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ABSTRACT Interactions between bacteria and phytoplankton can influence primary pro-
duction, community composition, and algal bloom development. However, these interactions
are poorly described for many consortia, particularly for freshwater bloom-forming cyanobac-
teria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria
from Lake Erie Microcystis blooms. These organisms were targeted because they were previ-
ously identified as important catalase producers in Microcystis blooms, suggesting that they
protect Microcystis from H2O2. Metatranscriptomics revealed that both Acidobacteria tran-
scribed genes for uptake of organic compounds that are known cyanobacterial products and
exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes
for amino acid metabolism and peptide transport and degradation suggest that use of amino
acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other
organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but
expressed genes for its transport and remodeling. This indicates that the Acidobacteria
obtained cobalamins externally, potentially from Microcystis, which has a complete gene rep-
ertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced
pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms
worldwide. Together, the data support the hypotheses that uncultured and previously un-
identified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyano-
bacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria
may play a role in cyanobacterial physiology and bloom development.

IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence
competition and successions between phytoplankton taxa, thereby influencing ecosystem-
wide processes such as carbon cycling and algal bloom development. The cyanobacterium
Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies
that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the
surrounding community likely influence Microcystis physiology and ecology and thus the
development of freshwater harmful cyanobacterial blooms. However, the impacts and
mechanisms of interaction between bacteria and Microcystis are not fully understood. This
study explores the mechanisms of interaction between Microcystis and uncultured mem-
bers of its phycosphere in situ with population genome resolution to investigate the cooc-
currence of Microcystis and freshwater Acidobacteria in blooms worldwide.

KEYWORDS Acidobacteria,Microcystis, cyanobacterial blooms, metagenomics,
metatranscriptomics, microbial ecology, phycosphere

Interactions between microorganisms have profound impacts on global biogeochem-
istry by influencing microbial fitness, metabolism, and community composition. For

example, many microbes use the waste products of others for growth or produce
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compounds required by other community members (1–3). A widely recognized exam-
ple of such metabolic handoffs is in the interactions between phytoplankton and
heterotrophic bacteria. Phytoplankton support heterotrophic bacterial growth by pro-
viding organic carbon and organic sulfur (4, 5). In addition, some heterotrophic bacte-
ria can obtain cobalamin (vitamin B12) by remodeling pseudocobalamin (6, 7), of which
cyanobacteria are a major environmental source (8). In turn, the heterotrophic partners
can improve phytoplankton growth by producing essential vitamins and growth fac-
tors such as cobalamins (4, 9), increasing the bioavailability of trace metal cofactors
(10), regenerating nutrients from organic material (11–13), and detoxifying reactive ox-
ygen species (14). Heterotrophic bacteria are known to impact phytoplankton fitness
through the transfer of metabolites (10, 11, 15, 16) in a zone of close physical associa-
tion termed the phycosphere (17, 18).

Interactions between heterotrophic bacteria and phytoplankton also influence competi-
tion between phytoplankton taxa (19). Thus, phycosphere interactions likely play a role in
shaping successions of phytoplankton taxa (20) and may have implications at the level of
whole ecosystems by modulating primary productivity and phytoplankton bloom forma-
tion (16, 18, 21). Interactions in the phycosphere can have both strain- and species-specific
outcomes (11, 22), and the fitness impacts on phytoplankton have been linked to the
exchange of specific metabolites in some interactions (9, 15, 16). Therefore, identifying the
bacterial taxa associated with a given phytoplankton taxon and the metabolites exchanged
between them can improve our understanding of phytoplankton physiology and competi-
tion between phytoplankton in natural assemblages with cooccurring bacteria, thereby
improving modeling of ecosystem-wide processes such as primary productivity and harm-
ful algal bloom formation (16, 18, 21).

Phytoplankton-bacterium interactions likely influence the development and phyto-
plankton community structure of Microcystis blooms, which degrade freshwater systems
around the world (23). Metagenomic and metatranscriptomic studies have suggested com-
plementary gene content (24) and expression (25) in Microcystis and cooccurring bacterial
communities. Furthermore,Microcystis spp. grow in colonies that harbor heterotrophic bac-
terial communities that differ from the surrounding microbial communities (26–28) and dif-
fer both seasonally (27) and by Microcystis genotype (27, 29). Heterotrophic bacteria have
previously been shown to impact competition between Microcystis and eukaryotic algae
(19). Such impacts on the invasion and successions of phytoplankton taxa are likely impor-
tant determinants of toxin concentrations in Microcystis blooms, which are substantially
influenced by the relative proportions of toxin-producing and non-toxin-producing
Microcystis spp. (30, 31). However, the impact of phycosphere bacteria on Microcystis
growth and physiology remains uncharacterized, in part because many of the microbes
associated with Microcystis colonies are yet to be cultured (26, 27, 32) and existing meta-
transcriptomic studies lack genome-resolved analysis of in situ communities (25, 33–35).
Direct recovery of bacterial genomes from the environment can provide insights into the
biochemical and ecological characteristics of these uncultivated organisms of interest.

This study focused on metagenome-assembled genomes (MAGs) of two novel, unculti-
vated Acidobacteria from a western Lake Erie cyanobacterial harmful algal bloom (CHAB) in
the summer-fall of 2014. These Acidobacteriawere responsible for a substantial fraction of cat-
alase transcripts in a western Lake ErieMicrocystis bloom community despite their low relative
abundance (36). Therefore, both Acidobacteria may be important for H2O2 detoxification dur-
ing CHABs, which is an essential service that heterotrophic bacteria provide to some cyano-
bacterial species (14) and has been proposed to influenceMicrocystis strain succession during
CHABs (36). In addition, both genomes were reconstructed from phytoplankton- and particle-
attached size fractions, and one of the Acidobacteria (genus Bryobacter) was previously identi-
fied in 25% of individual Microcystis colony phycosphere communities (27) and correlated
with certain Microcystis genotypes (37). Together, these results suggest that the Acidobacteria
interact withMicrocystis and other phytoplankton in freshwater cyanobacterial blooms.

