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Abstract

Upper bounds are considered for the Fisher information of random vectors in terms
of total variation and norms in Sobolev spaces. We also survey and refine a number of
known results in this direction.
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1 Introduction

Given a random vector X in R™ with density p, its Fisher information is defined by

I(X) = I(p) _/Wfdx_zl/w\/ﬂ?dx. (1.1)

This functional is well-defined and finite, when the function ,/p belongs to the Sobolev
space WZ(IR™). In all other cases, one puts I(X) = co. In the one-dimensional case, the
integrals in (1.1) make sense when the density p is locally absolutely continuous and has
derivative p’ in the Radon-Nikodym sense. One may then write I(X) = Ep(X)? in terms
of the score function p = (log p)’, also called the logarithmic derivative of p. Of a large
interest are also more general functionals (moments of the scores)

I(X) =E|p(X), k> 1.

Since the Fisher information appears naturally in many mathematical problems, it
is useful to know general conditions which ensure that I(X) is finite. For example,
for the applicability of the central limit theorem with respect to the relative Fisher
information, one needs to verify that this functional becomes finite when taking several
convolutions of densities which might have an infinite Fisher information (such as the
uniform distributions on bounded intervals). To this aim, it was shown in [3] that

1
I(X) < 3 (biba + b1bs + babs) (1.2)
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Bounds for Fisher information

in dimension n = 1 for the sum X = X; + X5 + X3 of three independent random variables
X, whose densities p; have finite total variation norms b; = ||p,|/Tv. Here, adding an
independent summand to X may only decrease the Fisher information. On the other
hand, it may happen that I(X; + X3) = co. With similar conclusions, (1.2) was extended
in [2] to higher moments of the scores as the relation

Jk(X)<ckb1...bk+1(i+~--+ L ) o= (1.3)
- b1 bry1/’ 2kE!’ ’
for the sum X = X; +--- + Xy41 of £+ 1 independent random variables whose densities
p; have total variation norms b; = ||p;|rv.

The usefulness of such relations is explained by the fact that the total variation
norm is much easier tractable. In particular, this norm can be directly related to the
characteristic functions of the involved random variables. As a corollary, the following
characterization holds in the case where all X; are independent, have finite absolute
moment, and a common characteristic function f(t) = Ee¥i, ¢t € R. Namely, the partial
sums

Sy=X1+ -+ Xn

will have a finite Fisher information for some and then for all large N, if and only if
f(t) = o(t™¢) as t — oo for some £ > 0. The same conclusion is also true about the
moments I (Sy) of an arbitrary order k (cf. [2]). One may therefore wonder whether
a similar characterization holds in spaces of higher dimensions. Keeping aside this
question for a separate discussion, one of the purposes of this note is to extend the
relation (1.2) to densities on R™.

Theorem 1.1. For the sum X = X; + X, + X3 of three independent random vectors X
in R™ whose densities p; have finite total variation norms b; = ||p;||rv, we have

I(X) < c(b1bybs)?/3, (1.4)

where ¢ > 0 is an absolute constant.

Note that modulo an absolute factor, the expression on the right-hand side is slightly
better than the one in (1.2), in view of the arithmetic-geometric inequality. What also
looks to be rather remarkable is that the constant in (1.4) is independent of the dimension
n (as we will see, one may take c = 18).

In general, the total variation norm of an integrable function v on R" is defined by

i 1o (1.5)

Julzv =sup [u(e) 3° G

i=1

where the supremum is taken over all collections of C§°-smooth functions w; : R* — R
such that w} + --- + w2 < 1 pointwise on R". This definition leads to the more familiar
formula

lullry = / Vu(z)| de, (1.6)

once u has a weak gradient Vu. If u = 14 is an indicator function of a Borel set A in R"
of finite volume, the expression in (1.5) defines the perimeter Per(A) of A. It is finite, for
example, when A is open, bounded, and has a C?-smooth boundary (cf. [17], p. 229).
As an example illustrating (1.4), one may consider the random vectors X; uniformly
distributed over sets A; in R™ with finite positive volume v; = vol,(4;) and finite
perimeter P; = Per(A;). In this case, the densities of X; represent normalized indicator
functions p; = % 14,, and their total variation norms are given by b; = P;/v;. One
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Bounds for Fisher information

can therefore conclude that the sum X = X; + X5 4+ X3 has finite Fisher information
satisfying
Pl P2 P3 ) 2/3

<
I(X) ¢ ( V1V2V3

In the one-dimensional situation, the proofs of (1.2)-(1.3) from [2], [3] are based on the
application of the Brunn-Minkowski inequality from Convex Geometry which allows one
to derive these relations for X;’s uniformly distributed over arbitrary bounded intervals.
Another ingredient in the argument is an interesting fact that any probability density p
on the real line with finite total variation norm may be represented as a “continuous”
convex mixture p = f py dr(t) of densities of uniform distributions with the property that
lpllrv = [ ||pellrv dm(t), thus reversing Jensen'’s inequality for the total variation norm.

However, it is not clear how to push forward this approach in the multidimensional
situation. Instead, we refine and employ one result from the theory of differentiable
measures due to Uglanov and Bogachev about a general bound on 7(p) without assuming
that the density p has a convolution structure. A main difficulty in estimating I(p)
concerns mostly the one-dimensional case. If a non-negative integrable function p on the
real line has 3 continuous derivatives (this class may be enlarged), it was shown in [5],
[6] that

oo / 2 gJe o} oo o]
/ (z) d;z:§8/ |p'(z)|d;z:+6/ |p”(:z:)|dm+2/ p" (2)] dz. 1.7)

—00 p(.’l’:) —0o0 —00 — 00

3

In the earlier paper [16], this inequality was stated without proof with existing absolute
constants. This relation may be extended to higher dimensions in terms of the corre-
sponding partial derivatives of p. As we will see, the derivatives of the first and second
order may actually be eliminated, so that we have:

Theorem 1.2. For any probability density p on R™ having continuous partial derivatives

up to the third order,
n 2/3
I(p) < cnl/?’(Z/ 102 p(x)] daz) : (1.8)
i=1

where ¢ > 0 is an absolute constant.

Applying (1.8) to the convolution of 3 densities on R", we will derive the relation (1.4).

With this approach in mind, one may wonder whether or not one can obtain similar
inequalities for general moments of the scores so that to extend the inequality (1.3) to
higher dimensions. In this connection, let us mention that Krugova [13] has extended
the inequality (1.7) by proving that

[e.9]

o0 p/ T k
i) = [ (B s@ds <o [ @]+ @]+ @) de
for the region of real orders 1 < k < 3 with some constants C}, depending on & only. But,
as is also well-known, such a relation cannot be true for k > 3, even if we involve higher
order derivatives. For example, the density

1 2 —x?/2

p(l‘):\/T—?Tx@ )

has integrable derivatives of any order, while I3(p) = oco. Hence, the convolution
structure of the distribution of the random variable of X is essential for the bound (1.3)
with £ > 3.

Returning to Theorem 1.1, one motivating point for the derivation of multidimen-
sional upper bounds such as (1.4) is the central limit theorem in the i.i.d. model for

z € R,
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the normalized sums Zy = Sy/ VN with respect to the relative Fisher information
I(ZN||Z) =1(ZN) — I(Z) = I(ZN) — n (which we do not discuss here). This functional
appears naturally in other limit theorems and bounds as well. For example, of a large
interest is the behavior of the relative entropy

LKZNHZ>:L/prmxpN/¢>dL

where py denotes the density of Zy, and ¢ is the density of the standard normal random
vector Z in R™. Assuming that the distribution of the random vector X; in R" is isotropic,
has a finite Fisher information, and shares a Poincaré-type inequality

Var(u(X,)) < CE |Vu(X1)|27

it was recently shown by Courtade, Fathi and Pananjady [8] that

D(ZNHZ)g% log (1+TIL(()C{1HZI§N). (1.9)

Using (1.4), this bound may be stated under a weaker assumption that X; has density
with finite total variation b. Applying (1.9) to the normalized sums of N/3 independent

copies of %(Xl + X5 + X3) with N divisible by 3, we then obtain that
3n(C — 1) 18 b2
D(Zn|12) < 2 — 1) (1 L )
(zx112) < 5 og (14—

This paper consists of two parts. In sections 1-7 we focus on the one-dimensional
case and discuss various upper bounds on the Fisher information I(p) both in terms of
the second and third derivatives of p, and for several classes of probability distributions
(such as compactly supported or unimodal distributions). In Section 7, Theorems 1.1-1.2
are proved for n = 1. Sections 8-17 mostly deal with the multidimensional situation. To
make the proof of main results rigorous, this case requires a careful analysis of basic
concepts from the theory of weak derivatives and Sobolev spaces. Therefore, we include
a short reminder of basic definitions and facts in this theory, together with some special
results needed for an easy treatment of the Fisher information functional. They are used
in particular to rigorously justify some of its important properties such as the lower
semi-continuity and convexity.

Contents:

. Introduction.

. Functions with bounded second derivative.

. Decay of densities and their derivatives.

. Unimodal and quasi-unimodal distributions.

. Total variation norm via higher order derivatives.
. The use of the third derivative.

. Theorems 1.1-1.2 in the one-dimensional case.
. Weak derivatives.

9. Weak derivatives along single variables.

10. Sobolev spaces.

11. BV-space.

12. Convolution of functions of bounded variation.
13. Fisher information in high dimensions.

14. Lower semi-continuity of Fisher information.
15. Convexity of Fisher information.

16. Upper bounds. Proof of Theorem 1.2.

17. Proof of Theorem 1.1.

OO U WN -
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2 Functions with bounded second derivative

Definition 2.1. Given —co < a < b < oo and an integer | > 1, we denote by ¢'(a,b) the
collection of all continuous functions v on the interval (a,b) having continuous derivatives
up to order! — 1 such that the derivative w1 jg (locally) absolutely continuous. Then
u"~1) has a Radon-Nikodym derivative defined almost everywhere on (a,b), which we
denote uV).

In that case, one may also say that u is €'-smooth on (a, b). When the interval coincides
with the whole real line, the notation is shortened to ¢?.
The Fisher information

i

oo ./ T 2
I(p):[ p((x)) dx = Ep(X)? (2.1)

is well-defined for any probability density p from the class ¢!. If X is a random variable
with density p, we have P{p(X) > 0} = 1, so the integration in (2.1) may be performed
over the set p(z) > 0. It may further be restricted to the set of all points « where p is
differentiable, with p(z) > 0 and p’(x) # 0. Indeed, p'(z) # 0 = p(z) > 0 (due to the
property p > 0), while the set where p’(z) = 0 and p(z) > 0 does not contribute to the
integral (2.1).

