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1 Introduction

Given a random vector X in Rn with density p, its Fisher information is defined by

I(X) = I(p) =

∫
|∇p|2

p
dx = 4

∫
|∇√p|2 dx. (1.1)

This functional is well-defined and finite, when the function
√
p belongs to the Sobolev

space W 2
1 (Rn). In all other cases, one puts I(X) =∞. In the one-dimensional case, the

integrals in (1.1) make sense when the density p is locally absolutely continuous and has
derivative p′ in the Radon-Nikodym sense. One may then write I(X) = Eρ(X)2 in terms
of the score function ρ = (log p)′, also called the logarithmic derivative of p. Of a large
interest are also more general functionals (moments of the scores)

Ik(X) = E |ρ(X)|k, k ≥ 1.

Since the Fisher information appears naturally in many mathematical problems, it
is useful to know general conditions which ensure that I(X) is finite. For example,
for the applicability of the central limit theorem with respect to the relative Fisher
information, one needs to verify that this functional becomes finite when taking several
convolutions of densities which might have an infinite Fisher information (such as the
uniform distributions on bounded intervals). To this aim, it was shown in [3] that

I(X) ≤ 1

2
(b1b2 + b1b3 + b2b3) (1.2)
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Bounds for Fisher information

in dimension n = 1 for the sum X = X1 +X2 +X3 of three independent random variables
Xj whose densities pj have finite total variation norms bj = ‖pj‖TV. Here, adding an
independent summand to X may only decrease the Fisher information. On the other
hand, it may happen that I(X1 +X2) =∞. With similar conclusions, (1.2) was extended
in [2] to higher moments of the scores as the relation

Ik(X) ≤ ck b1 . . . bk+1

( 1

b1
+ · · ·+ 1

bk+1

)
, ck =

kk

2kk!
, (1.3)

for the sum X = X1 + · · ·+Xk+1 of k + 1 independent random variables whose densities
pj have total variation norms bj = ‖pj‖TV.

The usefulness of such relations is explained by the fact that the total variation
norm is much easier tractable. In particular, this norm can be directly related to the
characteristic functions of the involved random variables. As a corollary, the following
characterization holds in the case where all Xj are independent, have finite absolute
moment, and a common characteristic function f(t) = E eitXj , t ∈ R. Namely, the partial
sums

SN = X1 + · · ·+XN

will have a finite Fisher information for some and then for all large N , if and only if
f(t) = o(t−ε) as t → ∞ for some ε > 0. The same conclusion is also true about the
moments Ik(SN ) of an arbitrary order k (cf. [2]). One may therefore wonder whether
a similar characterization holds in spaces of higher dimensions. Keeping aside this
question for a separate discussion, one of the purposes of this note is to extend the
relation (1.2) to densities on Rn.

Theorem 1.1. For the sum X = X1 +X2 +X3 of three independent random vectors Xj

in Rn whose densities pj have finite total variation norms bj = ‖pj‖TV, we have

I(X) ≤ c (b1b2b3)2/3, (1.4)

where c > 0 is an absolute constant.

Note that modulo an absolute factor, the expression on the right-hand side is slightly
better than the one in (1.2), in view of the arithmetic-geometric inequality. What also
looks to be rather remarkable is that the constant in (1.4) is independent of the dimension
n (as we will see, one may take c = 18).

In general, the total variation norm of an integrable function u on Rn is defined by

‖u‖TV = sup

∫
u(x)

n∑
i=1

∂wi
∂xi

dx, (1.5)

where the supremum is taken over all collections of C∞0 -smooth functions wi : Rn → R

such that w2
1 + · · ·+ w2

n ≤ 1 pointwise on Rn. This definition leads to the more familiar
formula

‖u‖TV =

∫
|∇u(x)| dx, (1.6)

once u has a weak gradient ∇u. If u = 1A is an indicator function of a Borel set A in Rn

of finite volume, the expression in (1.5) defines the perimeter Per(A) of A. It is finite, for
example, when A is open, bounded, and has a C2-smooth boundary (cf. [17], p. 229).

As an example illustrating (1.4), one may consider the random vectors Xj uniformly
distributed over sets Aj in Rn with finite positive volume vj = voln(Aj) and finite
perimeter Pj = Per(Aj). In this case, the densities of Xj represent normalized indicator
functions pj = 1

vj
1Aj

, and their total variation norms are given by bj = Pj/vj . One
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Bounds for Fisher information

can therefore conclude that the sum X = X1 + X2 + X3 has finite Fisher information
satisfying

I(X) ≤ c
(P1P2P3

v1v2v3

)2/3

.

In the one-dimensional situation, the proofs of (1.2)-(1.3) from [2], [3] are based on the
application of the Brunn-Minkowski inequality from Convex Geometry which allows one
to derive these relations for Xj ’s uniformly distributed over arbitrary bounded intervals.
Another ingredient in the argument is an interesting fact that any probability density p
on the real line with finite total variation norm may be represented as a “continuous”
convex mixture p =

∫
pt dπ(t) of densities of uniform distributions with the property that

‖p‖TV =
∫
‖pt‖TV dπ(t), thus reversing Jensen’s inequality for the total variation norm.

However, it is not clear how to push forward this approach in the multidimensional
situation. Instead, we refine and employ one result from the theory of differentiable
measures due to Uglanov and Bogachev about a general bound on I(p) without assuming
that the density p has a convolution structure. A main difficulty in estimating I(p)

concerns mostly the one-dimensional case. If a non-negative integrable function p on the
real line has 3 continuous derivatives (this class may be enlarged), it was shown in [5],
[6] that∫ ∞

−∞

p′(x)2

p(x)
dx ≤ 8

∫ ∞
−∞
|p′(x)| dx+ 6

∫ ∞
−∞
|p′′(x)| dx+ 2

∫ ∞
−∞
|p′′′(x)| dx. (1.7)

In the earlier paper [16], this inequality was stated without proof with existing absolute
constants. This relation may be extended to higher dimensions in terms of the corre-
sponding partial derivatives of p. As we will see, the derivatives of the first and second
order may actually be eliminated, so that we have:

Theorem 1.2. For any probability density p on Rn having continuous partial derivatives
up to the third order,

I(p) ≤ cn1/3

( n∑
i=1

∫
|∂3
xi
p(x)| dx

)2/3

, (1.8)

where c > 0 is an absolute constant.

Applying (1.8) to the convolution of 3 densities on Rn, we will derive the relation (1.4).
With this approach in mind, one may wonder whether or not one can obtain similar

inequalities for general moments of the scores so that to extend the inequality (1.3) to
higher dimensions. In this connection, let us mention that Krugova [13] has extended
the inequality (1.7) by proving that

Ik(p) =

∫ ∞
−∞

( |p′(x)|
p(x)

)k
p(x) dx ≤ Ck

∫ ∞
−∞

(
|p′(x)|+ |p′′(x)|+ |p′′′(x)|

)
dx

for the region of real orders 1 ≤ k < 3 with some constants Ck depending on k only. But,
as is also well-known, such a relation cannot be true for k ≥ 3, even if we involve higher
order derivatives. For example, the density

p(x) =
1√
2π

x2e−x
2/2, x ∈ R,

has integrable derivatives of any order, while I3(p) = ∞. Hence, the convolution
structure of the distribution of the random variable of X is essential for the bound (1.3)
with k ≥ 3.

Returning to Theorem 1.1, one motivating point for the derivation of multidimen-
sional upper bounds such as (1.4) is the central limit theorem in the i.i.d. model for
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the normalized sums ZN = SN/
√
N with respect to the relative Fisher information

I(ZN ||Z) = I(ZN )− I(Z) = I(ZN )− n (which we do not discuss here). This functional
appears naturally in other limit theorems and bounds as well. For example, of a large
interest is the behavior of the relative entropy

D(ZN ||Z) =

∫
pN log(pN/ϕ) dx,

where pN denotes the density of ZN , and ϕ is the density of the standard normal random
vector Z in Rn. Assuming that the distribution of the random vector X1 in Rn is isotropic,
has a finite Fisher information, and shares a Poincaré-type inequality

Var(u(X1)) ≤ C E |∇u(X1)|2,

it was recently shown by Courtade, Fathi and Pananjady [8] that

D(ZN ||Z) ≤ n(C − 1)

2N
log
(

1 +
I(X1||Z)

n(C − 1)
N
)
. (1.9)

Using (1.4), this bound may be stated under a weaker assumption that X1 has density
with finite total variation b. Applying (1.9) to the normalized sums of N/3 independent
copies of 1√

3
(X1 +X2 +X3) with N divisible by 3, we then obtain that

D(ZN ||Z) ≤ 3n(C − 1)

2N
log
(

1 +
18 b2

n(C − 1)
N
)
.

This paper consists of two parts. In sections 1–7 we focus on the one-dimensional
case and discuss various upper bounds on the Fisher information I(p) both in terms of
the second and third derivatives of p, and for several classes of probability distributions
(such as compactly supported or unimodal distributions). In Section 7, Theorems 1.1-1.2
are proved for n = 1. Sections 8–17 mostly deal with the multidimensional situation. To
make the proof of main results rigorous, this case requires a careful analysis of basic
concepts from the theory of weak derivatives and Sobolev spaces. Therefore, we include
a short reminder of basic definitions and facts in this theory, together with some special
results needed for an easy treatment of the Fisher information functional. They are used
in particular to rigorously justify some of its important properties such as the lower
semi-continuity and convexity.

Contents:
1. Introduction.
2. Functions with bounded second derivative.
3. Decay of densities and their derivatives.
4. Unimodal and quasi-unimodal distributions.
5. Total variation norm via higher order derivatives.
6. The use of the third derivative.
7. Theorems 1.1-1.2 in the one-dimensional case.
8. Weak derivatives.
9. Weak derivatives along single variables.
10. Sobolev spaces.
11. BV -space.
12. Convolution of functions of bounded variation.
13. Fisher information in high dimensions.
14. Lower semi-continuity of Fisher information.
15. Convexity of Fisher information.
16. Upper bounds. Proof of Theorem 1.2.
17. Proof of Theorem 1.1.
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2 Functions with bounded second derivative

Definition 2.1. Given −∞ ≤ a < b ≤ ∞ and an integer l ≥ 1, we denote by Cl(a, b) the
collection of all continuous functions u on the interval (a, b) having continuous derivatives
up to order l − 1 such that the derivative u(l−1) is (locally) absolutely continuous. Then
u(l−1) has a Radon-Nikodym derivative defined almost everywhere on (a, b), which we
denote u(l).

In that case, one may also say that u is Cl-smooth on (a, b). When the interval coincides
with the whole real line, the notation is shortened to Cl.

The Fisher information

I(p) =

∫ ∞
−∞

p′(x)2

p(x)
dx = Eρ(X)2 (2.1)

is well-defined for any probability density p from the class C1. If X is a random variable
with density p, we have P{p(X) > 0} = 1, so the integration in (2.1) may be performed
over the set p(x) > 0. It may further be restricted to the set of all points x where p is
differentiable, with p(x) > 0 and p′(x) 6= 0. Indeed, p′(x) 6= 0 ⇒ p(x) > 0 (due to the
property p ≥ 0), while the set where p′(x) = 0 and p(x) > 0 does not contribute to the
integral (2.1).

To get quantitative bounds on I(p), we will consider the classes C2 and C3 and use
the derivatives p′′ and p′′′.

Proposition 2.2. Given a C2-smooth probability density p, assume that p(a) = p(b) = 0

for some numbers a < b. Then for all x ∈ [a, b],

p′(x)2 ≤ 2Cp(x), C = ess supa<x<b p
′′(x). (2.2)

In particular, if p is supported on (a, b), then

I(p) ≤ 2C (b− a).

One may extend the inequality in (2.2) to the whole real line with a similar constant.

Proposition 2.3. Given a C2-smooth probability density p, we have, for all x ∈ R,

p′(x)2 ≤ 2Cp(x), C = ess supx∈R p
′′(x). (2.3)

In particular, ∫ ∞
−∞

p′(x)2 dx ≤ 2C.

The argument is based on two simple calculus lemmas.

Lemma 2.4. Given a non-negative C2-smooth function u on the interval (a, b), finite or
not, assume that u′′(x) ≤ C a.e. for some constant C. If u satisfies one of the following
two conditions

(i) u is non-decreasing with lim infx↓a u
′(x) = 0,

(ii) u is non-increasing with lim infx↑b u
′(x) = 0,

then C ≥ 0, and for all x ∈ (a, b),

u′(x)2 ≤ 2Cu(x). (2.4)

Proof. Under the assumption (i), necessarily C ≥ 0. Indeed, otherwise the derivative
u′(x) would be decreasing which implies that u′(x) < u′(a+) = 0 for all a < x < b. Hence,
the function u(x) itself would be decreasing.
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Next, consider the function ψ(x) = u′(x)2− 2Cu(x). It is locally absolutely continuous
on (a, b) and has a Radon-Nikodym derivative ψ′ satisfying

ψ′(x) = 2u′(x) (u′′(x)− C) ≤ 0, a < x < b (a.e.)

Hence ψ is non-increasing, that is, ψ(x) ≤ ψ(y) for all a < y < x < b. On the other hand,

lim inf
y↓a

ψ(y) = −2Cu(a+) ≤ 0.

Thus ψ(x) ≤ 0, and (2.4) follows.
The scenario as in (ii) is similar; it is reduced to (i) by applying the previous step to

the function x→ u(−x) on the interval (−b,−a).

Lemma 2.5. Let a C2-smooth function u ≥ 0 be defined on the interval (a, b), finite or
not. If

lim inf
x↓a

u′(x) = lim inf
x↑b

u′(x) = 0,

and u′′(x) ≤ C a.e. for some constant C, then C ≥ 0 and (2.4) still holds in (a, b).

Proof. Since the function u′ is continuous, the set U = {x ∈ (a, b) : u′(x) > 0} is open
and can be decomposed into at most countably many open disjoint intervals (ak, bk). If
ak > a, then necessarily u′(ak) = 0. By the assumption, we also have u′(ak+) = 0 if
ak = a. In both cases, one may apply Lemma 2.4 (i) to the interval (ak, bk), and we obtain
(2.4) for all x ∈ (ak, bk) with C ≥ 0.

Similarly, the set V = {x ∈ (a, b) : u′(x) < 0} can be decomposed into open disjoint
intervals (an, bn). If bk < b, then u′(bk) = 0, and, by the assumption, u′(bk−) = 0 if bk = b.
Applying Lemma 2.4 (ii) to the interval (ak, bk), again we obtain the inequality (2.4) for
all x ∈ (ak, bk).

Proof of Propositions 2.2–2.3. Let p be C2-smooth on the real line. First note that neces-
sarily C ≥ 0 in (2.2). Indeed, if C < 0, then p′ is decreasing on [a, b]. But the assumption
p(a) = 0 implies p′(a) = 0 (since p ≥ 0), and then we would get that p(x) < 0 for all
a < x < b. By a similar argument, we also have p′(b) = 0. Hence, one may apply
Lemma 2.5 to the function u = p, and (2.2) follows.