Here, we examined the gene content and expression of the Acidobacteria MAGs
during the western Lake Erie cyanobacterial bloom in the summer-fall of 2014 to
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explore potential interactions with cyanobacteria and other phytoplankton. In addi-
tion, the abundance of both Acidobacteria in amplicon data sets from size-fractionated
samples in a range of eutrophic environments was examined to determine their speci-
ficity to cyanobacterial blooms and Microcystis colonies. The data suggest that both
genomes express genes involved in degradation of exopolysaccharide (EPS), organic
acids, amino acids, and peptides but are only occasionally found in Microcystis bloom
communities.

RESULTS AND DISCUSSION
Identification of two novel species of subdivision 3 Acidobacteria in Microcystis

blooms. Metagenome-assembled genomes (MAGs) of two Acidobacteria were obtained
from metagenomic data from microbial communities collected during the summer-fall of
2014 (see Data Set S1 in the supplemental material). The samples spanned various environ-
mental conditions and stages of Microcystis bloom development (36, 38, 39). These
genomes were targeted because they highly expressed catalase-peroxidase genes (katG)
during the cyanobacterial bloom (36) and were detected in particle- or phytoplankton-
attached samples (27, 36) and thus were hypothesized to be associated with phytoplankton
and important degraders of H2O2, which may influence the composition and development
of cyanobacterial blooms (40).

Both genomes are nearly complete with low contamination and meet standards for
high-quality draft genomes (Table 1) (41). The 16S rRNA gene sequences of MAGs
CoA2 C42 and CoA8 C33 were classified as Paludibaculum and Bryobacter (see
Materials and Methods) and were closest matches to 16S rRNA gene sequences from
Paludibaculum fermentans and Bryobacter aggregatus strains (92.29 and 96.5%, respec-
tively), which were both isolated from peat bogs (42, 43). Based on 16S rRNA gene sim-
ilarity thresholds for species and genera (44), the percent similarity score for the CoA8
C33 MAG with Bryobacter aggregatus is above genus-level thresholds, and the percent
similarity for CoA2 C42 MAG with Paludibaculum fermentans is below genus-level but
above family-level thresholds. Phylogeny of 16S rRNA gene sequences placed both
genomes within subdivision 3 Acidobacteria, Bryobacteraceae (Fig. 1A). While the CoA8
C33 MAG was placed as a sister lineage to Bryobacter aggregatus with high confidence,
the specific placement of the CoA2 C42 MAG within subdivision 3 Acidobacteria had
lower bootstrap support. These results support that genome CoA8 C33 is a novel spe-
cies of Bryobacter, while genome CoA2 C42 likely represents a novel genus within the
subdivision 3 Acidobacteria sister to Paludibaculum. Here, these species will be referred
to as Bryobacter CoA8 C33 and acidobacterium CoA2 C42.

Whole-genome alignments also indicated that both genomes were most similar
to Acidobacteria genomes from subdivision 3 (Fig. 1B and C). The CoA8 C33 genome
was most similar to Bryobacter aggregatus strains, with genomic average nucleotide iden-
tity (gANI) and alignment coverage values (0.72 and 0.44, respectively) within the range of
genus-level but below species-level cutoffs (45, 46), further supporting that it is a novel
species of Bryobacter. The CoA2 C42 genome was most similar to a MAG from a drinking-
water metagenome (IMG Gold Study identifier [ID]: Gs0114768). While subdivision 3
Acidobacteria have been recognized as numerically important in soils (47, 48) and present
in the microbiome of marine sponges (49), freshwater (37), and marine waters (50), to our
knowledge, this study represents the first detailed and targeted description of nearly com-
plete Bryobacteraceae genomes from an aquatic environment.

TABLE 1 Quality information for AcidobacteriaMAGs from western Lake Erie cyanobacterial blooms

BinID Genus Completeness (%) Contamination (%) GC % Size (Mbp) N50 Gene count 16S no. 23S no. tRNA no.
CoA8 C33 Bryobacter 98.21 0.87 60.89 5.0536 7,548 4,488 1 1 47
CoA2 C42 Unclassified 98.70 2.17 64.93 6.0673 38,916 5,163 1 1 47
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Highly expressed genes are involved in ATP synthesis, respiration, biofilm ad-
hesion, and chemotaxis. In both genomes, the most highly expressed genes were
involved in translation, secretion proteins, peptidases of unknown function, chapero-
nins, H2O2 detoxification, and ATP synthesis, along with hypothetical or uncharacter-
ized proteins (see Fig. S3 and S4 in the supplemental material). Highly expressed genes
encoding hypothetical proteins did not align with RNA gene sequences in NCBI and ei-
ther had best hits to other hypothetical proteins or no significant hits to any proteins
in the database, suggesting that they encode proteins of unknown function (Table S2).
Both genomes have a complete tricarboxylic acid (TCA) cycle, cytochrome c oxidase,
and nearly complete glycolysis and Entner-Doudoroff pathways (Fig. S5) and lack
known pathways for carbon fixation and synthesis of bacteriochlorophyll and rhodop-
sin pigments, indicating that these organisms are aerobic chemoheterotrophs like
known subdivision 3 Acidobacteria isolates (51). Highly expressed genes involved in
biofilm adhesion, chemotaxis, flagellum biosynthesis, and motility (Fig. S6 and S7) indi-
cate that these organisms are chemotactic.

