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Abstract. We consider the (iterated) Kapranov embedding €2, : M07n+3 — Pl x ... x P,
where M ,,+3 is the moduli space of stable genus 0 curves with n + 3 marked points.
In 2020, Gillespie, Cavalieri, and Monin gave a recursion satisfied by the multidegrees of §2,,
and showed, using two combinatorial insertion algorithms on certain parking functions, that
the rotal degree of Q, is (2n — )!'=2n—1)-(2n—3)---5-3- 1.

In this paper, we give a new proof of this fact by enumerating each multidegree by a
set of boundary points of M 3, via an algorithm on trivalent trees that we call a lazy
tournament. The advantages of this new interpretation are twofold: first, these sets project
to one another under the forgetting maps used to derive the multidegree recursion. Second,
these sets naturally partition the complete set of boundary points on M 42, of which there
are (2n — 1)!1, giving an immediate proof of the total degree formula.

Keywords. Moduli spaces of curves, projective embeddings, multidegrees, trivalent trees

Mathematics Subject Classifications. 05E14, 14N10, 05C05, 14H10, 05A19, 05C85

1. Introduction

In this paper, we give a new interpretation of the multidegrees of the Deligne—Mumford mod-
uli space Mo,ms [DM69] of genus-0 stable curves with n marked points, under the projective
embedding

Qn:MO,n+3<_>P1 X oo X P
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called the iterated Kapranov map. This map, first studied by Keel and Tevelev [KT09], is one of
the simplest ways to realize M, 3 as a projective variety. The divisor classes associated to (2,
are the omega classes, modifications of the better-known psi classes. The composition of €2,
with the Segre map yields the log canonical embedding My, 3 — PM™D'=1 essentially the
most natural projective embedding of Moﬂwg.

For a composition k = (ki,...,k,) € ZZ,, we write deg, (€2,) for the k-th multidegree,
which counts the intersection points of M07n+3 with k; general hyperplanes pulled back from
each P factor, fori = 1,. .., n. Thatis, deg, (€2,,) corresponds to (the degree of) an intersection
product of omega classes in the cohomology ring of My, 3. The ftotal degree deg((),,) is the
sum of all the multidegrees; equivalently, it is the ordinary degree of the projectivization of the
affine cone over §2,, (M, 3) € P'x---xP"in the affine space A2 x A% x - - - x A"l = An(n+3)/2
(see Van der Waerden [Wae78]).

Prior work [CGM21] showed that the multidegrees can be enumerated by certain parking
functions, called column-restricted parking functions or CPFs. It was shown that CPFs satisfy
a recursion for the multidegrees called the asymmetric string equation [CGM21], which states
that for each k,

deg, (2,) = Z degi, (Q), (1.1)

J>i

where 7 is the index of the rightmost 0 in k, and the Ej are certain compositions of n — 1 (see
Section 2.4 for details). This recursion arises geometrically from the forgetting
map 7; : Mo i3 — Moo along with certain relabeling maps relabely ; : Mo 10 — Moo
Using CPFs, the authors then find the following remarkable fact:

Theorem 1.1 ([CGM21, Theorem 1]). The total degree of (), is the odd double
factorial (2n — 1)!1.

Theorem 1.1 is shown in [CGM21] via a second and more complicated combinatorial inser-
tion algorithm on CPFs, different from the asymmetric string recurrence. The quantity (2n—1)!!,
however, suggests a geometric reason for this result: (2n — 1)!! is also the total number of triva-
lent trees on n + 2 (not n + 3) leaves, i.e., the total number of boundary points on Mg, 2.
In particular, it is natural to ask if there exist sets T'((k) C Mg, .3 for each k = (ky,...,k,)
with > k; = n, such that:

2. For each k, letting i = i(k) and with relabeling maps defined as in the asymmetric string
equation (see Section 2.4), we have m;(T'(k)) = U relabellzé (T'(k;)), counted with mul-
§>i
tiplicity,

3. The sets T'(k) are disjoint for distinct k, and |_| T'(k) is the complete set of boundary
kEn
points on a boundary divisor D C M(],%g that is isomorphic to MO,MQ.
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Indeed, a collection of sets satisfying (1)—(2) has cardinalities |7'(k)| = deg, (£2,,) for all k by
Equation (1.1), while visibly totaling (2n — 1)!! by condition (3).

In this paper, we give an algorithm on trivalent trees we call a lazy tournament that associates
to each k a set Tour(k) C M, 3; see Definition 1.2. We show that these points satisfy proper-
ties (1)—(3) above; see Proposition 3.13. Lazy tournament points then give an immediate proof
of Theorem 1.1 on the total degree of €2,,; see Theorem 1.6 and Corollary 1.7. For completeness,
we also give a bijection between the column-restricted parking functions of [CGM21] and our
lazy tournament points (our proofs of Theorems 1.1 and 1.6 do not rely on this bijection).

These results add to a growing body of literature relating algebraic combinatorics and the ge-
ometry of moduli spaces of curves. The basic connection to trees via the boundary stratification
(see Section 2) is long established. Enumerative questions have been of particular interest re-
cently, including examining (as in this paper) many intersection products and structure constants
on HW [CL21, Sil22], tautological relations [CJ 18, PP21, Pix13], and Schubert calculus involv-
ing limit linear series [CP21, EH86]. Other topics of interest include the .S,, action on H*(M,,,)
over C [BM13, Get95, RS22] and R [Rai06], Chern classes of vector bundles on Mo,n asso-
ciated to sl [DGT22, GKMO02], explicit projective equations for Mﬁ,n [MR17], and similar
questions pertaining to a number of closely-related moduli spaces [CDH'22, CLQ22, Fryl19,
LLV20, Shal9].

Studying projective varieties by their projective embeddings is a common theme in com-
binatorial algebraic geometry. In particular, the Pliicker embedding has been used to extract
combinatorial and geometric data about the Grassmannian and more generally partial flag vari-
eties [MS05, Ch. 14].

This is one of a collection of several papers [GGL22a, GGL22b] by the authors on the
combinatorics of the embedding (2, and its associated geometric properties. Our work also
adds to a growing list of work connecting multidegrees of projective varieties and combina-
torics [CCRL*20, CGM21, KMO05].

1.1. Lazy tournaments and main results

A boundary point of M07n+3 may be represented as a leaf-labeled trivalent tree, that is, a
tree with n + 3 labeled leaves for which every vertex has degree 1 or 3. We use the labels
a,b,c,1,2,3,...,n,asin Figure 1.1, and we order the labelsa < b<c<1 <2< ... < n.

Definition 1.2. Let 7" be a leaf-labeled trivalent tree. The lazy tournament of 7' is a labeling
of the edges of 7' computed as follows. Start by labeling each leaf edge (that is, an edge adjacent
to a leaf vertex) by the value on the corresponding leaf, as in the second picture of Figure 1.1.
Then iterate the following process:

1. Identify which pair ‘face off’. Among all pairs of labeled edges (i,7) (ordered so
that ¢ < j) that share a vertex and have a third unlabeled edge E attached to that vertex,
choose the pair with the largest value of <.