Turning to the next proposition, again necessarily C > 0. Indeed, if C ≤ 0, then p

would be concave on the whole real line, which is impossible for probability densities.
To prove the inequality (2.3), first assume that p′(x)→ 0 as |x| → ∞ (this is always

fulfilled, as will be shown in the next section). As in the proof of Lemma 2.5, consider the
open set U = {x ∈ R : p′(x) > 0} and decompose it into open disjoint intervals (ak, bk).
Necessarily, bk <∞ (otherwise, p would not be integrable). Moreover, if ak > −∞, then

p′(ak) = p′(bk) = 0.

Hence, one may apply Lemma 2.5 to the interval (ak, bk), and we obtain (2.3) for all
ak ≤ x ≤ bk. In the case ak = −∞, Lemma 2.5 is also applicable due to the assumption
p′(−∞) = 0. A similar argument allows us to involve the points from the open set
V = {x ∈ R : p′(x) < 0} as well, and we obtain (2.3) on the whole real line.

To remove the assumption on the derivative, consider a random variable X with
density p together with an independent variable Z which has a C∞0 -smooth density q
supported on a bounded interval ∆. The convolution of p with density qε of the random
variable εZ, ε > 0, is given by

pε(x) = (p ∗ qε)(x) =

∫ ∞
−∞

qε(x− y) p(y) dy =

∫
∆

p(x− εy) q(y) dy.

EJP 27 (2022), paper 115.
Page 6/44

https://www.imstat.org/ejp



Bounds for Fisher information

This function is C∞-smooth, and its first two derivatives are given by

p′ε(x) =

∫ ∞
−∞

q′ε(x− y) p(y) dy =

∫
∆

p′(x− εy) q(y) dy, (2.5)

p′′ε (x) =

∫ ∞
−∞

q′′ε (x− y) p(y) dy =

∫
∆

p′′(x− εy) q(y) dy.

The last equality shows that p′′ε (x) ≤ C for any x ∈ R. Moreover, since for every fixed
x ∈ R,

sup
0<ε<1

sup
y∈∆

p(x− εy) < ∞, sup
0<ε<1

sup
y∈∆
|p′(x− εy)| < ∞,

while p(x − εy) → p(x) and p′(x − εy) → p′(x) as ε → 0, one may apply the Lebesgue
dominated convergence theorem which gives

p(x) = lim
ε→0

pε(x), p′(x) = lim
ε→0

p′ε(x). (2.6)

In addition, using the property that q′ε is bounded for any fixed ε, while q′ε(x− y)→ 0

as |x| → ∞ for every y ∈ R, from the first equality in (2.5) it also follows that p′ε(x)→ 0

as |x| → ∞. Hence, one may apply the first step to the density pε, and we get that

p′ε(x)2 ≤ 2Cpε(x), x ∈ R.

It remains to let ε→ 0 in this inequality and refer to (2.6).

Remark 2.6. In the above argument one may also use not necessarily compactly sup-
ported smoothing densities such as the standard normal density q(x) = 1√

2π
e−x

2/2,

for example. Note that p and its derivative admit upper bounds p(x) ≤ A (1 + x2),
|p′(x)| ≤ A (1 + |x|) with some constant A > 0, so that

p(x− εy) ≤ A(1 + 2x2 + 2y2), |p′(x− εy)| ≤ A(1 + |x|+ |y|),

whenever 0 < ε ≤ 1. Thus, for each fixed x ∈ R, we have integrable majorants for the
functions y → p(x − εy) and y → p′(x − εy) with respect to the probability measure
q(y) dy. Hence, the Lebesgue dominated convergence theorem may be applied to obtain
the desired relations in (2.3).

3 Decay of densities and their derivatives

Suppose that the constant
C = ess supx∈R p

′′(x) (3.1)

is finite for a given C2-smooth probability density p on the real line. This property turns
out to be sufficient to bound p(x) and p′(x) in terms of the tails of the distribution function

F (x) =

∫ x

−∞
p(y) dy, x ∈ R,

associated to p. Suppose for a moment that p is everywhere positive, so that F : R→ (0, 1)

and its inverse function F−1 : (0, 1)→ R represent C3-smooth increasing bijections. The
function

L(t) = p(F−1(t)), 0 < t < 1,

has a smooth continuous derivative

L′(t) =
p′(F−1(t))

p(F−1(t))
,

EJP 27 (2022), paper 115.
Page 7/44

https://www.imstat.org/ejp



Bounds for Fisher information

and we have the identity
(L(t)2)′ = 2p′(F−1(t)).

An application of the bound
|p′(x)| ≤

√
2Cp(x)

of Proposition 2.3 leads to
(L(t)2)′ ≤ 2

√
2CL(t).

Thus, the function y(t) = L(t)2 satisfies the differential inequality y′(t) ≤ 2
√

2C y(t)1/4,
which is the same as (

y(t)3/4
)′ ≤ 3

2

√
2C, 0 < t < 1.

After integration over the interval (t0, t), 0 < t0 < t < 1, we get

y(t)3/4 − y(t0)3/4 ≤ 3

2

√
2C (t− t0).

Necessarily lim infx→−∞ p(x) = 0 which is equivalent to lim inft0→0 L(t0) = 0. Hence,
letting t0 approach zero in a proper way, from the above inequality we obtain that

y(t)3/4 ≤ 3

2

√
2C t,

that is,

L(t) ≤
(3

2

√
2C t

)2/3

.

Simplifying the numerical constant and changing the variable t = F (x), we have been
led to the inequality

p(x) ≤ 2C1/3 F (x)2/3, x ∈ R. (3.2)

Now, to remove the assumption that p is positive, one may consider the convolutions
pε as in the proof of Proposition 2.3, by choosing for q the density of the standard normal
law. Hence, the above step yields the bound

pε(x) ≤ 2C1/3 Fε(x)2/3, x ∈ R,

in terms of the distribution function Fε associated to pε. Here, according to Remark 2.6,
one may let ε → 0, and then we obtain in the limit the inequality (3.2) without any
constraints. Moreover, interchanging the role of the points −∞ and∞, we have a similar
bound

p(x) ≤ 2C1/3 (1− F (x))2/3, x ∈ R.

Once we have established these estimates for p(x), we also obtain similar ones for
p′(x), by applying Proposition 2.3. One may now summarize.

Proposition 3.1. Using the constant C as in (3.1), we have for all x ∈ R,

p(x) ≤ 2C1/3
(

min(F (x), 1− F (x))
)2/3

(3.3)

and
|p′(x)| ≤ 3C1/6

(
min(F (x), 1− F (x))

)1/3
. (3.4)

In particular, p(x)→ 0 and p′(x)→ 0 as |x| → ∞.

The right-hand sides of (3.3)-(3.4) may further be bounded in terms of absolute
moments βs = E |X|s of a random variable X with density p. Indeed, by Chebyshev’s
inequality,

F (−x) + (1− F (x)) ≤ βs
xs
, x > 0.
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Corollary 3.2. Assuming that the constant C and the moment βs are finite for a real
number s > 0, we have for all x ∈ R,

p(x) ≤ 2C1/3β2/3
s

1

|x|2s/3
,

|p′(x)| ≤ 2C1/6β1/3
s

1

|x|s/3
.

In particular, if βs <∞ for some s > 3, then p has a bounded total variation.

Another application of Propositions 2.3 and 3.1 concerns an alternative (classical)
formula for the Fisher information.

Corollary 3.3. For any probability density p from the class C2 such that the constant C
in (3.1) is finite, we have

I(p) = −
∫
p(x)>0

p′′(x) log p(x) dx,

as long as the function p′′(x) log p(x) is integrable on the set {x ∈ R : p(x) > 0}.

Proof. The open set U = {x ∈ R : p(x) > 0} can be decomposed into disjoint intervals
(ak, bk). Necessarily p(ak+) = p(bk−) = 0 including the cases ak = −∞ and bk =∞, by
Proposition 3.1. Let ak < a < b < bk. Since log p(x) and p′(x) are continuous functions
with bounded total variations on [a, b], one may integrate by parts, which gives

−
∫ b

a

p′′(x) log p(x) dx = −
∫ b

a

log p(x) dp′(x)

= −p′(b) log p(b) + p′(a) log p(a) +

∫ b

a

p′(x)2

p(x)
dx.

By Proposition 2.3,

|p′(a) log p(a)| ≤
√

2C
√
p(a) | log p(a)| → 0 as a→ ak,

and similarly |p′(b) log p(b)| → 0 as b→ bk. Hence, the above formula becomes in the limit

−
∫ bk

ak

p′′(x) log p(x) dx =

∫ bk

ak

p′(x)2

p(x)
dx.

It remains to perform summation over all k.

4 Unimodal and quasi-unimodal distributions

Proposition 2.3 may also be applied to control the Fisher information for a large variety
of densities like in the following statement.

Proposition 4.1. Let p be a probability density of class C2 with finite constant

C = ess supx∈R p
′′(x).

Suppose that p is non-decreasing on a half-axis (−∞, a) and is non-increasing on a
half-axis (b,∞) for some a ≤ b. Then I(p) is finite. Moreover,

I(p) ≤ 2C(b− a) + 2
√

2C (
√
p(a) +

√
p(b)). (4.1)
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Proof. Let a0 = inf{x : p(x) > 0} and b0 = sup{x : p(x) > 0}. We may assume that
a0 < a ≤ b < b0. Necessarily p(a0+) = p(b0−) = 0. By the monotonicity on the interval
(a0, a), the function

√
p has finite total variation

‖√p ‖TV(a0,a) =
1

2

∫ a

a0

|p′(x)|√
p(x)

dx =
√
p(a).

Since |p′(x)| ≤
√

2Cp(x), we obtain that∫ a

a0

p′ 2

p
dx =

∫ a

a0

|p′(x)|√
p(x)

· |p
′(x)|√
p(x)

dx ≤ 2
√

2Cp(a).

By a similar argument, ∫ b0

b

p′ 2

p
dx ≤ 2

√
2Cp(b).

Finally, by the upper bound (2.3) from Proposition 2.3,∫ b

a

p′ 2

p
dx ≤ 2C(b− a).

It remains to add these three estamates.

One interesting case in (4.1) is when a = b. This corresponds to the so-called unimodal
distributions on the real line with mode at the point a. With this in mind, the more
general case a < b may be referred to as the class of quasi-unimodal distributions.

In the unimodal case, (4.1) is simplified to

I(p) ≤ 4
√

2Cp(a).

But then, one can further relax the basic hypothesis on the second derivative.

Proposition 4.2. Let p be a continuous density of the unimodal distribution with mode
at the point a. Suppose that p is C2-smooth on the half-axis (−∞, a) and is C2-smooth on
the half-axis (a,∞) with finite

C0 = ess supx<a p
′′(x), C1 = ess supx>a p

′′(x).

Then I(p) is finite, and moreover,

I(p) ≤ 2 (
√

2C0 +
√

2C1)
√
p(a). (4.2)

Proof. Again, let a0 = inf{x : p(x) > 0} and b0 = sup{x : p(x) > 0}, so that necessarily
a0 < a < b0, by continuity of p. It is also necessary that p′(a0+) = p′(b0−) = 0. This
follows from the fact that p′ is continuous on (−∞, a) and limx→−∞ p′(x) = 0 (since
otherwise p would not be integrable), and similarly for the second half-axis. Also, by the
integrability argument, we have C0 ≥ 0 and C1 ≥ 0. Hence, we are in position to apply
Lemma 2.4 with u = p, which yields

p′(x)2 ≤ 2C0p(x) for x < a, p′(x)2 ≤ 2C1p(x) for x > a.

It remains to repeat the argument from the proof of Proposition 4.1.

As an example, one may consider the symmetric exponential distribution with density

p(x) =
1

2
e−|x|, x ∈ R.

It satisfies the assumptions of Proposition 4.2 with mode at a = 0 and C0 = C1 = 1
2 .

Hence, by (4.2), I(p) ≤ 2
√

2. Note that I(p) = 1, while Proposition 4.1 is not applicable.
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5 Total variation norm via higher order derivatives

To further develop upper bounds on the Fisher information, we have to see how one can
estimate the L1-norm of the first and second derivatives of a smooth density in terms of
the L1-norm of its next third derivative. This is a preliminary step towards Theorem 1.2.

Proposition 5.1. For any function p in C2,∫ ∞
−∞
|p′(x)| dx ≤

∫ ∞
−∞
|p(x)| dx+

2

3

∫ ∞
−∞
|p′′(x)| dx. (5.1)

Perhaps, this relation is known (up to factors in front of the integrals). Note that a
similar inequality∫ ∞

−∞
|p′(x)|2 dx ≤ 1

2

∫ ∞
−∞
|p(x)|2 dx+

1

2

∫ ∞
−∞
|p′′(x)|2 dx (5.2)

for the L2-norms is obvious. Indeed, under proper integrability assumptions and applying
the Plancherel theorem, (5.2) may be rewritten in terms of the Fourier transform

p̂(t) =

∫ ∞
−∞

eitx p(x) dx, t ∈ R,

as ∫ ∞
−∞
|tp̂(t)|2 dt ≤ 1

2

∫ ∞
−∞
|p̂(t)|2 dt+

1

2

∫ ∞
−∞
|t2p̂(t)|2 dt.

This readily holds in view of the pointwise bound t2 ≤ 1
2 + 1

2 t
4.

However, the finiteness of the integrals on the right-hand side of (5.2) does not
guarantee that p will have a finite total variation. For example, consider a C∞-smooth
function p on the real line which is vanishing for x ≤ 0 and such that

p(x) =
sin(xα)

xβ
, x ≥ 1,

with parameters α ≥ β > 1. It belongs to L1 ∩ L2, while p′ is not integrable (‖p‖TV =∞).
As easy to see, p′′ ∈ L2 if and only if α < 1

4 (2β + 3) which may happen when 1 < β < 3
2 .

Involving higher order derivatives, one may get similar relations in the spirit of the
inequality (5.1), like the following ones which we prefer to state in the multiplicative
form.

Corollary 5.2. For any function p in C3,∫ ∞
−∞
|p′(x)| dx ≤ 4

3

(∫ ∞
−∞
|p(x)| dx

)2/3 (∫ ∞
−∞
|p′′′(x)| dx

)1/3

,∫ ∞
−∞
|p′′(x)| dx ≤ 4

3

(∫ ∞
−∞
|p(x)| dx

)1/3 (∫ ∞
−∞
|p′′′(x)| dx

)2/3

.

Proof. Applying (5.1) to the functions pλ(x) = p(λx) with parameter λ > 0, we get∫ ∞
−∞
|p′(x)| dx ≤ 1

λ

∫ ∞
−∞
|p(x)| dx+

2λ

3

∫ ∞
−∞
|p′′(x)| dx,

which may be optimized over λ to yield∫ ∞
−∞
|p′(x)| dx ≤

(
4

3

∫ ∞
−∞
|p(x)| dx

∫ ∞
−∞
|p′′(x)| dx

)1/2

. (5.3)

EJP 27 (2022), paper 115.
Page 11/44

https://www.imstat.org/ejp



Bounds for Fisher information

In other words, we arrive at the convexity-type relation

a1 ≤
1

2
a0 +

1

2
a2 + h, h =

1

2
log

4

3
, (5.4)

for the sequence

ak = logAk, Ak =

∫ ∞
−∞
|p(k)(x)| dx.