To get quantitative bounds on I(p), we will consider the classes ¢2 and ¢ and use

the derivatives p” and p’”’.

Proposition 2.2. Given a ¢?-smooth probability density p, assume that p(a) = p(b) = 0
for some numbers a < b. Then for all x € [a,b],

p'(z)? <2Cp(z), C =esssup, D" (2). (2.2)
In particular, if p is supported on (a,b), then
I(p) <2C (b—a).

One may extend the inequality in (2.2) to the whole real line with a similar constant.

Proposition 2.3. Given a ¢?-smooth probability density p, we have, for all z € R,
p'(z)? <2Cp(z), C =esssup,cgp’(z). (2.3)

In particular,
o0
/ p'(z)?dx < 2C.
—o00
The argument is based on two simple calculus lemmas.
Lemma 2.4. Given a non-negative €2-smooth function u on the interval (a,b), finite or
not, assume that u”(x) < C a.e. for some constant C. If u satisfies one of the following
two conditions
(i) u is non-decreasing with liminf, |, v'(z) =0,
(ii) v is non-increasing with liminf 4, v'(z) = 0,

then C > 0, and for all x € (a,b),
o' (2)? < 2Cu(x). (2.4)

Proof. Under the assumption (i), necessarily C' > 0. Indeed, otherwise the derivative
u'(z) would be decreasing which implies that v/(z) < u/(a+) = 0 for all a < z < b. Hence,
the function u(z) itself would be decreasing.
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Next, consider the function ¢(x) = v/(z)? — 2Cu(z). It is locally absolutely continuous
on (a,b) and has a Radon-Nikodym derivative ¢’ satisfying

' (x) =2u'(z) (W' (2) = C) <0, a<z<b (ae.)
Hence ¢ is non-increasing, that is, ¥ (z) < ¢ (y) for all « < y < « < b. On the other hand,

limiinfw(y) = —2Cu(a+) <0.
yla

Thus ¢(x) <0, and (2.4) follows.
The scenario as in (ii) is similar; it is reduced to (i) by applying the previous step to
the function © — u(—=z) on the interval (—b, —a). O

Lemma 2.5. Let a ¢2-smooth function u > 0 be defined on the interval (a,b), finite or
not. If
lim inf «'(x) = lim inf u'(z) = 0,

zla zTb

and u”(xz) < C a.e. for some constant C, then C' > 0 and (2.4) still holds in (a,b).

Proof. Since the function «’ is continuous, the set U = {z € (a,b) : v/(x) > 0} is open
and can be decomposed into at most countably many open disjoint intervals (ag, by). If
ar > a, then necessarily u/(a;) = 0. By the assumption, we also have u/(a;y+) = 0 if
a, = a. In both cases, one may apply Lemma 2.4 (i) to the interval (ay, b;), and we obtain
(2.4) for all z € (ax, bx) with C > 0.

Similarly, the set V = {z € (a,b) : v/(z) < 0} can be decomposed into open disjoint
intervals (ay, by,). If by, < b, then v/(b;) = 0, and, by the assumption, «'(by—) = 0 if by, = b.
Applying Lemma 2.4 (ii) to the interval (ay, by ), again we obtain the inequality (2.4) for
all x € (ak7bk). O

Proof of Propositions 2.2-2.3. Let p be ¢2-smooth on the real line. First note that neces-
sarily C' > 0 in (2.2). Indeed, if C' < 0, then p’ is decreasing on [a, b]. But the assumption
p(a) = 0 implies p’(a) = 0 (since p > 0), and then we would get that p(z) < 0 for all
a < x < b. By a similar argument, we also have p’(b) = 0. Hence, one may apply
Lemma 2.5 to the function u = p, and (2.2) follows.

Turning to the next proposition, again necessarily C' > 0. Indeed, if C' < 0, then p
would be concave on the whole real line, which is impossible for probability densities.

To prove the inequality (2.3), first assume that p/(z) — 0 as |z| — oo (this is always
fulfilled, as will be shown in the next section). As in the proof of Lemma 2.5, consider the
openset U = {z € R: p'(z) > 0} and decompose it into open disjoint intervals (ay, bx).
Necessarily, by < oo (otherwise, p would not be integrable). Moreover, if a; > —oco, then

p'(axr) = p'(bx) = 0.

Hence, one may apply Lemma 2.5 to the interval (ag, bx), and we obtain (2.3) for all
ar < x < bg. In the case ap = —oco, Lemma 2.5 is also applicable due to the assumption
p'(—o00) = 0. A similar argument allows us to involve the points from the open set
V ={z € R:p'(z) <0} as well, and we obtain (2.3) on the whole real line.

To remove the assumption on the derivative, consider a random variable X with
density p together with an independent variable Z which has a C§°-smooth density ¢
supported on a bounded interval A. The convolution of p with density ¢. of the random
variable ¢Z, € > 0, is given by

pe) = a)) = [ " gele — ) ply) dy = /A Dz — ey) aly) dy.

— 00
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This function is C*°-smooth, and its first two derivatives are given by

pe(z) = /Oo ge(z —y)ply)dy = /Ap’(xfey)q(y)dy, (2.5)

— 00

o0
pl(z) = / ¢ (z—y)ply)dy = / Pz —ey) q(y) dy.
oo A
The last equality shows that p/(z) < C for any « € R. Moreover, since for every fixed
reR,
sup sup p(z —ey) < oo, sup sup |p'(z —ey)| < oo,
0<e<1 yeA 0<e<1 yeA
while p(z — ey) — p(x) and p'(xz — ey) — p'(x) as € — 0, one may apply the Lebesgue
dominated convergence theorem which gives
= li ! =1 ' (z). 2.
p(z) = limpe(z),  p'(z) = limp(z) (2.6)

In addition, using the property that ¢/ is bounded for any fixed ¢, while ¢/ (z — y) — 0
as |z| — oo for every y € R, from the first equality in (2.5) it also follows that p.(z) — 0
as |z| — co. Hence, one may apply the first step to the density p., and we get that

pl(x)? < 2Cp.(x), =z €R.
It remains to let € — 0 in this inequality and refer to (2.6). O

Remark 2.6. In the above argument one may also use not necessarily compactly sup-

ported smoothing densities such as the standard normal density ¢(z) = \/% e~/ 2,
for example. Note that p and its derivative admit upper bounds p(r) < A(1 + z?),

|p'(z)| < A(1+ |z|) with some constant A > 0, so that
ple —ey) <A1 +22° +2%), [Pz —ey)| < AQ+|z| + ly]),

whenever 0 < ¢ < 1. Thus, for each fixed z € R, we have integrable majorants for the
functions y — p(x — ey) and y — p/'(z — ey) with respect to the probability measure
q(y) dy. Hence, the Lebesgue dominated convergence theorem may be applied to obtain
the desired relations in (2.3).

3 Decay of densities and their derivatives

Suppose that the constant
C = esssuper p” (2) (3.1)

is finite for a given ¢2-smooth probability density p on the real line. This property turns
out to be sufficient to bound p(x) and p/(z) in terms of the tails of the distribution function

F@ = [ p)ds aek,
associated to p. Suppose for a moment that p is everywhere positive, so that ' : R — (0,1)
and its inverse function F~! : (0,1) — R represent ¢3-smooth increasing bijections. The
function

L(t) = p(F'(1)), 0<t<1,

has a smooth continuous derivative

_PE)

L) = SF Ty
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and we have the identity

An application of the bound
P (2)] < v2Cp(2)

of Proposition 2.3 leads to

(L(t)?)" < 24/2CL(t).
Thus, the function y(t) = L(t)? satisfies the differential inequality y/(t) < 2v/2C y(t)'/4,
which is the same as

(y)*'*) < g\/QC, 0<t<l.

After integration over the interval (¢o,t), 0 < o < t < 1, we get
3
y(H)** = y(to)** < SV2C0 (t —to).

Necessarily liminf,_, o p(z) = 0 which is equivalent to liminf;, o L(tp) = 0. Hence,
letting ¢y approach zero in a proper way, from the above inequality we obtain that

y(t)3* < g\/QCt,

that is, ,
2/3
L(t) < (%\/20 t) .
Simplifying the numerical constant and changing the variable ¢t = F'(x), we have been
led to the inequality
p(x) <203 F(2)??, zeR. (3.2)

Now, to remove the assumption that p is positive, one may consider the convolutions
pe as in the proof of Proposition 2.3, by choosing for ¢ the density of the standard normal
law. Hence, the above step yields the bound

pe(z) < 201/3 FE(913)2/37 r e R,

in terms of the distribution function F. associated to p.. Here, according to Remark 2.6,
one may let ¢ — 0, and then we obtain in the limit the inequality (3.2) without any
constraints. Moreover, interchanging the role of the points —co and oo, we have a similar
bound
p(x) <20Y3 (1 - F(x)¥3, zeR.

Once we have established these estimates for p(z), we also obtain similar ones for
p'(z), by applying Proposition 2.3. One may now summarize.
Proposition 3.1. Using the constant C as in (3.1), we have for all x € R,

2/3

p(z) < 203 (min(F(z),1 - F(x))) (3.3)

and
1/3

P/ ()| < 3CY° (min(F(x),1 - F(z))) (3.4)

In particular, p(z) — 0 and p'(xz) — 0 as |z| — oo.

The right-hand sides of (3.3)-(3.4) may further be bounded in terms of absolute
moments S, = E|X|® of a random variable X with density p. Indeed, by Chebyshev’s
inequality,

F(—z)+ (1 - F(x)) < %, x> 0.
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Corollary 3.2. Assuming that the constant C' and the moment (3, are finite for a real
number s > 0, we have for all x € R,

. 1
1/3 52/3
p(l’) < 20 /Bs |x|23/37
) . 1
(@) < 20V°8° .
B

In particular, if 85 < co for some s > 3, then p has a bounded total variation.

Another application of Propositions 2.3 and 3.1 concerns an alternative (classical)
formula for the Fisher information.

Corollary 3.3. For any probability density p from the class €2 such that the constant C
in (3.1) is finite, we have

10) =~ [ §'(@) logp(e)
p(z)>0
as long as the function p” () log p(z) is integrable on the set {x € R : p(z) > 0}.
Proof. The open set U = {z € R : p(x) > 0} can be decomposed into disjoint intervals
(ak,br). Necessarily p(ar+) = p(by—) = 0 including the cases a; = —oo and by, = oo, by

Proposition 3.1. Let a; < a < b < by. Since logp(z) and p’(x) are continuous functions
with bounded total variations on [a, b], one may integrate by parts, which gives

b b
- / P'(z) logp(e)dz = — / log p(z) dp (x)

b
P (x
= —p’(b)logp(b)+p’(a)10gp(a)+/ ()
By Proposition 2.3,

' (a)logp(a)| < V2C /p(a) [logp(a)| — 0 as a — ax,

and similarly |p’(b) log p(b)| — 0 as b — by.. Hence, the above formula becomes in the limit

- /bk p"(x) log p(x) dv = /bk p/((x)Z dz.

