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A Generalized RSK for Enumerating

Linear Series on n-pointed Curves

Maria Gillespie & Andrew Reimer-Berg

ABSTRACT We give a combinatorial proof of a recent geometric result of Farkas and Lian on
linear series on curves with prescribed incidence conditions. The result states that the expected
number of degree-d morphisms from a general genus g, n-marked curve C' to P", sending the
marked points on C' to specified general points in P, is equal to (r+1)9 for sufficiently large d.
This computation may be rephrased as an intersection problem on Grassmannians, which has
a natural combinatorial interpretation in terms of Young tableaux by the classical Littlewood-
Richardson rule. We give a bijection, generalizing the well-known RSK correspondence, between
the tableaux in question and the (r+1)-ary sequences of length g, and we explore our bijection’s
combinatorial properties.

We also apply similar methods to give a combinatorial interpretation and proof of the fact
that, in the modified setting in which » = 1 and several marked points map to the same point
in P!, the number of morphisms is still 29 for sufficiently large d.

1. INTRODUCTION

In a recent paper [9], Farkas and Lian provide enumerative formulas for the number
of maps from a curve C' to a complex projective space P" with specified incidence

conditions. In particular, let C' be a general curve of genus g, and let x1,...,z, be
distinct general points on C'. Also choose distinct general points y1, . ..,y in P". Then
we write Ly, g for the number of degree d morphisms
f:C—Pr

for which f(x;) = y; for all i = 1,2,...,n, which is finite precisely when nr =
dr+d+r—rg.

For sufficiently large d and setting n = (dr +d+r —rg)/r, it was shown in [9] that
1) Lyra=(r+1)7%

In addition, L, , 4 is equal to a certain intersection of Schubert cycles in the Grass-
mannian. The latter formula has the following combinatorial interpretation, as we will
show in Section 3.1.

DEFINITION 1.1. Define an L-tableau with parameters (g,r,d) to be a way of filling
the boxes of an (r+ 1) x (d —r) grid with rg “red” integers and (d —r)(r +1) —rg
“blue” integers such that:
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o The red integers are left-and-bottom justified, and weakly increase up columns
and strictly increase across rows. They consist of the numbers 1,2,...,g each
occurring exactly r times.

o The blue integers, which are mecessarily right-and-top justified, are strictly
increasing up columns and weakly increasing across rows. Their values are
from {0,1,...,7}.

EXAMPLE 1.2. The following is an L-tableau with parameters (4, 3,9). We write the
“red” numbers as black font with a red shaded background for clarity.

2(41113|3|3
1134122
1(2|13|0(1]1
1(2|13(4(0]0

The work in [9] shows that the number of L-tableaux with parameters (g,r,d) is
equal to (r + 1)9 whenever d > rg + r (and r|d, so that n is an integer) via geometric
methods, and asks for a combinatorial proof. Our first main result resolves this open
problem by finding a combinatorial proof, of the following stronger result.

THEOREM 1.3. The number of L-tableaux with parameters (g,r,d) is (r+1)9 whenever
d>2g+r.

Note that in this purely combinatorial setting we only require d > g + r rather
than d > rg + r, and d is not necessarily divisible by r.

Our methods generalize the RSK algorithm (see Section 2.1). In particular, in
the case r = 1, the pair of red and blue tableaux correspond directly under the RSK
bijection to the binary sequences of length g, as we will show in Section 3.3. For
r > 1 we introduce an intermediate bijection (see Definition 3.9) to reduce to the
RSK correspondence once again.

REMARK 1.4.In the case r = 1, there are several known proofs of the fact that
Lg 1,04 = 29 for sufficiently large d, including via scattering amplitudes for d = g + 1
[19] and by establishing recursions using the boundary geometry of the moduli space
of Hurwitz covers [3]. Neither of these proofs were combinatorial in nature, though the
recursions arising in the latter paper by Cela-Pandharipande-Schmitt [3] are related
to Dyck paths and other Catalan objects for small d.

Our second main result enumerates a related set of maps. In particular, set r =1,
fix an integer k with 1 < k < min(n, d), and consider choices of points y1,...,y, € P!
such that

Y1 =Y2 = =Yk
Write L, for the number, assuming that n = (dr +d +r —rg)/r = 2d+ 1 — g,
of maps f : C — P! such that f(x;) = y; for all i. We use a similar interpretation
in terms of a family of Young tableaux that we call L’-tableaux, starting from an
intersection theoretic formula in Grassmannians for L;’ a4k given by Farkas and Lian
[9], to enumerate these maps for sufficiently high degree curves.

THEOREM 1.5. If d > g + k, we have L ;, = 29.

Notice that the formula 29 coincides with (r 4+ 1)9 at » = 1. Indeed, it is remarked
in [9] that the simple formula L;,d7k = 29 may be explained geometrically in the
same way that the formula Ly, 4 = (r+1)9 does. Further details and a more general
formula for maps with arbitrary ramification profiles were given by Cela and Lian [2].
However, the formula from [9] coming from Grassmannians is stated as a difference
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of two sums of Schubert class intersection products (see Section 4.1), and there was
previously no stated enumerative combinatorial interpretation of the latter formula,
or for that matter a direct explanation for why the difference should be positive. We
provide such an interpretation in order to prove Theorem 1.5.