An application of (5.3) to p′ in place of p leads to a2 ≤ 1
2 a1 + 1

2 a3 + h, which, by (5.4),
implies a1 ≤ 1

2 a0 + 1
2 ( 1

2 a1 + 1
2 a3 + h) + h. That is,

a1 ≤
2

3
a0 +

1

3
a3 + 2h, or A1 ≤ e2hA

2/3
0 A

1/3
3 .

By a similar argument, a2 ≤ 1
3 a0 + 2

3 a3 +2h, or A2 ≤ e2hA
1/3
0 A

2/3
3 which was required.

Involving further derivatives in a similar manner, we arrive at the following:

Corollary 5.3. If the function p in Cl is integrable and has an integrable derivative p(l)

of order l ≥ 2, then all intermediate derivatives p(k), 1 ≤ k ≤ l− 1, are integrable as well.

Proof of Proposition 5.1. First, let us derive an upper bound on the L1-norm of p′ over
the unit interval. One may start with the weighted L1-Poincaré-type inequality∫ 1

0

|u(x)−m| dx ≤ 2

∫ 1

0

|u′(x)|x(1− x) dx, m =

∫ 1

0

u(x) dx. (5.5)

Here, an equality is attained in the asymptotic sense for the indicator function u = 1[0,1/2].
To prove it, note that, by Jensen’s inequality, the left integral in (5.5) does not exceed∫ 1

0

∫ 1

0

|u(x)− u(y)| dx dy = 2

∫ ∫
0<x<z<y<1

∣∣∣ ∫ y

x

u′(z) dz
∣∣∣ dx dy

≤ 2

∫ ∫
0<x<z<y<1

[ ∫ y

x

|u′(z)| dz
]
dx dy

= 2

∫ 1

0

|u′(z)| z(1− z) dz.

This proves (5.5). Using this inequality with u = p′, we get∫ 1

0

|p′(x)−m| dx ≤ 2

∫ 1

0

|p′′(x)|x(1− x) dx,

implying ∫ 1

0

|p′(x)| dx ≤ |m|+ 2

∫ 1

0

|p′′(x)|x(1− x) dx, m = p(1)− p(0). (5.6)

Next, we need to derive an upper bound on the increment m of p(x) on [0, 1] analo-
gously to the right-hand side in (5.1). By Taylor’s integral formula, for all h ∈ R,

p(h) = p(0) + p′(0)h+ h2

∫ 1

0

p′′(th) (1− t) dt.

Writing this inequality with −h in place of h and averaging, we get

p(0) =
p(h) + p(−h)

2
− 1

2

∫ 1

0

h2
(
p′′(th) + p′′(−th)

)
(1− t) dt.
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Let us now integrate this identity over 0 < h < 1. This gives another general identity

p(0) =
1

2

∫ 1

−1

p(x) dx− 1

4

∫ 1

0

p′′(x) (1− x)2 dx− 1

4

∫ 0

−1

p′′(x) (1 + x)2 dx.

Applying it to the function x→ p(1 + x), we also get

p(1) =
1

2

∫ 2

0

p(x) dx− 1

4

∫ 2

1

p′′(x) (2− x)2 dx− 1

4

∫ 1

0

p′′(x)x2 dx.

Hence

p(1)− p(0) =
1

2

∫ 2

1

p(x) dx− 1

2

∫ 0

−1

p(x) dx+
1

4

∫ 0

−1

p′′(x) (1 + x)2 dx

+
1

4

∫ 1

0

p′′(x) (1− 2x) dx− 1

4

∫ 2

1

p′′(x) (2− x)2 dx,

and thus

|p(1)− p(0)| ≤ 1

2

∫ 0

−1

|p(x)| dx+
1

2

∫ 2

1

|p(x)| dx+
1

4

∫ 0

−1

|p′′(x)| (1 + x)2 dx

+
1

4

∫ 1

0

|p′′(x)| |1− 2x| dx+
1

4

∫ 2

1

|p′′(x)| (2− x)2 dx.

Thus, together with (5.6) we arrive at the similar bound∫ 1

0

|p′(x)| dx ≤ 1

2

∫ 0

−1

|p(x)| dx+
1

2

∫ 2

1

|p(x)| dx+

∫ ∞
−∞
|p′′(x)|w(x) dx (5.7)

with

w(x) =


0 for x < −1 and x > 2,

1
4 (1 + x)2 for −1 ≤ x ≤ 0,

1
4 |1− 2x|+ 2x(1− x) for 0 ≤ x ≤ 1,

1
4 (2− x)2 for 1 ≤ x ≤ 2.

Let us now apply the relation (5.7) to the functions p(x+ k) and perform summation
over all integers k. This will give∫ ∞

−∞
|p′(x)| dx ≤

∫ ∞
−∞
|p(x)| dx+

∫ ∞
−∞
|p′′(x)|W (x) dx (5.8)

with weight functionW (x) =
∑
k∈Z w(x+k). One can easily evaluate it using the property

that it is 1-periodic. Restricting ourselves to the values x ∈ [0, 1], we have

W (x) = w(x− 1) + w(x) + w(x+ 1)

=
1

4
x2 +

1

4
(1− x)2 +

1

4
|1− 2x|+ 2x(1− x).

This function is symmetric about the point x = 1
2 , and W (x) = 1

2 (1 + 2x − 3x2) for
0 ≤ x ≤ 1

2 . The latter expression is maximized at x = 1
3 with W ( 1

3 ) = 2
3 . Thus, W (x) ≤ 2

3

for all x ∈ R, so that (5.8) yields the desired inequality (5.1).

6 The use of the third derivative

The boundedness condition for the second derivative p′′ is guaranteed, for example, by
the integrability of the next derivative p′′′. Hence, some of the previous statements can
be made in terms of the L1-norm of p′′′. As a first step towards the one-dimensional
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variant of Theorem 1.2, here we prove the following relation. We basically follow the
arguments described in the book by Bogachev [6] and employ Corollary 5.2. Let us use
the notation

I(p) =

∫ ∞
−∞

p′(x)2

p(x)
dx

for all non-negative functions p from the class C1 (even if p is not a probability density).
The next inequality slightly sharpens (1.7).

Proposition 6.1. For any non-negative function p of class C3,

I(p) ≤ 2

∫ ∞
−∞
|p′(x)| dx+ 4

∫ ∞
−∞
|p′′(x)| dx+ 2

∫ ∞
−∞
|p′′′(x)| dx. (6.1)

Proof. One may assume that all integrals on the right-hand side are finite, and p is not
identically zero. In particular, p, p′ and p′′ are bounded on the whole real line.

The set U = {x ∈ R : p′(x) > 0} is non-empty and open. Let us decompose it into at
most countably many disjoint open intervals, and let ∆ = (a, b) be one of these intervals.
Necessarily b <∞, p′(b) = 0, and p′(a) = 0 in the case a > −∞. Since p′(x) is vanishing
at infinity (Proposition 3.1), we also have p′(−∞) = 0 if a = −∞.

By the monotonicity, p(x) > 0 on ∆, and we may define a positive function

v(x) =
p′(x)2

p(x)
,

which is C2-smooth on the interval ∆. Put

∆′ = {x ∈ ∆ : v(x) ≤ 2p′′(x)}, ∆′′ = {x ∈ ∆ : v(x) > 2p′′(x)}.

Note that p′′ > 0 on ∆′ and ∫
∆′

p′(x)2

p(x)
dx ≤ 2

∫
∆′
p′′(x) dx. (6.2)

Turning to the set ∆′′, note that it is open and can be decomposed into at most
countably many disjoint intervals (ak, bk). In particular, v(ak) = 2p′′(ak) in the case
ak > a.

The function v(x) has a continuous derivative satisfying

v′(x) =
p′(x) (2p(x) p′′(x)− p′(x)2)

p(x)2
< 0, x ∈ ∆′′.

Hence, v(x) is decreasing on every (ak, bk). As a consequence, if ak > a,

p′(x)2

p(x)
≤ 2p′′(ak), ak < x < bk. (6.3)

In the case ak = a > −∞, recall that p′(ak) = 0. Given ε > 0 such that a+ ε < bk, one
may apply Lemma 2.4 (i) to the function u = p on the interval (a, a+ ε) which yields

p′(x)2 ≤ 2Cεp(x), Cε = sup
a<y<a+ε

p′′(y) ≥ 0,

for every x ∈ (a, a+ ε). By the monotonicity of v, it follows that

sup
a<x<bk

p′(x)2

p(x)
= sup
a<x<a+ε

p′(x)2

p(x)
≤ 2Cε.
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Letting ε → 0 and using the continuity of p′′, we have Cε → p′′(a), so that the above
relation leads to (6.3) for this case as well. Note that, by (6.3), necessarily p′′(ak) > 0.

As for the remaining case ak = a = −∞, let us show that it is impossible. Since v is
decreasing on the half-axis (ak, bk) = (−∞, bk), this would imply that, for any z < bk,∫ z

−∞

p′(x)2

p(x)
dx =

∫ z

−∞
v(x) dx ≥

∫ z

−∞
v(z) dx =∞.

On the other hand, since |p′(x)| ≤
√

2Cp(x) for all x ∈ R with constant C = supx p
′′(x)

(Proposition 2.3) and since p′(x) > 0 on U , we have∫ z

−∞

p′(x)2

p(x)
dx = 2

∫ z

−∞

p′(x)√
p(x)

√
p(x)

′
dx

≤ 2
√

2C

∫ z

−∞

√
p(x)

′
dx = 2

√
2Cp(z) < ∞,

where we used the property p(x)→ 0 as x→ −∞ (Proposition 3.1).
Thus, necessarily −∞ < ak < bk ≤ b <∞, p′′(ak) > 0, and the inequality (6.3) holds

true on every interval (ak, bk). Applying it, we get

Jk ≡
∫ bk

ak

p′(x)2

p(x)
dx ≤

√
2p′′(ak)

∫ bk

ak

p′(x)√
p(x)

dx

= 2
√

2p′′(ak)
(√

p(bk)−
√
p(ak)

)
.

Using the simple inequality (
√
t−
√
s)2 ≤ t− s (t ≥ s), it follows that

J2
k ≤ 8p′′(ak) (p(bk)− p(ak)) = 8p′′(ak)

∫ bk

ak

p′(x) dx.

Hence (using
√
ts ≤ 1

2 t+ 1
2 s, t, s ≥ 0), we get

Jk ≤ 2

∫ bk

ak

p′(x) dx+ p′′(ak). (6.4)

To further estimate the right-hand side, consider two scenarios. If p′′(ak) ≤ 2p′′(x) in
(ak, bk), then, by (6.3), whenever ak < x < bk,

p′(x)2

p(x)
≤ 2p′′(ak) ≤ 4p′′(x),

implying

Jk ≤ 4

∫ bk

ak

|p′′(x)| dx,

which is similar to (6.2). In the other case, there is a point xk ∈ (ak, bk) such that
p′′(ak) > 2p′′(xk). Then

p′′(ak) < 2 (p′′(ak)− p′′(xk))

= 2

∫ bk

xk

p′′′(x) dx ≤ 2

∫ bk

ak

|p′′′(x)| dx,

which, by (6.4), gives

Jk ≤ 2

∫ bk

ak

p′(x) dx+ 2

∫ bk

ak

|p′′′(x)| dx.
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One can unite both scenarios using the formally weaker relation

Jk ≤ 2

∫ bk

ak

|p′(x)| dx+ 4

∫ bk

ak

|p′′(x)| dx+ 2

∫ bk

ak

|p′′′(x)| dx.

Let us now perform summation over all k, which leads to∫
∆′′

p′(x)2

p(x)
dx ≤ 2

∫
∆′′
|p′(x)| dx+ 4

∫
∆′′
|p′′(x)| dx+ 2

∫
∆′′
|p′′′(x)| dx.

Here the right-hand side dominates the one of (6.2). Hence, adding the two inequalities
with integrals taken over ∆′ and ∆′′, we get∫

∆

p′(x)2

p(x)
dx ≤ 2

∫
∆

|p′(x)| dx+ 4

∫
∆

|p′′(x)| dx+ 2

∫
∆

|p′′′(x)| dx.

It is time to perform summation over all intervals ∆’s contained in the decomposition of
U , which leads to the similar bound∫

U

p′(x)2

p(x)
dx ≤ 2

∫
U

|p′(x)| dx+ 4

∫
U

|p′′(x)| dx+ 2

∫
U

|p′′′(x)| dx.

A similar relation holds true when integrating over the set V = {x ∈ R : p′(x) < 0} in
place of U (alternatively, one may apply the previous step to the function x → p(−x)).
Adding the two inequalities with integrals over U and V , we then get (6.1).

7 Theorems 1.1-1.2 in the one-dimensional case

We are prepared to prove the one-dimensional variant of Theorem 1.2.

Proposition 7.1. For any probability density p ∈ C3, we have

I(p) ≤ 10
(∫ ∞
−∞
|p′′′(x)| dx

)2/3

. (7.1)

Proof. Denote by A the integral in (7.1). We apply Corollary 5.2 to (6.1) to get that

I(p) ≤ 8

3
A1/3 +

16

3
A2/3 + 2A.

This inequality is not invariant under rescaling of the space variable. So, let us apply it
to the probability density functions pλ(x) = λp(λx) with parameter λ > 0. Then we get

I(p) ≤ 8

3λ
A1/3 +

16

3
A2/3 + 2λA.

Optimizing over all λ, we arrive at I(p) ≤ cA2/3 with constant c = 8√
3

+ 16
3 < 10.

We now consider a particular case of the inequality (7.1) when p has a convolution
structure.

First, let us remind some of the basic properties of this operation. Given integrable
functions p1 and p2, the convolution

(p1 ∗ p2)(x) =

∫ ∞
−∞

p1(x− y) p2(y) dy, x ∈ R, (7.2)

is defined a.e. and represents an integrable function with the L1-norm

‖p1 ∗ p2‖1 ≤ ‖p1‖1 ‖p2‖1. (7.3)
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Moreover, if pj are non-negative, the integral in (7.2) is well-defined for any fixed x

(although it may be infinite); it does not change when changing pj on a set of Lebesgue
measure zero.

In general, the convolution improves smoothing properties. For example, if p1 and p2

are bounded, the function p = p1 ∗ p2 is bounded and uniformly continuous. In this case,
both p1 and p2 belong to L2(R), so do their Fourier transforms

p̂j(t) =

∫ ∞
−∞

eitx pj(x) dx, t ∈ R,

by the Plancherel theorem. Hence, the Fourier transform p̂ = p̂1p̂2 is an integrable
function, which implies the desired assertion by applying the inverse Fourier formula.

We will need the following elementary statement.

