set of W spectrum bands, each
having the identical bandwidth of 5MHz. We assume that the
transmit power at source nodes and relay nodes are 0.6W and
5W, respectively. For each link l, we adopt the deterministic
power propagation model [43] with path loss exponent 4,
noise power spectral density 10−16W/Hz, and antenna-related
parameter 1 to calculate the channel capacity el in (21).
The computing capabilities of server nodes, namely, Θj , are
uniformly generated in [6, 14]GHz. The memory spaces Φj at
server nodes are uniformly drawn from [8, 24]GB. For each
service request, the data rate requirement ri,k, computing
power requirement θi,k and memory requirement φi,k are
drawn from the intervals [1, 2]Mbps, [1, 4]GHz, and [1, 3]GB,
respectively [3], [14], [44]. To investigate the impact of bid/ask
distributions, we assume that true valuations (and bid prices)
for unit data rate are uniformly distributed in [0.5, β], and the
true costs (and ask prices) for unit data rate are uniformly
distributed in (0, 1], where β is set to 4 by default. We set
weight Mi,k = ri,k for each service, and hence the objective
of COMSA is to maximize the system service throughput.
The following numerical results are averaged over 10 random
network topologies.

We adapt the coarse-grained fixing algorithm in [3], [41]
to obtain an approximate solution to Problem P2 with the
configurations in Section VI. The main obstacle in solving
P2 optimally lies in the binary spectrum allocation variables
xw

l , because the number of network links can be very large.
The core idea of this algorithm is to relax binary variable dj

i,k
and xw

l to [0, 1], and solve the relaxed problems iteratively
by fixing at least one xw

l to 1 in each round. Specifically,
in each round, for xw

l ’s greater than α in the obtained solution,
fix them to 1, where α > 0.5. If none of xw

l ’s are greater
than α, choose the maximum xw

l and fix it to 1. Meanwhile,
fix a set of other variables xw

l to 0 according to spectrum
allocation constraints. Until all xw

l are fixed to either 1 or
0, we solve Problem P2 with continuous variables f i,k

l and
binary variables dj

i,k at the last step. Although it still requires
solving an MILP with binary variables dj

i,k, the number of dj
i,k

is not excessively large under a practical problem setting. More
details can be found in [3]. We call this algorithm as “heuristic
algorithm” hereafter, and set α to 0.85 in our simulations
[41]. In Table III, we compare the heuristic algorithm with
the optimal results (which can be obtained by an MILP solver,
i.e., MATLAB) in small-sized networks, where we set I = 5
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(10 requests) and J = 4, and vary the number of bands W .
For both problems, we observe that the performance achieved
by the heuristic algorithm is close to the optimal solution.
Since solving P2 optimally would demand an intolerable time
when the problem scale goes up, we will adopt the heuristic
algorithm to solve Problem P2 in the following simulations.
Furthermore, it can be seen that the optimal throughput of
Problem P2 is equal to that of Problem P1, implying that the
additional constraint (14) in P2 has a negligible impact on the
system performance under the considered simulation setting.

We will compare the system service throughput achieved by
the following mechanisms:

• Untruthful auction with truthful agents (UA-TA) rep-
resents the system service throughput that can be achieved
when the auction scheme does not ensure truthfulness
but every agent behaves truthfully, which is impractical.
As discussed in Section III-C, an untruthful auction could
produce very poor outcome in reality, because agents
have the incentives to strategize over others. Although
UA-TA cannot be achieved in practice, it provides the
upper bound on system efficiency to reveal the cost of
achieving truthfulness in our proposed COMSA. Specif-
ically, to formulate UA-TA, we add additional variables
bi,k and ai,j,k and the following constraints to prob-
lem P1:

bi,k = bi,k, ai,j,k = ai,j,k, ∀i ∈ I, 1 ≤ k ≤ Ki, j ∈ J,

(22)∑

i∈I

∑

1≤k≤Ki

∑

j∈J
dj

i,k(bi,k − ai,j,k) ≥ 0. (23)

The obtained solution to this reformulated problem is
UA-TA. Here, we directly set the clearing prices bi,k and
ai,j,k to the bid and ask prices, as indicated by (22).
Moreover, we use (23) to ensure the budget balance.
It is clear that individual rationality and budget balance
are satisfied according to (22) and (23). However, the
truthfulness cannot be guaranteed, since a bidder can
manipulate its bids/asks to control the clearing prices and
affect the winning bid/ask list. By assuming that agents
behave truthfully, we set bid price bi,k and ask price
ai,j,k in (22) to the agents’ true valuations and costs,
respectively.

• Threshold-Based COMSA (T-COMSA) denotes the
COMSA scheme with appropriate thresholds bmin

th and
amin

th . In the simulations, we set bmin
th = 0.5, and amax

th =
1 by default, unless specified in the figure.

• No-Threshold-Based COMSA (N-COMSA) represents
the COMSA scheme with bmin

th = 0 and amax
th = ∞.

• TASC is a truthful double auction scheme for coop-
erative communications [26], which consists of a
bid-independent assignment step and a winner determi-
nation & pricing step. TASC can be adapted to our
considered MEC scenario. However, TASC only sup-
ports one-to-one buyer-seller assignment. Thus, we add
additional constraints to Problem P2 to ensure that each
buyer has at most one computing service request admitted
and each seller serves at most one request. We take the

Fig. 6. The running time for different schemes.

assignment result obtained from this problem into the
winner determination & pricing step of TASC to obtain
the final auction outcome.