Expression of genes involved in degradation of exopolysaccharides. Functional
annotation of expressed genes suggests that both Acidobacteria obtain carbon from
breakdown of complex exopolysaccharides, including known phytoplankton products.
Both genomes possess putative pectate-lyase, alpha-mannosidase, and xylan esterase
exoenzymes to completely degrade homogalacturonan, mannose, and xylose poly-
mers completely to the constituent monosaccharides (Fig. S5 and Data Sets S2 and S3
in the supplemental material). The Bryobacter MAG also contains genes for degradation
of galactose and arabinofuranose polymers, while the Acidobacteria CoA2 C42 MAG
contains genes for the degradation of alginate (Fig. S5). Both Acidobacteria genomes
also expressed genes involved in the degradation of galacturonate monomers and
other monosaccharides such as xylose, glucose, galactose, and mannose (Fig. S5).
These monosaccharides along with uronic acid polymers make up the exopolysacchar-
ide (EPS) mucilage encasing cyanobacterial cells (52–55), and bacterial degradation of
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16S rRNA sequences from the Lake Erie MAGs are colored red. (B and C) gANI comparisons of Bryobacter CoA8 C33 (C) and Acidobacteria CoA2 C42 (B)
with published, high-quality Acidobacteria genomes in IMG (n = 63).
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Microcystis EPS has been observed in cocultures with heterotrophic bacteria (55), sup-
porting the hypothesis that EPS in Microcystis colonies could be a substrate of the
Acidobacteria exoenzymes. Eukaryotic phytoplankton also produce extracellular poly-
saccharides composed of these same constituents (56–58), which could potentially
provide carbon to these organisms (56–59).

Evidence for uptake of low-molecular-weight organic compounds. Metatranscriptomic
data suggest that low-molecular-weight organic carbon is a source of carbon and nitrogen
for both Acidobacteria and further support the hypothesis that both Acidobacteria partici-
pate in metabolic exchanges within phycosphere communities, which may include phyto-
plankton and other heterotrophic organisms (Fig. 2). Among the most highly expressed
transporters in both Acidobacteria during the Microcystis bloom were concentrative nucleo-
side transporters (CNT) (Fig. S6 and S7), suggesting that they use nucleosides from the envi-
ronment. There was also detectable expression of many genes putatively encoding amino
acid, peptide, and polyamine uptake (Fig. 2). This indicates that the nitrogen demand for
both Acidobacteria is likely met in part by uptake of organic nitrogen in dissolved amino
acids, peptides, and nucleosides, which are important sources of nitrogen for bacterioplank-
ton (60–62) and are derived from a wide variety of cell lysates and exudates, including those
from phytoplankton (4, 13, 59, 63). Expression of amino acid oxidases (Fig. 2) suggests that
both Acidobacteria deaminate amino acids to access nitrogen (61, 64, 65).
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FIG 2 Relative abundance of low-molecular-weight organic carbon transporters and enzymes related to their metabolism by
Bryobacter CoA8 C33 (blue) and acidobacterium CoA2 C42 (red) associated with phytoplankton seston in the 4 August
metatranscriptome from nearshore western Lake Erie station WE12. Relative abundance is expressed as reads mapped per kilobase of
gene per million reads mapped to the respective genome (RPKM; rounded to the nearest whole number). A range of RPKM values
indicates that multiple gene loci were predicted to encode the indicated reactions (includes gene duplications or genes encoding
enzyme subunits), and only maximum and minimum RPKM values are shown.
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The metatranscriptomic data also suggest uptake of phytoplankton exudate. Both
Acidobacteria expressed genes to oxidize lactate and glycolate and dephosphorylate
phosphoglycolate (Fig. 2), which are common exudates of cyanobacteria (63, 66, 67)
and eukaryotic phytoplankton (68, 69). Lactate permease, which is involved in uptake
of both lactate and glycolate (70), was expressed, along with transporters putatively
involved in the uptake of other organic acids (Fig. 2). Among the known pathways for
glycolate use in bacteria, both genomes lack genes in the glyoxylate cycle and methyl-
aspartate cycle and the majority of genes in the ethylmalonyl coenzyme A (CoA) and
3-hydroxypropanoate cycles but possess and express genes in the serine pathway,
although the final two genes of this pathway are missing in both genomes (Fig. 2 and
Fig. S8). The presence of genes in the serine pathway perhaps indicates that the glyox-
ylate formed from the oxidation of glycolate is incorporated into amino acids (71–73)
and the metabolism of C1 compounds (73).

Evidence for regeneration of nitrogen from peptides and amino acids. Transcripts
for dipeptide and oligopeptide transporters, peptidases, and cyanophycinase-like proteins
suggest that both Acidobacteria use extracellular peptides as a carbon and nitrogen source
(Fig. 2). Expressed amino acid efflux transporters (Fig. 2) further suggest that peptide deg-
radation may be linked to efflux of excess amino acids. Amino acid efflux allows biosynthe-
sis of other amino acids to meet cellular demands (74–76) and is essential for maintaining
balanced growth from degradation of oligopeptides (76–78). Thus, peptide degradation
followed by amino acid efflux by bacteria could regenerate amino acids, which have been
shown to enhance cyanobacterial growth and biomass in lakes (30) and cyanobacterial cul-
tures (79–81).

Bacteria can also regenerate nitrogen from organic matter via excretion of ammonia
when amino acids are the major sources of nitrogen for bacterial growth (60) or under
carbon-limiting conditions (82, 83). In both Acidobacteria, expression of amino acid oxi-
dases/deaminases (Fig. 2), which convert extracellular amino acids into ammonium,
supports that these organisms regenerate ammonia from dissolved amino acids.
Ammonium generated from dissolved organic matter (DOM) is used by phytoplankton
and bacteria for growth (64, 65), community demand for ammonium can be high in
Microcystis blooms (84), and ammonium uptake by Microcystis has been linked to am-
monium regeneration from DOM by cooccurring microbes (25, 84). Together, these
data support the hypothesis that bacterial excretion of ammonia is a potential source
of nitrogen for Lake Erie cyanobacteria.