This also raises the question of whether there is a natural generalization of L'-
tableaux that enables one to get a handle on the r > 1 setting with y; = --- = y.

1.1. OUTLINE. In Section 2 below we recall the necessary background results and
notation from tableaux theory and intersection theory on Grassmannians. In Section
3 we translate the geometric formulas for L, 4 into a Young tableaux enumeration
problem and prove Theorem 1.3. We also show that our bijection reduces to ordinary
RSK in the case 7 = 1 (Section 3.3), and allows us to recover a classical theorem of
Castelnuovo in the case d = r + =% (Section 3.4).

In Section 4 we define L'-tableaux for L;7 a4 and prove Theorem 1.5. Finally, in
Section 5, we more fully explore the combinatorial properties of our constructions.

Acknowledgements. We thank Carl Lian for several enlightening conversations per-
taining to this work, and thank Jake Levinson for bringing our attention to the open
combinatorial problem. We also thank Renzo Cavalieri, Alexander Hulpke, and Mark
Shoemaker for their helpful feedback.

2. BACKGROUND

We briefly recall several known facts about Young tableaux, linear series, and Grass-
mannians.

2.1. THE RSK CORRESPONDENCE ON WORDS. A partition of n is a nonincreasing
sequence of positive integers A = (A1,..., A) for which |A| :== >, A\; = n. The Young
diagram of X is the left- and bottom-justified grid of unit squares in the first quadrant
(called bozes) for which there are A; boxes in the i-th row from the bottom for all
i), A semistandard Young tableau, or SSYT, of shape \ is a way of filling the
boxes of the Young diagram with nonnegative integers such that the rows are weakly
increasing from left to right and the columns are strictly increasing from bottom
to top. An SSYT is standard, written SYT, if the entries are 1,2,...,n each used
exactly once. The shape of a Young tableau is the underlying (unlabeled) Young
diagram. Its content is the tuple (mj,mo,...) where m; is the number of times i
appears in the tableau. For instance, an SYT has content (17) = (1,1,...,1).

The RSK correspondence, in its most general form, is a bijection between
lexicographically-sorted two-line arrays and pairs of semistandard Young tableaux
of the same shape (see [10] for an excellent overview). It is constructed via an
algorithmic insertion procedure starting from the two-line array. In the case that the
bottom row of the two-line array consists of the numbers 1,2,3,...,n in order, the
top row may be any sequence, and we obtain the following special case of the RSK
correspondence.

PropoSITION 2.1 (RSK for words). Let A(r,n) ={0,1,2,3,...,7}" denote the set of
all length-n sequences with entries from {0,1,2,...,r}. Let B(r,n) be the set of all
pairs (P, Q) such that P is a semistandard Young tableauw with letters in {0,1,2,...,r},
Q is a standard Young tableau, and P and Q have the same shape of size n.

There is an explicit bijection, called the RSK correspondence, from A(r,n) to
B(r,n) for all r,n.

(DHere we are using the so-called ‘French’ convention for drawing Young diagrams.
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We will refer to the length-n sequences of letters from {0,1,...,7} as (r + 1)-ary
sequences, generalizing the notion of a binary sequence from {0, 1}.

We do not require the full definition of the RSK bijection explicitly here, and we
refer the reader to [10] for details. We will use the following property that follows
from the definition of semistandard Young tableaux.

REMARK 2.2. Since P has letters in {0, 1,2, 3,...,r}, and columns are strictly increas-
ing, any pair (P, Q) in B(r,n) can have height at most r + 1.

EXAMPLE 2.3. The 4-ary sequence 0,2,1,1,0,3,0,0,1 in A(3,9) corresponds under
RSK to the following pair of tableaux in B(3,9):

1
00 0|1\

S|l N ‘
= | Ot
BN

6]9]

2.2. LINEAR SERIES AND CALCULATIONS IN THE GRASSMANNIAN. The definitions of
Ly raqand ng,r, 4 may be made more rigorous via the theory of linear series on curves.
(See [8] for an introduction to this topic.) A linear series of type g} on a smooth
curve C' can be thought of as a r-dimensional linear family of sets of d points on C.
More formally, this data is encoded by a pair (£, V') where L is a line bundle of degree
dand V C H°(C, L) is a dimension 7 + 1 space of sections, which in turn corresponds
to a map ¢, v from C to P".

There has been much study of enumeration of linear series with prescribed ramifi-
cation conditions at specified points, including the work of Eisenbud and Harris [7],
Osserman [15], Chan and Pflueger [6], Chan, Lépez Martin, Pflueger, and Teixidor i
Bigas [4], Larson, Larson, and Vogt [13], and others. Many of these results relied on the
combinatorial tools of Young tableaux, symmetric function theory, and other aspects
of algebraic combinatorics, and in [5] led to new results in algebraic combinatorics as
well.