Our following simulations have two major goals. First,
we show the running time for COMSA. Second, we compare
the system service throughput of COMSA with other bench-
marks with varying network and economic factors. In particu-
lar, we examine the cost of ensuring truthfulness by showing
the performance degradation of COMSA over UA-TA, and
also demonstrate the superiority of COMSA by comparing it
with TASC.

B. Running Time

Fig. 6 illustrates the running time for COMSA and TASC.
Recalling that both COMSA and TASC (when adapted to
our MEC systems) consist of two steps, we plot the running
time for step one and step two separately in the figure. Step
one is to solve Problem P2, where the running time depends
on the specific network and solution approach. As mentioned
earlier, in our simulations, we employ the coarse-grained fixing
algorithm to solve Problem P2. By considering the wireless
mesh networks in Section VI, we observe that the time taken to
solve Problem P2 dominates the running time. On the other
hand, step two of both T-COMSA and N-COMSA are very
efficient, which are comparable to that of TASC.

C. System Service Throughput

1) Impact of Network Factors: In Fig. 7, we compare the
system service throughput for different schemes by varying the
number of requests, sellers, and bands. From Fig. 7a to Fig. 7c,
both T-COMSA and N-COMSA perform much better than
TASC. This is because TASC only supports one-to-one pairing
between buyers and sellers, which is not suitable for MEC
systems where each edge server is generally capable of serving
multiple users at the same time. Another key observation
is that, T-COMSA achieves a noticeably better performance
than N-COMSA. This is because T-COMSA can potentially
sacrifice fewer buyer-seller pairs than N-COMSA by properly
setting the thresholds bmin

th and amax
th .

Furthermore, Fig. 7 compares COMSA with UA-TA. The
gap between COMSA and UA-TA is called “performance
degradation”, which is defined as (S0 − SCOMSA)/S0, where
S0 and SCOMSA denote UA-TA and COMSA, respectively.
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Fig. 7. The system service throughput under different schemes with varied network factors.

Fig. 8. The performance degradation over UA-TA under different bid
distributions and bid threshold bmin

th .

Following the idea of “trade reduction” in double auc-
tion mechanism design [17], COMSA potentially eliminates
some buyer-seller pairs and sets the clearing prices to the
removed bids/asks or predefined thresholds to guarantee truth-
fulness. Thus, the degradation reflects the cost of guaranteeing
truthfulness. Fortunately, the degradation of T-COMSA is
30.5%− 35% compared with UA-TA, which implies that
guaranteeing truthfulness does not lead to significant perfor-
mance loss.

2) Impact of Bid Distribution: Fig. 8a illustrates the perfor-
mance degradation of COMSA over UA-TA in terms of the bid
distributions. It is not surprising that the degradation declines
with β. Since bid prices per unit data rate are drawn from
the interval [0.5, β], this phenomenon reveals that COMSA
can achieve a better performance when the true valuations
from buyers are generally higher than the true costs from
sellers. Fig. 8b examines the impact of thresholds bmin

th on the
performance of T-COMSA, where N-COMSA is used as the
performance benchmark. Recalling that the bid prices per unit
data rate are drawn from the interval [0.5, 4]. On the one hand,
T-COMSA with bmin

th directly rules out the bids lower than bmin
th ,

implying that some bids will be directly eliminated if bmin
th

is set to be larger than 0.5. On the other hand, T-COMSA
may sacrifice less bids/asks than N-COMSA in subroutine1,
subroutine2, and subroutine3. We can observe that T-COMSA
always outperforms N-COMSA when bmin

th varies from 0 to 1.
One important observation is that the minimal degradation is
achieved at the point not necessarily equal to the real lower
bound, i.e., 0.5, of the bid distribution. In other words, elimi-
nating some extreme prices by setting a stricter threshold than

the real bound might enhance the system performance, because
a very low bid not only has little chance to win, but also can
make other pairs in the same tree hard to win, according to
the rule of Subroutine1. Overall, the adoption of appropriate
thresholds is crucial to the performance of COMSA.

IX. CONCLUSION

Most existing double auction mechanisms in the wireless
community focus on either the computing resources or com-
munications resources only. Even if very few of them do
take both types of resources into consideration in the auction
design, they at most treat the auction design as joint resource
optimization problems where the bidders therein still need to
select and bid for resources. Yet, what end users care the most
is whether their services with the desired level of quality of
service can be provided and they do not really care how much
resources they are allocated. In response to this observation, in
this paper, we proposed COMSA, a general “service-oriented”
double auction mechanism to tackle the joint problem of
incentive design and service provisioning for edge computing.
Specifically, COMSA not only sets up a double-sided auction
in which service sellers can gain satisfying rewards from
service buyers to compensate their costs, but also allocates
the limited computing and network resources to support the
winning computing service requests with proper E2E QoS
guarantees. We have proved that COMSA is truthful, individ-
ually rational, and budget balanced. Simulations demonstrate
that COMSA can achieve the desirable economic properties
while maintaining satisfactory system service throughput.

In addition to service throughput, another important met-
ric in auction design is social welfare. In COMSA, the
bid-independent optimization problem at step one aims at
maximizing the weighted sum of accepted services without
taking bids/asks into account. Consequently, the requests with
high valuations may be rejected by step one of COMSA, thus
resulting in social welfare degradation. Thus, how to design
an E2E service auction for MEC with improved social welfare
is a challenging yet interesting research problem.
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