QA ag p fL')

It remains to perform summation over all &. O

4 Unimodal and quasi-unimodal distributions

Proposition 2.3 may also be applied to control the Fisher information for a large variety
of densities like in the following statement.

Proposition 4.1. Let p be a probability density of class ¢? with finite constant

C = esssup,er P’ (2).

Suppose that p is non-decreasing on a half-axis (—oo,a) and is non-increasing on a
half-axis (b, c0) for some a < b. Then I(p) is finite. Moreover,

I(p) < 2C(b—a)+2V2C (v/p(a) + v/p(b)). (4.1)
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Proof. Let ap = inf{x : p(z) > 0} and by = sup{z : p(z) > 0}. We may assume that
ap < a < b < by. Necessarily p(ap+) = p(bp—) = 0. By the monotonicity on the interval
(a0, a), the function ,/p has finite total variation

L[ /()]
VB lIrviann =5 | LAk do = v/l
ag
Since |p'(x)| < +/2Cp(z), we obtain that

T N p—
[ta= ] o) Vel S 2VEOR

By a similar argument,
bo /2
/ P dr < 2,/2Cp(b).
b P

Finally, by the upper bound (2.3) from Proposition 2.3,

bp/2
?dx < 2C(b—a).

a

It remains to add these three estamates. O

One interesting case in (4.1) is when a = b. This corresponds to the so-called unimodal
distributions on the real line with mode at the point a. With this in mind, the more
general case a < b may be referred to as the class of quasi-unimodal distributions.

In the unimodal case, (4.1) is simplified to

I(p) < 4+/2Cp(a).

But then, one can further relax the basic hypothesis on the second derivative.

Proposition 4.2. Let p be a continuous density of the unimodal distribution with mode
at the point a. Suppose that p is €2-smooth on the half-axis (—o00,a) and is ¢2-smooth on
the half-axis (a, c0) with finite

Co =esssup,,p'(x), Ci=esssup,.,p"(z).

Then I(p) is finite, and moreover,

I(p) < 2(v/2Cy +/2C4) /p(a). (4.2)

Proof. Again, let ap = inf{z : p(x) > 0} and by = sup{z : p(z) > 0}, so that necessarily
ag < a < by, by continuity of p. It is also necessary that p’(ag+) = p’(bp—) = 0. This
follows from the fact that p’ is continuous on (—o0,a) and lim,_,_ p'(z) = 0 (since
otherwise p would not be integrable), and similarly for the second half-axis. Also, by the
integrability argument, we have Cy > 0 and C; > 0. Hence, we are in position to apply
Lemma 2.4 with u = p, which yields

p'(z)? < 2Cop(x) forz <a,  p'(z)? <20:p(z) for z > a.
It remains to repeat the argument from the proof of Proposition 4.1. O

As an example, one may consider the symmetric exponential distribution with density

1
p(z) = 56"”‘, z € R.

It satisfies the assumptions of Proposition 4.2 with mode at a = 0 and Cy = C; = %

Hence, by (4.2), I(p) < 2+/2. Note that I(p) = 1, while Proposition 4.1 is not applicable.
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5 Total variation norm via higher order derivatives

To further develop upper bounds on the Fisher information, we have to see how one can
estimate the L!-norm of the first and second derivatives of a smooth density in terms of
the L'-norm of its next third derivative. This is a preliminary step towards Theorem 1.2.

Proposition 5.1. For any function p in €2,

oo o0 2 oo
[ w@la< [ paldes g [ e (5.1)

Perhaps, this relation is known (up to factors in front of the integrals). Note that a
similar inequality

[ werdass [ p@Pars [ ek 2)

— 00 — 00 — 00

for the L2-norms is obvious. Indeed, under proper integrability assumptions and applying
the Plancherel theorem, (5.2) may be rewritten in terms of the Fourier transform

p(t) = / e p(x)dr, tER,

— 00

as

o0 N 1 o0 ) 1 o0 R
| wpa<s [ porass [ @soPa

— 00 — 00 — 00

This readily holds in view of the pointwise bound ¢* < 1 + 1 ¢*.

However, the finiteness of the integrals on the right-hand side of (5.2) does not
guarantee that p will have a finite total variation. For example, consider a C*°-smooth
function p on the real line which is vanishing for x < 0 and such that

sin(z%)
=—" >1
p(a)=—75— z21,
with parameters a > 3 > 1. It belongs to L' N L?, while p’ is not integrable (||p||rv = o).
As easy to see, p”’ € L? if and only if a < i (268 + 3) which may happen when 1 < 8 < %

Involving higher order derivatives, one may get similar relations in the spirit of the
inequality (5.1), like the following ones which we prefer to state in the multiplicative
form.

Corollary 5.2. For any function p in ¢3,

/_O:O P (@) dz < 3(/_0; p(x)|dx)2/3</_o; |p'”(x)\dx>l/3,
/_O; lp"(z)| dz < g(/: p(x)|dx>1/3(/_o; |p'”(x)\dx)2/3.

Proof. Applying (5.1) to the functions py(z) = p(A\x) with parameter A > 0, we get

| el [ a2 [ @)

— 00 — 00 — 00

which may be optimized over A to yield

[ wenas (4 pwr [~ o) 63
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In other words, we arrive at the convexity-type relation

1 1 1 4
< — — = — —_ .
a1_2a0+2a2+h, h 210g3, (5.4)
for the sequence
ar =log Ap, A= / ™ ()| da.

An application of (5.3) to p’ in place of p leads to as < 3 a1 + 3 a3 + h, which, by (5.4),
implies a1 < £ ag + 3 (3 a1 + 3 ag + h) + h. That is,

2 1
a1 7§a0—|—§a3—|—2h or Alge%Ag/SAéB.

By a similar argument, a; < % ag +§ az+2h, or Ay < thA(l)/ 3A§/ % which was required. O

Involving further derivatives in a similar manner, we arrive at the following:

Corollary 5.3. If the function p in ¢! is integrable and has an integrable derivative p*)
of order | > 2, then all intermediate derivatives p(¥), 1 < k <[ — 1, are integrable as well.

Proof of Proposition 5.1. First, let us derive an upper bound on the L'-norm of p’ over
the unit interval. One may start with the weighted L!-Poincaré-type inequality

1
/ lu(z) —m|dx < 2/ [/ (x)| (1 — ) m = / (5.5)
0

Here, an equality is attained in the asymptotic sense for the indicator function u = 1 1 /o).
To prove it, note that, by Jensen’s inequality, the left integral in (5.5) does not exceed

/01/01 [u(x) — u(y)|dz dy 2//0<w<z<y<1 ‘ /:] u'(2) dz‘ dx dy
2//<I<Z<y<1 {/; |u’(z)|dz] dx dy
/ |u'(2)] 2(1 — 2) dz.

This proves (5.5). Using this inequality with u = p/, we get

IA

/0 |p(x)—m\dxg2/o P ()| 2(1 — 2) da,

implying

/ (@) dz < || +2 / P @)zl —2)de,  m=p(1)—p0).  (5.6)
0 0

Next, we need to derive an upper bound on the increment m of p(z) on [0, 1] analo-
gously to the right-hand side in (5.1). By Taylor’s integral formula, for all 4 € R,

1
() = pl0) + p O+ 12 [ 5 th) (1~ t)
0
Writing this inequality with —A in place of h and averaging, we get

p(0) = w _ %/0 B2 (p(th) + p" (~th)) (1 —t) d.
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Let us now integrate this identity over 0 < h < 1. This gives another general identity

1 1 0
p0) =3 [ s@yde—1 [ @ a-0rd—g [ p@0+aran

-1 -1

Applying it to the function  — p(1 + z), we also get

=5 [ s [ @ e-0ra-g [ @t

Hence

2 0 0
=90 = 5 [ s@de—g [ se)des g [y 0+

1
4

1] @02 i/l () (2 — 2)? da,

and thus

0 2 0
P =20 < 5 [ p@ldets [ peldet g [ @002

1 ! 1 [?
.- / P (@) 1 — 20| dx + / D" (2)) (2 - 2)? da.
4 0 4 1

Thus, together with (5.6) we arrive at the similar bound

1 0 2 oo
| @i < [ p@iaes g [l [ pele@a 6

— 00
with
0 for x<—1 and = > 2,
L1+ 2)? for —1<2<0,
w(z) = 1 :
7l —2z[+22(1—2) for 0<x<1,
1(2-x)? for 1<x<2.

Let us now apply the relation (5.7) to the functions p(z + k) and perform summation
over all integers k. This will give

/ T (@) dr < / " |p(@)] da + / (@) W) da (5.8)

with weight function W (z) = 3, ., w(z+k). One can easily evaluate it using the property
that it is 1-periodic. Restricting ourselves to the values x € [0, 1], we have

W) = w—-1)+wx)+w(x+1)
1,1 9 1 )
= ¢ +Z(1fx) +Z|172x|+2m(171).
This function is symmetric about the point = 1, and W(z) = 3 (1 + 2z — 32?) for
0 <z < i. The latter expression is maximized at # = § with W (1) = 2. Thus, W (xz) < 2
for all x € R, so that (5.8) yields the desired inequality (5.1). O

6 The use of the third derivative

The boundedness condition for the second derivative p” is guaranteed, for example, by
the integrability of the next derivative p’”’. Hence, some of the previous statements can
be made in terms of the L'-norm of p’”/. As a first step towards the one-dimensional

EJP 27 (2022), paper 115. https://www.imstat.org/ejp
Page 13/44



Bounds for Fisher information

variant of Theorem 1.2, here we prove the following relation. We basically follow the
arguments described in the book by Bogachev [6] and employ Corollary 5.2. Let us use

the notation ( )2
I = / dxr
=] e

for all non-negative functions p from the class ¢! (even if p is not a probability density).
The next inequality slightly sharpens (1.7).

Proposition 6.1. For any non-negative function p of class €3,

o0 o0

I(p) < 2/ |p/(:z:)|dm+4/ |p"(x)|dx+2/ [p" ()| de. (6.1)
Proof. One may assume that all integrals on the right-hand side are finite, and p is not
identically zero. In particular, p, p’ and p” are bounded on the whole real line.