Here we consider the related problem of enumerating linear series with prescribed
incidence conditions at specified marked points. Write G;(C) to denote the moduli
space of g/;’s on C, and let =1, ..., x, be general marked points on C. Then the values
Ly,rq may alternatively be defined as the degree of the evaluation map ev(y,, . ..
from GJ(C) to the moduli space P of n points in P", given by evaluating the maps
¢(c,v) at the points 1, ..., Ty,

In [9], a degeneration argument on linear series, starting with a reduction to genus
0, is used to reduce the problem of computing the degree of this evaluation map to a
standard intersection problem in Schubert calculus. For genus 0 curves C, H°(C, L)
in general has dimension d 4+ 1 as a complex vector space for sufficiently high d.
Therefore, the r + 1-dimensional subspaces V' C H°(C, L) sweep out a copy of the
Grassmannian Gr(r + 1,d + 1).

The Grassmannian Gr(r+1,d+1), defined as the moduli space of r+ 1-dimensional
subspaces of C?*! has a well-known Schubert decomposition (with respect to a
given flag) into Schubert varieties X. (See [10, Ch. 9] or [11] for background on
Schubert calculus.) Here, A ranges over all partitions A = (A1, Ag,..., Ag) for which
which

M <d+1 and kE<r+1.
In other words, the Young diagram of A fits inside an (r 4+ 1) x (d + 1) grid, as shown
in Figure 1.

The Schubert varieties give rise to a basis of Schubert classes o) := [X,] of its
Chow ring A®*(Gr(r + 1,d + 1)). With respect to this basis, it is shown in [9] that

Algebraic Combinatorics, Vol. 6 #1 (2023) 4



A Generalized RSK for Enumerating Linear Series on n-pointed Curves

FIGURE 1. The Young diagram (shaded) of the partition (5,5,2,1),
drawn inside a 5 x 6 grid. This corresponds to the Schubert class
0'(575)2’1) in A‘(GI‘(5, 11))

whenever either d > rg+7r,d =r + Tr—fl, or r = 1, we have

(2) Lgra= / ofr - O,
J Gr(r+1,d+1) ! Z i—0

ap+-ta.=(r+1)(d—r)—rg \i=

Here the notation oy- is shorthand for o(;1 1, . 1) where the tuple (1,1,...,1) has
length r, and oy, is shorthand for o(,,). The integral indicates that the sum of prod-
ucts of Schubert cycles in question expands in the Schubert basis as a constant mul-
tiple of

O(d4+1)r = O(d+1,d+1,...,d+1)»

and the integral is defined to be this constant coefficient.
The corresponding result from [9] for ng,ng is that for k+¢g < 2d+1 and 2 < k < d,
we have

®3)

ng,d,k:/ Ji”ak_l Z 0i0; —/ Ui’ak_g Z oioj | -
Gr(2,d+1) Gr(2,d)

it+j=2d—g—k—1 i+j=2d—g—k—2

2.3. THE ITERATED PI1ERI RULE. The intersections of Schubert cycles on the Grass-
mannian may be calculated via symmetric function theory, as products of Schubert
classes correspond to products of Schur functions. Indeed, let {s)} be the classical
Schur function basis of the ring of symmetric functions, where A ranges over all par-
titions (see [10] or [17, Ch. 7]). Then the integral in equation (2) is equal to the
coefficient of s(4;1)¢+1 in the expansion

(4) Si]T : Z ( Sai)

ap+-ta.=(r+1)(d—r)—rg \i=

The coefficients of products of Schur functions expressed in the Schur basis are called
Littlewood-Richardson coefficients. In particular we can write

_ v
S\ 8y = E cAuSv

where the Littlewood-Richardson coefficients c§ . are all nonnegative integers.

Many combinatorial formulas for the Littlewood-Richardson coefficients are known
(see [10] for several interpretations via Young tableaux alone). In our setting we will
only need to focus on the cases when one of A\ or p is either a horizontal row or
vertical column, which are often called the horizontal and vertical Pieri rules. We
recall these rules here.

Algebraic Combinatorics, Vol. 6 #1 (2023) )
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| 1] ||

FIGURE 2. At left, the horizontal strip (6, 4,4, 3)/(4,4,3,1). At right,
the vertical strip (4,3,3,3)/(3,2,2,2). Each is drawn as a set of
shaded boxes.

DEFINITION 2.4. Suppose A and p are partitions for which the Young diagram of u is
a subset of the diagram of \. The skew shape M/ is the set of boxes that are in A
but not in .

A skew shape is a horizontal strip if no two of its boxes are in the same column,
and it is a vertical strip if no two of its boxes are in the same row.

Examples of horizontal and vertical strips are shown in Figure 2. We also say
the strip extends the inner partition p. The following rules are well-known (see, for
instance, [10, pp. 24-25].)

PROPOSITION 2.5 (Pieri rules). For y = («) a single-row partition, the Littlewood-
Richardson coefficient Su = ci’\(a) is equal to 1 if v/ is a horizontal strip, and 0
otherwise.