2. Determine the winner. The larger number j is the winner, and the smaller number 7 is
the loser of the match.
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Figure 1.1: From left to right: A leaf-labeled trivalent tree 7', its initial labeling of the leaf edges,
and its full lazy tournament edge labeling. Winners of each round of the tournament are shown
in boldface at right, indicating 7' € Tour(1,0, 1, 2).

3. Determine which of i or j advances to the next round. Label £ by either ¢ or j as
follows:

(a) If E' is adjacent to a labeled edge u # j with u > 4, then label E by i. (We say ¢
advances.)

(b) Otherwise, label E' by j. (We say j advances.)
We then repeat steps 1-3 until all edges of the tree are labeled.

We refer to Step 3(a) above as the laziness rule, since j drops out of the tournament despite
winning its match. This happens when j can see that its opponent 7 will be defeated, again, in
its next round against u.

Definition 1.3. The winners’ composition of a tree 7 is the composition k = (ky, ka, ..., k)
where k; is the number of times the numbered label - wins in the lazy tournament of 7.

We will primarily be concerned with tournaments on trees 7" in which leaf edges a and b
share a vertex, in which c loses every round in which it competes and a and b never compete.
Therefore the winners’ composition will in general record the complete data of how many times
each player wins.

An example of the result of the lazy tournament process is shown in Figure 1.1. For a more
detailed example, see Example 3.1 below.

Remark 1.4. The lazy tournament algorithm is motivated by the morphisms 7; and relabely ; in
the asymmetric string equation (see Section 2.4). Specifically, we will show that Step (3) of Def-
inition 1.2 agrees with applying relabely ; o 7; to the corresponding stable curve (Lemma 3.12)
and that this leads to an appropriate bijection (Lemma 3.13).

We can now state the main result, which says that the multidegrees may be enumerated by
keeping track of the winners in all possible tournaments.

Definition 1.5. For any weak composition k = (kq,...,k,) of n, let Tour(k) be the set of
trivalent trees 7' whose leaves are labeled by {a, b, c, 1,...,n}, in which the leaf edges a and b
share a vertex, and the winners’ composition of 7" is k.
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For n = 0, we write k = & for the empty composition and we have Tour(&) = {7}, the
unique such trivalent tree. In Figure 1.1, the tree 7" is in Tour(1,0, 1, 2).
Our first main result is the following:

Theorem 1.6. We have deg, (€2,,) = |Tour(k)|.

As k varies over all compositions, the sets Tour (k) partition the complete set of boundary
points on the divisor d,; = WO,{@C,LM”}, consisting of curves in which a, b are alone on the
same component. The boundary points on this divisor correspond to trivalent trees on n + 2
vertices, of which there are (2n — 1)!l. This completes the proof that the total degree of (2,, is
the odd double factorial.

Corollary 1.7. The total degree of the embedding 2, : Mg 13 — Pt X P2 x -+ x P" js

deg<Qn> = Z deg(kl,..‘,kn)(Qn) = Z ’Tour<k17 SRR kn)‘ = <2n - 1)”

for all n.

Given the equality deg, (€2,,) = |Tour(k)], it is also natural to ask if there is a set of hyper-
planes (k; taken from P’ for each i) whose intersection with ,,(M ,,+3) is Tour(k). In general
there are not, as the example below shows.

Example 1.8. The two trees in Tour(1, 1), shown in Figure 1.2, represent boundary points whose
coordinates (with the conventions of Section 2.2) under the map €, in P! x P?
are [0:1]x[0:1:0] and [0:1] x[0:1:1]. In any choice of hyperplanes H; from P!
and H, from P? intersecting the embedding in these two points, we must have that H; is the
single point [0 : 1] in P!, and H> must be the line [0 : 1 : ¢] in P2. However, the intersec-
tion [0 : 1] x [0 : 1 : #] actually lies entirely on 25(M 5), so the intersection is not transverse.
See Example 2.4 in Section 2.3 for more details.

In investigating this question, we gave a different construction [GGL22a] to calculate prod-
ucts of both psi classes and omega classes, by taking certain explicitly-constructed limits of
intersections of hyperplanes. A special case of that construction gives a (different) set of bound-
ary points enumerating the multidegrees deg, (2,,); however, the inductive structure is entirely
different from that of the asymmetric string equation (the properties (1)—(3) stated above do not
hold), and we do not know of a proof of the double factorial phenomenon using that approach.

In a handful of cases, the construction can be modified to produce the points Tour(k) (see
[GGL22a, Theorem 1.14]), but we do not know if this can be done in general. Towards this end,
we include in this paper the weaker result that there is always a set of hyperplanes, k; of them
from P’ for each i, whose intersection with ,,(Mg ., 3) contains Tour (k).

Theorem 1.9. Let [z, : z. : 21 @ 22 : -+ : z,_1] be the projective coordinates of the P" factor
in P! x ... x P" (with the conventions of Section 2.2). Then the coordinates of the points
of Tour(ky, ..., k) in the P" component all lie on the k, hyperplanes

2 =0, 22=0, 21 =0, ..., 242=0,

where if k. = 1 then our collection only contains the hyperplane z, = 0, and if k, = 2 then we
only have the two hyperplanes z, = 0 and z. = 0. (If k, = 0 it is the empty collection.)
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Figure 1.2: The two trees in Tour(1, 1). In both, the ¢ advances by the laziness rule on the first
round, and is defeated once by each of 1 and 2.

The remainder of the paper is organized as follows. In Section 2, we provide some necessary
background and definitions on the geometry of M ,,. In Section 3, we examine lazy tournaments
and prove Theorem 1.6. In Section 4, we give a direct bijection between the lazy tournaments
and the column restricted parking functions defined in [CGM21]. Finally, in Section 5, we prove
Theorem 1.9.

2. Background

2.1. Structure of M x and trivalent trees

Let X = {a,b,c,1,...,n}. A point of MO, x consists of an (isomorphism class of a) connected
genus-0 curve C' with at most nodal singularities and distinct, smooth marked points p;, € C
labeled by the elements ¢ € X, such that each irreducible component has at least three special
points, defined as marked points or nodes. The dual tree of a point of M, y is the graph
consisting of an unlabeled vertex for each irreducible component C! C (', a vertex labeled 4
for each i € X, and edges connecting 7 and the vertex corresponding to C’ when p; € C’, and
connecting C” and C” when C’ and C"” meet at a node. The resulting graph is always a tree since
the curve has genus 0. (See Figure 2.1).

A tree is trivalent if every vertex has degree 1 or 3 and at least one vertex has degree 3. A
tree is at least trivalent if it has no vertices of degree 2 and at least one vertex of degree > 3.
Notice that the dual tree of any stable curve is at least trivalent.