The set U = {x € R : p'(x) > 0} is non-empty and open. Let us decompose it into at
most countably many disjoint open intervals, and let A = (a,b) be one of these intervals.
Necessarily b < oo, p’(b) = 0, and p’(a) = 0 in the case a > —co. Since p/(z) is vanishing

at infinity (Proposition 3.1), we also have p’'(—oc0) = 0 if a = —oc.
By the monotonicity, p(z) > 0 on A, and we may define a positive function
! 2
o(z) = P (2)°
p(x)

which is @2-smooth on the interval A. Put
AN ={reA:v(x) <2 (x)}, A'={zxelA:v(x)>2"(x)}

Note that p” > 0 on A’ and

/ 2
/ ' (z) dr < 2/ P’ (x) dw. (6.2)

Turning to the set A”, note that it is open and can be decomposed into at most
countably many disjoint intervals (ag,br). In particular, v(ax) = 2p”(ax) in the case
ap > a.

The function v(x) has a continuous derivative satisfying

o (z) = P'(z) 2p(x) p"(z) — p'(2)*)

<0, zeA.
p(x)

Hence, v(x) is decreasing on every (ay, by ). As a consequence, if a; > a,

< 2p"(ak), ar < x < bg. (6.3)

In the case a; = a > —oo, recall that p’(ax) = 0. Given £ > 0 such that a + ¢ < by, one
may apply Lemma 2.4 (i) to the function u = p on the interval (a, a + ) which yields

P (2)* <2C.p(z), C.= sup p’(y) >0,
a<y<a+te

for every = € (a,a + €). By the monotonicity of v, it follows that

sup = sup < 2C..
a<z<by p(x) a<z<ate P(T)
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Letting ¢ — 0 and using the continuity of p”, we have C. — p’(a), so that the above

relation leads to (6.3) for this case as well. Note that, by (6.3), necessarily p”(ax) > 0.
As for the remaining case ax = a = —o0, let us show that it is impossible. Since v is

decreasing on the half-axis (ag, bx) = (—00, by ), this would imply that, for any z < by,

/; p];((i))z duv = /; v(z) do > /; v(z) dz = oo.

On the other hand, since |p/(z)| < 1/2Cp(z) for all z € R with constant C' = sup,, p’(z)
(Proposition 2.3) and since p’(z) > 0 on U, we have

z p/<x)2 /Z p/(x) ,
de = 2 vplx) dz
~/—oo p(x) —0o0 p(x) ( )

2\/20/ \/p(x)/dx = 2¢/2Cp(z) < oo,
where we used the property p(z) — 0 as x — —oo (Proposition 3.1).

Thus, necessarily —co < a; < by, < b < 00, p”(ax) > 0, and the inequality (6.3) holds
true on every interval (ax, bx). Applying it, we get

s — @)
J’“‘/ak o) VQP(’“)/% N

= 2V () (Vo) - V().

Using the simple inequality (vt — /5)2 <t — s (t > s), it follows that

IN

IN

bk
T2 < 8" (ax) (p(br) — plar)) = 80" (ar) / P (x) da.

ag

Hence (using Vis < 3¢+ 1 s, t,s > 0), we get

[
n<2 [ p@de (o) (6.4)
ag
To further estimate the right-hand side, consider two scenarios. If p”(a;) < 2p”(z) in
(ak,by), then, by (6.3), whenever a; < x < by,
p'(z)?
p(x)

< 2p"(ay) < 4p”(z),

implying ,
k
o< [ )]s

k
which is similar to (6.2). In the other case, there is a point x; € (ag,bx) such that
p"(ar) > 2p"(xk). Then

p'ar) < 2(p"(ar) —p"(zk))
bk bk
= 2/ p"(z) dx < 2/ [p" (x)| dx,

k k

which, by (6.4), gives

bk bk
Ji < 2/ (@) dx+2/ 0" ()| da.

k ag
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One can unite both scenarios using the formally weaker relation
b b b
no<r [CW@ldesa [ @lde sz [ @) de
ag a a
Let us now perform summation over all k£, which leads to

p/(x)Q ’ " 111
dx <2 |p'(z)|dz + 4 |p" (x)| dx + 2 [p" (x)] de.

p(x) "

Here the right-hand side dominates the one of (6.2). Hence, adding the two inequalities
with integrals taken over A’ and A”, we get

p/(l')2 - / 1" 1" )
/A (@) dLSQ/A|p(x)|dx+4/A\p (x)|dx+2/A\p ()| da.

It is time to perform summation over all intervals A’s contained in the decomposition of
U, which leads to the similar bound

[ B < [ pwlaers [ Wwlde2 [ 57w

A similar relation holds true when integrating over the set V. ={z € R : p’(z) < 0} in
place of U (alternatively, one may apply the previous step to the function z — p(—=x)).
Adding the two inequalities with integrals over U and V, we then get (6.1). O

7 Theorems 1.1-1.2 in the one-dimensional case

We are prepared to prove the one-dimensional variant of Theorem 1.2.
Proposition 7.1. For any probability density p € ¢3, we have

2/3

o <w( [ i) 1)

Proof. Denote by A the integral in (7.1). We apply Corollary 5.2 to (6.1) to get that
8 16
I(p) <5 A3 4 3 A3 424,
This inequality is not invariant under rescaling of the space variable. So, let us apply it
to the probability density functions py(z) = Ap(Az) with parameter A > 0. Then we get

8 . 16
I(p) < — AY3 4 = A2/3 L 9)A.
() < 35 3 +

Optimizing over all )\, we arrive at I(p) < cA?/® with constant ¢ = % + 8 < 10. O

We now consider a particular case of the inequality (7.1) when p has a convolution
structure.

First, let us remind some of the basic properties of this operation. Given integrable
functions p; and p», the convolution

(b1 % p2) () = / Y @ — ) pa(y)dy, zER, (7.2)

— 00

is defined a.e. and represents an integrable function with the L'-norm

[p1 * pallr < [Ip1ll1 [[p2ll1- (7.3)
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Moreover, if p; are non-negative, the integral in (7.2) is well-defined for any fixed x
(although it may be infinite); it does not change when changing p; on a set of Lebesgue
measure zero.

In general, the convolution improves smoothing properties. For example, if p; and p»
are bounded, the function p = p; * ps is bounded and uniformly continuous. In this case,
both p; and p, belong to L?(RR), so do their Fourier transforms

oo

pi(t) = / ettr pj(z)dz, teR,

— 00

by the Plancherel theorem. Hence, the Fourier transform p = p;ps is an integrable
function, which implies the desired assertion by applying the inverse Fourier formula.
We will need the following elementary statement.

Lemma 7.2. If non-negative integrable functions p;, 1 < j <, are absolutely continuous
and have integrable Radon-Nikodym derivatives p}, the convolution p = py * --- * p;
belongs to the class ¢'. Moreover, its derivatives up to order | — 1 are bounded and
integrable, while the [-th Radon-Nikodym derivative of p represents the convolution

p =pl s xp) (7.4)

with the L'-norm satisfying
PN < [Ipill - - ot (7.5)

Proof. For simplicity, let us consider the case | = 2. Put ¢; = p}, j =1,2. According to
(7.2), for any x € R,

p(z) = /O; {/;y a1(2) dZ}pz(y) dy = //qu q1(2) pa(y) dy dz.

In particular,
Ip(2)] < llgrllx l[p2lly < oo,

so that p is bounded. After change of variable y = £ — z, the last double integral may be
rewritten as

p@):/w[/WQK@m@—ZM4d§=/thH@@M§

— 00 — 00 — 00

This equality shows that p is absolutely continuous and has an integrable Radon-Nikodym
derivative p’ = ¢; * pa. Thus,

P(a) = [ O; { [ ;yqz(z) dz}ql(y)dy - / / e awdyds

The last integral is finite and represents a continuous bounded function of z, with

P'(@)] < llgallx llgzll < oo

After the same change of variable y = £ — z, the last double integral may be rewritten as

v = [ ][ e@ae-d] = [ @@

This equality shows that p’ is absolutely continuous and has an integrable Radon-Nikodym

derivative p”’ = ¢ * ¢o. In particular, p € €¢2. The inequality in (7.5) follows from (7.3).
The general case [ > 2 in (7.4)-(7.5) is similar. O
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In the case [ = 3, one may combine Lemma 7.2 with Proposition 7.1 to obtain the
following consequence from (7.1).

Proposition 7.3. Given absolutely continuous probability densities p;, j = 1,2, 3, the
convolution p = p; * p * ps belongs to the class ¢* and has finite Fisher information
satisfying

I(p) <10 (bibabs)*?,  b; = ||pf 1. (7.6)

The inequality (7.6) may be further extended to the class of probability densities of
bounded variation, by a suitable approximation. On the real line, the total variation
semi-norm of a function p is defined by

N

Ipllev = sup Y [p(wr) — plar-1)l, (7.7)
k=1

where the supremum is taken over all collections of points zg < 1 < --- < zy. If this
semi-norm is finite, necessarily the limits

p(z—) =limp(y), plz+) = limp(y)
ytz ylx

exist and are finite for all x € R. Without loss of generality, one may always assume

that the value p(z) is located between these limits. For example, one may require that

p(z+) = p(x), that is, p is right-continuous. With this requirement, the value in (7.7)

coincides with the so-called essential total variation semi-norm, which is consistent with

the definition (1.5).

If p is integrable, then necessarily p(—oo) = p(oco) = 0. Hence, being restricted to the
linear space of all integrable right-continuous functions p of bounded variation, ||p||tv
represents a norm. If p is absolutely continuous and has a Radon-Nikodym derivative p’,
then

Ipllry = (171 = / ()] de 7.8)

—0o0
Like the Fisher information, the convolution of p with an arbitrary probability density
q does not increase the total variation norm:

Ip*qllrv < [Iplry. (7.9)
Proof of Theorem 1.1 (n =1). Let p;, j = 1,2, 3, be probability densities with finite total
variation norms b; = ||p;||Tv. Introduce the normal density ¢.(x) = ﬁ e~ /2" with

mean zero and standard deviation ¢ > 0 and define the convolutions

Pje = Dj * Qe, Pe = P1,e ¥P2,e ¥P3,e =P * P /3-

All these functions represent C'°°-smooth probability densities, so that the relations (7.6)
and (7.8) are applicable, which yield

I(p.) )*?

IN

10 (Ilp1.cllov lIp2.cllov [[ps.cllry
2/3

< 10 ([lp1llov Ip2llov lpsllov) ™,

A

where we made use of (7.9) on the last step. It remains to apply the lower semi-continu-
ity of the Fisher information (cf. [3], Proposition 3.1, or Section 14 below): If random
variables &, are convergent weakly in distribution to a random variable &, then

1(6) < liminf I(&y).

As a consequence, I(p) = lim._,o I(p:). Thus, Theorem 1.1 is proved with ¢ = 10. O
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8 Weak derivatives

In spaces of higher dimensions, the general theory about the Fisher information is
somewhat different than in dimension one. For example, for the finiteness of I(p), the
density p does not need be bounded and continuous anymore, in contrast with the
one-dimensional case. We refer an interested reader to [4] for related issues.