For u = (1") a single-column partition, the Littlewood-Richardson coefficient Sy =
CK,(P‘) is equal to 1 if v/ X is a vertical strip, and O otherwise.

Proposition 2.5 gives us a rule for multiplying any Schur function by either sr
or s, and expanding the result again as a sum of Schur functions. In particular,

S\ S(a) = Sy S\ S(l'r') = Sy
> >

v/A€Horz(a) v/XeVert(r)

where Horz(a)) and Vert(r) are the sets of all horiztonal strips of size o and vertical
strips of size r respectively.

We can iterate to give a rule for any product of row or column Schur functions.
For instance, multiplying both sides of the left hand equation above by s(;-) gives

SH - S(a) . S(lr) = Z Sy 5(17‘) = Z Z Sp

v/X€Horz(a) v/A€Horz(a) \p/veVert(r)

Interchanging the order of summation, we see that the number of times the Schur
function s, appears in this expansion is equal to the number of ways to extend A by
a horizontal strip of size a and then by a vertical strip of size r in order to fill shape
p- This observation may be generalized as follows.

COROLLARY 2.6 (Iterated Pieri rule). Let p™,u® ... u®) be partitions, each of
which is either a horizontal row or a vertical column. Then

v
Sp) = Sp@) Sk = g Cr ...y (o) Sv

where ¢, ) @8 equal to the number of ways to extend pM) by horizontal or vertical

strips (as indicated by each ) of sizes ||, ... |u®)| such that the total resulting
shape is v.

Algebraic Combinatorics, Vol. 6 #1 (2023) 6
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In order to keep track of the horizontal and vertical strips, we will label the squares
of the strip corresponding to u(*) by i for each i. This results in a tableau-like object
that enumerates the generalized Pieri coefficients ¢/, ., above.

ExAMPLE 2.7. The coefficient 02;132(7?1) 3) is equal to 2, because there are two ways

to fill the boxes of shape (4,2,1) with a horizontal strip of two 1’s, a vertical strip of
two 2’s extending it, and a horizontal strip of three 3’s that extends the shape again:

»—l[\?l\)‘
w
wa‘
w

3[3] 2[3]

In the special case when we have all horizontal strips, we recover the well-known
notion of a semistandard Young tableau, or SSYT: a filling of the boxes of a
(possibly skew) Young diagram with numbers such that the rows are weakly increasing
from left to right and the columns are strictly increasing from bottom to top. For the
case of all vertical strips, we say a transposed semistandard Young tableau
is a filling of a Young diagram with strictly increasing rows and weakly increasing
columns. We similarly obtain transposed SSYT’s in the case of all vertical strips. We
summarize these observations in the following remark.

REMARK 2.8. Notice that c’(’al) o (an) is equal to the number of semistandard Young
tableaux of shape v with exactly a; i’s for each i. Similarly, ¢{;r,)  r;) is the number

of transposed semistandard Young tableaux of shape v with exactly r; ¢’s for each 3.

3. L-TABLEAUX AND ENUMERATION BY (7 + 1)9

We now have the tools to show that the L-tableaux with parameters (g, r, d) do indeed
enumerate the integrals L, , q in the Grassmannian, starting from equation (2). We
will then show that the L-tableaux are enumerated by (r + 1)9.

3.1. THE L-TABLEAUX. Corollary 2.6, combined with the fact that the integral in
equation (2) is the coefficient of s(_,)r+1 in the corresponding product (4), shows

that »
d—r)"
Lg.ra = Z CEIT),()1T),~-7(1’”)7(ao),-~7(ar)
ap+-tap+rg=(r+1)(d—r)

where the subscripts on the coefficient contain g copies of (1"). This summation is
therefore the number of ways to form a transposed SSYT using each of the numbers
1,2,...,g exactly r times, and then extend it to fill the rest of the (r + 1) x (d —r)
grid with a semistandard Young tableau using the numbers 0,1, ..., in some varying
amounts «g, . .., o, each.

This precisely matches the definition of L-tableaux given in the introduction, which
we restate in terms of our new notation here.

DEFINITION 3.1. An L-tableau with parameters (g,r,d) is a way of filling an (r +
1) x (d — ) rectangular grid with:
o (The ‘red’ tableau.) A transposed SSYT having exactly r copies of each of the

numbers 1,2,...,¢g. That is, its content is (r9) = (r,r,r,...,7).
o (The ‘blue’ tableau.) A semistandard Young tableau on the remaining skew
shape of boxzes, with values from {0,1,...,7}.

REMARK 3.2. The preprint [9] mistakenly uses an ordinary (not transposed) SSYT
for the red tableau; a correction will appear in a later version of their work [14].

Algebraic Combinatorics, Vol. 6 #1 (2023) 7
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See Example 1.2 for an example. Our discussion thus far, starting from Equation
(2), has shown:

PROPOSITION 3.3. The number of L-tableau with parameters (g,r,d) is equal to Ly . 4
whenever either d > rg+r, d=1r+ %, orr=1.

We now show that we can “truncate” by removing some of the right-hand columns
of the grid to reduce to a simpler case.