Let I' be an at-least-trivalent tree whose leaves are labeled by X. Then the boundary stra-
tum Dr corresponding to I' is the set of all stable curves whose dual tree is I'. The bound-
ary strata Dr form a quasi-affine stratification (as defined in [EH16]) of M(), x, and the zero-
dimensional boundary strata, or boundary points, correspond bijectively to the trivalent trees
on leaf set X. Indeed, since the points are isomorphism classes of stable curves and an auto-
morphism of P! is determined by where it sends three points, a stable curve whose dual tree is
trivalent represents the only element of its isomorphism class.

When I' has exactly two vertices of v, w of degree > 3, the closure Dr is of codimension
one, called a boundary divisor. For 7, j € X, we write 9, ; for the boundary divisor with ¢, j
on v and all other leaves adjacent to w.

2.2. The Kapranov morphism Mo’n_i_g — P"

For all facts stated throughout the next two subsections (2.2 and 2.3), we refer the reader to
Kapranov’s paper [Kap93], in which the Kapranov morphism below was originally defined.
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1 4 1 4 1 4
2 2 ZH
3 5 3 5 3 5

Figure 2.1: At left, a stable curve in My, in which each circle represents a copy of P'. At
center, we form the dual tree I of the curve, by drawing a vertex in the center of each circle and
then connecting it to each marked point and adjacent circle. At right, we show I'. The set Dr
is the dimension-1 boundary stratum consisting of all stable curves in which 1,2, 3 are on one
component and 4, 5 are on another.

The nth cotangent line bundle L, on Mo,x is the line bundle whose fiber over a
curve C' € My x is the cotangent space of C' at the marked point n. The n-th 1 class is the
first Chern class of this line bundle, written ¢),, = ¢1(LL,,). The corresponding map to projective
space

’wn’ : MU,X — ]P)na

is called the Kapranov morphism.

We coordinatize this map as follows. The map |¢),,| contracts each of the n + 2 divisors J,, ;,
for i # n, to a point 3; := |¢,|(d,;) € P™. These points are, moreover, in general linear
position. We choose coordinates so that 3y, 8., 51, - .., 8,—1 € P" are the standard coordinate
points [1 : -+ : 0],...,[0 : --- : 1] and f3, is the barycenter [1 : 1 : --- : 1]. We name the
projective coordinates [z, : z. : 21 i -t Zp_1]-

Given a curve C'in the interior M x, by abuse of notation we also write pg, Py, Pe, D1, - - -, Pn
for the coordinates of the n + 3 marked points on the unique component of C', after choosing
an isomorphism C' = P!. With these coordinates, the restriction of |1,| to the interior M x is
given by
| Pa—=DPb  Pa—Pc  Pa— D1 . Pa — Pn—1

Pn—=Py DPn—Pe Pn—P1  Pn—Pa-1]
It is often convenient to choose coordinates on C' in which p, = 0 and p,, = oo, in which case
the map simplifies to

[¢¥nl(C) 2.1

[Un|(C) = [Pyt pe P12 Pt
With this coordinatization, we can take limits from the interior to obtain coordinates
of |¢,,|(C) for C on the boundary of M x. In particular, consider the boundary stratum given
by the dual graph:
i1 J1
Un

iy n Jnt2—r
Here {a,b,c,1,2,....,n — 1} = T U J where I = {iy,... i} and J = {J1,.. ., Jni2r}-

Without loss of generality suppose ¢; = a. The points in this stratum may be obtained by
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taking a limit having the property that the points p; for i € I\ {a} approach p, = 0 and
the points p; for j € J all approach 1 (and p,, = oo). Thus, any point in this stratum has
coordinates [py : p. 1 p1 ¢ -+ : pp—1) Where p; = 0ifi € I and p; = 1if j € J. Now, since
any trivalent tree is in the closure of a unique such stratum (by considering the two branches
connected to the leaf edge n), we obtain the following.

Lemma 2.1. Let C be a boundary point of MO’ x corresponding to the trivalent tree T'. Let vy,
be the internal vertex of T' adjacent to the leaf edge whose leaf is labeled n, and consider the
two remaining branches of T connected to v,. Then |, |(C) = [2p : 2 : 21 0 29 1 -+ & 2y
where z; = 0 if the leaf i is on the same branch as the leaf a, and z; = 1 otherwise.

Example 2.2. Consider the tree below.

a C

The 5 is the largest leaf, and it is connected to a vertex v that is in turn connected to two other
branches, one to the left of v5, and one to the right of v5. The branch on the left contains a, so
we have 2z, = z; = 23 = 0 and, from the other branch, z. = 25 = z, = 1. Hence the tree maps
under the Kapranov map to the point

(222120123124 =[0:1:0:1:0:1] € P°.

2.3. The iterated Kapranov embedding (2,

Let 7, : MO, x — H[)’ x\n be the nth forgetting map, which sends a stable curve C' to the stable
curve 7, (C') obtained by forgetting the point marked by 7, and then collapsing any components
with only two special points. If the dual tree of C' is T, then the dual tree of 7,(C) is obtained
from 7' by deleting the label n and its leaf, and then contracting any edges with degree 2.

The Kapranov morphism, combined with 7,,, gives a closed embedding

M(),X — P" x MO,X\n-
C s ([6al(C). malC)).

We may repeat this construction using the map [t,_1| on M X\n» and so on, obtaining a
sequence of embeddings. This gives the iterated Kapranov morphism

Qn: Mox — P xP? x ... x P,

The i-th factor of this embedding is given by forgetting the points p; 1, . . ., p,, then applying the
Kapranov morphism |¢);| on the smaller moduli space. We can also combine the forgetting maps
with Lemma 2.1 to obtain the coordinates of any boundary point of M x under the embedding.
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Corollary 2.3. Let C be a boundary point of MQ x corresponding to the trivalent tree T'. Given
an integer 1 < r < n, let T be the tree corresponding to T,,1 © T.49 0 -+ 0 m,(C), let v, be
the internal vertex of T' adjacent to leaf edge r, and consider the three branches at v,. Then the
coordinates of Q0,,(C) in the P" factor are |z, : 2. : z1 : -+ @ z,| where z; = 0 if leaf i is on the
same branch as a in T', and z; = 1 otherwise.

Example 2.4. Consider the two points in Tour(1, 1), shown below.
a c a c

1<

b 1 2 b 2 1

In the first, the 2 separates a, b, 1 from ¢, so it maps to [0 : 1 : 0] in the P? factor. In the second,
the 2 separates a, b from 1, ¢, so it maps to [0 : 1 : 1] in the P? factor.
In both, forgetting the point 2 yields the tree:

<

b 1

Here, the 1 separates a, b from ¢, so both points map to [0 : 1] in the P! factor. We therefore
obtain, as claimed in Example 1.8, that the two points in Tour(1,1) map to [0 : 1] x [0 : 1 : 0]
and [0: 1] x [0:1:1].