Upper bounds on the Fisher information for probability densities on R™ may be
explored in appropriate Sobolev spaces. A main approach to the definition of Sobolev
spaces is based on the integration by parts formula. Let us recall some basic notations
and facts in this theory and give some additional remarks (for background we refer to
[171, [10]). As usual, C3°(R™) denotes the space of all compactly supported functions w
on R™ that have continuous partial derivatives of all orders.

Definition 8.1. Let o = (o,...,®,) be a multi-index with |a| = oy + -+ + o, (a; are
non-negative integers). Given a locally integrable function v on R", a locally integrable
function v on R" is called a generalized a-th derivative of u, and we write v = D%u, if

/uDo‘wdarz (—1)|a‘/vwda: (8.1)

for allw € C§°(R™).

Here and elsewhere D®w = 03! ... 07w denotes the corresponding partial derivative.
We are especially interested in partial derivatives along one variable only and then we
also write

Diu=0. u(i=1,...,n), Du=0,u

If v = D*u exists, this generalized partial derivative is defined uniquely up to a set
of Lebesgue measure zero. Of course, if 4 has continuous usual partial derivatives of
orders up to |«|, the generalized a-th derivative exists and may be chosen to be the usual
one.

Like in the usual differentiation, generalized derivatives are commutative with respect
to o and have a semi-group structure: If v has a generalized «a-th derivative D“u, which
in turn has a generalized 3-th derivative v = D® D%u, then u has a generalized (a + /3)-th
derivative v. That is, D**# = D?D* = D*D? for all multi-indices a and B.

In dimension n = 1 with @ = 1, Definition 8.1 returns us to the setting of locally abso-
lutely continuous functions for which Radon-Nikodym derivatives serve as generalized
derivatives. More generally, one may give the following characterization.

Proposition 8.2. A locally integrable function u on the real line has a generalized [-th
derivative v of an integer order ! > 1, if and only if u = u a.e. for some u from the class
¢!. In this case, v = 1)) a.e.

In the case | = 1, Proposition 8.2 is thus telling us that a locally integrable function
on the real line has a generalized derivative, if and only if after a modification on a set of
Lebesgue measure zero, it will be locally absolutely continuous.

In the proof we involve the so-called regularized functions which are commonly used
for approximation of Sobolev functions. Let w € C§°(RR™) be non-negative and compactly
supported, with [ wdxz = 1. So, it is a probability density. The probability densities

we(x) =e "w(z/e), z€R" (e >0),
are also compactly supported and belong to the class C§°. They are called regularizers.
Definition 8.3. Given a locally integrable function v on R", define the convolutions

@) = (urwe)() = / u(z — y)we(y) dy

/wg(m —yu(y)dy, zeR™ (8.2)
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They are called the regularized functions.

These functions are locally integrable, belong to the class C*°(RR"), and we have the
commutativity (we, )e, = (we,)e,, €5 > 0. Let us list a few elementary basic properties of
the regularized functions, in which the choice of the regulizer w is irrelevant.

Lemma 8.4. Let u be a locally integrable function on R" and « be a multi-index.
1) ue(z) = u(z) ase — 0 at every Lebesgue point x of u, hence almost everywhere.
2) We have D%u. = u * D%w;.
3) Moreover, D*u. = (D“u). provided that u has a generalized derivative D*u.
4) In this case, D*u.(x) — D*u(z) almost everywhere (by combining 1) and 3)).

Lemma 8.5. Given a locally integrable function u on R"™ and a multi-index o with [ = |«
suppose that, for any w € C§°(R"),

7

/uDO‘w dz = 0. (8.3)

Then u = 4 a.e. for some polynomial u(x1,...,x,) inn real variables of degree at most
l—1.

Proof. Starting from (8.3), we obtain a similar equality for the regularized functions, i.e.
/uED"w dx = 0. (8.4)

Indeed, according to (8.2) and applying Fubini’s theorem so as to justify the change of
the order of integration, we see that the above integral is equal to

But, by (8.3), the inner integral on the right-hand side is vanishing for any fixed y € R".

Now, since u. is C*°-smooth, one may integrate in (8.4) by parts and conclude that
J wD*u. dz = 0 for all w € C§°(R™). This implies that D*u.(z) = 0 for all z € R", which
is only possible when wu. is a polynomial of degree at most d = — 1. It remains to apply
the property 1) and note that the pointwise limit of polynomials of degree at most d is a
polynomial of degree at most d. O

Proof of Poposition 8.2. In one direction (the sufficiency part), one may assume that
@ = u, so that the function u belongs to the class ¢'. In particular, its I-th derivative
1V, being understood in the Radon-Nikodym sense, is locally integrable on the real line.
Hence .

u=D () —u=V(a) = / uV(z)dx forall a < b,

a

which implies that v(/~1) has a bounded variation on every bounded interval. Then one
may integrate by parts to get that

[ 0; w(z)uW (z)de = — [ O:o w' (z) u' V) (2) da

for all w € C§°(R). Since the first I — 1 derivatives of u are continuous, one may further
integrate by parts which leads to the desired equality

/ w(z)u® (z) dz = (-1)! / wW (z) u(x) da.
According to (8.1), this shows that u® serves as an I-th generalized derivative for u.
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Arguing in the opposite direction, suppose that, for some locally integrable function
v(x), we have
oo oo
/ wW (z) u(x) de = (—1)1/ v(x)w(z) dx (8.5)
— o0 — 0o

for all w € C§°(R). Introduce the integration operators
Tu(z) = / o(y)dy, TF=T(T*"Y), k=1,...,1, (8.6)
0

and note that the function 7%v belongs to ¢* and has a k-th Radon-Nikodym derivative v,
as long as v is locally integrable. In particular, T is locally absolutely continuous and
has v as its Radon-Nikodym derivative. Hence, one may integrate by parts to get that

/00 v(z)w(z)dr = — /Oo Tv(z)w' (x) dw

— 00 — 00

for any w € C§°(R). By repeated integration by parts, we obtain that

/°° v(z) w(z)dr = (—1)" /00 Tho(z) wW (z) de.

In view of (8.5), this gives
/ wW () (w(z) — T'v(z)) dz =0
— 00

for all w € C§°(R). We are in position to apply Lemma 8.5 (in dimension n = 1) and
conclude that v — T'v = @ a.e. for some polynomial Q of degree at most d = — 1. Then
@ = T'v + @ belongs to ¢!, has an [-th generalized derivative v, and is equal to u a.e. [

9 Weak derivatives along single variables

A similar characterization about the generalized partial derivatives Dﬁ, 1 <4 <mn, also
holds in the n-dimensional case. Fix an integer [ > 1.

Proposition 9.1. A locally integrable function v on R™, n > 2, has a generalized partial
derivative v = D!, if and only if u = @ a.e. for some Borel measurable function @ such
that, for almost all points (z;);-; € R"~!, the function

f(lCz) = ﬂ(xl, ey L1 Xy g1y - - .,Cﬂn)

belongs to the class ¢! and has an I-th Radon-Nikodym derivative f*) which is Borel
measurable and locally integrable on R". In this case, v = f) a.e.

Proof. We apply an argument as in the proof of Proposition 8.2, with a few modifications.
In the sufficiency direction, assume that % = u. Write z = (7;,Z) with 7; € R, € R"},
and let E; C R"~! be an exceptional null set of collections Z = (z) ;. By the assumption,
for every fixed T outside this set,

1) the function f(z;) belongs to the class ¢/;

2) there is a representative for its [-th Radon-Nikodym derivative f)(z;) = v(z),
which defines a Borel measurable, locally integrable function on R™.

The first property allows us to perform the repeated integration by parts along the
i-th coordinate to get that, for any w € C§°(R"),

/ w(zi,:f)f(l)(xi)dxi:(fl)l/i Dhw(z;, &) u(x;, Z) de;, T ¢ E;.

—0o0
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By property 2), and since u is Borel measurable and locally integrable, both sides of
this equality represent integrable functions on R"~!. Using Fubini’s theorem, one may
integrate over z to get

/ / w(a:i,a_:)f(l)(xi)dxidfz(—1)1/ / Dhw(ws, ) u(zs, 7) das d,
R7—1J - R»—1J -0

that is,
/ w(z) fO(z;) de = (-1)! Dlw(x) u(z) dz.
n IRn
Hence, according to (8.1), the function v(z) = f)(x;) serves as an I-th generalized
derivative for u.

For an opposite direction, assume that a generalized partial derivative v = Dlu exists,
so that it may be chosen to be Borel measurable and locally integrable. Then, the
function z; — v(z;, ) is Borel measurable for all 7 € R"~!, and is locally integrable on
the real line for almost all z € R"~!. Indeed, since for all integers m, N > 1,

[ ) waan] e < e, By = v
BN —m
we conclude that the set

Ap N = {mEBN:/ v(xi,x)|dxi<oo}

is Borel measurable and has a full Lebesgue measure inside the cube By. Hence the set

A= (] Anw

N=1m=1

has a full Lebesgue measure on R”~!. But it contains exactly those points z € R*~! for
which the function z; — v(z;, Z) is integrable on all bounded intervals on the real line.

Next, we employ the integration operators (8.6) which are applied along the i-th
coordinate: For z € A, put

X
Tv(xi,:i):/ o(y,z)dy, TF=T(TF"Y), k=1,...,L
0

Clearly, the function T'v is finite, Borel measurable on R x A, and locally integrable, since

/ [/ |Tv(x;, )| da?,;] dz <m [/ |v(2;, Z)| dzz} dz < 00
BN —m BN —m

for all m, N > 1. The same conclusions are also true about all functions T*v.

Moreover, since z; — v(z;, ) is locally integrable, the function z; — T*v(z;,Z)
belongs to the class ¢* and has v(z;,Z) as a generalized derivative of order k. In
particular, Tv(z;, Z) is locally absolutely continuous with respect to z;, and one may
integrate by parts with respect to this variable to get that, for any w € Cg°(R"),

/ (2, &) w(x;, &) de; = 7/ Tv(z;, T) Diw(x;, &) dz;.
By repeated integration by parts, we obtain that

/OC v(xi, Z) w(zs, ) de; = (1) /00 T'v(xs, 7) Dhw(x;, T) du;.

— 00 — 00
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Here, the integrands represent Borel measurable, integrable functions. Hence, it is
possible to integrate both sides according to the Fubini theorem, and then we arrive at

/v(x)w(x) dx = (—1)l/Tlv(x) Dhw(x) de.