Lemma 7.2. If non-negative integrable functions pj , 1 ≤ j ≤ l, are absolutely continuous
and have integrable Radon-Nikodym derivatives p′j , the convolution p = p1 ∗ · · · ∗ pl
belongs to the class Cl. Moreover, its derivatives up to order l − 1 are bounded and
integrable, while the l-th Radon-Nikodym derivative of p represents the convolution

p(l) = p′1 ∗ · · · ∗ p′l (7.4)

with the L1-norm satisfying
‖p(l)‖1 ≤ ‖p′1‖1 . . . ‖p′l‖1. (7.5)

Proof. For simplicity, let us consider the case l = 2. Put qj = p′j , j = 1, 2. According to
(7.2), for any x ∈ R,

p(x) =

∫ ∞
−∞

[ ∫ x−y

−∞
q1(z) dz

]
p2(y) dy =

∫∫
z+y≤x

q1(z) p2(y) dy dz.

In particular,
|p(x)| ≤ ‖q1‖1 ‖p2‖1 <∞,

so that p is bounded. After change of variable y = ξ − z, the last double integral may be
rewritten as

p(x) =

∫ x

−∞

[ ∫ ∞
−∞

q1(z) p2(ξ − z) dz
]
dξ =

∫ x

−∞
(q1 ∗ p2)(ξ) dξ.

This equality shows that p is absolutely continuous and has an integrable Radon-Nikodym
derivative p′ = q1 ∗ p2. Thus,

p′(x) =

∫ ∞
−∞

[ ∫ x−y

−∞
q2(z) dz

]
q1(y) dy =

∫∫
z+y≤x

q2(z) q1(y) dy dz.

The last integral is finite and represents a continuous bounded function of x, with

|p′(x)| ≤ ‖q1‖1 ‖q2‖1 <∞.

After the same change of variable y = ξ − z, the last double integral may be rewritten as

p′(x) =

∫ x

−∞

[ ∫ ∞
−∞

q2(z) q1(ξ − z) dz
]
dξ =

∫ x

−∞
(q1 ∗ q2)(ξ) dξ.

This equality shows that p′ is absolutely continuous and has an integrable Radon-Nikodym
derivative p′′ = q1 ∗ q2. In particular, p ∈ C2. The inequality in (7.5) follows from (7.3).

The general case l ≥ 2 in (7.4)-(7.5) is similar.
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In the case l = 3, one may combine Lemma 7.2 with Proposition 7.1 to obtain the
following consequence from (7.1).

Proposition 7.3. Given absolutely continuous probability densities pj , j = 1, 2, 3, the
convolution p = p1 ∗ p2 ∗ p3 belongs to the class C3 and has finite Fisher information
satisfying

I(p) ≤ 10 (b1b2b3)2/3, bj = ‖p′j‖1. (7.6)

The inequality (7.6) may be further extended to the class of probability densities of
bounded variation, by a suitable approximation. On the real line, the total variation
semi-norm of a function p is defined by

‖p‖TV = sup

N∑
k=1

|p(xk)− p(xk−1)|, (7.7)

where the supremum is taken over all collections of points x0 < x1 < · · · < xN . If this
semi-norm is finite, necessarily the limits

p(x−) = lim
y↑x

p(y), p(x+) = lim
y↓x

p(y)

exist and are finite for all x ∈ R. Without loss of generality, one may always assume
that the value p(x) is located between these limits. For example, one may require that
p(x+) = p(x), that is, p is right-continuous. With this requirement, the value in (7.7)
coincides with the so-called essential total variation semi-norm, which is consistent with
the definition (1.5).

If p is integrable, then necessarily p(−∞) = p(∞) = 0. Hence, being restricted to the
linear space of all integrable right-continuous functions p of bounded variation, ‖p‖TV

represents a norm. If p is absolutely continuous and has a Radon-Nikodym derivative p′,
then

‖p‖TV = ‖p′‖1 =

∫ ∞
−∞
|p′(x)| dx. (7.8)

Like the Fisher information, the convolution of p with an arbitrary probability density
q does not increase the total variation norm:

‖p ∗ q‖TV ≤ ‖p‖TV. (7.9)

Proof of Theorem 1.1 (n = 1). Let pj , j = 1, 2, 3, be probability densities with finite total

variation norms bj = ‖pj‖TV. Introduce the normal density ϕε(x) = 1
ε
√

2π
e−x

2/2ε2 with
mean zero and standard deviation ε > 0 and define the convolutions

pj,ε = pj ∗ ϕε, pε = p1,ε ∗ p2,ε ∗ p3,ε = p ∗ ϕε√3.

All these functions represent C∞-smooth probability densities, so that the relations (7.6)
and (7.8) are applicable, which yield

I(pε) ≤ 10
(
‖p1,ε‖TV ‖p2,ε‖TV ‖p3,ε‖TV

)2/3
≤ 10

(
‖p1‖TV ‖p2‖TV ‖p3‖TV

)2/3
,

where we made use of (7.9) on the last step. It remains to apply the lower semi-continu-
ity of the Fisher information (cf. [3], Proposition 3.1, or Section 14 below): If random
variables ξk are convergent weakly in distribution to a random variable ξ, then

I(ξ) ≤ lim inf
k→∞

I(ξk).

As a consequence, I(p) = limε→0 I(pε). Thus, Theorem 1.1 is proved with c = 10.
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8 Weak derivatives

In spaces of higher dimensions, the general theory about the Fisher information is
somewhat different than in dimension one. For example, for the finiteness of I(p), the
density p does not need be bounded and continuous anymore, in contrast with the
one-dimensional case. We refer an interested reader to [4] for related issues.

Upper bounds on the Fisher information for probability densities on Rn may be
explored in appropriate Sobolev spaces. A main approach to the definition of Sobolev
spaces is based on the integration by parts formula. Let us recall some basic notations
and facts in this theory and give some additional remarks (for background we refer to
[17], [10]). As usual, C∞0 (Rn) denotes the space of all compactly supported functions w
on Rn that have continuous partial derivatives of all orders.

Definition 8.1. Let α = (α1, . . . , αn) be a multi-index with |α| = α1 + · · · + αn (αj are
non-negative integers). Given a locally integrable function u on Rn, a locally integrable
function v on Rn is called a generalized α-th derivative of u, and we write v = Dαu, if∫

uDαw dx = (−1)|α|
∫
vw dx (8.1)

for all w ∈ C∞0 (Rn).

Here and elsewhere Dαw = ∂α1
x1
. . . ∂αn

xn
w denotes the corresponding partial derivative.

We are especially interested in partial derivatives along one variable only and then we
also write

Dl
iu = ∂lxi

u (i = 1, . . . , n), Diu = ∂xi
u.

If v = Dαu exists, this generalized partial derivative is defined uniquely up to a set
of Lebesgue measure zero. Of course, if u has continuous usual partial derivatives of
orders up to |α|, the generalized α-th derivative exists and may be chosen to be the usual
one.

Like in the usual differentiation, generalized derivatives are commutative with respect
to α and have a semi-group structure: If u has a generalized α-th derivative Dαu, which
in turn has a generalized β-th derivative v = DβDαu, then u has a generalized (α+ β)-th
derivative v. That is, Dα+β = DβDα = DαDβ for all multi-indices α and β.

In dimension n = 1 with α = 1, Definition 8.1 returns us to the setting of locally abso-
lutely continuous functions for which Radon-Nikodym derivatives serve as generalized
derivatives. More generally, one may give the following characterization.

Proposition 8.2. A locally integrable function u on the real line has a generalized l-th
derivative v of an integer order l ≥ 1, if and only if u = ũ a.e. for some ũ from the class
Cl. In this case, v = ũ(l) a.e.

In the case l = 1, Proposition 8.2 is thus telling us that a locally integrable function
on the real line has a generalized derivative, if and only if after a modification on a set of
Lebesgue measure zero, it will be locally absolutely continuous.

In the proof we involve the so-called regularized functions which are commonly used
for approximation of Sobolev functions. Let ω ∈ C∞0 (Rn) be non-negative and compactly
supported, with

∫
ω dx = 1. So, it is a probability density. The probability densities

ωε(x) = ε−n ω(x/ε), x ∈ Rn (ε > 0),

are also compactly supported and belong to the class C∞0 . They are called regularizers.

Definition 8.3. Given a locally integrable function u on Rn, define the convolutions

uε(x) = (u ∗ ωε)(x) =

∫
u(x− y)ωε(y) dy

=

∫
ωε(x− y)u(y) dy, x ∈ Rn. (8.2)
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They are called the regularized functions.

These functions are locally integrable, belong to the class C∞(Rn), and we have the
commutativity (ωε1)ε2 = (ωε2)ε1 , εj > 0. Let us list a few elementary basic properties of
the regularized functions, in which the choice of the regulizer ω is irrelevant.

Lemma 8.4. Let u be a locally integrable function on Rn and α be a multi-index.
1) uε(x)→ u(x) as ε→ 0 at every Lebesgue point x of u, hence almost everywhere.
2) We have Dαuε = u ∗Dαωε.
3) Moreover, Dαuε = (Dαu)ε provided that u has a generalized derivative Dαu.
4) In this case, Dαuε(x)→ Dαu(x) almost everywhere (by combining 1) and 3)).

Lemma 8.5. Given a locally integrable function u on Rn and a multi-index α with l = |α|,
suppose that, for any w ∈ C∞0 (Rn), ∫

uDαw dx = 0. (8.3)

Then u = ũ a.e. for some polynomial ũ(x1, . . . , xn) in n real variables of degree at most
l − 1.

Proof. Starting from (8.3), we obtain a similar equality for the regularized functions, i.e.∫
uεD

αw dx = 0. (8.4)

Indeed, according to (8.2) and applying Fubini’s theorem so as to justify the change of
the order of integration, we see that the above integral is equal to∫ [ ∫

u(x− y)ωε(y) dy

]
Dαw(x) dx =

∫ [ ∫
u(x− y)Dαw(x) dx

]
ωε(y) dy.

But, by (8.3), the inner integral on the right-hand side is vanishing for any fixed y ∈ Rn.
Now, since uε is C∞-smooth, one may integrate in (8.4) by parts and conclude that∫

wDαuε dx = 0 for all w ∈ C∞0 (Rn). This implies that Dαuε(x) = 0 for all x ∈ Rn, which
is only possible when uε is a polynomial of degree at most d = l − 1. It remains to apply
the property 1) and note that the pointwise limit of polynomials of degree at most d is a
polynomial of degree at most d.

Proof of Poposition 8.2. In one direction (the sufficiency part), one may assume that
ũ = u, so that the function u belongs to the class Cl. In particular, its l-th derivative
u(l), being understood in the Radon-Nikodym sense, is locally integrable on the real line.
Hence

u(l−1)(b)− u(l−1)(a) =

∫ b

a

u(l)(x) dx for all a < b,

which implies that u(l−1) has a bounded variation on every bounded interval. Then one
may integrate by parts to get that∫ ∞

−∞
w(x)u(l)(x) dx = −

∫ ∞
−∞

w′(x)u(l−1)(x) dx

for all w ∈ C∞0 (R). Since the first l − 1 derivatives of u are continuous, one may further
integrate by parts which leads to the desired equality∫ ∞

−∞
w(x)u(l)(x) dx = (−1)l

∫ ∞
−∞

w(l)(x)u(x) dx.

According to (8.1), this shows that u(l) serves as an l-th generalized derivative for u.
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Arguing in the opposite direction, suppose that, for some locally integrable function
v(x), we have ∫ ∞

−∞
w(l)(x)u(x) dx = (−1)l

∫ ∞
−∞

v(x)w(x) dx (8.5)

for all w ∈ C∞0 (R). Introduce the integration operators

Tv(x) =

∫ x

0

v(y) dy, T k = T (T k−1), k = 1, . . . , l, (8.6)

and note that the function T kv belongs to Ck and has a k-th Radon-Nikodym derivative v,
as long as v is locally integrable. In particular, Tv is locally absolutely continuous and
has v as its Radon-Nikodym derivative. Hence, one may integrate by parts to get that∫ ∞

−∞
v(x)w(x) dx = −

∫ ∞
−∞

Tv(x)w′(x) dx

for any w ∈ C∞0 (R). By repeated integration by parts, we obtain that∫ ∞
−∞

v(x)w(x) dx = (−1)l
∫ ∞
−∞

T lv(x)w(l)(x) dx.

In view of (8.5), this gives ∫ ∞
−∞

w(l)(x)
(
u(x)− T lv(x)

)
dx = 0

for all w ∈ C∞0 (R). We are in position to apply Lemma 8.5 (in dimension n = 1) and
conclude that u− T lv = Q a.e. for some polynomial Q of degree at most d = l − 1. Then
ũ = T lv +Q belongs to Cl, has an l-th generalized derivative v, and is equal to u a.e.

9 Weak derivatives along single variables

A similar characterization about the generalized partial derivatives Dl
i, 1 ≤ i ≤ n, also

holds in the n-dimensional case. Fix an integer l ≥ 1.

Proposition 9.1. A locally integrable function u on Rn, n ≥ 2, has a generalized partial
derivative v = Dl

i, if and only if u = ũ a.e. for some Borel measurable function ũ such
that, for almost all points (xj)j 6=i ∈ Rn−1, the function

f(xi) = ũ(x1, . . . , xi−1, xi, xi+1, . . . , xn)

belongs to the class Cl and has an l-th Radon-Nikodym derivative f (l) which is Borel
measurable and locally integrable on Rn. In this case, v = f (l) a.e.

Proof. We apply an argument as in the proof of Proposition 8.2, with a few modifications.
In the sufficiency direction, assume that ũ = u. Write x = (xi, x̄) with xi ∈ R, x̄ ∈ Rn−1,
and let Ei ⊂ Rn−1 be an exceptional null set of collections x̄ = (xj)j 6=i. By the assumption,
for every fixed x̄ outside this set,

1) the function f(xi) belongs to the class Cl;
2) there is a representative for its l-th Radon-Nikodym derivative f (l)(xi) = v(x),

which defines a Borel measurable, locally integrable function on Rn.
The first property allows us to perform the repeated integration by parts along the

i-th coordinate to get that, for any w ∈ C∞0 (Rn),∫ ∞
−∞

w(xi, x̄) f (l)(xi) dxi = (−1)l
∫ ∞
−∞

Dl
iw(xi, x̄)u(xi, x̄) dxi, x̄ /∈ Ei.

EJP 27 (2022), paper 115.
Page 21/44

https://www.imstat.org/ejp



Bounds for Fisher information

By property 2), and since u is Borel measurable and locally integrable, both sides of
this equality represent integrable functions on Rn−1. Using Fubini’s theorem, one may
integrate over x̄ to get∫

Rn−1

∫ ∞
−∞

w(xi, x̄) f (l)(xi) dxi dx̄ = (−1)l
∫
Rn−1

∫ ∞
−∞

Dl
iw(xi, x̄)u(xi, x̄) dxi dx̄,

that is, ∫
Rn

w(x) f (l)(xi) dx = (−1)l
∫
Rn

Dl
iw(x)u(x) dx.