Moreover, the only pair of hyperplanes from P! and IP? that contains both defines the closure
of the locus [0 : 1] x [0 : 1 : ¢], which are the coordinates of the points on the stratum:

a c
b 1

since we may think of the point 1 as varying on its component of the curve while ¢ and 2 are

fixed.

2.4. Omega classes and a recursion for the multidegrees

Definition 2.5. The i-th omega class is the pullback w; = () H;, where H, is the class of a
hyperplane in the P* factor, lifted to P! x --- x P". Equivalently, w; = ff1);, where f; is the
composite forgetting map

Ji=mig10Migp0-0my: Mopnyz — Moiys.

Let k = (ki1,...,k,) be a weak composition of n, that is, a sequence of nonnegative inte-
gers whose sum is n. We can express multidegrees as intersection products of omega classes:

writing w¥ for Wi - - - whn,

_ k1, ko kn __ k
deg(,ﬂ ..... kn)<Qn> —/ Wy Wo™ - Wy —/ w.
Mo,n+3 Mo,n+3

The multidegrees of €2, satisfy a recursion, first shown in [CGM21], stated as Proposition 2.10
below.
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Definition 2.6. For any weak composition k = (k1, ..., k;,) of n, define
i(k) = max{¢: k, =0}

be the rightmost index i such that k; = 0, or i(k) = cif k = (1,1,1,...,1) is the unique
composition of length n with no 0 entries. (Recall that we order the indicesa < b < ¢ <1 <
2<---<n)

Definition 2.7 (Tilde Construction). Let k = (ky,...,k,) be a weak composition of n, and

let j with i(k) < j < n be arbitrary. Then we define Ej to be the weak composition of size
and length n — 1 formed by (a) decreasing k; by 1 and then (b) removing the rightmost 0 in the
resulting sequence (which is either the i(k)-th or j-th entry).

Example 2.8. Ifk = (0, 1,0,0, 2,1, 3), then ks = (0,1,0,1,1, 3) since it is formed by subtract-
ing one from the fifth entry, 2, and removing the rightmost 0. On the other hand,
ke = (0,1,0,0,2,3) since it is formed by subtracting one from the sixth entry, 1, and then re-
moving the new 0.

Definition 2.9 (Relabeling maps). Let k be a composition, let i = i(k) and leti < j < n. We
define the isomorphism

relabelkvj : MO,abc1-~§~~-n — MO,abcL--n—l

by relabeling the marked points as follows. We have k; # 0 by definition of (k). If k; > 1, we
decrement each of the labels i 4 1,...,n by 1. If k; = 1, we instead send j — ¢ and decrement
each of the labels j + 1,...,n by 1.

Proposition 2.10 (Asymmetric string equation [CGM21, Prop 4.10]). Let i = i(k), and
let m; : Mo aper..n — M 0.abel be the forgetting map. Then we have

/ Wk = / (7)) 5 (W*) (2.2)
Mo abel--n M

= / Z(relabelkd)*(wif), (2.3)
M

0,abcle--im J>1

_ / Sk, 2.4)
Mo,abclmnfl ]>Z

In particular, the multidegrees satisfy the recursion

deg, (2,) = Z degﬁj(Qn_l). (2.5)
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Example 2.11 (See [CGM21, Ex. 4.6]). For k = (1,0,0,0,2,1,3), the asymmetric string
equation gives

/ W1W§W6wr§ (2.6)
Mo, abc1234567
2 3
= / (74) s (Wrwswews ) (2.7)
Mo, abe123567

= / (relabely 5)* (wiwiwswy) + (relabely ¢)* (wiwaws) + (relabely 7)* (wiwiwswy)
Mo abe123567

(2.8)

3 2 3 2 2
= / WIWaWsWy + WiWsWy + WiWwiwswe. (2.9)
Mo,abc123456

Below, Proposition 3.13 shows that (in this example) the same operation 7, and relabelings lead
to a corresponding bijection

Tour(1,0,0,0,2,1,3) — Tour(1,0,0,1,1,3) U Tour(1,0,0,0,2,3) U Tour(1,0,0,2,1,2).
See also Example 3.11.

Note that the recursion (2.5) in Proposition 2.10 is similar to the recursion for the multinomial

coefficients (k1 " ) = W’,{, Recall that for any composition (k1, ..., k,,) of n with all

.....

parts nonzero, we have

n " n—1
(klkm) _;(kl,kz,...,kjl,kj—1,kj+1,...,km>'

Defining the asymmetric multinomial coefficient to be the corresponding multidegree, that is,

we can restate Proposition 2.10 as

(=" )

j>i
for any weak composition k of n into n parts.
3. Tournaments and the proof of Theorem 1.6

The main goal of this section is to prove Theorem 1.6, which we restate for convenience be-
low. We say an edge of a tree is a leaf edge if it is adjacent to a leaf vertex. Also recall from

Definition 1.5 that Tour(ky, ..., k,) is the set of trivalent trees 7" whose leaves are labeled by
{a,b,c,1,... ,n} in which the leaf edges a and b share a vertex, and the winners’ composition
(Definition 1.3)is (ky,. .., k,). Thatis, each label ¢ > 1 wins exactly k; times in the tournament

of T
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Theorem 1.6. For any weak composition k = (kq, ..., k,) of n, we have
deg, (Q2,) = |Tour(k)|.

Recall the definition of a lazy tournament from Definition 1.2. We begin this section with
an illustrative example of the tournament process.

Example 3.1. Start with the following tree, in which we have labeled each leaf edge by the label
of the corresponding leaf:

To start the tournament, we first compare all three pairs of leaves whose leaf edges share a vertex:
(a,b), (2,3),and (c, 1). The one with the largest smaller entry is (2, 3) (since the chosen ordering
isa <b<c<1<2<3<4)andso they face off first. The number 3 wins, and by the laziness
rule with « = 4, the number 2 advances. We highlight the winner in boldface and draw the new
label:

For the next round, our possible pairs are (a, b), (¢, 1), and (2,4), so 2 and 4 face off next. The
entry 4 wins (shown in boldface) and advances since the laziness rule does not apply:

For the next round, our possible pairs are just (a, b) and (c, 1), and the one with the larger smaller
entry is (¢, 1). So 1 and c face off, with 1 winning and ¢ advancing by the laziness rule with v = 4:
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Since 1 won one round, 3 won one round, and 4 won two rounds, the winners’ composition
is (1,0, 1, 2). Therefore, this tree is an element of Tour(1,0, 1, 2).

Remark 3.2. A trivalent tree with n—+3 labeled leaves has exactly n rounds in its lazy tournament.
Notice also that player ¢ can never win a round because it is the smallest player (besides a and b,
who do not compete), and so the winners’ composition contains the complete data of how many
times each label wins. Therefore, the set of all trivalent trees with leaves labeled a, b, c, 1, ..., n,
such that the leaf edges of a and b share a vertex, is the disjoint union of Tour(k) over all weak
compositions k = (k1, ..., k,) of n.