LEMMA 3.4 (Truncation). For any g,r,d with d > g+r, the number of L-tableauz with
parameters (g,r,d) is equal to the number of L-tableaux with parameters (g,r,g+1).

Proof. Suppose d > g + r. Notice that, since it is transposed semistandard, the red
tableau has width at most g, since its bottom row is strictly increasing from left to
right and uses only the numbers 1,2,...,g. Therefore, any column to the right of
the g-th column is filled entirely with blue numbers, which strictly increase up the
columns using the numbers 0,1,2,...,r, necessarily exactly once since the columns
have height r + 1.

It follows that there is only one way to fill each of the columns to the right of column
g, and these columns therefore do not contribute to the enumeration. We therefore
may remove the last d —r — g columns and find that the number of L-tableaux with
parameters (g, r,d) equals the number with parameters (g,r,g + r). O

Lemma 3.4 tells us that in order to understand L, q for d > g + r, it suffices to
study the case d = g + r. We will restrict to this case throughout the remainder of
this section.

REMARK 3.5. When d = g+, the rectangle containing the L-tableaux is size (r+1)g =
rg + g. The red tableau has size rg and so the blue tableau has size g.

3.2. ENUMERATION BY (r+1)9. In this section we prove Theorem 1.3. We first define
the following sets of tableaux.

DEFINITION 3.6. Let TrSSYT(g,r) be the set of all transposed SSYT’s of content
(r9) = (r,r,...,r) and height <r + 1.

Note that TrSSYT(g,r) is the set of all possible ‘red’ tableaux in Definition 3.1.
We will refer to them as red tableaux throughout this section.

DEFINITION 3.7. Define a 180°-rotated SYT to be the result of rotating a standard
Young tableauxr 180° in the plane. We write SYT!®” (g,7) for the set of all 180°-
rotated SYT of size g and height < r + 1.

We informally call such a tableau a purple tableaw, as it will be used as an
intermediate object relating the red and blue tableaux of Definition 3.1.

EXAMPLE 3.8. Below is an example of a purple tableau in SYT'®%(7, 3).

7

=~ N =

ot

Given a red tableau, note that each number 1,...,g occurs once in every row
except one. Relatedly, a purple tableau in the position of the blue tableau will have
each number 1, ..., g in exactly one row. This leads us to define a bijection between
the two as follows.

Algebraic Combinatorics, Vol. 6 #1 (2023) 8
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DEFINITION 3.9 (Red to purple bijection). Let R € TrSSYT(g,r) be a red tableau.
We define a 180°-rotated tableau w(R) in the upper right corner of a rectangle by the
following iterative process. We add boxes labeled 1,2, ..., g in order, where on the ith
step we place a box labeled i as far to the right as possible in the unique row that does
not contain an i in R.

ExaMPLE 3.10. If R is the tableau at left below, ¢(R) is shown at right below.

7

e N

=]~
N | N W
W W[ ]|
= Ot Ot O

ot

We now show ¢ is a bijection. We note that a generalized version of this map was
shown to be a bijection in [16] (see also Section 5.1), but we include a direct proof
here for the special case that we are considering, for the reader’s convenience.

LEMMA 3.11. The map ¢ is a bijection from TrSSYT(g,r) to SYT!8” (g,7) forallg,r.
Moreover, for any R € TrSSYT(g,r), the shapes of R and ¢(R) are complementary
in an (r+ 1) x g rectangle.

Proof. We show both statements by induction on g. For g = 1, the tableau R must
be a column of 1’s of height r, and ¢(R) is a single 1 in the top row. They are clearly
complementary in an (r + 1) x 1 rectangle (column).

For g > 1, assume the statements hold for g—1 and let R € TrSSYT(g, r). Consider
the tableau R’ formed by removing the vertical strip of ¢’s from R. Let T" = @(R/).
Then 7" and R’ are complementary in an (r 4+ 1) X (¢ — 1) rectangle by the inductive
hypothesis.

By shifting T” one unit to the right, we form an empty vertical strip V of size r +1
between the two tableaux. Then all r of the ¢’s in R must lie in this strip, and in
fact the one remaining square  must be at the top of some column of V. Then, the
square z is precisely the one that we label g to form T = p(R) starting from T”, by
Definition 3.9. Since the entries immediately above and to the right of x will have
entries smaller than g (or z is on the right hand or top edge of the rectangle), this
construction forms a 180°-rotated SYT T, so ¢ is well-defined and the resulting pair
(R, ¢(R)) is complementary.

Finally, note that by the induction hypothesis, ¢ is a bijection for g — 1, and the
possible squares we can add to T” to form g are precisely in bijection with the possible
sub-strips of g’s of the vertical strip V that we may add to R’ to form R. Thus ¢ is
a bijection for size g as well. O

We now make precise the notion of a “blue tableau” (see Definition 3.1).

DEFINITION 3.12. Define a 180°-rotated semistandard tableau, or blue tableau
(with parameters r,g), to be a filling of a 180°-rotated Young diagram of size g with
numbers 0,1,2,....7 such that the rows are weakly increasing from left to right and
columns are strictly increasing from bottom to top.