Applying (8.1), which is our hypothesis, this yields
/Dﬁw(x) (w(z) — T'v(z)) dz =0

for all w € C§°(R). We are in position to apply Lemma 8.5 and conclude that u — T'v = Q
a.e. for some polynomial () in n real variables of degree at most [ — 1. It remains to put

i(z) = Tlo(z) + Q(x). O

Returning to Definition 8.1 with an arbitrary « such that || = 1, we obtain n partial
derivatives v = 0,,u = D,u, and one may speak about the generalized gradient

Vu = (0z,t,...,0;, u)

and its Euclidean length |Vu|. Thus, according to (8.1), for all w € C§°(R"™),

/u@xiwdx:—/wﬁwiudx, 1=1,...,n. (9.1)

Let us formulate Proposition 9.1 once more in this particular case.

Corollary 9.2. A locally integrable function v on R"™ has a generalized gradient, if and
only if after a modification on a set of measure zero the modified (Borel measurable)
function u is locally absolutely continuous on almost all lines parallel to the coordinate
axes and have partial Radon-Nikodym derivatives that are locally integrable on R"™.

This characterization may be used to derive the following assertion which will be
needed to correctly introduce the Fisher information.

Corollary 9.3. If a non-negative locally integrable function v on R™ has a generalized
gradient with partial derivative D;u, then the sets

E,={zeR":u(zx) =0, |Diu(z)| >0}, i=1,...,n,
have Lebesgue measure zero.

Proof. We may assume that u is properly modified so that « = u. Then, using the previous
notation x = (x;, %), we have that, for all # except for a null set A; C R"~}, the function
u;(z;) = u(x;, T) is a.e. differentiable, and its derivative u}(z;) serves as a generalized
partial derivative D;u(z). Since u; > 0, it follows that u;(z;) = 0 = u;(z;) = 0 at every
point of differentiability (similarly to dimension one). Hence, the set

has Lebesgue measure zero on the real line. By Fubini’s theorem,

mes, (F;) = /}Rnil mes (F;(Z))dz =0,

where mes,, stands for the Lebesgue measure on R". O
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Locally Lipschitz functions. If v has a finite Lipschitz semi-norm in some neighbor-
hood of any point, it is almost everywhere differentiable, so that it has a usual gradient
Vu(z) a.e. (by Rademacher’s theorem, cf. [17], p.50). Such functions are locally abso-
lutely continuous along every line, and the usual gradient also serves as a generalized
gradient. As a representative of the modulus of the gradient, one may take a locally

finite function
u(@) —u@)| g

)

|[Vu(z)| = limsup
Yy |z =yl

10 Sobolev spaces

Here and elsewhere, we use the usual notation for the space L°(R"™) of all measurable
functions v on R™ with finite norm

fulle = ([ tutorar) sz

Given an integer [ > 1, the Sobolev space with parameters (I, s) is defined as
Wi R") ={ue L°*(R") : D*u € L*(R") for all 1 < |a| < 1}.

It is a Banach space endowed with the norm

1/s
Jullws = (2 ID%ufz)

0< o<

When s = 2 we obtain a Hilbert space.
Thus, W7 (R™) contains all functions « in L*(IR™) that have a generalized gradient Vu
such that |Vu| belongs to the same space L*(R"™).

Characterizations. A function u in L°(R™) belongs to W7 (R™), if and only if after
a modification on a set of measure zero the modified function u is locally absolutely
continuous on almost all lines parallel to the coordinate axes whose partial Radon-
Nikodym derivatives belong to L*(R™), cf. [17], pp. 44-45. This characterization is also
a consequence of Corollary 9.2, which in turn is a particular case of a more general
Proposition 9.1. Thus, the generalized partial derivatives d,,4(z), = (z1,...,2,) € R,
with respect to the i-th coordinate may be understood in the usual sense for almost all
collections (z;) i
If s > 1, a function u from L*(R™) belongs to W (R"), if and only if

[u(z + h) — u(@)]s

< 00.
h#0 |h|

For s = 2, we have
Jull3 = / (Jul? + |Vul?) de.

In this case, another characterization can be given in terms of the Fourier transform
a(t) = /ei<t’x> u(z)dr, t€R", uwe L*R"),

which is well-defined as an element of L?(IR™). Namely, u belongs to the Sobolev space
WZ(R™), if and only if the function (1 + |t|) 4(¢) belongs to L?(R™). Moreover, by the

Plancherel theorem,
1
2 _ 1 2y 10(0)12 dt.
Julfye = gaye [ (L ) a0
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This way W2(R") may be identified with the usual L2-space over the measure (1 + |t|?) dt.

Example. In contrast with the one-dimensional case, the elements of the Sobolev space
W#(R™) in dimension n > 2 do not need be bounded and continuous. One may consider
the example of the unbounded (near zero) function

log ||

o) = T3 ey

which belongs to all L*(R™) and has usual partial derivatives 0,,u(x) for all = # 0. These
derivatives are integrable with any power s < n.

Sobolev inequalities. It is a well-known classical fact that any function u in Wi (R™)
belongs to L7t (R™). Moreover,

[ul| ;=; < Cn [Vullx (10.1)
with a constant C,, independent of u. If it is optimal, an equality in (10.1) is attained
asymptotically when u approaches indicator functions of the Euclidean balls.

The inequality (10.1) may be extended to the W7 -space with 1 < s < n as the relation

s < Cn(s) [[Vulls,

[

where s* = % is the so-called Sobolev conjugate.

Elements of W (IR™) are called Sobolev functions. They can be well approximated by
smooth functions using any regularizer w and associated regularized functions which we
discussed before, cf. Definition 8.3. Let us extend the list of basic properties given in
Lemma 8.4 by the following. Below, o denotes an arbitrary multi-index and s > 1.

Proposition 10.1. Let u be a locally integrable function on R".
1) |lue — ul[zs() — 0 as € — 0 on every bounded Borel set 2 in R™.
2) Ifu € L*(R™), then u. € L*(R™) as well, and moreover,
luells < JJulls, |Jue —ulls =0 as € — 0.

3) In addition, u. is bounded:

Juelloo < C=™* Nullsy € = [l o' = —=.
4) If u has a generalized a-th derivative D%u € L*(R"), then
ID%u]ly < |Dul;,  |Du. — D°ully =0 as £ 0.
5) Hence, ifu € W (R"™) and |a| <, then
||Dau€|\wls < ||D“u||wls, | D“ue — Dau||Wls — 0.

6) In addition,
[D%uecl|o0 < Ce™m/* [ Dulls.

7) If u € W (R™), then with some constant C' depending on w only, we have
[ue —ulls < Ce|[Vuls.

The property 5) shows that C*°(R™) N W;(R") is dense in W (R").

EJP 27 (2022), paper 115. https://www.imstat.org/ejp
Page 25/44



Bounds for Fisher information

All properties and their proofs are rather standard. For illustration, let us explain the
inequality in 7). By Definition 8.3, assuming that « is smooth and that w is supported on
the ball of radious r, we have, by Holder’s inequality,

ue(z) — ulz) = / (uz — ey) — u(z)) w(y) dy

—€ /|y<r [/01 (Vu(z —ety),y) dt| w(y)dy,

implying
1
|ue(z) — u(x)]® < C’es/ / |[Vu(z — ety)|® dt dy.
ly|<r JO

Hence

lue —ul|s < C'e* / |Vu(x)|® d.

On this step, the smoothness condition may be removed by approximation: Let us apply
this relation with us in place of u, and then using the commutativity of the regularization,
we get

(us)s — ugll? < C'e® / Vus(2)] da.

Letting 0 | 0, it remains to refer to the properties 2) and 5).
We now extend Lemma 7.2 to the multi-dimensional setting.

Proposition 10.2. If the functions u1,...,u; belong to W(R"), the convolution u =
uy * - - - x u; has integrable generalized partial derivatives along every coordinate up to
order . Moreover,

Diu = Djuy % ---% Dyuy, i=1,...,1, (10.2)

with
| Djully < [|[Dsually - .- | Dyl (10.3)

Proof. To sumplify notations, write D = D;, D! = D!. One may argue by induction on /.
Write u = v*u; with v = ug *---*%u;_1, [ > 2. By the induction hypothesis, v has integrable
generalized partial derivatives along every coordinate up to order [ — 1. Moreover,

D' = Duy % -+ % Duj_. (10.4)

The convolution

u(w) = [wle = poty) s, @R,
is an integrable function. Given a C§°-function w on R", integrating by parts, we have
/u(x)Dlw(m) de = / [/ul(x — y)D'w(z) dm} v(y) dy
= — / {/ Duy(z — y)D' " tw(x) dm] v(y) dy
= 7/ {/ Duy(z") D' w (2’ + ) dm’] v(y) dy.
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Changing the order of integration and using the induction hypothesis, the latter double
integral is equal to

/[/v(y)Dl‘lw(w'+y) dy} Duy(z") da’
= (_1)5_1/ [/Dl_lv(y)w(x’—l—y) dy| Duy(z") da’
= (-1t /w(ax) (D' v x D) () d.

Hence u has a generalized derivative D'w = D'~y % Duy. It remains to recall (10.4), and
we arrive at (10.2)-(10.3). O

11 BV-space

Definition 11.1. An integrable function v on R” is said to be a function of bounded
variation, if for some signed Borel measures p; on R", we have

/u@miwdx:—/wdui, i=1,...,n, (11.1)

for allw € C§°(R™).

The generalized gradient of v is then defined as a vector-valued measure p =
(141, - - -, tbn ), whose total variation ||u||Tv in the sense of Measure Theory is denoted ||u||Tv
in the sense of Theory of Functions. Using (11.1) and the notation divw = Z?:l Oz, w;, it
follows that

N
fulley = lulley = sup 3 (4] = sup| [ (w.dn)
k=1

n
= sup’/Zwidui = sup‘/udivwdx, (11.2)

i=1
where the first supremum is running over all partitions of R"™ into Borel sets Ay, ..., Ay,
and the next ones are taken over all C§°-smooth maps w = (w1, ...,w,) : R™ — R"™ such

that |w(z)| < 1 for all z € R™. Thus, one arrives at the formula (1.5).
Put

BV(R™) = {u € L*(R") : ||u|tv < oo},
which is a Banach space endowed with the norm
[ullBv = llully + [[ullrv.

Thus, an integrable function u belongs to BV (R"), if and only if the last supremum in
(11.2) is finite.

Note that BV (R") contains Wi (IR"), and the total variation norm for elements of this
Sobolev space is simplified to (1.6), i.e.

[ullrv = [[Vull. (11.3)

This assertion can be strengthened: Suppose that an integrable function v on R™ has
a generalized gradient Vu = (0., u, ..., 0,,u). Then u belongs to BV (R"), if and only if
it belongs to Wll(]R"), in which case (11.3) holds true. Indeed, returning to (11.2) and
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integrating by parts, we have

Sup‘/udivwdr’ = sup’/iwiﬁmmudz‘
i=1
sup’/(w,Vu) dm‘ = /|Vu|da:,

where as before the supremum is running over all C§°-maps w = (wy,...,w,) : R" - R"
such that |w| < 1 pointwise on R".