Before embarking on the proof of Theorem 1.6, we illustrate it in the case n = 2.

Example 3.3. The three leaf-labeled trivalent trees on {a, b, ¢, 1,2} in which the leaf edges of a
and b share a vertex are shown below:

a C a C
: : ) S b>_§71
b1 2 b2 1 2

In the tournament of the first two, the labels 1 and 2 each win one round, and in the tournament
of the third, the label 2 wins both rounds. Thus |Tour(1,1)| = 2 and |Tour(0,2)| = 1, and so
by Theorem 1.6 we have deg ;)(€22) = 2, deg g5 (22) = 1, and deg, 4)(€22) = 0.

3.1. Combinatorial results about tournaments

We now prove a number of technical lemmas about tournaments that will be helpful in the proof
of Theorem 1.6. The first is that the losing elements of each round weakly decrease as the
tournament is run.
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Lemma 3.4. Let T’ be a trivalent tree on n+3 leaves, and let i1, 1o, . . . , i, be the smaller elements
of the pairs that face off in its lazy tournament in each round, listed in order from start to finish.
Then we have ©1 > i9 = -+ = 1,

Proof. We show that 7; > i-; the remaining inequalities follow by induction on n.

The first pair of leaves to face off in the tournament is (i, j) for some j > iy, and by the
definition of the tournament, all other pairs of leaves (¢’, ;') have ¢’ < i;. Let E be the third edge
adjacent to leaf edges ¢; and j, as defined in Definition 1.2.

Case 1: Suppose FE is not adjacent to any other labeled edge besides 7; and j. Then after the
first round, the new possible pairs to consider for determining who faces off next are all of the
form (i, j') with ¢" < 4;. Since i, is among the values i/, we have 75 < 7.

Case 2: Suppose I is adjacent to two other labeled edges besides ¢; and j. Then we are at the
last round of the tournament, and the statement of the lemma holds trivially.

Case 3: Suppose FE is adjacent to exactly one other labeled edge u. If u < 71, then 7 advances
in the tournament and (u, j) becomes one of the new pairs to consider along with the other (7', ;')
pairs. So in the next round, i, is either u or one of the ¢’ values, so since u < i, and each i’ < i1,
we again have 75 < 75.

Otherwise, if u > i, then by the laziness rule i; advances, and it becomes a new pair (i1, u)
to consider for the next round; since 7, is still largest among the smaller elements of each leaf
pair (7', j/), we have iy = i, in this case.

Thus in all cases 71 > 79, and similarly 21 > 75 = -+ > 4,,. O]

Definition 3.5. Given a label 7 of a leaf-labeled trivalent tree, we say ¢ is a winner if it wins any
round of the tournament, and it is a loser if it loses any round of the tournament.

The next two lemmas show that every label that participates in at least one match is either a
winner or a loser but cannot be both. That is, “winners always win” and “losers always lose”.

Lemma 3.6 (Winners Lemma). Suppose j is a label of a leaf-labeled trivalent tree. If j wins the
first round in which it competes during the lazy tournament, then j wins all subsequent rounds
in which it competes.

Proof. Suppose j wins a round against ¢ < 7 and advances. Since the sequence of losers in the
tournament decreases by Lemma 3.4, then j cannot appear after ¢ in the list of losers. Therefore,
7 must win all of the subsequent rounds in which it competes. [

Lemma 3.7 (Losers Lemma). Suppose i is a label of a leaf-labeled trivalent tree. If i loses the
first round in which it competes during the lazy tournament, then i loses all subsequent rounds
in which it competes.

Proof. 1If i loses but also advances to a future round, it must have done so via the laziness rule,
and so it is already adjacent to another edge that is larger than it. Thus it also loses its next round,
and so on. O
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We now restrict our attention to trivalent trees having a, b adjacent. Recall that Tour (k) is the
set of trivalent trees whose leaves are labeled by {a, b, ¢, 1, ..., n} with winners’ composition k
in which the leaf edges a and b share a vertex. Note that ¢ is a winner in such a tournament if
and only if £; > 0. We mention the following observation:

Lemma 3.8 (Participation Lemma). Let T' € Tour(k) for a weak composition k of n > 1. In
the tournament of T, neither a nor b compete in any round, and all of the other labels compete
in some round. Moreover, when a label advances, it always advances forward along its path
towards a.

Finally, we consider the largest index ¢ for which k; = 0, which is used in the definition of Ej
(Definition 2.7) and the asymmetric string equation. We show that it is the first and largest loser
in the tournament. Moreover, we are in the lazy case (or not) depending on whether k; = 1
ork; > 1.

Lemma 3.9 (First Round Lemma). Let T € Tour(k) and consider the pair (i1, j) in the tour-
nament of 'T' that faces off first, written so that i, < j.

1. We have i, = i(k), the index of the rightmost 0 in k.
2. The laziness rule applies in this round if and only if k; = 1 and n > 2.

Proof. 1. Since 7; loses every round it competes in (by Lemma 3.7), we have k;, = 0 by
the definition of Tour(k). Furthermore, by Lemma 3.6 and 3.8, the only indices 7' with
ki = 0 are those that lose a round at some point. By Lemma 3.4, these indices decrease
as the tournament is run, so i, is the largest index for which k;, = 0, and so i; = i(k).

2. If the laziness rule applies, then j does not advance, so evidently k; = 1. Conversely,
suppose k; = 1 and (for contradiction) that j advances. By the Winners Lemma (3.6),
J wins every round in which it competes, and by the Participation Lemma (3.8), ;5 will
compete in one more round unless n = 1. This gives a contradiction unless n = 1. [

3.2. Proof of Theorem 1.6

In order to prove Theorem 1.6, we will show that the sets Tour(k) satisfy the same recursion
as the multidegrees (Proposition 2.10). For the remainder of this section, we fix n > 1 and a
composition k = (ki, ..., k,) of n, and we set i := i(k).

Definition 3.10. We define a map

Tazy © Tour(k) — H Tour(Ej)

as follows. Here, | [ is coproduct (formal disjoint union) of sets, since the sets Tour(k;) are not
necessarily pairwise disjoint. Let T € Tour(k) and consider the pair (¢, j) in the tournament
of T' that faces off first, with j > 7. Then we define

TMazy (1) := relabely ; o m;(T').



16 Maria Gillespie et al.

a C a C
Tazy

2 3

Figure 3.1: The map 7,,, applied to the tree from Example 3.1. Notice that applying 7y, cor-
responds to running the first round of the tournament, deleting the two leaf edges that competed,
and decrementing the higher label 4.

By Lemma 3.9(2), the two cases in the definition of relabely ; correspond to whether or not
the laziness rule applies to the first round of the tournament, 80 7., (7") also gives the tree that
remains after letting either 7 or j advance (as appropriate), then decrementing the higher labels.