Hence, according to (8.1), the function v(x) = f (l)(xi) serves as an l-th generalized
derivative for u.

For an opposite direction, assume that a generalized partial derivative v = Dl
iu exists,

so that it may be chosen to be Borel measurable and locally integrable. Then, the
function xi → v(xi, x̄) is Borel measurable for all x̄ ∈ Rn−1, and is locally integrable on
the real line for almost all x̄ ∈ Rn−1. Indeed, since for all integers m,N ≥ 1,∫

BN

[ ∫ m

−m
|v(xi, x̄)| dxi

]
dx̄ <∞, BN = [−N,N ]n−1,

we conclude that the set

Am,N =

{
x̄ ∈ BN :

∫ m

−m
|v(xi, x̄)| dxi <∞

}
is Borel measurable and has a full Lebesgue measure inside the cube BN . Hence the set

A =

∞⋃
N=1

∞⋂
m=1

Am,N

has a full Lebesgue measure on Rn−1. But it contains exactly those points x̄ ∈ Rn−1 for
which the function xi → v(xi, x̄) is integrable on all bounded intervals on the real line.

Next, we employ the integration operators (8.6) which are applied along the i-th
coordinate: For x̄ ∈ A, put

Tv(xi, x̄) =

∫ xi

0

v(y, x̄) dy, T k = T (T k−1), k = 1, . . . , l.

Clearly, the function Tv is finite, Borel measurable on R×A, and locally integrable, since∫
BN

[ ∫ m

−m
|Tv(xi, x̄)| dxi

]
dx̄ ≤ m

∫
BN

[ ∫ m

−m
|v(xi, x̄)| dxi

]
dx̄ <∞

for all m,N ≥ 1. The same conclusions are also true about all functions T kv.
Moreover, since xi → v(xi, x̄) is locally integrable, the function xi → T kv(xi, x̄)

belongs to the class Ck and has v(xi, x̄) as a generalized derivative of order k. In
particular, Tv(xi, x̄) is locally absolutely continuous with respect to xi, and one may
integrate by parts with respect to this variable to get that, for any w ∈ C∞0 (Rn),∫ ∞

−∞
v(xi, x̄)w(xi, x̄) dxi = −

∫ ∞
−∞

Tv(xi, x̄)Diw(xi, x̄) dxi.

By repeated integration by parts, we obtain that∫ ∞
−∞

v(xi, x̄)w(xi, x̄) dxi = (−1)l
∫ ∞
−∞

T lv(xi, x̄)Dl
iw(xi, x̄) dxi.
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Here, the integrands represent Borel measurable, integrable functions. Hence, it is
possible to integrate both sides according to the Fubini theorem, and then we arrive at∫

v(x)w(x) dx = (−1)l
∫
T lv(x)Dl

iw(x) dx.

Applying (8.1), which is our hypothesis, this yields∫
Dl
iw(x)

(
u(x)− T lv(x)

)
dx = 0

for all w ∈ C∞0 (R). We are in position to apply Lemma 8.5 and conclude that u− T lv = Q

a.e. for some polynomial Q in n real variables of degree at most l − 1. It remains to put
ũ(x) = T lv(x) +Q(x).

Returning to Definition 8.1 with an arbitrary α such that |α| = 1, we obtain n partial
derivatives v = ∂xiu = Diu, and one may speak about the generalized gradient

∇u = (∂x1
u, . . . , ∂xn

u)

and its Euclidean length |∇u|. Thus, according to (8.1), for all w ∈ C∞0 (Rn),∫
u ∂xi

w dx = −
∫
w ∂xi

u dx, i = 1, . . . , n. (9.1)

Let us formulate Proposition 9.1 once more in this particular case.

Corollary 9.2. A locally integrable function u on Rn has a generalized gradient, if and
only if after a modification on a set of measure zero the modified (Borel measurable)
function ũ is locally absolutely continuous on almost all lines parallel to the coordinate
axes and have partial Radon-Nikodym derivatives that are locally integrable on Rn.

This characterization may be used to derive the following assertion which will be
needed to correctly introduce the Fisher information.

Corollary 9.3. If a non-negative locally integrable function u on Rn has a generalized
gradient with partial derivative Diu, then the sets

Ei = {x ∈ Rn : u(x) = 0, |Diu(x)| > 0}, i = 1, . . . , n,

have Lebesgue measure zero.

Proof. We may assume that u is properly modified so that u = ũ. Then, using the previous
notation x = (xi, x̄), we have that, for all x̄ except for a null set Ai ⊂ Rn−1, the function
ui(xi) = u(xi, x̄) is a.e. differentiable, and its derivative u′i(xi) serves as a generalized
partial derivative Diu(x). Since ui ≥ 0, it follows that ui(xi) = 0 ⇒ u′i(xi) = 0 at every
point of differentiability (similarly to dimension one). Hence, the set

Ei(x̄) = {xi ∈ R : ui(xi) = 0, |u′i(xi)| > 0}, x̄ /∈ Ai,

has Lebesgue measure zero on the real line. By Fubini’s theorem,

mesn(Ei) =

∫
Rn−1

mes1(Ei(x̄)) dx̄ = 0,

where mesn stands for the Lebesgue measure on Rn.
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Locally Lipschitz functions. If u has a finite Lipschitz semi-norm in some neighbor-
hood of any point, it is almost everywhere differentiable, so that it has a usual gradient
∇u(x) a.e. (by Rademacher’s theorem, cf. [17], p. 50). Such functions are locally abso-
lutely continuous along every line, and the usual gradient also serves as a generalized
gradient. As a representative of the modulus of the gradient, one may take a locally
finite function

|∇u(x)| = lim sup
y→x

|u(x)− u(y)|
|x− y|

, x ∈ Rn.

10 Sobolev spaces

Here and elsewhere, we use the usual notation for the space Ls(Rn) of all measurable
functions u on Rn with finite norm

‖u‖s =
(∫
|u(x)|s dx

)1/s

, s ≥ 1.

Given an integer l ≥ 1, the Sobolev space with parameters (l, s) is defined as

W s
l (Rn) = {u ∈ Ls(Rn) : Dαu ∈ Ls(Rn) for all 1 ≤ |α| ≤ l}.

It is a Banach space endowed with the norm

‖u‖W s
l

=
( ∑

0≤|α|≤l

‖Dαu‖ss
)1/s

.

When s = 2 we obtain a Hilbert space.
Thus, W s

1 (Rn) contains all functions u in Ls(Rn) that have a generalized gradient ∇u
such that |∇u| belongs to the same space Ls(Rn).

Characterizations. A function u in Ls(Rn) belongs to W s
1 (Rn), if and only if after

a modification on a set of measure zero the modified function ũ is locally absolutely
continuous on almost all lines parallel to the coordinate axes whose partial Radon-
Nikodym derivatives belong to Ls(Rn), cf. [17], pp. 44-45. This characterization is also
a consequence of Corollary 9.2, which in turn is a particular case of a more general
Proposition 9.1. Thus, the generalized partial derivatives ∂xi

ũ(x), x = (x1, . . . , xn) ∈ Rn,
with respect to the i-th coordinate may be understood in the usual sense for almost all
collections (xj)j 6=i.

If s > 1, a function u from Ls(Rn) belongs to W s
1 (Rn), if and only if

sup
h6=0

‖u(x+ h)− u(x)‖s
|h|

<∞.

For s = 2, we have

‖u‖2W 2
1

=

∫ (
|u|2 + |∇u|2

)
dx.

In this case, another characterization can be given in terms of the Fourier transform

û(t) =

∫
ei〈t,x〉 u(x) dx, t ∈ Rn, u ∈ L2(Rn),

which is well-defined as an element of L2(Rn). Namely, u belongs to the Sobolev space
W 2

1 (Rn), if and only if the function (1 + |t|) û(t) belongs to L2(Rn). Moreover, by the
Plancherel theorem,

‖u‖2W 2
1

=
1

(2π)n

∫
(1 + |t|2) |û(t)|2 dt.

EJP 27 (2022), paper 115.
Page 24/44

https://www.imstat.org/ejp



Bounds for Fisher information

This way W 2
1 (Rn) may be identified with the usual L2-space over the measure (1 + |t|2) dt.

Example. In contrast with the one-dimensional case, the elements of the Sobolev space
W s

1 (Rn) in dimension n ≥ 2 do not need be bounded and continuous. One may consider
the example of the unbounded (near zero) function

u(x) =
log |x|

(1 + |x|2)n
,

which belongs to all Ls(Rn) and has usual partial derivatives ∂xiu(x) for all x 6= 0. These
derivatives are integrable with any power s < n.

Sobolev inequalities. It is a well-known classical fact that any function u in W 1
1 (Rn)

belongs to L
n

n−1 (Rn). Moreover,

‖u‖ n
n−1
≤ Cn ‖∇u‖1 (10.1)

with a constant Cn independent of u. If it is optimal, an equality in (10.1) is attained
asymptotically when u approaches indicator functions of the Euclidean balls.

The inequality (10.1) may be extended to the W s
1 -space with 1 ≤ s < n as the relation

‖u‖s∗ ≤ Cn(s) ‖∇u‖s,

where s∗ = ns
n−s is the so-called Sobolev conjugate.

Elements of W s
l (Rn) are called Sobolev functions. They can be well approximated by

smooth functions using any regularizer ω and associated regularized functions which we
discussed before, cf. Definition 8.3. Let us extend the list of basic properties given in
Lemma 8.4 by the following. Below, α denotes an arbitrary multi-index and s ≥ 1.

Proposition 10.1. Let u be a locally integrable function on Rn.
1) ‖uε − u‖Ls(Ω) → 0 as ε→ 0 on every bounded Borel set Ω in Rn.
2) If u ∈ Ls(Rn), then uε ∈ Ls(Rn) as well, and moreover,

‖uε‖s ≤ ‖u‖s, ‖uε − u‖s → 0 as ε→ 0.

3) In addition, uε is bounded:

‖uε‖∞ ≤ Cε−n/s ‖u‖s, C = ‖ω‖s′ , s′ =
s

s− 1
.

4) If u has a generalized α-th derivative Dαu ∈ Ls(Rn), then

‖Dαuε‖s ≤ ‖Dαu‖s, ‖Dαuε −Dαu‖s → 0 as ε→ 0.

5) Hence, if u ∈W s
l (Rn) and |α| ≤ l, then

‖Dαuε‖W s
l
≤ ‖Dαu‖W s

l
, ‖Dαuε −Dαu‖W s

l
→ 0.

6) In addition,

‖Dαuε‖∞ ≤ Cε−n/s ‖Dαu‖s.

7) If u ∈W s
1 (Rn), then with some constant C depending on ω only, we have

‖uε − u‖s ≤ Cε ‖∇u‖s.

The property 5) shows that C∞(Rn) ∩W s
l (Rn) is dense in W s

l (Rn).
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All properties and their proofs are rather standard. For illustration, let us explain the
inequality in 7). By Definition 8.3, assuming that u is smooth and that ω is supported on
the ball of radious r, we have, by Hölder’s inequality,

uε(x)− u(x) =

∫
(u(x− εy)− u(x))ω(y) dy

= −ε
∫
|y|<r

[ ∫ 1

0

〈∇u(x− εty), y〉 dt
]
ω(y) dy,

implying

|uε(x)− u(x)|s ≤ Cεs
∫
|y|<r

∫ 1

0

|∇u(x− εty)|s dt dy.

Hence

‖uε − u‖ss ≤ C ′εs
∫
|∇u(x)|s dx.

On this step, the smoothness condition may be removed by approximation: Let us apply
this relation with uδ in place of u, and then using the commutativity of the regularization,
we get

‖(uε)δ − uδ‖ss ≤ C ′εs
∫
|∇uδ(x)|s dx.

Letting δ ↓ 0, it remains to refer to the properties 2) and 5).

We now extend Lemma 7.2 to the multi-dimensional setting.

Proposition 10.2. If the functions u1, . . . , ul belong to W 1
1 (Rn), the convolution u =

u1 ∗ · · · ∗ ul has integrable generalized partial derivatives along every coordinate up to
order l. Moreover,

Dl
iu = Diu1 ∗ · · · ∗Diul, i = 1, . . . , l, (10.2)

with

‖Dl
iu‖1 ≤ ‖Diu1‖1 . . . ‖Diul‖1. (10.3)

Proof. To sumplify notations, write D = Di, Dl = Dl
i. One may argue by induction on l.

Write u = v∗ul with v = u1 ∗· · ·∗ul−1, l ≥ 2. By the induction hypothesis, v has integrable
generalized partial derivatives along every coordinate up to order l − 1. Moreover,

Dl−1v = Du1 ∗ · · · ∗Dul−1. (10.4)

The convolution

u(x) =

∫
ul(x− y)v(y) dy, x ∈ Rn,

is an integrable function. Given a C∞0 -function w on Rn, integrating by parts, we have∫
u(x)Dlw(x) dx =

∫ [ ∫
ul(x− y)Dlw(x) dx

]
v(y) dy

= −
∫ [ ∫

Dul(x− y)Dl−1w(x) dx

]
v(y) dy

= −
∫ [ ∫

Dul(x
′)Dl−1w(x′ + y) dx′

]
v(y) dy.
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Changing the order of integration and using the induction hypothesis, the latter double
integral is equal to∫ [ ∫

v(y)Dl−1w(x′ + y) dy

]
Dul(x

′) dx′

= (−1)l−1

∫ [ ∫
Dl−1v(y)w(x′ + y) dy

]
Dul(x

′) dx′

= (−1)l−1

∫
w(x) (Dl−1v ∗Dul)(x) dx.

Hence u has a generalized derivative Dlu = Dl−1v ∗Dul. It remains to recall (10.4), and
we arrive at (10.2)-(10.3).

11 BV-space

Definition 11.1. An integrable function u on Rn is said to be a function of bounded
variation, if for some signed Borel measures µi on Rn, we have∫

u ∂xi
w dx = −

∫
w dµi, i = 1, . . . , n, (11.1)

for all w ∈ C∞0 (Rn).

The generalized gradient of u is then defined as a vector-valued measure µ =

(µ1, . . . , µn), whose total variation ‖µ‖TV in the sense of Measure Theory is denoted ‖u‖TV

in the sense of Theory of Functions. Using (11.1) and the notation divw =
∑n
i=1 ∂xi

wi, it
follows that

‖u‖TV = ‖µ‖TV = sup

N∑
k=1

|µ(Ak)| = sup
∣∣∣ ∫ 〈w, dµ〉 ∣∣∣

= sup
∣∣∣ ∫ n∑

i=1

wi dµi

∣∣∣ = sup
∣∣∣ ∫ udivw dx

∣∣∣, (11.2)

where the first supremum is running over all partitions of Rn into Borel sets A1, . . . , AN ,
and the next ones are taken over all C∞0 -smooth maps w = (w1, . . . , wn) : Rn → Rn such
that |w(x)| ≤ 1 for all x ∈ Rn. Thus, one arrives at the formula (1.5).