What will be important for us is that the regularization does not increase the total
variation and BV -norm, in full analogy with L°- and W;’-norms (cf. also [17]).

Proposition 11.2. For any function u in BV (R"), the regularized functions u. defined
in (8.2) satisfy

[ucllrv < llullry, lucllsv < [lullsv. (11.4)
Proof. Let w = (wy,...,w,) be an arbitrary C5°-smooth map participating in the last
supremum in (11.2). We first notice that
/uadivwdmz/udivwdx, (11.5)
where the map ¢ = (¢1,...,%,) has components

Yi(x) = /wi(x —y)w:(—y)dy, =€R"

They are C§°-smooth and represent the regularized functions for w; by means of the
regulizer &(z) = w(—x). Since w. represents a probability density, an application of the
Cauchy inequality yields

sz(l‘)Q < Z/wl(a? — y)Q(:}E(y) dy <1

due to the condition |w(x)| < 1. Thus, ¢ is one of the maps participating in the last
supremum in (11.2), so that the right-hand side in (11.5) may not exceed ||u||Tv. Taking
the supremum in (11.5) over all admissible maps w, we arrive at the first inequality in
(11.4). Using |juc||; < ||ul|1, we also obtain the second one. O

The norm in BV (R™) is lower semi-continuous. More precisely, the following holds.

Proposition 11.3. Suppose that u; belong to BV (R"™) and have bounded norms in this
space. If [|uy — u| 1) — 0 as k — oo on all balls Q2 in R™ for some locally integrable
function u, then u belongs to BV (R"™) with

[ullvy < liminf [fug|rv, (11.6)
k—o0
and similarly for the BV -norm.

Proof. One may assume additionally that v, — v a.e. Then, for any admissible map w,

/udivwdm = lim /uk divwdz <liminf ||ug|Tv.
k—o0

k—o0

Taking the supremum over all w as in (11.2), we arrive at (11.6). Since, by Fatou’s

lemma,
/|u|dac < lim inf / |ug| dz,
k—o0
we get the lower semi-continuity for the BV -norm as well. O
EJP 27 (2022), paper 115. https://www.imstat.org/ejp

Page 28/44



Bounds for Fisher information

This property is used in the proof of the following variant of the compactness theorem.
In a slightly different way it is mentioned in Remark on p. 146, [10].

Proposition 11.4. Let (uy),>1 be elements of W} (R") such that sup,, Jukllwy < oc.
There exists a subsequence uy, which is a.e. convergent to a function v in BV (R™) with
the property that ||ux; — ul[1 () — 0 as j — oo on all balls  in R™.

Proof. By property 7) with s = 1 in Proposition 10.1, the regularized functions vy, = (ux)e
satisfy

vk — urllr < Ce [Juklw;-

Hence, given ¢ > 0, we may choose € > 0 such that forall £ > 1
Hvk—ukHl < 6. (11.7)

Moreover, by properties 3) and 6) with s = 1, v, are bounded and have bounded
gradients uniformly over all k. Hence, these functions are bounded and equicontinuous.
Applying the Arzela-Ascoli theorem, for every integer N > 1, one can find a subsequence
vx, which converges uniformly on the ball 2 : |x| < N. Moreover, using the diagonal
argument, one may find a subsequence vg, which converges pointwise on R™ and
uniformly on all balls. In particular,

lok, — vr, |l — 0 as 4,5 — o0

on every ball  in R™. Hence, by (11.7), for all sufficiently large ¢ and 7,

Juk; —ur Moy < lluky — vkl + llvky, —or @)
+ ok, — ko) < 30.

Applying this conclusion to the values § = 27 and using the diagonal argument, we
obtain a further subsequence uy; such that

|ur; — ug,|lLr) — 0 as i,j — oo.

Thus, ug, is a Cauchy sequence in L'(Q) and has a limit u belonging to this space so
that |lux;, — u|[L1(q) — 0 as j — oo. As before, one may find a further subsequence, say
uy,;, which converges to a locally integrable function u a.e. on the whole space R", with
the property that |[ug; — ul|z1(q) — 0 as j — oo for all balls 2. By the Fatou lemma,

[ully < liminf [Jug, |1 < sup [[ugllw; < oo,
j—o0 k

so that u is integrable. Moreover, by (11.6), using ||ux|| v = ||Vug|/1, we also conclude
that |Ju||Tv < co. Hence u belongs to BV (R"™). O

12 Convolution of functions of bounded variation

We are prepared to prove a multi-dimensional variant of Lemma 7.2 for the BV -space.
For simplicity, we consider the convolution of two functions only.

Proposition 12.1. Given functions pi,ps in BV (RR™), the convolution p = p; * p2 belongs
to W} (R™). Moreover, its generalized partial derivatives are functions of bounded
variation satisfying

10z, plltv < nlpilov Ip2llov, i=1,...,n. (12.1)
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Proof. Define the regularized functions v = (p1)., v = (p2). with parameter ¢ > 0 and
consider the convolutions

We have
Jwllr < flully [[ollr < [lpala ([p2l,

where we used the property that the regularization does not increase the L'-norm.

Since u, v and their partial derivatives are integrable and C*°-smooth, the same is
true for w. Moreover, using the notation for partial derivatives D; = 8xj, D;; = 8%1_%,, we
have

Djw(z) = / Dyu(z — y)vl(y)dy = / u(z — y) Dyo(y) dy,

Djw(x) = /Dzu(o: —y)D;v(y) dy,

that is,
Djw = (Dju) xv=ux (Djv), Djw=(Du)*(D;v).

This implies

/|Djw|dgc < /|Dju\dx/|v|dx
< [ IVulds [l = fullev ol < [paley o2l
and
/\Dijw\dm < /|Diu\dm/|Djv|dx
<

/ V| de / Volde < Ilpilley Ip2liry,

since the regularization does not increase the total variation norm (Proposition 11.2). It
follows that

[Diwllryv < Z/ | Dijw|dz < nllprllrv [[p2llov-. (12.2)
j=1

Thus, the functions D;w have bounded Wi -norms uniformly over all € > 0. Hence,
we are in position to apply Proposition 11.4: There exists a sequence ¢ = ¢ — 0
and functions ¢; in BV(R"), 1 <4 < n, such that the partial derivatives D;w, for the
corresponding functions w = wy are convergent to ¢; a.e. and have the property that

| Diw — gillLr@) = 0 ask — oo

on all balls €2 in R™. By (12.2), and applying the lower semi-continuity property (11.6),
we conclude that all ¢; are functions of bounded variation satisfying

lgillrv < liminf ||Dywilrv < nlpillrv Ip2llTv- (12.3)
k—s o0

We claim that the function ¢; represents a generalized derivative 0,,p = D;p, and
then (12.3) yields the desired relation (12.1). As required in (9.1), we need to show that

/pDiwdx: —/z/qudx (12.4)
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for all ¢ € C§°(R™). Indeed, by the definition,

/wk Dy dx = —/z/JDiwk dx. (12.5)

But the regularized functions v = u; and v = v, are convergent in L' to p; and p
respectively, by property 2) in Proposition 10.1, and thus |jw; — p|1 — 0 as k — oc.
Hence, the left integrals in (12.5) are convergent as k — oo to the left integral in (12.4).
The same is true about the right integrals, since D;w; are convergent to ¢; locally in
L', while 7 is compactly supported. This shows that p has the generalized gradient

Vp=(q1,---,qn)- O

Example. In dimension n = 1, let p; = p> be the density of the uniform distribution

on the interval [—1, 7]. It is a function of bounded variation with total variation norm

lp1llTv = ||p2/lTv = 2. The convolution
p(x) = (p1*p2)(x) = (1—|z))T, zeR,

represents the density of the so-called triangle distribution. It is absolutely continuous
and its generalized (Radon-Nikodym) derivative

p'(x) = —sign(z) 1i—1,1)(x)

is a function of bounded variation with total variation norm ||p|/Tv = 4. Hence, (12.1)
becomes an equality. Note that Lemma 7.2 is not applicable in this case.

13 Fisher information in high dimensions

Given a probability density p on R", the first basic formula in (1.1)

2 n 2
I(p):/ Vi dI:Z/ Oup)” 4, (13.1)
p(x)>0 P i—1 /p(x)>0 p

makes sense, once the function p has a generalized gradient

Vp = (02,p,--.,02,p)

as in the definition (9.1). Here the partial derivatives are required to be locally inte-
grable functions. Moreover, they have to be integrable for the finiteness of the Fisher
information.

Proposition 13.1. If [(p) is finite, then p € W] (R") and
/|Vp|dx < /I(p). (13.2)
Moreover, p*/? € WZ(R") and
I(p) :4/|Vp1/2|2dx. (13.3)

Conversely, if p'/? ¢ WZ(R™), then p has a generalized gradient, and the integrals in
(13.1) and (13.3) coincide.

The proof is based on the chain rule formula and the next general characterization.
Suppose that we are given a continuous function T : [0, 00) — R which has a continuous
derivative 7"(t) for ¢ > 0 such that sup,~,, |T"(t)| < oo for any t, > 0.
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Lemma 13.2. Let p be a non-negative, locally integrable function on R"™ having a
generalized partial derivative D;p. Then u = T(p) has a generalized derivative D;u, if
and only if the function T'(p)D;p 1¢,~0) is locally integrable. In that case,

Diu = T'(p)Dip1{p>0} a-e.

Proof. In the one-dimensional case, this assertion may be refined. Let the function p be
locally absolutely continuous on the real line and have a Radon-Nikodym derivative p'.
By continuity, the set {x € R : p(z) > 0} is open and may be decomposed into at most
countably many intervals (ag, b ), finite or not. Then, on every (ax, bx), T(p) is locally
absolutely continuous and has a Radon-Nikodym derivative T'(p)’ = T"(p) p’. Indeed, the
assumption on the local absolute continuity of p is equivalent to the property that, for all
a < fand e > 0, there is § > 0 such that

N
Zyz—$z<5:>Z|Pyl pla)] <e
=1 =1

for any collection of non-overlapping intervals (z;, ;) inside [«, 8] (cf. e.g. [12]). If this
segment is contained in (ay, bx), then p is bounded away from zero, that is, p(xz) > tg > 0
for all « € [«, ]. This implies that |T'(p(y;)) — T'(p(x1))| < Alp(yi) — p(x;)| with some
constant A = A(¢g), so that

N
Z (o —2) <6 = Y [Tpw)) — T(p(z)| < Ae.
=1 =1

Hence, by the same characterization, u = T'(p) is locally absolutely continuous on (ay, bx,)
and has a finite derivative ¢, which exists almost everywhere on this interval. But, since
p(z) has a finite derivative p’(z) for almost all z € R, u(x) has derivative T (p(x)) p’(x)
for almost all = € (ag, br). This shows that ¢ = T’ (p) p’ a.e., thus proving the claim.

