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Abstract. Connectomics is a popular approach for understanding the
brain with neuroimaging data. Yet, a connectome generated from one
atlas is different in size, topology, and scale compared to a connectome
generated from another atlas. These differences hinder interpreting, gen-
eralizing, and combining connectomes and downstream results from dif-
ferent atlases. Recently, it was proposed that a mapping between atlases
can be estimated such that connectomes from one atlas (i.e., source
atlas) can be reconstructed into a connectome from a different atlas
(i.e., target atlas) without re-processing the data. This approach used
optimal transport to estimate the mapping between one source atlas
and one target atlas. Yet, restricting the optimal transport problem to
only a single source atlases ignores additional information when multi-
ple source atlases are available, which is likely. Here, we propose a novel
optimal transport based solution to combine information from multi-
ple source atlases to better estimate connectomes for the target atlas.
Reconstructed connectomes based on multiple source atlases are more
similar to their “gold-standard” counterparts and better at predicting
IQ than reconstructed connectomes based on a single source mapping.
Importantly, these results hold for a wide-range of different atlases. Over-
all, our approach promises to increase the generalization of connectome-
based results across different atlases.
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1 Introduction

A connectome—a matrix describing the connectivity between any pair of brain
regions—is a popular approach used to model the brain as a graph-like structure.
They are created by parcellating the brain into distinct regions using an atlas
(i.e., the nodes of a graph) and estimating the connections between these regions
(i.e., the edges of a graph). As different atlases divide the brain into a different
number of regions of varying size and topology, connectomes created from differ-
ent atlases are not directly comparable. In other words, connectome-based results
generated from one atlas cannot be directly compared to connectome-based
results generated from a different atlas. This fact hinders not only replication
and generalization efforts, but also simply comparing the results from two inde-
pendent studies that use different atlases. For example, large-scale projects—like
the Human Connectome Project (HCP), the Adolescent Brain Cognitive Devel-
opment (ABCD) study [5], and the UK Biobank [25]—share fully processed
connectomes to increase the wider-use of the data, while reducing redundant
processing efforts [15]. Yet, several atlases, but no gold standards, exist [2]. As
such, released connectomes for each project are based on different atlases, which
prevents these datasets being combined without reprocessing data from thou-
sands of participants. Being able to map between these connectomes—without
need for raw data—would facilitate existing connectomes to be easily reused in a
wide-range of analyses while eliminating wasted and duplicate processing efforts.
To facilitate this mapping, it was shown that an existing connectome could
be transformed into a connectome from a different atlas without needing the
raw functional magnetic imaging (fMRI) data [8]. This method used optimal
transport, or the mathematics of converting a probability distribution from one
set to another, to find a spatial mapping between a pair of atlases. This mapping
could then be applied the timeseries fMRI data parcellated with the first atlas
(source atlas), then creating connectome based on the second atlas (target atlas).
While these previous mappings were based on only a single source atlas, most
large-scale projects, release data processed data from 2—4 atlases. As such, richer
information than that provided by a single source atlas is available and ignored in
the current approach. We propose to combine information from multiple source
atlases to jointly estimate mappings to the target atlas. Using 6 different atlases,
we show that our approach results in significant improvements in the quality of
reconstructed connectomes and their performance in downstream analyses.

2 Background

Optimal Transport: The optimal transport problem solves how to transport
resources from one location « to another 8 while minimizing the cost C' to do
so [12,14,18,26]. Using a probabilistic approach in which the amount of mass
located at x; potentially dispatches to several points in target [17], admissible
solutions are defined by a coupling matrix 7 € R}*™ indicating the amount of
mass being transferred from location x; to y; by 7; ;:

U(a,b) ={T eR?*"™:T1,, =a,T"1, =b}, (1)
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Fig. 1. Our all-way optimal transport algorithm combines timeseries data from mul-
tiple source atlases to jointly estimate a single mapping from these atlases to the
target atlas. Once this mapping is found, it can be applied to independent data to
reconstruct connectomes based on the target data based only timeseries data from the
source atlases.

for vectors of all 1 shown with 1. An optimum solution is obtained by solving
the following problem for a given “ground metric” matrix C' € R™*™ [21]:

L.(a,b)= min <C,7 >= CiiTi ;. 2
(b = min X T, 2)
which is a linear problem and is not guarantee to have a unique solution [19],
but always there exists an optimal solution (see proof in [3,4]). Unlike, the KL
divergence, optimal transport is one of the few methods that provides a well-
defined distance metric when the support of the distributions is different.