Evidence for cobalamin auxotrophy and uptake. Gene annotation and expression
data from the Acidobacteria genomes suggest that both organisms are auxotrophs of co-
balamin. Some cobalamin-dependent enzymes are involved in critical cellular functions
such as methionine and nucleotide synthesis (85). Thus, organisms that lack genes for co-
balamin biosynthesis must obtain cobalamin released into the environment by cobalamin-
producing organisms (9, 86). Both Acidobacteria lack the entire pathway for biosynthesis of
the corrin ring structure common to all cobalamins, as in other heterotrophic bacteria
cocultured with cyanobacteria (87). The Bryobacter genome expressed genes annotated as
cobalamin transporters (Fig. 3A), but the Acidobacteria CoA2 C42 MAG lacked genes anno-
tated as cobalamin transporters (see Data Set S2 in the supplemental material). Both
genomes expressed genes encoding TonB-family proteins, which are required to energize
the membrane for cobalamin transport (88, 89), and some of these were among the most
highly expressed membrane-associated proteins in Acidobacteria CoA2 C42 (Fig. S6).
Together, this suggests that neither of these Acidobacteria can synthesize cobalamins de
novo and that both transport cobalamins from the environment into the cell.

Both Acidobacteria expressed cobalamin-dependent genes. A nrdJ-encoded class II
ribonucleotide reductase and a metH-encoded methionine synthase were detected in
the Bryobacter genome (Fig. 3B). Bryobacter CoA8 C33 lacks cobalamin-independent
alternatives to nrdJ, which suggests that cobalamin is a requirement for this organism.
Although Acidobacteria CoA2 C42 uses the cobalamin-independent alternatives to
nrdJ, nrdA and nrdB (Data Set S2 in the supplemental material), and has the cobalamin-
independent version metE (for which no expression was detected), it expressed metH
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(Table 2). Therefore, both organisms were likely using cobalamins during the cyano-
bacterial bloom.

We also detected expression of genes involved in remodeling cobalamin axial ligands in
both Acidobacteria genomes. Variants of cobalamins differ in the chemical groups that
make up the upper and lower axial ligands (85, 86), and because most microbial taxa exclu-
sively use cobalamins with specific lower axial ligand structures (8, 86, 90), mechanisms to
remodel cobalamins are necessary for microbes to convert the various exogenous cobala-
min forms into the correct chemical forms needed for growth (6, 86, 91). Both genomes pos-
sessed genes for attaching an adenosyl group to the upper ligand (Fig. 3C and Table 2), but
only the Bryobacter genome had genes for remodeling the lower axial ligand (Fig. 3C).
Expression of cobalamin-remodeling genes in Bryobacter suggests that it can convert vari-
ous chemical forms of cobalamin into the specific variant required as its enzyme cofactor.

We identified methylpseudocobalamin and two stereoisomers of hydroxopseudo-
cobalamin in axenic cultures of Microcystis aeruginosa PCC 7806 and PCC 9806 (Fig. 4A;
see also Fig. S9 to S11). Cobalamins containing a methyl group in the upper ligand are
the active cofactors for methyltransferase reactions, including methionine synthesis
(85), whereas cobalamins containing a hydroxyl group in the upper ligand are degra-
dation products of biologically active pseudocobalamins (92). Cyanocobalamin and
other forms of cobalamin (the lower axial ligand is 5,6-dimethylbenzimidazol [DMB])
were not detected in Microcystis cultures (Fig. 4B), consistent with previous studies of
cyanobacteria (8, 86, 93). In addition to detecting pseudocobalamin in Microcystis bio-
mass, we detected a complete pathway for production of pseudocobalamin in closed
Microcystis genomes, which recruited reads at greater than 95% nucleotide identity
from western Lake Erie metatranscriptomes (Fig. S12). The presence and expression of
complete genetic pathways for pseudocobalamin biosynthesis in Microcystis genomes
and communities, along with metabolomic analyses, support that Microcystis produces
methylpseudocobalamin for growth as do other cyanobacteria (8, 86, 87, 94). Taken to-
gether with expression of cobalamin-remodeling genes (Fig. 3C) and genes that
require cobalamin for nucleotide and methionine synthesis by Bryobacter CoA8 C33

TABLE 2 Expression of B12-dependent genes in Acidobacteria CoA2 C42 MAG

Gene KEGG no. KO IMG annotation Gene symbol(s) 4 August RPKM
2806999884 2.1.1.13 K00548 Methionine synthase (B12 dependent) metH 216.80
2807002171 2.1.1.14 K00549 5-Methyltetrahydropteroyltriglutamate–homocysteine methyltransferase metE 0
2807000579 2.5.1.17 K00798 Cob(I)alamin adenosyltransferase cobA, pduO 93.77

0

50

100

150

200

m
et

H
nr

dJ
m

et
E

0

200

400

600

800

B 12
 re

ce
pt

or

Ton
B fa

m
ily

 p
ro

te
in

Ton
B p

ro
te

in

R
el

at
iv

e 
A

bu
nd

an
ce

 (
R

P
K

M
)

Ton
B fa

m
ily

 p
ro

te
in

Ton
B p

ro
te

in

Ton
B fa

m
ily

 p
ro

te
in

co
ba

lam
in 

re
ce

pt
or

Ton
B p

ro
te

in

0

100

200

300

cb
iZ

co
bU

co
bS

co
bA

A B C

FIG 3 Relative abundance of transcripts from the Bryobacter CoA8 C33 genome involved in cobalamin transport (A), cobalamin-
dependent genes and their cobalamin-independent counterparts (B), and cobalamin remodeling (C) in the 4 August metatranscriptome
from western Lake Erie nearshore station WE12. Relative abundance is expressed as reads mapped per kilobase pair of gene per million
reads mapped to the genome (RPKM).

Lake Erie Acidobacteria Genomes Applied and Environmental Microbiology

July 2022 Volume 88 Issue 14 10.1128/aem.01803-21 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

30
 A

pr
il 

20
23

 b
y 

10
8.

25
4.

16
0.