Algebraic Combinatorics, Vol. 6 #1 (2023) 9
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ExAMPLE 3.13. Below is an example of a blue tableau. It has the same shape as the
purple tableau above in Example 3.10.

012

’O|>—A N | W

LEMMA 3.14. The pairs of blue and purple tableaux of the same shape correspond to
(r+1)-ary sequences of length g bijectively, via inverting the entries of the blue tableau
(that is, replacing each entry i by r — 1), rotating both 180°, and applying RSK.

Proof. Given a blue tableau S and purple tableau T of the same shape, rotate both
by 180 degrees to form S8 and T'8°. Then, 7% is a standard tableau, which we
call Q. We also form a semistandard tableau P out of S'8° by inverting its entries;
that is, we replace each i in S'® with r —4 in P.

Then, (P, Q) is a pair in B(r,g) (see Proposition 2.1), so by the RSK bijection on
words, we have a bijection between these pairs (P, Q) and A(r, g), which is precisely
the set of (r + 1)-ary sequences of length g. O

ExaMPLE 3.15. Consider the pair of blue and purple tableaux below.

0[2]3 ]731
2 62
1 4
0 | 5 |

The corresponding pair (P, @) is as follows:

~—

6
37\

3]

Then, via RSK, this pair corresponds to the (r+1)-ary sequence 3,2,2,1,0, 1,3 where
r=3.

We finally have the tools to produce a bijection between L-tableaux and (r+1)-ary
sequences.

PROPOSITION 3.16. The L-tableaux with parameters (g,r,g + 1) are in bijection with
the (r + 1)-ary sequences of length g (with letters from the alphabet {0,1,2,...,7}).

Proof. Each such L-tableaux consists of a red tableau and a blue tableau. The bijec-
tion follows from combining Lemma 3.11 with Lemma 3.14, which provide bijections
between red tableaux with purple tableaux, and between pairs of blue and purple
tableaux with (r + 1)-ary sequences of length g, respectively. O

EXAMPLE 3.17. Below is an L-tableau with parameters (7, 3,10). From our previous
examples, we see that it corresponds to the (r 4+ 1)-ary sequence 3,2,2,1,0,1, 3.

2(4|5|6(0]2]|3
113 [4]5|7|1|2
11213[5]6|7|1
112(3|5|6[7]|0
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There are (r 4+ 1)9 sequences of length g in the alphabet 0,1,2,...,7. Combining
Proposition 3.16 with truncation (Lemma 3.4), we get as a corollary Theorem 1.3.

THEOREM 1.3. The number of L-tableaux with parameters (g,r,d) is (r +1)9 for all
d>2r+g.

We now analyze two special cases of our construction.

3.3. THE CcASE r = 1. We claim that at r = 1, the composition of bijections discussed
above reduces to ordinary RSK. Indeed, in this case, the red tableau is simply a
standard Young tableau on the numbers 1,2,...,¢g of height 2. The blue tableau
consists of 0’s and 1’s, and when rotated 180 degrees is the same shape as the red
tableau (and is semistandard after interchanging 0’s and 1’s). More precisely, we have
the following.

PROPOSITION 3.18. When r = 1, the bijection ¢ (Definition 3.9) from red to purple
tableaux reduces to 180° rotation.

We illustrate this with an example. Consider the L-tableau with parameters (5, 1, 6)
below:

3/0]1]1
112(4(5|0

The bijection ¢ applied to the red tableau above gives:
[3] (5]4]2]1
1]2]4]5] 3

and combining the purple tableau on the right with the blue (after 180° rotation and
switching 1’s and 0’s gives the pair:

1 3
00|0|1\ 12|4|5\

which corresponds under RSK to the binary sequence 0,1,0,0, 1.

3.4. THE CASTELNUOVO CASE. In [9], the authors consider another special case,

when d = r + %, and show that their formula

r
[ 2y (e
Gr(r+1,d+1) i—0

aog+-ta,=(r+1)(d—r)—rg \i=

holds in this case as well. In fact, by construction we have (r+1)(d—r) —rg = 0 and
so the integral above reduces to the simple product ¢f. in the cohomology ring of the
Grassmannian.

Due to work of Castelnuovo [1] and Griffiths and Harris [12], it is known that this
quantity equals

| 20!
A IS TR (s +7)!
where s = 47 (which must be an integer since ;2% = d — r is an integer and r and

r+ 1 are relatively prime). We observe here how this may be enumerated directly via
a variant of L-tableaux, using our ‘red to purple’ bijection ¢ of Definition 3.9.
Indeed, the integral fGr(7-+1 A1) o7, is the coefficient of 8((d—r)yr+1) in the product

3?17“)7 which by Corollary 2.6 is the number of transposed SSYT’s having shape a
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(r+1) x (d—r) rectangle and exactly r of each letter 1,2,..., g. Note that d—r = =%
so the entire rectangle has
rg
r+1
boxes, and therefore it is completely filled by such a transposed tableau. In other
words, we are counting the number of ‘red’ tableaux that precisely fill an (r+1) x rs
rectangle where s = ﬁ. Note that such tableaux exist if and only if r + 1 divides g.