Single-Source Optimal Transport: The single-source optimal transport
algorithm from Dadashkarimi et al. [8], first, transforming timeseries data from
one atlas (labeled the source atlas) into timeseries from an unavailable atlas
(labeled the target atlas). Next, the corresponding functional connectomes can
be estimated using standard approaches (e.g., full or partial correlation). For-
mally, it is assumed that we have training timeseries data consisting of T" time-
points from the same individuals but from two different atlases (atlas.Z” with
n regions and atlas 2 with m regions). Additionally, let p; € R™ and vy € R™
to be the vectorized brain activity at single timepoint ¢ based on atlases . Z7
and Z7 respectively. For a fixed cost matrix C € R™*™_ which measures the
pairwise distance between regions in 2 and. P, this approach aims to find a
mapping 7 € R™ ™ that minimizes transportation cost between p; and vy:

2272 729

Lol ) = min CTT s.t, AT — M , 3)
T Vi
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in which 7 € R™™ is vectorized version of 7 such that the i +n(j —1)’s element
of T is equal to 7;; and A is defined as:

1 2 n
10...0 10...0 10...0
01...0 01...0 01...0
: : 4
A= 00 1 00 1 00...1 (4)
(11 1 (11...1) (11...1)

T represents the optimal way of transforming the brain activity data from n
regions into m regions. Thus, by applying 7 to every timepoint from the time-
series data of the source atlas, the timeseries data of the target atlas and corre-
sponding connectomes can be estimated. The cost matrix C' was based on the
similarity of pairs of timeseries from the different atlases:

p(ULJ le-) N p(Ul,.a Nn’)

C=1— € R™*™ (5)

p(Um,.le,.) cee p(Um,.> Nn,)

where U, and N, are timeseries from.Z2?, and.Z? and p(Uyz, Ny) is correlation
between them.

3 All-Way Optimal Transport

A key drawback of the single-source optimal transport is that it relies on a
single pair of source and target atlases (i.e., one source atlas and one target
atlas), which ignores additional information when multiple source atlases exist.
To overcome this weakness, we designed a new approach, called all-way optimal
transport, that uses a varying number of source atlases to better reconstruct
the target atlas. All-way optimal transport combines information from multiple
source atlases by using a larger cost matrix generated from stacking the set of
region centers in each source atlas (see Fig. 1). In general, assume we have paired
time-series, from the same person, but from k different source atlases with a total
of ng regions (where ng = ny +mnz+.. +ny, from source atlase@/ with n; regions,
L}/ with no regions, .., ?/ with ny regions) and a target atlas 9?‘/ with m
regions, lets define y; € R™ and v € R™ to be the distribution of brain activity
at single time point ¢ based on atlases.?” and. 77 :

772

s Citi ... Cim

pr=1| .| ER™pmeR™,C*=| : . 1 | eR™*", (6)
Coit - Comn
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Fig. 2. Using multiple source atlases improves the similarity of reconstructed con-
nectomes. The correlation between the reconstructed connectomes and connectomes
generated directly with the target atlases are shown for each pair of source and target
atlas as well reconstructed connectomes using all source atlases. For each target atlas,
using all source atlases produces higher quality reconstructed connectomes. Error bars
are generated from 100 iterations of randomly splitting the data into training and test-
ing data. In all cases, all-way optimal transport resulted in significantly more similar
connectomes (indicated by x).

and C; ; is based the similarity of pairs of timeseries from nodes 7 and j from
different atlases. Next, we want to minimize distance between p} and v as:

L vi) = minCTT s, AT = [’;z} | (7)

t

4 Implementation

Solving the large linear program in Eq. 7 is computationally hard [9]. As such for

both all-way and single source optimal transport, we used the entropy regulariza-

tion, which gives an approximation solution with complexity of & (n?log(n)n=3)
4log(n)

for e = ==F= [19], and instead solve the following:

Le(uj,vf) = minCT — cH(T) s.t, AT = [ﬂ . (8)
t

Specifically, we use the Sinkhorn algorithm—an iterative solution for Eq.8 [1]—
to find 7 as implemented in the Python Optimal Transport toolbox [11].
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5 Results

Datasets: To evaluate our approach, we used data from the Human Connec-
tome Project (HCP) [27], starting with the minimally preprocessed data [13].
First, data with a maximum frame-to-frame displacement of 0.15 mm or greater
were excluded, resulting in a sample of 515 resting-state scans. Analyses were
restricted only to the LR phase encoding, which consisted of 1200 individual
time points. Further preprocessing steps were performed using Biolmage Suite
[16]. These included regressing 24 motion parameters, regressing the mean white
matter, CSF, and grey matter time series, removing the linear trend, and low-
pass filtering. After processing, Shen (268 nodes) [24], Schaefer (400 nodes) [22],
Craddock (200 nodes) [7], Brainnetome (246 nodes) [10], Power (264 nodes) [20],
and Dosenbach (160 nodes) [6] atlases were applied to the preprocessed to cre-
ate mean timeseries for each node. Connectomes were generated by calculating
the Pearson’s correlation between each pair of these mean timeseries and then
taking the fisher transform of these correlations.
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Fig. 3. Bar plots exhibit correlation of estimated connectomes and original connec-
tomes based on n — k samplings of available atlases (i.e., n indicates the number of all
available atlases to be transported) for each target atlas for all-way optimal transport.
Strong correlations can be observed with less than the maximum number of source
atlases.