17
5.

https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.01803-21


(Fig. 3B) and the physical association of Bryobacter with Microcystis phycosphere colo-
nies (27), these results support the hypothesis that Microcystis and other bloom-associ-
ated cyanobacteria (e.g., Synechococcus-Cyanobium [27]) that are known cobalamin
producers (8, 94) are potential sources of cobalamins for Bryobacter CoA8 C33. The
chemical form of cobalamins used by both Acidobacteria remains unknown, so it is
possible that the Acidobacteria obtain cobalamins from other sources (91). Regardless,
our data suggest that both Acidobacteria rely on other microorganisms to meet cobala-
min demands.

Presence and relative abundance in 16S rRNA gene amplicon data sets. To
determine if these Acidobacteria regularly occur in, or are specific to,Microcystis-dominated
blooms, we measured their abundance in published 16S rRNA gene amplicon data sets
spanning a range of freshwater systems where Microcystis-dominated blooms occur (Table
3; see Materials and Methods). Amplicon sequences with high percent similarity (97%) to
variable regions of the 16S rRNA gene sequences in both AcidobacteriaMAGs were present
at low relative abundance in western Lake Erie (Bryobacter, mean 0.072%, range 0 to
1.41%; acidobacterium CoA2 C42, mean 0.13%, range 0 to 0.69%) and other systems
(Bryobacter, mean 0.006%, range 0 to 0.40%; acidobacterium CoA2 C42, mean 0.048%,
range 0 to 0.72%). There was a weak but significant positive relationship between the rela-
tive abundance of both Acidobacteria taxa and Microcystis relative abundance in whole
water samples collected from western Lake Erie cyanobacterial blooms (Fig. 5A and B). In
100-mm retentate samples from the summer-fall of 2014 in western Lake Erie, there were
no significant relationships between the relative abundances of Microcystis and Acidobac-
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teria CoA2 C42 or Bryobacter (Fig. S13). In other freshwater systems, there was also a signifi-
cant positive correlation between Bryobacter relative abundance and Microcystis relative
abundance (Fig. 5C). In contrast, acidobacterium CoA2 C42 had a significant negative cor-
relation in other data sets, but the correlation was weak (Fig. 5D). The regression results
indicate that strains related to both Acidobacteria species also occur in freshwater systems
at times and locations where Microcystis is absent. However, in samples where Microcystis
relative abundance was below 1%, Bryobacter relative abundance was typically lower
(mean 0.001%), indicating that the highest Bryobacter relative abundance usually occurs
during Microcystis blooms. Both Acidobacteria could also be absent while Microcystis was
present at high abundance, suggesting that while both may occur in Microcystis blooms,
they are not consistently present in all microbial communities associated with Microcystis
blooms. An inconsistent cooccurrence between Bryobacter spp. and Microcystis is consist-
ent with bacterial interactions with Microcystis being strain specific (27, 29, 37) and with
uneven spatial and temporal distribution ofMicrocystis strains (95).

We assessed the abundance of both Acidobacteria groups in particle-attached microbial
communities of various sizes, which may indicate physical association with phytoplankton,
including Microcystis, which grow in large, buoyant colonies (96). The relative abundance
of both Bryobacter and Acidobacteria CoA2 C42 amplicons was enriched in particle-
attached communities (.100-mm retentate samples) during the 2014 western Lake Erie
Microcystis bloom (Fig. 6). Similarly, although it was present in only August and September,
Bryobacter was associated with the size fraction that contained the most Microcystis phyto-
plankton in Lake Taihu but was absent from smaller particles and free-living communities
(Fig. 7). In contrast, acidobacterium CoA2 C42 was absent from large,Microcystis-containing
aggregates and present in smaller particles and free-living communities in Lake Taihu (Fig.
7). Bryobacter was also absent from free-living communities throughout the Great Lakes,
while acidobacterium CoA2 C42 was present (Fig. S14). A previous study identified
Bryobacter in ;25% of Microcystis colonies sampled, while other Acidobacteria were largely
absent (27), and another study found that Bryobacter relative abundance was significantly
correlated with the relative abundance of certain Microcystis genotypes (37). Together with
the relationships between Acidobacteria relative abundance and Microcystis relative abun-
dance (Fig. 5), the relative abundance of Bryobacter in size-fractionated communities sug-
gests that Bryobacter is present in some Microcystis blooms when conditions are favorable
and physically attaches to Microcystis colonies, while acidobacterium CoA2 C42 likely facul-
tatively colonizes other particles and is not specifically associated withMicrocystis blooms.

Conclusions. This study reported insights into two novel, uncultured Acidobacteria
species that are associated with phytoplankton seston in Microcystis blooms around
the world. While both organisms were detected in Microcystis blooms, only Bryobacter
was found directly associated with Microcystis colonies. The transcriptomic evidence

TABLE 3 Description of public data sets mined for Acidobacteria 16S rRNA sequences in this study

NCBI
accession no.

Location and sampling
scheme Material type Size fraction(s) Reference

PRJNA575023 Discrete sampling of eutrophic
lakes around the globe

Bulk phytoplankton seston
dominated byMicrocystis

.100mm Cook et al., 2020 (24)

PRJNA386411 Lake Taihu, China, time series Size-fractionated communities .120mm, 3–36mm, 0.2–3mm Shi et al., 2018 (28)
PRJNA591360 Transects across the

Laurentian Great Lakes in
spring and summer

Free-living communities 0.22–1.6mm Paver et al., 2020 (124)

PRJNA479553 Monthly sampling of Nakdong
River, South Korea

Whole water communities .0.22mm Chun et al., 2019 (128)

PRJNA255432 Transect across the Laurentian
Great Lakes

Whole water communities .0.22mm Rozmarynowycz et al., 2019 (125)

PRJNA353865 Lake Champlain, Canada, time
series

Whole water communities .0.22mm Tromas et al., 2017 (127)

PRJEB14911 Lake Mendota, USA, time
series

Whole water communities .0.22mm Kara et al., 2013 (126)
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supports the hypothesis that Bryobacter and acidobacterium CoA2 C42 use organic car-
bon and nitrogen from dissolved organic matter present in phytoplankton lysate or
exudate and regenerate reduced N that may fuel growth of other microorganisms,
including Microcystis, which can grow using reduced N (30, 97, 98). The data also sug-
gest that both Acidobacteria use cobalamins released into the environment by other
organisms, which may include Microcystis. The inferred reciprocal exchange of metabo-
lites between Acidobacteria and phytoplankton suggests potential for a mutualistic
relationship, but additional work is required to test this hypothesis.