Put

BV (Rn) = {u ∈ L1(Rn) : ‖u‖TV <∞},

which is a Banach space endowed with the norm

‖u‖BV = ‖u‖1 + ‖u‖TV.

Thus, an integrable function u belongs to BV (Rn), if and only if the last supremum in
(11.2) is finite.

Note that BV (Rn) contains W 1
1 (Rn), and the total variation norm for elements of this

Sobolev space is simplified to (1.6), i.e.

‖u‖TV = ‖∇u‖1. (11.3)

This assertion can be strengthened: Suppose that an integrable function u on Rn has
a generalized gradient ∇u = (∂x1

u, . . . , ∂xn
u). Then u belongs to BV (Rn), if and only if

it belongs to W 1
1 (Rn), in which case (11.3) holds true. Indeed, returning to (11.2) and
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integrating by parts, we have

sup
∣∣∣ ∫ udivw dx

∣∣∣ = sup
∣∣∣ ∫ n∑

i=1

wi ∂xiu dx
∣∣∣

= sup
∣∣∣ ∫ 〈w,∇u〉 dx∣∣∣ =

∫
|∇u| dx,

where as before the supremum is running over all C∞0 -maps w = (w1, . . . , wn) : Rn → Rn

such that |w| ≤ 1 pointwise on Rn.
What will be important for us is that the regularization does not increase the total

variation and BV -norm, in full analogy with Ls- and W s
l -norms (cf. also [17]).

Proposition 11.2. For any function u in BV (Rn), the regularized functions uε defined
in (8.2) satisfy

‖uε‖TV ≤ ‖u‖TV, ‖uε‖BV ≤ ‖u‖BV . (11.4)

Proof. Let w = (w1, . . . , wn) be an arbitrary C∞0 -smooth map participating in the last
supremum in (11.2). We first notice that∫

uε divw dx =

∫
udivψ dx, (11.5)

where the map ψ = (ψ1, . . . , ψn) has components

ψi(x) =

∫
wi(x− y)ωε(−y) dy, x ∈ Rn.

They are C∞0 -smooth and represent the regularized functions for wi by means of the
regulizer ω̃(x) = ω(−x). Since ω̃ε represents a probability density, an application of the
Cauchy inequality yields

n∑
i=1

ψi(x)2 ≤
n∑
i=1

∫
wi(x− y)2 ω̃ε(y) dy ≤ 1

due to the condition |w(x)| ≤ 1. Thus, ψ is one of the maps participating in the last
supremum in (11.2), so that the right-hand side in (11.5) may not exceed ‖u‖TV. Taking
the supremum in (11.5) over all admissible maps w, we arrive at the first inequality in
(11.4). Using ‖uε‖1 ≤ ‖u‖1, we also obtain the second one.

The norm in BV (Rn) is lower semi-continuous. More precisely, the following holds.

Proposition 11.3. Suppose that uk belong to BV (Rn) and have bounded norms in this
space. If ‖uk − u‖L1(Ω) → 0 as k → ∞ on all balls Ω in Rn for some locally integrable
function u, then u belongs to BV (Rn) with

‖u‖TV ≤ lim inf
k→∞

‖uk‖TV, (11.6)

and similarly for the BV -norm.

Proof. One may assume additionally that uk → u a.e. Then, for any admissible map w,∫
udivw dx = lim

k→∞

∫
uk divw dx ≤ lim inf

k→∞
‖uk‖TV.

Taking the supremum over all w as in (11.2), we arrive at (11.6). Since, by Fatou’s
lemma, ∫

|u| dx ≤ lim inf
k→∞

∫
|uk| dx,

we get the lower semi-continuity for the BV -norm as well.
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This property is used in the proof of the following variant of the compactness theorem.
In a slightly different way it is mentioned in Remark on p. 146, [10].

Proposition 11.4. Let (uk)k≥1 be elements of W 1
1 (Rn) such that supk ‖uk‖W 1

1
< ∞.

There exists a subsequence ukj which is a.e. convergent to a function u in BV (Rn) with
the property that ‖ukj − u‖L1(Ω) → 0 as j →∞ on all balls Ω in Rn.

Proof. By property 7) with s = 1 in Proposition 10.1, the regularized functions vk = (uk)ε
satisfy

‖vk − uk‖1 ≤ Cε ‖uk‖W 1
1
.

Hence, given δ > 0, we may choose ε > 0 such that for all k ≥ 1

‖vk − uk‖1 < δ. (11.7)

Moreover, by properties 3) and 6) with s = 1, vk are bounded and have bounded
gradients uniformly over all k. Hence, these functions are bounded and equicontinuous.
Applying the Arzela-Ascoli theorem, for every integer N ≥ 1, one can find a subsequence
vkj which converges uniformly on the ball Ω : |x| < N . Moreover, using the diagonal
argument, one may find a subsequence vkj which converges pointwise on Rn and
uniformly on all balls. In particular,

‖vkj − vki‖L1(Ω) → 0 as i, j →∞

on every ball Ω in Rn. Hence, by (11.7), for all sufficiently large i and j,

‖ukj − uki‖L1(Ω) ≤ ‖ukj − vkj‖L1(Ω) + ‖vkj − vki‖L1(Ω)

+ ‖vki − uki‖L1(Ω) < 3δ.

Applying this conclusion to the values δ = 2−m and using the diagonal argument, we
obtain a further subsequence ukj such that

‖ukj − uki‖L1(Ω) → 0 as i, j →∞.

Thus, ukj is a Cauchy sequence in L1(Ω) and has a limit u belonging to this space so
that ‖ukj − u‖L1(Ω) → 0 as j →∞. As before, one may find a further subsequence, say
ukj , which converges to a locally integrable function u a.e. on the whole space Rn, with
the property that ‖ukj − u‖L1(Ω) → 0 as j →∞ for all balls Ω. By the Fatou lemma,

‖u‖1 ≤ lim inf
j→∞

‖ukj‖1 ≤ sup
k
‖uk‖W 1

1
<∞,

so that u is integrable. Moreover, by (11.6), using ‖uk‖TV = ‖∇uk‖1, we also conclude
that ‖u‖TV <∞. Hence u belongs to BV (Rn).

12 Convolution of functions of bounded variation

We are prepared to prove a multi-dimensional variant of Lemma 7.2 for the BV -space.
For simplicity, we consider the convolution of two functions only.

Proposition 12.1. Given functions p1, p2 in BV (Rn), the convolution p = p1 ∗ p2 belongs
to W 1

1 (Rn). Moreover, its generalized partial derivatives are functions of bounded
variation satisfying

‖∂xi
p‖TV ≤ n ‖p1‖TV ‖p2‖TV, i = 1, . . . , n. (12.1)
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Proof. Define the regularized functions u = (p1)ε, v = (p2)ε with parameter ε > 0 and
consider the convolutions

w(x) =

∫
u(x− y) v(y) dy.

We have

‖w‖1 ≤ ‖u‖1 ‖v‖1 ≤ ‖p1‖1 ‖p2‖1,

where we used the property that the regularization does not increase the L1-norm.
Since u, v and their partial derivatives are integrable and C∞-smooth, the same is

true for w. Moreover, using the notation for partial derivatives Dj = ∂xj , Dij = ∂2
xixj

, we
have

Djw(x) =

∫
Dju(x− y) v(y) dy =

∫
u(x− y)Djv(y) dy,

Dijw(x) =

∫
Diu(x− y)Djv(y) dy,

that is,

Djw = (Dju) ∗ v = u ∗ (Djv), Dijw = (Diu) ∗ (Djv).

This implies∫
|Djw| dx ≤

∫
|Dju| dx

∫
|v| dx

≤
∫
|∇u| dx

∫
|v| dx = ‖u‖TV ‖v‖1 ≤ ‖p1‖TV ‖p2‖1

and ∫
|Dijw| dx ≤

∫
|Diu| dx

∫
|Djv| dx

≤
∫
|∇u| dx

∫
|∇v| dx ≤ ‖p1‖TV ‖p2‖TV,

since the regularization does not increase the total variation norm (Proposition 11.2). It
follows that

‖Diw‖TV ≤
n∑
j=1

∫
|Dijw| dx ≤ n ‖p1‖TV ‖p2‖TV. (12.2)

Thus, the functions Diw have bounded W 1
1 -norms uniformly over all ε > 0. Hence,

we are in position to apply Proposition 11.4: There exists a sequence ε = εk → 0

and functions qi in BV (Rn), 1 ≤ i ≤ n, such that the partial derivatives Diwk for the
corresponding functions w = wk are convergent to qi a.e. and have the property that

‖Diwk − qi‖L1(Ω) → 0 as k →∞

on all balls Ω in Rn. By (12.2), and applying the lower semi-continuity property (11.6),
we conclude that all qi are functions of bounded variation satisfying

‖qi‖TV ≤ lim inf
k→∞

‖Diwk‖TV ≤ n ‖p1‖TV ‖p2‖TV. (12.3)

We claim that the function qi represents a generalized derivative ∂xi
p = Dip, and

then (12.3) yields the desired relation (12.1). As required in (9.1), we need to show that∫
pDiψ dx = −

∫
ψ qi dx (12.4)
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for all ψ ∈ C∞0 (Rn). Indeed, by the definition,∫
wkDiψ dx = −

∫
ψDiwk dx. (12.5)

But the regularized functions u = uk and v = vk are convergent in L1 to p1 and p2

respectively, by property 2) in Proposition 10.1, and thus ‖wk − p‖1 → 0 as k → ∞.
Hence, the left integrals in (12.5) are convergent as k →∞ to the left integral in (12.4).
The same is true about the right integrals, since Diwk are convergent to qi locally in
L1, while ψ is compactly supported. This shows that p has the generalized gradient
∇p = (q1, . . . , qn).

Example. In dimension n = 1, let p1 = p2 be the density of the uniform distribution
on the interval [− 1

2 ,
1
2 ]. It is a function of bounded variation with total variation norm

‖p1‖TV = ‖p2‖TV = 2. The convolution

p(x) = (p1 ∗ p2)(x) = (1− |x|)+, x ∈ R,

represents the density of the so-called triangle distribution. It is absolutely continuous
and its generalized (Radon-Nikodym) derivative

p′(x) = −sign(x) 1[−1,1](x)

is a function of bounded variation with total variation norm ‖p‖TV = 4. Hence, (12.1)
becomes an equality. Note that Lemma 7.2 is not applicable in this case.

13 Fisher information in high dimensions

Given a probability density p on Rn, the first basic formula in (1.1)

I(p) =

∫
p(x)>0

|∇p|2

p
dx =

n∑
i=1

∫
p(x)>0

(∂xi
p)2

p
dx (13.1)

makes sense, once the function p has a generalized gradient

∇p = (∂x1
p, . . . , ∂xn

p)

as in the definition (9.1). Here the partial derivatives are required to be locally inte-
grable functions. Moreover, they have to be integrable for the finiteness of the Fisher
information.

Proposition 13.1. If I(p) is finite, then p ∈W 1
1 (Rn) and∫

|∇p| dx ≤
√
I(p). (13.2)

Moreover, p1/2 ∈W 2
1 (Rn) and

I(p) = 4

∫
|∇p1/2 |2 dx. (13.3)

Conversely, if p1/2 ∈ W 2
1 (Rn), then p has a generalized gradient, and the integrals in

(13.1) and (13.3) coincide.

The proof is based on the chain rule formula and the next general characterization.
Suppose that we are given a continuous function T : [0,∞)→ R which has a continuous
derivative T ′(t) for t > 0 such that supt≥t0 |T

′(t)| <∞ for any t0 > 0.
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Lemma 13.2. Let p be a non-negative, locally integrable function on Rn having a
generalized partial derivative Dip. Then u = T (p) has a generalized derivative Diu, if
and only if the function T ′(p)Dip 1{p>0} is locally integrable. In that case,

Diu = T ′(p)Dip 1{p>0} a.e.

Proof. In the one-dimensional case, this assertion may be refined. Let the function p be
locally absolutely continuous on the real line and have a Radon-Nikodym derivative p′.
By continuity, the set {x ∈ R : p(x) > 0} is open and may be decomposed into at most
countably many intervals (ak, bk), finite or not. Then, on every (ak, bk), T (p) is locally
absolutely continuous and has a Radon-Nikodym derivative T (p)′ = T ′(p) p′. Indeed, the
assumption on the local absolute continuity of p is equivalent to the property that, for all
α < β and ε > 0, there is δ > 0 such that

N∑
l=1

(yl − xl) < δ ⇒
N∑
l=1

|p(yl)− p(xl)| < ε

for any collection of non-overlapping intervals (xl, yl) inside [α, β] (cf. e.g. [12]). If this
segment is contained in (ak, bk), then p is bounded away from zero, that is, p(x) ≥ t0 > 0

for all x ∈ [α, β]. This implies that |T (p(yl)) − T (p(xl))| ≤ A |p(yl) − p(xl)| with some
constant A = A(t0), so that

N∑
l=1

(yl − xl) < δ ⇒
N∑
l=1

|T (p(yl))− T (p(xl)| < Aε.

Hence, by the same characterization, u = T (p) is locally absolutely continuous on (ak, bk)

and has a finite derivative q, which exists almost everywhere on this interval. But, since
p(x) has a finite derivative p′(x) for almost all x ∈ R, u(x) has derivative T ′(p(x)) p′(x)

for almost all x ∈ (ak, bk). This shows that q = T ′(p) p′ a.e., thus proving the claim.
Turning to the general case n ≥ 2, note that |T (t)| ≤ c (1 + t) for all t ≥ 0 with some

constant c ≥ 0. Hence u = T (p) is locally integrable. Without loss of generality, let
T (0) = 0.