Below, in Lemma 3.12, we verify that this gives m,,, (1) € Tour(k;), i.e. the winners’

composition associated to 7,y (7') is k;. We will then show that m,,, is a bijection. This
formulation implies the property (2) stated in the introduction, that

mi(Tour(k)) = U relabel;é (Tour(Ej))

§>i
as multisets.
An example of 7y, is shown in Figure 3.1.

Example 3.11. Continuing Example 2.11, the following recursion holds:

Tour(1,0,0,0,2,1,3) KELN Tour(1,0,0,1,1,3) II Tour(1,0,0,0,2,3) Il Tour(1,0,0,2,1,2).
(3.1)
Geometrically, m,,, maps the corresponding points of Mo,13t0 My, as in the diagram

W Mo aber2sass > Tour(1,0,0,1,1,3)
‘e\a‘oe

J— T4 J— relabely ¢
MO,abcl234567 > MO,abcl23567

U re]abe]ki
Tour(1,0,0,0,2,1,3)

> Mo .aper2aass > Tour(1,0,0,0,2,3)

/

Mo aper23ase > Tour(1,0,0,2,1,2).

Here, by Lemma 3.9 the laziness rule applies only when the first round of the tournament
has (7, j) = (4, 6), corresponding to relabely .

Lemma 3.12. The map T,y is a well-defined map to [];., Tour(k;); in particular,
if T € Tour(k) and j is the winner of the first round of the tournament of T,
then T,y (1) € Tour(k;).
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Proof. Let T € Tour(k) and let j be the winner of the first round of 7, facing off
against © < j. Recording the winners for rounds 2,...,n on 7' gives the composition
k' = (ky,...,k; —1,...,k,). By Lemma 3.9, m,,,(T) is the tree given by forgetting the label
that does not advance (and decrementing the higher labels), so its tournament runs the same way
as the remainder of the tournament for 7". The winners’ composition k” for my,,y (1") is therefore
given by deleting the 7th or jth entry of k', according to which of 7 or j did not advance. On the
other hand, k; is given by deleting the rightmost 0 of k'. Byt the laziness rule and Lemma 3.9,

these are the same entry. Thus k” = kj, SO Tazy (1) € Tour(k ). O

Proposition 3.13. The map .,y is a bijection.

Proof. We construct the inverse of 7j,,,. Given an element 7" € Tour(kj) for some 5 > 7, we
construct the unique 7" € Tour (k) such that 7y, (7') = 7" as follows.

Case 1. If k; > 1, define T by increasing the labels ¢,¢ + 1,7 + 2,...,n by 1 each in 77,
splitting the leaf edge of ¢ into two edges with middle vertex v, and then attachmg a leaf edge
labeled 7 to v. By the definition of k;, the rightmost 0 in k occurs strictly before 7, so all losers
in 7" are less than ¢. Thus the pair (4, j) is the first to face off inT". Moreover, if there is a labeled
edge u adjacent to the empty edge connected to (7, j) in 7', assume for contradiction that u > i.
Then (u — 1,7 — 1) was a pair of leaves that faced off in 7", sou — 1 < i and so u < i, a
contradiction. Hence in 7', j advances after defeating i, and therefore 7" — 7" under our map.

Case2. Ifk; =1, define T by first increasing the labels j, j+1,...,n by 1 eachin 77, splitting
the leaf edge of j into two edges with middle vertex v, and then attaching a leaf edge labeled j
to v. Note that since k; = 1 we have (k;); = 0 by the definition of k;, and moreover ¢ is the
index of the last O in Ej. Thus i was the loser of the first match in 7", meaning it was paired
with a larger entry w > i in the first round of 7”. Thus in 7', the laziness rule applies in the
match between ¢ and j, and j sends 7 along to face off against w. It follows that our map above
sends 7" — 7" as desired. O

Proof of Theorem 1.6 and Corollary 1.7. By Proposition 3.13 and induction,
| degy ()] = [Tour(k)|.

For the Corollary, the sets Tour(k) are disjoint as k varies, and | |, Tour(k) is the set of all
trivalent trees on the stratum d,, = Mg ,+2. It is well-known that there are (2n — 1)!! such
trees. [

Remark 3.14. The fact that there are (2n — 1)!! trivalent trees on n + 2 labels is by a simple
inductive count: for each tree 7" on n + 1 labels, there are 2n — 1 ways to insert the last leaf
edge: it can be attached to the leaf edge labeled by one of the marked points ¢, 1,2,...,n — 1,
or to one of the n — 1 non-leaf edges in 7".
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| i

Figure 4.1: At left, a column-restricted parking function in the set CPF(1,0, 1,2) since the
number of labels in each column from left to right are 1,0, 1, 2. At middle, a parking function
which is not column-restricted, since dy = 2. At right, their Dyck path, shown staying above the
diagonal from (0, 4) to (4,0).

4. Parking functions

In [CGM21], the multidegrees deg, (£2,,) were shown to enumerate a type of parking function
called a column restricted parking function (CPF). In this section we give a bijection between
CPF's and lazy tournaments.

We first recall the general definition of a parking function, as in [Hag93], though we draw
our Dyck paths using down and right steps rather than up and right, as seen in, for instance,
[BMPS19]. This will be useful for avoiding the extra step of reversing the sequence k (as
in [CGM21])).

Definition 4.1. A Dyck path of height n is a lattice path in the plane from (0, n) to (n, 0), using
right (1,0) and down (0, —1) unit steps, that stays weakly above the diagonal line connecting
the two endpoints.

Definition 4.2. A parking function is a way of labeling the unit squares just to the left of the
downward steps of a Dyck path with the numbers 1,2, ..., n such that the numbers in each
column are increasing up the column. For 1 < ¢ < n, the ith column of a parking function is
the ith column of squares from the left in the n x n box that contains it. We write PF(n) for the
set of parking functions of size n.

Two examples of parking functions of height 4 are shown in Figure 4.1.

4.1. Column-restricted parking functions

Definition 4.3. Let P be a parking function. For every number label z in P, we say x dom-
inates a column to its right if the column contains no entry greater than z. Define the dom-
inance index d, to be the number of columns to the right of x dominated by x (including
empty columns). Then we say P is column-restricted if x > d, forallz = 1,2,3,... ,n.
We write CPF(ky, ..., k,) for the set of column-restricted parking functions having exactly k;
labels in the i-th column for all 7.

Theorem 4.4 (Theorem 1.1 in [CGM21]). We have deg;, 1. ,(2n) = [CPF(ky, ..., ky)|.

.....

This theorem was proven by showing that the quantities |CPF(ky, ..., k,)| satisfy the recur-
sion of Proposition 2.10, using the following map.
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Figure 4.2: Applying the map r to column-restricted parking functions. At left is the case in
which the 1 is in its own column (k; = 1) and at right, the case in which 1 shares a column with
other labels (k; > 1). Notice that the result is column-restricted in each case.

Definition 4.5. We define r : PF(n) — PF(n—1) as follows: given a parking function P, r(P)
is defined by removing the row containing the number 1, decrementing all remaining labels, and
then deleting the rightmost empty column, as shown in Figure 4.2.