MATERIALS ANDMETHODS
DNA and RNA extraction and sequencing. Water samples were collected through the summer

and fall of 2014 in western Lake Erie in order to monitor microbial communities and water chemis-
try throughout various stages of Microcystis bloom development (see references 36, 38, and 39 and
Data Set S1 in the supplemental material for more detail about how the samples correspond to dif-
ferent times of year and Microcystis bloom development). Microbial samples were obtained from a
20-L depth-integrated water sample collected from the surface to 1 m above the lake bottom.
Depth-integration was performed by collecting water with a peristaltic pump and slowly moving
the length of the peristaltic pump tubing repeatedly up and down the water column until a 20-L
carboy was filled completely. The integrated water column sampling method is critical to capture
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FIG 5 Percent abundance of Bryobacter and acidobacterium CoA2 C42 as a function of Microcystis
percent abundance in whole water microbial community rRNA amplicon data sets from freshwaters.
(A) Bryobacter OTU percent abundance versus Microcystis OTU percent abundance in V4 16S rRNA
amplicon data sets collected during western Lake Erie cyanobacterial blooms. (B) acidobacterium
CoA2 C42 OTU percent abundance versus Microcystis OTU percent abundance in V4 16S rRNA
amplicon data sets collected during western Lake Erie cyanobacterial blooms. (C) The percent
abundance of reads in published amplicon data sets that mapped to the 16S rRNA gene from the
Bryobacter CoA8 C33 MAG versus the percent abundance of amplicon reads that mapped to 16S
rRNA from Microcystis. (D) The percent abundance of reads in published amplicon data sets that
mapped to the 16S rRNA gene from the acidobacterium CoA2 C42 MAG versus the percent
abundance of amplicon reads that mapped to 16S rRNA from Microcystis. In all panels, the shaded
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the full bloom community because Microcystis cells can migrate vertically throughout the water col-
umn (96, 99).

To focus on the Microcystis colony-associated fraction, 2 L of depth-integrated sample was filtered
through a 100-mm-pore-size mesh, and the retentate was backwashed into a Falcon tube using altered
BG-11 medium (Table S1). RNAlater was added in a 2:1 ratio with the backwash, which was then filtered
onto a 1.6-mm-pore-size glass fiber filter with a syringe. The backwash was filtered onto the 1.6-mm filter
immediately after resuspension in BG-11 medium, so there was likely little or no effect of BG-11 on mi-
crobial community composition. The filters were stored in a 2-mL cryovial with 1 mL of RNAlater and
kept on ice during cruise transit. Upon arrival at the lab, the filters were frozen at 280°C until extraction.
We cannot rule out the possibility that free-living bacteria adhered to particles or that particle-attached
bacteria were flushed from particles during sample collection. However, previous work using western
Lake Erie samples collected with the same methods showed that.100-mm particle-associated commun-
ities were often distinct from whole water communities and that the degree of similarity was correlated
with Microcystis abundance (27). Therefore, attached microbial communities are distinct from free-living
communities collected with these methods, and any similarity between .100-mm particle-associated
and whole water samples is likely due to a high abundance of Microcystis colonies in the water column
at the time of sampling rather than capture of free-living bacteria by particles retained during filtration.

Filters with collected biomass were thawed, folded with biomass facing inward, and rinsed with sterile
phosphate-buffered saline (PBS) to remove RNAlater preservative. Filters were incubated in 100 mL Qiagen
ATL tissue lysis buffer, 300 mL Qiagen AL lysis buffer, and 30 mL proteinase K for 1 h at 56°C on a rotisserie
(Qiagen, Hilden, Germany). Cells were further lysed by vortexing in this lysis buffer for 10 min. Lysates were
homogenized using a QIAshredder column, and DNA was purified from the filtrate using the Qiagen DNeasy
blood and tissue kit according to the manufacturer’s standard protocol. The quantity and quality of DNA in
each sample were determined using a NanoDrop Lite spectrophotometer (Thermo Scientific). DNA extracts
were frozen at280°C until analysis.

For RNA extraction, the filters were incubated in 600 mL Qiagen RLT1 buffer and 6 mL b-mercapto-
ethanol for 90 min on a rotisserie. The filters were then vortexed for 10 min and homogenized using a
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QIAshredder column. RNA was purified from the homogenized solution using the RNeasy kit according
to the manufacturer’s standard protocol.

All sequencing was performed at the University of Michigan Sequencing Core. Paired-end DNA
sequencing (2 � 125) was conducted on an Illumina HiSeq 2000 with V4 chemistry reagents with “low-
input prep” using the Rubicon ThruPlex kit. RNA single-read sequencing (1 � 50) was performed on an
Illumina HiSeq 2000 with V4 chemistry reagents. Before sequencing, RNA libraries were prepared with a
50/50 mix of plant and bacterial Ribo-Zero kits to remove rRNA sequences.