(r+1)

rg

PROPOSITION 3.19. The number of transposed SSYT’s of (r + 1) X rs rectangle shape

(where s = 25 ) and content (19) is equal to

-2t .pl
5 I .
(5) g sle(s+D)-voo(s+1)!

Proof. These tableaux, under the bijection ¢, correspond precisely to the standard
Young tableaux of rectangle shape (r + 1) x s. The classical ‘hook length formula’
(see [17, Ch. 7]) then results in the formula (5). O

EXAMPLE 3.20. Suppose r =4 and g = 10, so d = r + ;74 = 12 and s = 25 = 2.
Then one of the rectangular transposed tableaux enumerating Ly, 4 is shown in red
on the left below. Its image under ¢ is a 180°-rotated SYT filling an (r 4+ 1) x s box

as shown in purple on the right below.

2(3|5|6[7(8]|9](10 411
113[4|5|7[8[9]10 62
1124|567 [9]10 813
112|3[4|6|7|8]10 915
112(3[4|5(6[8]9 101 7

4. ['-TABLEAUX AND ENUMERATION BY 29

We give a tableau interpretation of Lf;, 4,5 0 this section, starting from equation (3),
and show that these tableaux are enumerated by 29 to prove Theorem 1.5.

4.1. THE L'-TABLEAUX. Recall that equation (3) states that if £ + ¢ < 2d + 1 and
2< k<d:

L;,d,k:/ ofor_1 Z 00 —/ ofor_2 Z 00 | -
Gr(2,d+1) Gr(2,d)

i+j=2d—g—k—1 i+j=2d—g—k—2

We first give an interpretation of the left hand integral in the equation above. Recall
that a standard Young tableau of size g is an SSYT of size g in which the numbers
1,2,...,g are each used exactly once.

DEFINITION 4.1. A positive L'-tableau with parameters (g,d, k) is a way of filling
a2 x (d—1) grid with:
o A standard Young tableau of size g in the lower left corner (shaded red),

o A shading of the k — 1 rightmost bozes in the top row (gray),
o A skew SSYT in two letters 0,1 on the remaining squares (blue).

By rearranging so that we think of the o;_;1 as last in each product, and applying
Corollary 2.6, we see that the positive term in equation (3) is equal to the number of
positive L’-tableaux.

ExAMPLE 4.2. Here is an example of a positive L'-tableau with parameters (3,7,4).
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31011
2/0(0]1(1

The second term in (3), which we are subtracting, is similarly given by a set of
smaller tableaux that we call negative tableaux.

DEFINITION 4.3. A negative L'-tableau with parameters (g,d, k) is a filling of a
2 x (d — 2) grid with:

o A standard Young tableau of size g in the lower left corner (shaded red),

o A shading of the k — 2 rightmost bozes in the top row (gray),

o A skew SSYT in two letters 0,1 on the remaining squares (blue).

EXAMPLE 4.4. Here is an example of a negative L’-tableau with parameters (3,7,4).

31011
112(0]0]1

Notice that there exist positive L’-tableaux if and only if (k — 1) + g < 2(d — 1),
which is slightly stronger than the given condition k& + g < 2d + 1. In particular if
k+g=2dork+g=2d+1wehave Ly ;, =0, so we restrict our attention to the
case that k + g < 2d — 1.

4.2. ENUMERATION BY 29. We now prove Theorem 1.5.

DEFINITION 4.5. For fized g,d, k, write L, and L’_ for the set of positive and negative
L' tableaux respectively of type (g,d, k). Also write o : L' — L' for the map that
takes a negative tableau T and adds a blue 1 to the end of the bottom row and a gray
box to the end of the top row.

Our above analysis shows that
Lyax =Ly —IL1],

and we analyze this difference combinatorially. The definitions above directly show
that v is a well-defined injective map, and so

(6) L;,d,k = |L/+ N 1/’(LI—)|-
The following proposition characterizes the image (L’ ).

PROPOSITION 4.6. A positive tableau T is equal to (S) for some negative tableauz S
if and only if the bottom row of T contains a blue 1.

Proof. By the definition of ¢, any tableau in its image has a blue 1 on the bottom
right. Conversely, if the bottom row of 7" contains a blue 1, then by semistandardness
of the blue tableau, the bottom-rightmost entry is a blue 1 as well, and removing the
last column of T' yields a negative tableau S for which ¥(S) =1T. O

Applying this proposition and Equation (6), we obtain the following combinatorial
interpretation of L;y Ak

COROLLARY 4.7. The quantity L;’d’k is equal to the mumber of positive L'-tableaux
with parameters (g,d, k) for which the bottom row contains no blue 1 (and hence the
only blue numbers in the bottom row are 0’s).

For sufficiently large d, we can simplify this characterization even further.