The following result shows that r restricts to a bijection on column restricted parking func-
tions. (Note that in [CGM21], r was called ¢.)

Proposition 4.6 (Proof of Theorem 5.3 in [CGM21]). The map r induces a bijection

i : CPF(k) — [ [ CPF(k;). (4.1)

j>i
We will need the following additional lemma about CPFs.

Lemma 4.7. Suppose P € PF(n) has first dominance index d; = 0 and r(P) is column-
restricted. Then P is column-restricted as well.

Proof. Letibe the index of the rightmost empty column of P, and let j be the column containing
the 1. First suppose x is a label in P to the right of column ¢. Then all columns to the right of x
are nonempty, and so x dominates at most z — 1 columns to its right (if these columns have
largest entries 1,2, ...,z — 1). Thus d, < x as required.

Now suppose z is a label to the left of column ¢ in P. Then = — 1 is the corresponding label
in r(P) and it dominates no more than = — 2 columns to its right. Then in P, 2 dominates at most
one more column to its right, namely either the empty column ¢ if 1 is not in its own column, or
column j if 1 is in its own column in column j. Thus d, < x — 1 as required. O
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a c 3
T 1
N i
A 2
2 3
lﬂ-lazy lr
a c 2]
T 3
b 1 1
3 2

Figure 4.3: Tracing a tree T € Tour(1,0, 1, 2) through the commutative diagram (4.3).

4.2. Bijection with tournaments

We now construct an explicit bijection 7 : Tour(ky, ..., k,) — CPF(ky,...,k,) that makes the
following diagram of bijections commute, where 7 is the map (4.1) defined above.

Tour(k) ——— CPF(k)

l l’* (4.2)

[] Tour(k;) 2% J]cPr(k)),

J>i J>i

Here || 7 is induced by the maps 7 : Tour(Ej) — CPF(Ej). Recall our convention that the
columns of a parking function are numbered 1, 2, ..., n from left to right.

Definition 4.8. Given a trivalent tree 7" € Tour(k), we define 7(7") to be the unique parking
funtion of size n such that for each 1 < m < n, the number m is in column 7, where 7 is the
winner of round m in the tournament of 7.

Example 4.9. In the tournament 7" in Example 3.1, Round 1 was won by the number 3, so 7(7")
has the label 1 in column 3. Round 2 was won by 4, so the label 2 appears in column 4 in 7(7').
Round 3 was won by 1, so 3 appears in column 1, and Round 4 was won by 4, so 4 appears in
column 4. Thus 7(7') is the unique parking function whose sets of column labels, from left to
right, are {3}, {}, {1}, {2, 4}, as shown in the upper right of Figure 4.3.

As shown in [CGM21], one can use the recursion of Proposition 2.10 to show that the mul-
tidegree degy, .,(¢2,) is nonzero if and only if the sequence (K, ..., k,) is a reverse Catalan
sequence, meaning that k,, +k,,_1 +k,_o+---+k,_;.1 > ¢ forall ¢. Itis therefore an immediate
consequence that applying 7 to any tree 7' € Tour(k) does indeed result in a parking function,

with column heights &, ... k,.
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Lemma 4.10. For any T € Tour(k), we have r(7(T")) = T(Tauy(T')). That is, the following
diagram commutes:

Tour(k) ——— PF(n)

l’”“” l (4.3)

HTour(Ej) —— PF(n—1).

Proof. Let T € Tour(k), and let i < j be the first pair that face off against each other in the
tournament of 7". Then j is the column of the number 1 in 7(7"), and i is the largest index for
which k; = 0 by Lemma 3.9. In particular, the 1 is to the right of the rightmost empty column
of 7(T). The parking function r(7(7")) is the result of deleting the row containing the 1 in 7(7’),
decrementing all remaining labels, and then deleting the rightmost empty column of the resulting
diagram, which is column ¢ if k; > 1 and column j otherwise. This has the effect of decreasing
the column indices of any label to the right of column  or j respectively by 1.

On the other hand, the tree mazy(T ) is formed by running the first round of the tournament,
deleting the used leaf edges 7, j, and decrementing all the labels above j or ¢ respectively accord-
ing to whether k; = 1 or k; > 1. Under 7, this corresponds to shifting all columns to the right
of j or i respectively to the left one step, and also removing the 1 and decrementing the remain-
ing labels since the second round of the original tournament is now the first round of mazy(T).
Thus 7(7(71)) = 7(Mazy (1)) as desired. O

We now need to show that the parking functions obtained from Tour(k) by applying 7 are
precisely the column-restricted parking functions.

Proposition 4.11. The map 7 is a bijection from Tour(k) — CPF (k) for any weak composition
k = (k1,...,k,) of n, and the diagram (4.2) commutes.

Proof. We first show that 7(7") is in CPF (k) by induction on n. In the base case n = 1, this is
easily checked, so assume the claim holds for compositions of n — 1. Letting 7 < j be the pair
that faces off firstin 7', then 7(7(7")) = 7(mazy (1)) € CPF(k;) by our inductive hypothesis. By
the definition of 7, the label 1 is in column j of 7(7"). By Lemma 3.9, i is the largest index such
that k; = 0, and since ¢ < j, there are no empty columns to the right of the label 1. Therefore,
we have 1 > d; = 0 as in Definition 4.3 of column restrictedness. Since r(7(7")) is also column
restricted, we have that 7(7") is column restricted by Lemma 4.7. Hence, 7(7") € CPF(k) and
the induction is complete.

Because (4.3) commutes by Lemma 4.10 and 7(7") € CPF(k) for any 7' € Tour(k), it
follows that (4.2) commutes as well. Finally, we show that 7 : Tour(k) — CPF (k) is a bijection
by induction on n. The claim is easily checked for n = 1, so assume the claim holds for all
compositions of size n — 1. The map m,,, is a bijection by Proposition 3.13, 7 is a bijection

from Tour(k;) to CPF(k;) for any j > ¢ by our inductive hypothesis, and r is a bijection
by [CGM21]. Therefore, 7 is also a bijection from Tour(k) to CPF (k) by commutativity of the
diagram (4.2). L]
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Figure 4.4: Reversing the bijection 7. We draw the losers as dashed edges and the winners as
solid edges, and build the tree outwards starting from the vertex adjacent to a, b.

Remark 4.12. There is a natural way to combinatorially reverse the bijection 7, to directly com-
pute the tree 77! (P) from a column restricted parking function P. As an example, let P be the
parking function shown at left in Figure 4.4. We first identify the winners and losers; looking
at which columns are nonempty, we find that 1, 3,4 are winners and c, 2 are losers. We then
read the cars of P from largest to smallest, and build a tree accordingly starting with the vertex
connected to a, b and branching out to form each round.