Metagenomic assembly. Combined-sample assemblies (coassemblies) were generated with
MEGAHIT (100) using kmin 21, kmax 141, and kmer step size of 12. We performed 3 coassemblies in
total, choosing samples based on the abundance of the target Acidobacteria organisms estimated from
16S rRNA gene amplicon sequences. One coassembly was generated with the only two samples that
yielded low-quality Acidobacteria genomes in pilot single-sample assemblies (Aug-4 and Aug-25 particle
metagenomes from WE12). Another coassembly was constructed with all the samples in which
Acidobacteria CoA2 C42 was present in corresponding amplicon sequence data sets (8 samples total),
and another with the same 8 samples but with the read kmer coverage normalized to 20� prior to as-
sembly with BBnorm in the BBTools package (101). Paired-end reads were quality and adapter screened
and dereplicated with BBTools prior to coassembly (101). An additional single-sample MEGAHIT assem-
bly was constructed on the particle size fraction sample from 4 August at WE12 following the same pipe-
line. This sample was chosen for assembly because it represented peak particulate microcystin (cyano-
toxin) concentrations for this location (102), which is of particular societal importance because it is near
the drinking water intake for Toledo, OH, a city that lost access to drinking water due to cyanotoxins in
August during the year of sampling (103).

Genome binning. Contigs were binned using a multialgorithm binning approach. Contigs were
binned using differential coverage and tetranucleotide frequencies in CONCOCT (104) and Metabat2
(105) and with tetranucleotide frequencies alone using VizBin (106) and Emergent Self-Organizing Maps
(ESOMs) (107). The contig size window for ESOM was 4 to 10 kbp and 2.5 to 10 kbp for the other binners.
The resulting redundant bin data sets from each assembly were dereplicated using DASTool (108). For
the single-sample assembly, differential coverage was estimated by mapping reads from 4 August WE12
and 25 August WE12 to the contigs. For coassemblies, differential coverage was estimated by mapping
reads from the corresponding samples used to generate the coassemblies. Read mapping to contigs
was performed using Bowtie2 (109).

The bins were refined manually in Anvi’o (110) using contig coverage and ward linkage clustering of
tetranucleotide frequencies. Quality metrics of the refined bins were estimated using the lineage work-
flow in CheckM (111). All bins with contamination scores greater than 5% after refinement were elimi-
nated from downstream analysis. Contamination scores of the final bins were considered while ignoring
the amount of contamination due to strain heterogeneity. Redundant marker genes were considered to
be from closely related strains if their shared amino acid identity was 95% or greater. This redundant bin
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from a time series of Lake Taihu cyanobacterial blooms.
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data set was dereplicated using dRep (112) with 97% ANI and 60% alignment coverage cutoffs and skip-
ping the MASH preclustering step. The final bin for the acidobacterium CoA2 C42 genome came from
the 2-sample coassembly, and the final bin for the Bryobacter CoA8 C33 genome came from the 8-sam-
ple coassembly without kmer normalization.

Gene annotation and metatranscriptomic read mapping. Gene calls and functional annotations
were generated using the Integrated Microbial Genomes annotation pipeline (113), and membrane-
associated proteins were predicted using TransportDB v. 2.0 (114). Genes annotated as iron complex
transporters were compared to biochemically confirmed cobalamin transporters from Escherichia coli
strain K-12 (UniProtKB accession numbers: P06129, P06609, and P06611) via protein BLAST v. 2.2.311
(115). We excluded any significant hits in the results with alignment coverage less than 70% of the gene
in the Acidobacteria genomes.

All predicted open reading frames were compared to proteins in the NCBI nonredundant protein
database (as of 17 October 2018) via protein BLAST v. 2.2.311 (115). Gene expression was determined
by mapping metatranscriptomic reads to predicted gene sequences using nucleotide BLAST v. 2.2.311
(115). Only alignments with percent identity of $95%, E value of #1 � 1025, and alignment coverage of
$80% of read length were counted. Some reads below the alignment coverage cutoff were counted if
they mapped to either the start or stop end of the gene. The relative abundance of transcripts for each
gene was calculated as reads mapped per gene kilobase per million reads mapped (RPKM), using total
number of reads mapped to the appropriate genome. Reads were competitively mapped to both
Acidobacteria MAGs and the following Microcystis reference genomes: Microcystis strain FD4, strain NIES
843, strain NIES 2481, strain NIES 2549, and strain PCC 7806SL.

Predicted gene calls, functional annotations, and metatranscriptomic gene mapping were used to infer in
situ metabolism of Bryobacter and acidobacterium CoA2 C42. Due to the novelty of the Acidobacteria
genomes reported here, most of the predicted protein-coding genes have low shared amino acid identities
with published protein sequences with the same function (,70% shared identity to the best matches in
many cases [Fig. S1]), so we present these results as putative functions and interactions of interest that
require validation with future work. Because acidobacterium CoA2 C42 had a sufficient amount of reads only
in the 4 August sample (Fig. S2), which coincided with an early peak in phytoplankton pigments at this sta-
tion (102), this sample was the focus of reported RPKM values in the main text and figures.

16S rRNA gene phylogenetic and gANI analyses. The 16S rRNA genes from each MAG were com-
pared to the SILVA SSU database v. 138.1 (116) using the online SINA Aligner v. 1.2.11 (117) and classified
using the approach of Wang et al. (118) in MOTHUR v. 1.43.0 (119). One MAG (CoA2 C42) was not binned
with an rRNA operon, but an unbinned contig with the full rRNA operon was assigned to the bin by examin-
ing the assembly De Bruijn graph using Bandage v. 0.8.1 (120) and the paired-end mapping information. A
maximum likelihood phylogenetic tree with published 16S rRNA genes from Acidobacteria available in NCBI
(as of 8 November 2020) was computed with RAxML v. 8.2.4 using the GTRGAMMA nucleotide substitution
model (121) and rooted and visualized using the Interactive Tree of Life webtool v 6.3 (122). The 16S rRNA
genes were aligned using Clustal Omega v. 1.2.1 (123). Shared average nucleotide identity (gANI) was com-
puted with whole-genome alignments of Acidobacteria genomes available in IMG (as of 5 November 2018)
using the compare function in dRep v. 2.0.5 (112) without the MASH preclustering step. Genomes were
included in the gANI analysis only if the completeness and the contamination calculated with the CheckM lin-
eage workflow were above 90% and below 5%, respectively (111).