THEOREM 1.5. If d > g + k, we have L 4, = 29.
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Proof. Suppose d > g+ k. Then d—1 > g+ (k—1), so the red and gray boxes of any
positive L’-tableau with parameters (g, d, k) cannot share a column. In particular, for
any positive tableau 7' that has no blue 1 in the bottom row, there are all blue 0’s
under the gray squares, and moreover any remaining columns to the right of the red
tableau are uniquely determined (having one 0 and one 1) as well. Thus the data
determining T is entirely contained in its first g columns, which consists of a red
standard tableau @, and a binary tableau P of the same shape as ), where P is
obtained by rotating the blue numbers in these columns 180° and replacing all 0’s
with 1’s and 1’s with 0’s.

By the RSK correspondence, these pairs (P, Q) are precisely in bijection with the
binary sequences of length g, and so we have that L;7d7k = 29 as desired. O

EXAMPLE 4.8. The tableau below at left is a positive L’-tableau with parameters
(3,7,4) that is not the image of a negative one. Since g = 3, we restrict our attention
to the first three columns (second image below), then consider the associated pair of
tableaux of the same shape by rotating the blue tableaux and inverting the labels.
Finally, this pair corresponds under RSK to a unique length 3 binary sequence.

3[0]1 o [8]o]1] 3] [0 110

ololo]o 1120 1]2 01\

5. FURTHER COMBINATORIAL OBSERVATIONS

In this section we provide two generalizations/observations regarding the combina-
torics discussed above. In particular we consider two variations of L-tableaux and
explore their properties.

5.1. GENERALIZING THE MAP . We note that the ‘red to purple’ bijection ¢ may
be generalized to transposed tableaux with ¢ of each entry (for any positive integer
i < r) as follows.

DEFINITION 5.1. Let TrSSYT(g,r,1) be the set of all transposed SSYT’s of content
(#9) = (i,4,...,1) and height <r+ 1.

In particular, setting ¢ = r gives us the red tableaux defined in Definition 3.6, and
setting ¢ = 1 gives us the set of standard Young tableaux of size g and height < r+ 1.

PROPOSITION 5.2. There is a bijection @; : TrSSYT(g,r,i) — TrSSYT(g,r,r + 1 — 1)
for each i, that agrees with the bijection ¢ of Definition 3.9 at i = r (up to a 180°
rotation of the output).

See Figure 3 for an example of this map for i = 3 and r = 4.

In fact, the map ; can be realized as a special case of an even more general map
studied by Stanley [18]. It was later studied by Reiner and Shimozono [16], who call
the map the box complement and study it on a generalization of partition diagrams
called %-avoiding shapes. Proposition 5.2 may be proven using similar methods to
our proof of Lemma 3.11, but we simply refer to [16] for an existing proof in the more
general setting.

REMARK 5.3. For i = r, the transposed SSYT’s of height at most r+1 are in bijection
with standard Young tableaux, and therefore may be enumerated by the hook length
formula for any given shape. It would be interesting to investigate whether there is a
hook-length-like formula enumerating transposed SSYT’s with content (:7) and height
at most r+ 1 for 1 <i <r.
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25 4131
20145 31
135 412
1/3]4 52
1123 4\ 5

FIGURE 3. A tableau in TrSSYT(5, 4, 3) and its image under 3 in TrSSYT(5, 4, 2).

5.2. RESTRICTING THE ALPHABET. We now ask whether our bijective constructions
can lead to related interesting enumeration problems. In particular, one natural vari-
ant we may consider is limiting the alphabet of the blue tableau (in the L-tableau
setting) to a smaller size, so that under RSK we end up with words in a smaller
alphabet.

DEFINITION 5.4. Define a restricted L-tableau with parameters (g,r,g + r,i) to
be an L-tableau of paramters (g,r,g + r) where we restrict the alphabet of the blue
integers to {0,1,...,7r —i}.

Note that the parameter g + r is redundant, and we simply include it for consis-
tency with the parameter d in our previous notation. For larger d there would be no
restricted L-tableaux, because a full column of height » 4+ 1 cannot be filled by blue
integers from {0,1,...,7 — i} in a semistandard tableau.

It turns out that this restricted setting simply reduces to a smaller case of our
usual L-tableaux.

PROPOSITION 5.5. The number of restricted L-tableaux with parameters (g,r,g +r,1)
is equal to the number of L-tableauz with parameters (g, 7 —i,g+1).

Proof. By Lemma 3.4 we may assume we are working with truncated tableaux. Since
the blue integers are restricted to the alphabet {0,1,...,7 — i}, the blue tableau has
height at most r—i. So, the bottom 4 rows of the red tableau have width g. These rows
must be filled with each integer 1,...,g. As there is a unique way to do this, the act
of removing the bottom ¢ rows of the (r + 1) x (g) grid gives a bijection between the
restricted L-tableaux with parameters (g,r,d, ) and the L-tableaux with parameters
(ga r—= i7 d) O

Combining this proposition with Theorem 1.3 yields the following enumerative
result.

COROLLARY 5.6. There are exactly (r — i+ 1)9 restricted L-tableaux with parameters
(9,79 +r,0).
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