The column of the car in question indicates the winner of the round, and it is paired with
the smallest available loser such that the sequence of losers considered in this process is weakly
increasing. In particular, if the car is at the top of its column, it pairs with the previous loser that
was considered, and otherwise it pairs with the next smallest loser. In Figure 4.4, the largest car
is in column 4, so 4 is the final winner against the smallest loser ¢, and we branch out accordingly.
Then, the second-largest car is in column 1, who also can win against c. When we get to the next
winner, 4 again, it can not be paired with c again, so we pair it with the next smallest loser, 2,
and so on.

5. Hyperplanes containing the tournament points

A natural question in light of Theorem 1.6 is whether the set Tour(k) can be obtained as a
complete intersection of M x with an appropriate set of hyperplanes in the iterated Kapranov
embedding. As shown in Example 1.8, this is not possible in general, because the linear span
of Tour(k) (in a given factor of the embedding) may intersect the image of M x in a subset of
dimension > dim (Mg x) — k;.

It is sometimes possible, however, to express Tour (k) as the limit of such an intersection,
using a varying family of hyperplanes as in [GGL22a, Theorem 1.14]. We do not know if
such a limit exists in general, but a necessary condition is that there is, for each ¢, a (fixed)
codimension-k; plane from P’ containing Tour(k). We end by showing that such hyperplanes
do indeed exist. We restate Theorem 1.9 here for convenience.

Theorem 1.9. Let [z, : 2. : 21 : 29 : + - : 2,_1] be the projective coordinates of the P" coordinate
inP! x - - x P". Then the coordinates of the points of Tour(ky, ..., k,) in the P" factor all lie
on the k, hyperplanes

2 =0, 22=0, 21 =0, ..., 252 =0,
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where if k. = 1 then our collection only contains the hyperplane z, = 0, and if k, = 2 then we
only have the two hyperplanes z, = 0 and z. = 0. (If k, = 0 it is the empty collection.)

To prove this, we first require two technical lemmas. A branch of a tree from a vertex v is a
connected component of the graph formed by deleting vertex v (and all edges directly adjacent
to it). We will say that two labels ¢, 7 are in different branches (resp., the same branch) from the
perspective of  in a tree 7' if they are on different branches (resp., the same branch) from the
internal vertex v, adjacent to leaf edge r. If they are on different branches, we also say that r
separates ¢ from 7 in 7.

Lemma 5.1. Ler T' € Tour(k), let v be a winner in T, and suppose that the label r

inT" = w41 0---0m(T) separates some label { from a. Then r separates { from a in T,
as well.
Proof. Note that T is obtained from 7" by successively inserting the numbers r+1, ..., n as leaf

edges attached to existing edges starting from 7”. We claim that the property of r separating ¢
from a still holds in 7". Indeed, let 77/, 7., and T} be the three branches of the tree attached to r’s
internal vertex in 7", which contain r, a, ¢ respectively. If the labels 4+ 1, ..., n are all inserted
at edges in either 7, or 77, it is clear that r still separates ¢ from a.

If instead one of the labels r + 1, ..., n is inserted on the unique edge in 7 (with possibly
more inserted on the resulting edges), then  would be paired in its first round of the tournament
with some label among  + 1, . .., n, and therefore r loses its first round. This is a contradiction
to the Losers Lemma (3.7) since r is a winner. Thus r separates ¢ from a in 7" as well. ]

Lemma 5.2. Let v be a vertex of atree T' € Tour(k) and let B be a branch at v not containing a.
Let m be the smallest leaf label of B and let P be the path from m to v.

By the time m first participates in a round of the tournament of T', every edge of B is labeled
except those along P.

Moreover, m faces off against every labeled edge of B attached to P and advances until at
least the vertex just before v in P.

Proof. If B consists only of the leaf edge m, the result holds trivially. So assume B contains at
least one leaf besides m.

Since m is minimal in B, it is paired in its first round with another element p > m in B,
so m is a loser of the tournament. Since the sequence of losers weakly decreases (Lemma 3.4)
and m is minimal in B, all other pairs in B will face off before m’s first round.

Now, suppose for contradiction that some edge on path P from m to v becomes labeled before
m’s first round. This is only possible if the two other edges adjacent to v (not in branch B) are
labeled and then face off to label an edge in path P. However, by the Participation Lemma (3.8),
labels that advance in the tournament do so along their path towards a, and since a is not in
branch B, we have a contradiction. Hence P is unlabeled until m starts competing, at which
point it advances by the laziness principle against all of its opponents in branch B except possibly
the last. 0

Proof of Theorem 1.9. First note that since the leaf edges of a and b share a vertex in all tour-
nament points, b is on a’s branch from the perspective of any other vertex of the tree, so z, = 0
always holds. In particular, we only have to consider the case k, > 2.
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Since k, > 2, for any 7" € Tour(ky,...,k,), the number r wins at least two rounds of
the tournament of 7" by the definition of Tour(k). Let P be the path from c to a, let v, be the
internal vertex at leaf edges a, b, and let B be the branch from v, not containing a, b. Then c is
the minimal label in B, so by Lemma 5.2, a leaf edge attached to P only faces off against ¢ (and
then c advances by the laziness rule). Thus r itself is not directly attached to a vertex on path P.
Moreover, since r can only face off once against c if it advances to path P, r wins against at least
one other number ¢ < r in its branch off of P. In particular, in the tree 7" = 7,1 0 - - - o 7, (1),
the leaf edge r is still not attached to path P. Thus, in 7", leaves a and ¢ are on the same branch
from the perspective of r, so z. = 0 by Corollary 2.3.

We now show that if k. > 2, the coordinates of the point 7" satisfy the additional equa-
tions z; = 0,29 =0,..., 2,2 = 0. Assume for contradiction that z; = 1 for some ¢ < k, — 2.
By Corollary 2.3, this means that in 7", the label r separates ¢ from a. By Lemma 5.1, r sepa-
rates ¢ from a in T" as well. Now, let v,. be the internal vertex adjacent to r, let 7, be the branch
from v, containing ¢, and let m be the smallest label 7,. By Lemma 5.2, since 7, does not con-
tain a, we have that m labels all edges in its path to v,. except possibly the last edge (connecting
to v, ). However, note that

m<lt<k —2<r—-2<r,

so m also advances to the final edge adjacent to v, by the laziness principle.

It follows that 7’s first round of the tournament is against some number m < k, — 2. By
the Winners and Losers Lemmas (3.6 and 3.7), » wins every round in which it competes. By
Lemma 3.4, the losers (across the entire tournament) form a weakly decreasing sequence. Fur-
thermore, 7 itself will never face the same opponent twice, and so the sequence of losers that r
faces form a strictly decreasing sequence starting at m. Thus by the Participation Lemma (3.8),
the maximum possible number of opponents 7 has is m + 1 (since ¢, 1,2, ..., m may be its op-
ponents, but not a or b). Butm 4+ 1 < k. — 1, and so r wins at most k,, — 1 times, contradicting
the fact that 7" € Tour(k).

Hence z, = 0 as desired. L]
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