We may assume that p is modified as in Proposition 9.1 for l = 1, with a Borel
measurable, locally integrable, generalized derivative Dip. Thus, using the notation
x = (xi, x̄), xi ∈ R, x̄ ∈ Rn−1, the function xi → p(x) is locally absolutely continuous and
has a Radon-Nikodym derivative xi → Dip(x) for all x̄ except for a null set Ei ⊂ Rn−1.
Given such a point x̄, the set U(x̄) = {xi ∈ R : p(x) > 0} is open and may be decomposed
into at most countably many intervals (ak, bk), finite or not. According to the one-
dimensional claim, the function xi → u(x) is locally absolutely continuous and has a
Radon-Nikodym derivative Diu(x) = T ′(p(x))Dip(x) on every such interval ak < xi < bk.
Hence, given a C∞0 -function w on Rn, on any subinterval [α, β] ⊂ (ak, bk) one may
integrate by parts along the xi-coordinate to get∫ β

α

u(xi, x̄)Diw(xi, x̄) dxi = u(β, x̄)w(β, x̄)− u(α, x̄)w(α, x̄)

−
∫ β

α

T ′(p(xi, x̄))Dip(xi, x̄)w(xi, x̄) dxi. (13.4)

First assume that T ′(p)Dip 1{p>0} is locally integrable on Rn. Then, this function will
be locally integrable with respect to xi for almost all x̄ except for a null set E′i containing
Ei (cf. proof of Proposition 9.1). That is, for any bounded interval [a, b],∫ b

a

|T ′(p(xi, x̄))Dip(xi, x̄)| 1{p(xi,x̄)>0} dxi <∞, x̄ /∈ E′i. (13.5)
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Necessarily p(ak, x̄) = p(bk, x̄) = 0, and thus u(ak, x̄) = u(bk, x̄) = 0, as long as the
endpoints ak and bk are finite. Hence, letting α→ ak and β → bk in (13.4), we get∫ bk

ak

u(xi, x̄)Diw(xi, x̄) dxi = −
∫ bk

ak

T ′(p(xi, x̄))Dip(xi, x̄)w(xi, x̄) dxi. (13.6)

But this equality also holds when ak and/or bk are infinite, since w(α, x̄) and w(β, x̄) are
vanishing for α and β being sufficiently large. Due to (13.5), one may perform summation
over all k in (13.6), and then we arrive at∫

U(x̄)

u(xi, x̄)Diw(xi, x̄) dxi = −
∫
U(x̄)

T ′(p(xi, x̄))Dip(xi, x̄)w(xi, x̄) dxi

with an arbitrary point x̄ outside E′i (since the integrands on both sides are supported on
a bounded set). Here, the left integral does not change when extending the integration
over the whole real line, so,∫ ∞

−∞
u(xi, x̄)Diw(xi, x̄) dxi = −

∫ ∞
−∞

T ′(p(xi, x̄))Dip(xi, x̄) 1{p(xi,x̄)>0} w(xi, x̄) dxi.

Using Fubini’s theorem, this equality may now be integrated over x̄, and we obtain∫
Rn

u(x)Diw(x) dx = −
∫
Rn

T ′(p(x))Dip(x) 1{p(x)>0} w(x) dx.

This means that T ′(p(x))Dip(x) 1{p(x)>0} serves as a generalized partial derivative for
u(x).

Conversely, suppose that u = T (p) has a generalized partial derivative qi; in particular,
it is locally integrable. As we have already noticed, for any x̄ outside Ei, the function
xi → u(x) has a Radon-Nikodym derivative T ′(p)Dip on every interval (ak, bk). By
Proposition 9.1, for almost all x̄, we have qi = T ′(p)Dip for almost all xi ∈ (ak, bk).
Therefore, this equality holds true a.e. on the whole set p(x) > 0. As a consequence, the
function T ′(p)Dip 1{p>0} is locally integrable.

Proof of Proposition 13.1. Suppose that p has a generalized gradient ∇p with finite I(p).
By Corollary 9.3, the left integral in (13.2) may be restricted to the set {p(x) > 0}. Hence,
applying Cauchy’s inequality, we have∫

|∇p| dx =

∫
p(x)>0

|∇p|
√
p

√
p dx ≤

(∫
p(x)>0

|∇p|2

p
dx

)1/2

,

which yields (13.2). Thus, p ∈W 1
1 (Rn).

In order to derive (13.3), we apply Lemma 13.2 with the function T (t) =
√
t, t ≥ 0.

Since Dip√
p 1{p>0} is square integrable, we conclude that the function

√
p has a generalized

partial derivative qi = Di
√
p = Dip

2
√
p 1{p>0}. It follows that∫

p(x)>0

(Dip)
2

p
dx = 4

∫
q2
i dx.

Summing over all i ≤ n and recalling (13.1), we arrive at the representation (13.3).
The converse statement is similar.

Denote by Pn the collection of all probability densities on Rn. According to (13.2),
for every I > 0, the set

Rn(I) =
{
|∇p| : p ∈ Pn, I(p) ≤ I

}
is bounded in L1(Rn). The next statement refines this property.
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Proposition 13.3. The elements in Rn(I) are uniformly integrable on Rn.

Proof. Since Rn(I) is bounded in L1(Rn), we need to show that, for any ε > 0, there is
δ > 0 such that for any Borel set A ⊂ Rn,

|A| < δ ⇒
∫
A

|∇p| dx < ε for all p ∈ Rn(I). (13.7)

Here we denote by |A| = mesn(A) the n-dimensional volume of A.
If n = 1, the assertion is obvious. Indeed, according to (13.2), p has a bounded total

variation, implying that p(x)→ 0 as |x| → ∞. Moreover,

p(x) =

∫ x

−∞
p′(y) dy ≤ ‖p′‖1 ≤

√
I,

so that p is bounded. As a consequence,∫ ∞
−∞

p′(x)2 dx =

∫
p(x)>0

p′(x)2

p(x)
p(x) dx ≤ I3/2.

Here we used the property that p(x) = 0 ⇒ p′(x) = 0 for all points x where p is
differentiable. Thus, R1(I) is also bounded in L2(R), which is sufficient for (13.7).

Now, let n ≥ 2. Recall that the set E = {x ∈ Rn : p(x) = 0, |∇p(x)| > 0} has Lebesgue
measure zero (Corollary 9.3). Hence, by Cauchy’s inequality,∫

A

|∇p| dx =

∫
A\E
|∇p| dx

=

∫
A\E

|∇p|
√
p

√
p dx ≤ I1/2

(∫
A

p(x) dx
)1/2

.

On the other hand, using Hölder’s inequality with exponents n
n−1 and n, and then

applying Sobolev’s inequality (10.1) together with (13.2) once more, one can bound the
last integral by

‖p‖ n
n−1
|A|1/n ≤ Cn ‖∇p‖1 |A|1/n ≤ Cn

√
I |A|1/n.

As a result, ∫
A

|∇p| dx ≤ C1/2
n I3/4 |A|1/2n.

This relation readily implies (13.7).

14 Lower semi-continuity of Fisher information

The next important property indicates that the Fisher information represents a lower
semi-continuous functional on W 1

1 (Rn).

Proposition 14.1. Given probability densities p, pk in W 1
1 (Rn) such that ‖pk−p‖W 1

1
→ 0,

we have
I(p) ≤ lim inf

k→∞
I(pk). (14.1)

Proof. Since pk and ∇pk are respectively convergent to p and ∇p in L1(Rn), one may
choose a subsequence of pk which is convergent a.e. with a similar convergence property
for generalized gradients. So, we may assume that pk → p and ∇pk → ∇p a.e. as k →∞.
But then

lim
k→0

|∇pk(x)|2

pk(x)
1{pk(x)>0} =

|∇p(x)|2

p(x)

a.e. on the set p(x) > 0. It remains to apply Fatou’s lemma.
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Proposition 14.1 may be considerably sharpened by weakening the basic hypothesis
on the convergence in W 1

1 (Rn).

Proposition 14.2. Given random vectors X, Xk (k ≥ 1) with values in Rn, suppose that
Xk ⇒ X weakly in distribution as k →∞. Then

I(X) ≤ lim inf
k→∞

I(Xk). (14.2)

Proof. It is sufficient to prove the following: For any subsequence of Xk, one can extract
a further subsequence for which the relation (14.2) holds true, even with limsup in place
of liminf. For simplicity of notations, let the first subsequence be the whole sequence
of positive integers. By the assumption on the weak convergence,

∫
v dµk →

∫
v dµ

as k → ∞ for any bounded continuous function v on Rn, where µ and µk denote the
distributions of X and Xk respectively.

One may assume that I(Xk) ≤ I < ∞ for all k. In this case, Xk have absolutely
continuous distributions on Rn whose densities pk lie in the Sobolev space W 1

1 (Rn) and
have Fisher information I(pk) bounded by I. By Proposition 13.1, pk have bounded
norms in W 1

1 (Rn), so that we may apply Proposition 11.4. Thus, some subsequence pkj
is a.e. convergent to a function p ∈ BV (Rn) with the property that

‖pkj − p‖L1(Ω) → 0 as j →∞ (14.3)

on bounded Borel sets Ω in Rn. The latter ensures that p represents a probability
density on Rn. Indeed, necessarily p(x) ≥ 0 a.e. as p is a pointwise limit of non-negative
functions. In addition, since

∫
Ω
pkj →

∫
Ω
p, we have

∫
Ω
p ≤ 1 for all bounded Borel sets Ω

in Rn, hence
∫
Rn p ≤ 1. For an opposite inequality, choose a bounded open set such that

P{X ∈ Ω} > 1− ε for a given ε > 0. Since Xk are convergent weakly in distribution, we
obtain that

lim inf
j→∞

P{Xkj ∈ Ω} ≥ P{X ∈ Ω} > 1− ε

(cf. e.g. [1]). On the other hand, by (14.3),

P{Xkj ∈ Ω} =

∫
Ω

pkj (x) dx→
∫

Ω

p(x) dx.

Hence
∫

Ω
p ≥ 1− ε for any ε > 0, so that

∫
Rn p = 1.

In particular, assuming again for simplicity of notations that kj is the whole sequence
of positive integers, we get (by applying Scheffe’s lemma) that∫

|pk − p| dx→ 0 as k →∞. (14.4)

This means that µk are convergent in total variation norm to the probability measure
with density p. Consequently, the measure µ is absolutely continuous with respect to
the Lebesgue measure on Rn and has density p. In addition, the weak convergence is
strengthened as the property (14.4) which implies that∫

pkv dx→
∫
pv dx (14.5)

as k →∞ with an arbitrary bounded measurable function v on Rn.
The uniform integrability property as in Proposition 13.3 allows us to apply the

Dunford-Pettis compactness criterion for the space L1 over finite measures (cf. [9], p. 20).
It implies that the set Rn(I) is pre-compact and also sequentially pre-compact in L1(Ω)

with respect to the weak σ(L1, L∞)-topology for any bounded Borel set Ω in Rn. Hence
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the same is true for the collection of generalized partial derivatives Dip = ∂xi
p with

p ∈ Pn(I), i = 1, . . . , n. As a consequence, there is a subsequence of pk along which Dipk
are weakly convergent in L1(Ω) to some qi ∈ L1(Ω). Clearly, these limit functions may be
chosen to be common for all such Ω’s. Thus, assuming again that the subsequence is the
whole sequence, we obtain that∫

wDipk dx→
∫
wqi dx as k →∞, i = 1, . . . , n,

for any bounded measurable function w on Rn with a compact support. But, restricting
ourselves to w ∈ C∞0 (Rn), the above left integrals are equal to −

∫
pkDiw dx, according

to the definition (9.1) of the weak derivative of pk, and they converge to −
∫
pDiw dx, by

(14.5) with v = Diw. Thus ∫
pDiw dx = −

∫
wqi dx.

This shows that qi = Dip serve as generalized partial derivatives for p, so that p has a
generalized gradient ∇p = (q1, . . . , qn). Moreover, since p belongs to BV (Rn), we get

‖p‖TV =

∫
|∇p| dx =

∫
(q2

1 + · · ·+ q2
n)1/2 dx <∞.

Therefore, all Dip are integrable, and we may conclude that p ∈W 1
1 (Rn). In addition,∫

wDipk dx→
∫
wDip dx as k →∞ (14.6)

for any bounded measurable function w on Rn with a compact support.
Now, as we have observed in Proposition 13.1 and Lemma 13.2, the functions

√
pk

belong to W 2
1 (Rn) and have partial generalized derivatives

ψi,k ≡ Di
√
pk =

Dipk
2
√
pk

1{pk>0},

whose L2-norms are bounded by
√
I. Since the balls in L2(Rn) are weakly compact, one

can extract a subsequence of (ψi,k)k≥1 which is weakly convergent to some function
ψi ∈ L2(Rn). That is, we may assume that, for any i = 1, . . . , n,∫

v ψi,k dx→
∫
v ψi dx as k →∞

with an arbitrary function v ∈ L2(Rn). Then, more generally, we have∫
vk ψi,k dx→

∫
v ψi dx as k →∞, (14.7)

as long as vk → v in L2(Rn). Indeed, by the Cauchy and triangle inequalities,∣∣∣ ∫ vk ψi,k dx−
∫
v ψi dx

∣∣∣ ≤ ∫
|vk − v| |ψi,k| dx+

∣∣∣ ∫ v ψi,k dx−
∫
v ψi dx

∣∣∣
≤
√
I ‖vk − v‖2 +

∣∣∣ ∫ v ψi,k dx−
∫
v ψi dx

∣∣∣ → 0.

Thus, the property (14.7) holds true. Let us choose here vk = w
√
pk and v = w

√
p with

an arbitrary bounded measurable function w on Rn. Applying the pointwise inequality
(
√
pk −

√
p)2 ≤ |pk − p|, from (14.4) we get

‖vk − v‖22 =

∫
w2 (
√
pk −

√
p)2 dx ≤

∫
w2 |pk − p| dx→ 0
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as k → 0. Hence, (14.7) is applicable and gives

1

2

∫
wDipk 1{pk>0} dx =

1

2

∫
wDipk dx→

∫
w
√
pψi dx,

where we also used Corollary 9.3 so as to remove the indicator function. Comparing this
with (14.6), we obtain that the equality

1

2

∫
wDip dx =

1

2

∫
wDip 1{p>0} dx =

∫
w
√
pψi dx

holds true for any bounded measurable function w on Rn with a compact support. But
this is only possible when 1

2 Dip =
√
pψi a.e., so

ψi =
Dip

2
√
p

1{p>0} = Di
√
p

a.e. on the set p(x) > 0.
Finally, since ψi,k 1{p>0} are weakly convergent to ψi 1{p>0} in L2(Rn), by the lower

semi-continuity of the norm with respect to the weak topology, we have

‖ψi 1{p>0}‖2 ≤ lim inf
k→∞

‖ψi,k 1{p>0}‖2 ≤ lim inf
k→∞

‖ψi,k‖2.

But this is the same as∫ (Dip

2
√
p

)2

1{p>0} dx ≤ lim inf
k→∞

∫ (Dipk
2
√
pk

)2

1{pk>0} dx.

Summing these inequalities over i ≤ n, we arrive at the relations (14.1)-(14.2).

15 Convexity of Fisher information

Recall that the collection Pn of all probability densities on Rn represents a convex closed
set in L1(Rn). Another general property of the Fisher information is its convexity,

I(p) ≤
N∑
k=1

αkI(pk), pk ∈ Pn, (15.1)

where p =
∑N
k=1 αkpk with arbitrary weights αk > 0 such that

∑N
k=1 αk = 1. This follows

from the convexity of the function R(u, v) = u2/v in the upper half-plane u ∈ R, v > 0.
Moreover, Cohen [7] showed that the inequality in (15.1) is strict.

As a consequence, the collection Pn(I) of all probability densities on Rn with Fisher
information not exceeding a fixed number I represents a convex closed subset of Pn.