Similarity Between Reconstructed and Original Connectomes: To vali-
date our approach, we assessed the similarity of connectomes reconstructed using
the proposed optimal transport algorithms and the original connectomes gener-
ated directly from the raw data. First, We partitioned our sample into 80% for
optimal ‘parameter estimation’. These optimal parameters were then applied on
20% remaining data for measuring the efficacy of the method. Therefore, we esti-
mated 7 using all 1200 time points and 412 participants for each source-target
atlas pairs (for single-source optimal transport) as well as using all available
source atlases to a single target atlas (for all-way optimal transport).

Next, in the left out partition, we applied the estimated 7 to reconstruct
the target atlases. Finally, the reconstructed connectomes were compared to
the “gold-standard” connectomes (i.e., connectomes generated directly from an
atlas) using correlation. Results from all-way were compared to results from the
single-source optimal transport algorithm.

As shown in Fig. 2, we observed strong correlation between the reconstructed
connectomes and their original counterparts when using the all-way optimal
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transport algorithm. In every case, these algorithms produce significantly more
similar connectomes than the previous single-source optimal transport algorithm
(all p’'s > 0.50; p < 0.01). For most atlases, explained variance is more than
tripled using multiple source atlases compare to using a single source atlas.

Effect of Number of Source Atlases: We investigated the impact of using
a smaller number of source atlases by only including k random source atlases
when creating connectome for the target atlas. This process was repeated with
100 iterations over a range of k =2—6. As shown in Fig. 3, while similarity between
reconstructed and original connectomes increases as the number of source atlases
increases, strong correlations (e.g., p > 0.6) can be observed with as little as
two or three source atlases, suggesting that a small number of atlases may be
sufficient for most applications. Overall, improvements in similarity level off after
combining a few atlases, suggesting that adding a greater number of atlases than
tested here will have diminished returns.
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Fig. 4. The reconstructed connectomes using multiple source atlases retain significantly
more individual differences than using a single source atlas and predicted 1Q as well or
better than the original connnectome (red line). Size of circle represents the variance
of prediction of 100 iteration of 10-fold cross-validation. (Color figure online)
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IQ Prediction: To further evaluated the reconstructed connectomes, we show
that reconstructed connectomes can be used to predict fluid intelligence using
connectome-based predictive modeling (CPM) [23]. We partitioned the HCP
dataset into three groupings: g1, which consisted of 25% of the participants; gs,
which consisted of 50% of the participants; and, g3, which consisted of the final
25% of the participants. In g1, 7’s for each algorithm were estimated as above.
We then applied 7 on g5 and g3 to reconstruct connectomes. Finally, for each set
of connectomes, we trained a CPM model of fluid intelligence using g5 and tested
this model in g3. Spearman correlation between observed and predicted values
was used to evaluate prediction performance. This procedure was repeated with
100 random splitting of the data into the three groups. In all cases, connectomes
reconstructed using all of the source atlases performed as well in prediction as
the original connectomes (Fig.4).

Parameter Sensitivity: We investigated the sensitivity of all-way optimal
transport to the free parameters: frame size, training size, and entropy regu-
larization (see Eq.8). We observe stable correlations with original connectomes
using different frame sizes, emphasizing that our cost matrix captures the geome-
try between the different atlases well. Also, all-way optimal transport is trainable
with limited amount of data (see Fig.5). Finally, increasing entropy regulariza-
tion € overly penalizes the mapping and degrades the quality of connectomes.
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Fig. 5. Parameter sensitivity of frame size (x50), training data (x100), and entropy
regularization e for different target atlases using all-way optimal transport.

6 Discussion and Conclusions

Here, we significantly improve upon previous efforts to enable fMRI data, previ-
ously processed with one atlas, to be mapped to a connectome generated from a
different atlas , without the need for further prepossessing. To accomplish this,
we proposed and validate two algorithms that combine information from multi-
ple source atlases to better estimate connectomes for the target atlas. All-ways
optimal transport directly estimates a single mapping between multiple source
atlases and the target atlas. In contrast, stacking optimal transport combines
previously estimated mappings between a single source and target atlas, allowing
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these previously estimated mappings to be reused. Reconstructed connectomes
from both algorithms are more similar to their “gold-standard” counterparts and
better at predicting IQ than reconstructed connectomes based on a single source
mapping. Importantly, these results hold for a wide-range of different atlases.
Future work includes generalizing our framework to other functional timeseries
data—e.g., electroencephalography (EEG) and functional near infrared spec-
troscopy (fNIRS). Overall, our approach is a promising avenue to increase the
generalization of connectome-based results across different atlases.
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