Amplicon data set mining. To assess the frequency of occurrence of the Acidobacteria in Microcystis
blooms, we searched for their presence in previously published rRNA amplicon data sets (24, 28, 102, 124–
128), which are described in Table 3. To assess the MAGs’ abundance in western Lake Erie, the relative abun-
dances of operational taxonomic units (OTUs) from a previously published abundance matrix were reported
(27). For the Bryobacter CoA8 C33 MAG, the relative abundance of OTUs classified as Bryobacter was reported.
For the acidobacterium CoA2 C42 MAG, the relative abundance of OTUs classified as Paludibaculum was
reported if the 16S rRNA gene in the MAG aligned with the amplicon sequence with 97% or more shared nu-
cleotide identity as determined via nucleotide BLAST v. 2.2.311 (115).

Because other data sets used a range of different primer sets and did not provide abundance tables, we
determined the abundance of each organism in these data sets by mapping amplicon reads to the 16S rRNA
gene sequence in each MAG with BLAST v. 2.2.311 (115). The relative abundances of Microcystis, Synechococcus,
and Dolichospermum were similarly determined in these data sets by mapping amplicon reads to reference
sequences. We mapped to full-length 16S rRNA gene sequences from Anabaena cylindrica PCC 7122, Microcystis
aeruginosa PCC 7806SL, Microcystis aeruginosa PCC 9806, Synechococcus elongatus PCC 6301, and Synechococcus
elongatus PCC 7942, as well as sequences assembled from Lake Erie metagenomes using EMIRGE (129) and clas-
sified as Microcystis, Anabaena, Dolichospermum, and Synechococcus using the classifier of Wang et al. (118) in
MOTHUR v 1.43.0 (119). The relative abundance of each organism in each sample was calculated as the number
of reads mapped for that given organism divided by the total number of reads in the data set.

Identification of pseudocobalamin in Microcystis cultures. Two strains of Microcystis aeruginosa (PCC
7806 and PCC 9806) were grown on modified BG-11 growth medium (130) with the sodium nitrate concentra-
tion reduced to 2 mM in preparation for screening for pseudocobalamin production via liquid chromatography-
mass spectrometry (LC-MS) analysis. The Microcystis strains were grown as batch cultures at room temperature
under cool white fluorescent bulbs. The light intensity was kept between 30 and 60mmol photons/m2/s by cov-
ering the lights with a single layer of neutral-density 0.3 filter screen (product 209R; Lee Filters, Burbank, CA). For
each strain, 300 mL of late-log-phase culture was split into six 50-mL aliquots and harvested by centrifugation at
10,000� g for 15 min, decanting liquid media, and freezing at280°C until extraction.

Analysis of cell pellets was carried out using a previously published method (8), with some modifica-
tions. Briefly, cell pellets were resuspended in 6 mL of cold acetonitrile-methanol-water (40:40:20 ratio
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by volume) with 0.1% formic acid and transferred to 15-mL centrifuge tubes. The cells were lysed via
bead beating with 250 mg each of 100- and 500-mm-diameter glass beads on a vortex mixer set to maxi-
mum speed for 40 s. Bead beating was performed three times, with samples resting on ice for 5 min
between each treatment. The suspension was pelleted via centrifugation at 10,000 � g, and the super-
natant was transferred to a round-bottom flask. The pooled supernatants from each strain were dried in
a rotary evaporator under pressure of 0.3 � 105 Pa at 30°C and then resuspended in a small volume of
solvent A (described below) before LC-MS analysis. Extraction from ;6 g Spirulina powder was also per-
formed as a positive control (8) following the same procedure described above for the Microcystis cells,
with the exception that the powder was suspended in 10 mL of cold acetonitrile-methanol-water solu-
tion (40:40:20 ratio by volume). All extraction and processing steps were conducted under low-light con-
ditions to minimize photodegradation of pseudocobalamin.

LC-MS analysis was carried out on a Thermo Scientific ultrahigh-pressure liquid chromatograph (UHPLC)
coupled to a Q-Exactive Orbitrap high-resolution mass spectrometer equipped with an electrospray ioniza-
tion (ESI) source and running in positive mode. Sample (5mL) was injected onto a 2.6-mm Kinetex RP C18 col-
umn (150- by 4.6-mm inside diameter) held at 25°C. The HPLC gradient used was 5% to 95% solvent B over
22 min, where solvent A consisted of 20 mM ammonium formate and 0.1% formic acid in water, and solvent
B consisted of 0.1% formic acid in acetonitrile. MS data were collected over a mass range of 600 to 1,400m/z,
using data-dependent MS/MS analysis with 0.5-s dynamic exclusion enabled. Pseudocobalamin variants were
identified by comparing the obtained compound masses and MS/MS spectra to previously reported literature
values (8, 131) and the Spirulina extract.

Scripts and data availability. All data tables and shell and R code used for the analysis are included on
GitHub at the following web address: https://github.com/Geo-omics/WLE-Acidobacteria-Genomes. Acidobacterial
MAG sequences and gene annotations are deposited and publicly available in the IMG database (IMG genome
IDs: 2806310633 and 2806310632). Assembled MAG sequences are also available in NCBI (BioSample accession
numbers SAMN20863144 and SAMN20863205). Raw read data sets are publicly available in NCBI SRA under
BioSample accession numbers SAMN09102072 to SAMN09102087, and Whole Genome Shotgun projects have
been deposited at DDBJ/ENA/GenBank under the accession numbers JAINDK000000000 and JAINDL000000000.
Full metagenome assemblies from which the MAGs were derived are publicly available in IMG (IMG genome IDs:
3300028429 and 3300028430). Raw metabolomic data are submitted to the GNPS-MassIVE database under the
following ID: MassIVE MSV000088058. Accession numbers are listed for each sample and assembly in Data Set S1
in the supplemental material.
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