We need to extend Jensen’s inequality (15.1) to arbitrary convex mixtures of proba-
bility densities. In order to formulate this more precisely, let us recall the definition of
mixtures. For any Borel set A in Rn, the linear functional q →

∫
A
q(x) dx is continuous on

L1(Rn) and takes values in [0, 1] when q ∈ Pn. So, given a Borel probability measure π
on Pn, one may introduce the Borel probability measure on Rn by virtue of the formula

µ(A) =

∫
Pn

[ ∫
A

q(x) dx

]
dπ(q). (15.2)

It is absolutely continuous with respect to the Lebesgue measure and has some density
p(x) = dµ(x)/dx called the (convex) mixture of q’s with mixing measure π. For short,

p =

∫
Pn

q dπ(q). (15.3)
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Proposition 15.1. For the probability density p as above,

I(p) ≤
∫
Pn

I(q) dπ(q). (15.4)

Proof. Note that the integral in (15.4) makes sense, since the functional q → I(q) is lower
semi-continuous and hence Borel measurable on Pn (Proposition 14.1). We may assume
that this integral is finite, so that π is supported on the convex (Borel measurable) set
Pn(∞) = ∪I Pn(I).

Step 1. Suppose that the measure π is supported on some convex compact set K
contained in Pn(I). We apply the following general theorem (cf. e.g. Meyer [14],
Chapter XI, Theorem T7): If a function I : K → R is convex and lower semi-continuous
on a convex compact set K in a locally convex space E, then it admits the representation

I(q) = sup
l∈L

l(q), q ∈ K,

where L denotes the family of all continuous affine functionals on E such that l(q) < I(q)

for all q ∈ K. In our particular case with E = L1(Rn), any such functional acts on
probability densities as l(q) =

∫
ψ q dx with some bounded measurable function ψ on Rn.

Hence

I(q) = sup
ψ∈Ψ

∫
ψ(x) q(x) dx, q ∈ K,

for some family Ψ of bounded measurable functions ψ on Rn. As a consequence, by the
definition (15.2) for the measure µ with density p,∫

Pn

I(q) dπ(q) ≥ sup
ψ∈Ψ

∫
Pn

[ ∫
ψ(x) q(x) dx

]
dπ(q)

= sup
ψ∈Ψ

∫
ψ(x) p(x) dx = I(p),

which is the desired inequality (15.4).

Step 2. Suppose that π is supported on Pn(I) for some I > 0. Since any finite measure on
E is Radon, and since the set Pn(I) is closed and convex, there is an increasing sequence
of compact subsets Kl ⊂ Pn(I) such that π(∪lKl) = 1. Moreover, Kl can be chosen to
be convex (since the closure of the convex hull will be compact as well). Let πl denote
the normalized restriction of π to Kl with sufficiently large l so that cl = π(Kl) > 0, and
define its barycenter

pl(x) =

∫
Kl

q(x) dπl(q), (15.5)

which is a density of some probability measure µl on Rn as in the definition (15.3). Then,
for any Borel measurable function f on Rn such that |f | ≤ 1, we have∫

f dµl −
∫
f dµ =

∫
Pn

[ ∫
f(x) q(x) dx

]
d(πl(q)− π(q))

≤ ‖πl − π‖TV = 2(1− cl).

Taking the supremum over all admissible f , we get∫
|pl − p| dx ≤ 2(1− cl)→ 0 as l→∞,
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which means that pl are convergent to p in L1(Rn). Hence the relation (14.1) holds:
I(p) ≤ lim inf l→∞ I(pl). On the other hand, by the previous step,

I(pl) ≤
∫
Kl

I(q) dπl(q) =
1

cl

∫
Kl

I(q) dπ(q)→
∫
Pn(I)

I(q) dπ(q) (15.6)

as l→∞, and we obtain (15.4).

Step 3. In the general case, we may apply Step 2 to the normalized restrictions πl
of π to the sets Kl = Pn(l). Again, for the densities πl defined as in (15.5), we obtain
(15.6), where Pn(I) should be replaced with Pn(∞). Another application of the lower
semi-continuity of the Fisher information finishes the proof.

Corollary 15.2. If a probability density p on Rn has a generalized gradient, then the
regularized probability densities pε defined in (8.2) satisfy

I(pε) ≤ I(p), lim
ε→0

I(pε) = I(p).

In fact, this approximation property may be generalized similarly to the setting of
Proposition 14.2.

Corollary 15.3. Given independent random vectors X and Z with values in Rn, for the
random vectors Xε = X + εZ, ε ∈ R, we have

I(Xε) ≤ I(X), lim
ε→0

I(Xε) = I(X). (15.7)

Proof. For the first claim in (15.7), we may assume that I(X) is finite, so that X has
an absolutely continuous distribution with density p having a generalized gradient. In
this case, Xε has a density pε representing a convex mixture of probability densities
of the form qh(x) = p(x − h), h ∈ Rn. Since I(qh) = I(p), we obtain the inequality in
(15.7) by applying Proposition 15.1. The second claim in (15.7) is obtained by applying
Proposition 14.2. Since Xε ⇒ X weakly in distribution as ε→ 0, it follows that

I(X) ≤ lim inf
ε→0

I(Xε).

The inequality in (15.7) can be sharpened by virtue of the Stam inequality

1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
, (15.8)

which holds whenever the random vectors X and Y in Rn are independent (cf. [15],
[11]).

One interesting case in Corollary 15.3 is when Z has a standard normal distribution.
Combining both claims in (15.7), we then obtain that the function ε → I(Xε) is mono-
tone. This choice of smoothing allows one to reduce various relations about the Fisher
information I(p) such as (15.8) to the case of C∞-smooth densities p. Here is another
example.

Corollary 15.4. Given a random vector X in Rn, we have I(U(X)) = I(X) for any linear
orthogonal map U : Rn → Rn.

Indeed, by (13.1), I(U(X)) = I(X) as long as X has a C∞-smooth density. Hence,
in the general case, we have I(U(X) + εZ) = I(X + εZ), where Z is a standard normal
random vector in Rn, independent of X (since U(Z) is standard normal). It remains to
apply Corollary 15.3.

EJP 27 (2022), paper 115.
Page 39/44

https://www.imstat.org/ejp



Bounds for Fisher information

16 Upper bounds. Proof of Theorem 1.2

We are now prepared to extend several upper bounds for the Fisher information

I(p) =

∫
|∇p(x)|2

p(x)
dx =

n∑
i=1

∫
(∂xi

p(x))2

p(x)
dx

from the one-dimesnional case to higher dimensions (as before, one may adopt the
agreement that 0/0 = 0). The first upper bounds were developed for densities from the
classes Cl on the real line with l = 2 and l = 3. Analogously, one may say that p belongs
to Cl(Rn), if for for any i = 1, . . . , n, for almost all (xj)j 6=i ∈ Rn−1, the function

xi → p(x) = p(x1, . . . , xi−1, xi, xi+1, . . . , xn) (16.1)

belongs to Cl(R) with an additional requirement that the l-th derivative ∂lxi
p(x) with

respect to xi in the Radon-Nikodym sense is locally integrable on Rn. According to
Proposition 9.1, such densities describe representatives of functions p on Rn having
generalized partial derivatives Dl

ip = ∂lxi
p. With this definition, Propositions 2.2-2.3

yield:

Proposition 16.1. If the probability density p belongs to the class C2(Rn) and is sup-
ported on a bounded, open, convex set Ω in Rn, then

I(p) ≤ 2Cn |Ω|, C = max
1≤i≤n

ess supx ∂
2
xi
p(x).

Here |Ω| = mesn(Ω) denotes the n-dimensional volume of Ω.

Proof. Note that the inequality (2.2) is homogeneous in p. Applying it to the function in
(16.1) with fixed x̄ = (xj)j 6=i ∈ Rn−1, we obtain that

(∂xi
p(x))2

p(x)
≤ 2Ci, Ci = ess supx ∂

2
xi
p(x).

By the convexity assumption, the section

Ω(x̄) = {xi ∈ R : (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Ω}

represents a certain interval (ai, bi) depending on x̄. Let us integrate the last inequality
over this section to get that∫ bi

ai

(∂xip(x))2

p(x)
dxi ≤ 2Ci(bi − ai) ≤ 2C(bi − ai).

The next integration over x̄ gives, by Fubini’s theorem,∫
Ω

(∂xi
p(x))2

p(x)
dx ≤ 2C

∫
Rn−1

(bi − ai) dx̄ = 2C |Ω|.

It remains to perform summation over i ≤ n.

Let us now turn to the multidimensional variant of Proposition 7.1, i.e. Theorem 1.2.
It may be stated for a slightly more general class of densities as the following.

Proposition 16.2. If the probability density p belongs to the class C3(Rn), then

I(p) ≤ 10n1/3

( n∑
i=1

∫
|∂3
xi
p(x)| dx

)2/3

. (16.2)

Moreover, this inequality holds true as long as p has generalized partial derivatives ∂3
xi
p.
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Proof. Applying (7.1) to the functions in (16.1) together with the arithmetic-geometric
inequality, we have

1

c

∫ ∞
−∞

(∂xi
p(x))2

p(x)
dxi ≤

(∫ ∞
−∞

p(x) dxi

)1/3(∫ ∞
−∞
|∂3
xi
p(x)| dx

)2/3

≤ 1

3

∫ ∞
−∞

p(x) dxi +
2

3

∫ ∞
−∞
|∂3
xi
p(x)| dx

with constant c = 10, which holds for almost all (xj)j 6=i ∈ Rn−1. The integration over the
remaining variables gives a similar relation

1

c

∫
(∂xip(x))2

p(x)
dx ≤ 1

3
+

2

3

∫
|∂3
xi
p(x)| dx.

Performing summation over all i ≤ n, we arrive at

1

c
I(p) ≤ n

3
+

2

3

n∑
i=1

∫
|∂3
xi
p(x)| dx.

Moreover, applying this to densities pλ(x) = λn p(λx) with parameter λ > 0, we get

1

c
I(p) ≤ n

3λ2
+

2

3
λB, B =

n∑
i=1

∫
|∂3
xi
p(x)| dx.

It remains to optimize this inequality over all λ, which leads to 1
c I(p) ≤ n1/3B2/3.

17 Proof of Theorem 1.1

Using the regularization operation, we may assume that the densities pj are C∞-smooth,
so that

bj = ‖pj‖TV =

∫
|∇pj(x)| dx <∞, j = 1, 2, 3 (17.1)

(to give more details, let us return to this reduction in the end of the proof).
The convolution p = p1 ∗ p2 ∗ p3 is defined by

p(x) =

∫∫
p1(x− y − z)p2(y)p3(z) dy dz, x ∈ Rn.

By Proposition 12.1, the density p belongs to the Sobolev spaceW 1
1 (Rn). In fact, its gener-

alized partial derivatives may be expressed as convolutions. Indeed, by Proposition 10.2,
for every i = 1, . . . .n, p has a generalized derivative of the third order

D3
i p = Dip1 ∗Dip2 ∗Dip3,

so that ∫
|D3

i p(x)| dx ≤ ‖Dip1‖1 ‖Dip2‖1 ‖Dip3‖1.

We are in position to apply Proposition 16.2 which yields

I(p) ≤ c0n1/3

( n∑
i=1

‖Dip1‖1 ‖Dip2‖1 ‖Dip3‖1
)2/3

with constant c0 = 10, or equivalently,

I(p)3/2 ≤ c3/20

√
n

n∑
i=1

‖ 〈∇p1, ei〉 ‖1 ‖ 〈∇p2, ei〉 ‖1 ‖ 〈∇p3, ei〉 ‖1, (17.2)
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where e1, . . . , en denote the canonical basis in Rn. But, as emphasized in Corollary 15.4,
the functional I(p) does not depend on the choice of the orthonormal basis, in the sense
that I(p) = I(pU ) for any linear othogonal map U : Rn → Rn, where pU (x) = p(U(x)).
Hence, the inequality (17.2) remains to hold for any orthonormal basis E = (e1, . . . , en)

in Rn.
Every such collection E may be viewed as an element of the orthogonal group O(n),

which is equipped with the Haar probability measure π. The map E → ei pushes forward
π to the uniform distribution σn−1 on the unit sphere Sn−1 = {θ ∈ Rn : |θ| = 1}. Hence,
averaging (17.2) over the measure π, we arrive at the relation

I(p)3/2 ≤ (c0n)3/2

∫
L(θ) dσn−1(θ), (17.3)

where

L(θ) =

∫∫∫
| 〈∇p1(x), θ〉 | | 〈∇p2(y), θ〉 | | 〈∇p3(x), θ〉 | dx dy dz, θ ∈ Sn−1.

In order to estimate the integral in (17.3), it is sufficient to bound the L3-norm of the
linear functional f(θ) = 〈v, θ〉 with v ∈ Sn−1 over the measure σn−1 via its L4-norm. As is
well-known, if Z = (Z1, . . . , Zn) is a standard normal random vector in Rn, then Z/|Z| is
independent of |Z| and is uniformly distributed on the sphere. Therefore, 〈v, Z〉 /|Z| has
the same distribution as f(θ). In addition, by independence, and since 〈v, Z〉 ∼ N(0, 1),

3 = E 〈v, Z〉4 = E
( 〈v, Z〉
|Z|

)4

|Z|4 = E f(θ)4E |Z|4.

Here, using the independence of Zi, we also have

E |Z|4 = (E |Z|2)2 + Var(|Z|2) = n2 + nVar(Z2
1 ) = n2 + 2n,

that is,

E f(θ)4 =
3

n2 + 2n
.

This gives

‖f‖L3(σn−1) ≤ ‖f‖L4(σn−1) =
( 3

n2 + 2n

)1/4

≤ 31/4

√
n
.

Hence, for any 3 linear functionals fj(θ) = 〈vj , θ〉, vj ∈ Rn, we have, by Hölder’s
inequality,∫

|f1(θ)f2(θ)f3(θ)| dσn−1(θ) ≤ ‖f1‖L3(σn−1)‖f2‖L3(σn−1)‖f3‖L3(σn−1)

≤ 33/4

n3/2
|v1| |v2| |v3|.

Applying this with vj = ∇pj(x), (17.3) is simplified to

I(p)3/2 ≤ c3/20 33/4

∫∫∫
|∇p1(x)| |∇p2(y)| |∇p3(z)| dx dy dz,

which is the same as
I(p) ≤ c (b1b2b3)2/3 (17.4)

wiith constant c = c0
√

3 < 18, according to (17.1).
As the last step, we use the regularized densities pj,ε = (pj)ε, ε > 0. By the assump-

tion, the densities pj of Xj have finite total variation norms bj = ‖pj‖TV. By Proposi-
tion 12.1, the random vector X = X1 +X2 +X3 has an absolutely continuous distribution,
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whose density p belongs to the Sobolev space W 1
1 (Rn). Let Xε = X1,ε +X2,ε +X3,ε with

independent summands Xj,ε having densities pj,ε. By the previous step (17.4),

I(Xε) ≤ c
(
‖p1,ε‖TV ‖p2,ε‖TV ‖p3,ε‖TV

)2/3
.

As we know, cf. (11.4), the total variation norm may only decrease under regularization,
so that we get

I(Xε) ≤ c
(
‖p1‖TV ‖p2‖TV ‖p3‖TV

)2/3
. (17.5)

On the other hand, according to Corollaries 15.2-15.3, the Fisher information is contin-
uous under regularization, that is, I(Xε) → I(X) as ε → 0. Hence, (17.5) yields in the
limit the desired relation (1.4) with constant c = 18.
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