Turning to the general case n > 2, note that |T'(¢)| < ¢ (1 +¢) for all ¢ > 0 with some
constant ¢ > 0. Hence u = T'(p) is locally integrable. Without loss of generality, let
T(0)=0.

We may assume that p is modified as in Proposition 9.1 for | = 1, with a Borel
measurable, locally integrable, generalized derivative D;p. Thus, using the notation
r = (7;,%), z; € R, # € R"!, the function z; — p(z) is locally absolutely continuous and
has a Radon-Nikodym derivative z; — D;p(z) for all Z except for a null set E; C R" L.
Given such a point Z, the set U(Z) = {z; € R : p(x) > 0} is open and may be decomposed
into at most countably many intervals (ag,by), finite or not. According to the one-
dimensional claim, the function x; — wu(z) is locally absolutely continuous and has a
Radon-Nikodym derivative D;u(z) = T'(p(x)) D;p(x) on every such interval aj, < x; < by.
Hence, given a C§°-function w on R™, on any subinterval [a, ] C (ak,br) one may
integrate by parts along the x;-coordinate to get

B
/ w(z;, @) Djw(x;, ) de; = w(B,Z)w(B,T) —u(e, ) w(o, T)

B
_ / T'(p(s, 7)) Dip(as, 7) w(as, 7) dus. (13.4)
First assume that 7"(p)D;p 1{,~0} is locally integrable on R™. Then, this function will

be locally integrable with respect to z; for almost all z except for a null set £, containing
E; (cf. proof of Proposition 9.1). That is, for any bounded interval [a, b],

/ |T (24,%))Dip(x;, T)| Lp(zs,2)>0} de;, < oo, T ¢ EZ/ (13.5)
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Necessarily p(a,z) = p(bg,Z) = 0, and thus u(ag,Z) = u(bg,T) = 0, as long as the
endpoints a; and b are finite. Hence, letting o — a and 8 — by in (13.4), we get

br bk
| i) Dty dni = [T ol ) Diplas ) wias o) doi (13.6)
ag ag
But this equality also holds when a;, and/or by, are infinite, since w(«, Z) and w(3, %) are
vanishing for a and  being sufficiently large. Due to (13.5), one may perform summation
over all k in (13.6), and then we arrive at

/ u(zi, T) Dyw(x;, %) do; = — / T (p(x;, %)) Dip(zs, T) w(w;, T) da;

U(z) U(z)

with an arbitrary point Z outside E! (since the integrands on both sides are supported on
a bounded set). Here, the left integral does not change when extending the integration
over the whole real line, so,

oo (o)
/ u(z;, @) Dyw(x;, T) doe; = — / T (p(wi, 7)) Dip(xi, T) Lip(a, z)>01 w(Ti, T) d;.

— 00 —00

Using Fubini’s theorem, this equality may now be integrated over z, and we obtain
/ u(z) Dyw(x) dx = 7/ T'(p(x))Dip(2) Lip(a)>oy w(z) da.

This means that 7"(p(z)) Dip(x) 1p(2)>0} Serves as a generalized partial derivative for

Conversely, suppose that u = T'(p) has a generalized partial derivative ¢;; in particular,
it is locally integrable. As we have already noticed, for any z outside F;, the function
x; — u(z) has a Radon-Nikodym derivative T"(p)D;p on every interval (aj,bi). By
Proposition 9.1, for almost all Z, we have ¢; = T’(p)D;p for almost all z; € (ay,bx).
Therefore, this equality holds true a.e. on the whole set p(x) > 0. As a consequence, the
function T"(p) Dip 1{,~0) is locally integrable. O

Proof of Proposition 13.1. Suppose that p has a generalized gradient Vp with finite I(p).
By Corollary 9.3, the left integral in (13.2) may be restricted to the set {p(z) > 0}. Hence,
applying Cauchy’s inequality, we have

2 1/2
/\Vp\dx = / @\/ﬁdx < </ wdx) ,
p(x)>0 \/23 p(x)>0 P

which yields (13.2). Thus, p € W} (R").
In order to derive (13.3), we apply Lemma 13.2 with the function T'(t) = /%, t > 0.
Dip

Since N/ 1{p>0} is square integrable, we conclude that the function ,/p has a generalized

partial derivative ¢; = D;\/p = 57”]17 1{p>0y- It follows that

2
/ (Dip) der =4 / qi2 dr.
p(x)>0 p

Summing over all ¢ < n and recalling (13.1), we arrive at the representation (13.3).
The converse statement is similar. O

Denote by 33, the collection of all probability densities on R™. According to (13.2),
for every I > 0, the set

%,(1) = {|Vp| :p € B, 1(p) <1}

is bounded in L'(IR"). The next statement refines this property.
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Proposition 13.3. The elements in R,,(I) are uniformly integrable on R".

Proof. Since R, (I) is bounded in L!(R™), we need to show that, for any ¢ > 0, there is
0 > 0 such that for any Borel set A C R",

4] <6 = / Vpldz < & for all p € R (1). (13.7)
A
Here we denote by |A| = mes,, (A) the n-dimensional volume of A.

If n = 1, the assertion is obvious. Indeed, according to (13.2), p has a bounded total
variation, implying that p(x) — 0 as |z| — co. Moreover,

oo = [ S P dy < Ip'lh < VI,

so that p is bounded. As a consequence,

| vwra- /,, D@ ar < 1

—o0 (z)>0 p({E)

Here we used the property that p(z) = 0 = p/(z) = 0 for all points = where p is
differentiable. Thus, R, (I) is also bounded in L?(R), which is sufficient for (13.7).

Now, let n > 2. Recall that the set F = {x € R" : p(z) =0, |Vp(z)| > 0} has Lebesgue
measure zero (Corollary 9.3). Hence, by Cauchy’s inequality,

[1vslde = [ (ol
A A\E

1/2 1/2
= /A\EW\/;'\/ﬁdxgl/ (/Ap(m)dx) )

On the other hand, using Holder’s inequality with exponents —"; and n, and then

applying Sobolev’s inequality (10.1) together with (13.2) once more, one can bound the
last integral by

Ipll oy [A]Y™ < Co [ Vplla [A]Y™ < CuVT AV,
As a result,
/ \Vp|de < CL213/4 1 AY/2n,
A
This relation readily implies (13.7). O

14 Lower semi-continuity of Fisher information

The next important property indicates that the Fisher information represents a lower
semi-continuous functional on W (R").

Proposition 14.1. Given probability densities p, p, in Wi (R™) such that ||p —pllwr =0,
we have

I(p) < liminf I(pg). (14.1)

k—o0

Proof. Since p;, and Vp,, are respectively convergent to p and Vp in L!(R"), one may
choose a subsequence of p; which is convergent a.e. with a similar convergence property
for generalized gradients. So, we may assume that p;, — p and Vp;, — Vp a.e. as k — oo.
But then

V(@) [Vp(x)®
lim ————1 = —
k=0 pr(z) {pk(z)>0} p(z)
a.e. on the set p(x) > 0. It remains to apply Fatou’s lemma. O
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Proposition 14.1 may be considerably sharpened by weakening the basic hypothesis
on the convergence in Wi (R").

Proposition 14.2. Given random vectors X, X, (k > 1) with values in R", suppose that
X, = X weakly in distribution as k — co. Then

I(X) < liminf T(Xy). (14.2)
k—o0

Proof. It is sufficient to prove the following: For any subsequence of X, one can extract
a further subsequence for which the relation (14.2) holds true, even with limsup in place
of liminf. For simplicity of notations, let the first subsequence be the whole sequence
of positive integers. By the assumption on the weak convergence, [vdu, — [vdp
as k — oo for any bounded continuous function v on R", where p and p; denote the
distributions of X and X} respectively.

One may assume that I(Xj;) < I < oo for all k. In this case, X; have absolutely
continuous distributions on R™ whose densities py, lie in the Sobolev space Wi (R") and
have Fisher information I(py) bounded by I. By Proposition 13.1, p; have bounded
norms in W (R"), so that we may apply Proposition 11.4. Thus, some subsequence Dk
is a.e. convergent to a function p € BV(R™) with the property that

Pk, = plli@) =0 asj— oo (14.3)

on bounded Borel sets €2 in R™. The latter ensures that p represents a probability
density on R"™. Indeed, necessarily p(x) > 0 a.e. as p is a pointwise limit of non-negative
functions. In addition, since fQ Pr, — fQ p, we have fQ p < 1 for all bounded Borel sets
in R™, hence fRn p < 1. For an opposite inequality, choose a bounded open set such that
P{X € Q} > 1 —¢ for a given ¢ > 0. Since X}, are convergent weakly in distribution, we
obtain that

liminf P{X;, € Q} >P{X cQ} >1-¢

J—00

(cf. e.g. [1]). On the other hand, by (14.3),

P{X, € Q} = /kaj(a:) dx — /Qp(x) dx.

Hence [,p >1—¢ foranye > 0, so that [, p=1.
In particular, assuming again for simplicity of notations that &; is the whole sequence
of positive integers, we get (by applying Scheffe’s lemma) that

/|pk —plde — 0 ask — oc. (14.4)

This means that uj; are convergent in total variation norm to the probability measure
with density p. Consequently, the measure y is absolutely continuous with respect to
the Lebesgue measure on R™ and has density p. In addition, the weak convergence is
strengthened as the property (14.4) which implies that

/pkvdm%/pvdx (14.5)

as k — oo with an arbitrary bounded measurable function v on R”.

The uniform integrability property as in Proposition 13.3 allows us to apply the
Dunford-Pettis compactness criterion for the space L' over finite measures (cf. [9], p. 20).
It implies that the set 9R,,(I) is pre-compact and also sequentially pre-compact in L*(12)
with respect to the weak o(L!, L>)-topology for any bounded Borel set 2 in R". Hence
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the same is true for the collection of generalized partial derivatives D;,p = 0,,p with
p€Pr(I),i=1,...,n. As a consequence, there is a subsequence of p;, along which D;pj,
are weakly convergent in L' (2) to some ¢; € L'(Q). Clearly, these limit functions may be
chosen to be common for all such 2’s. Thus, assuming again that the subsequence is the
whole sequence, we obtain that

/wDipkdx%/wqidx ask —o00,1=1,...,n,

for any bounded measurable function w on R™ with a compact support. But, restricting
ourselves to w € C§°(R™), the above left integrals are equal to — [ py, D;w dz, according
to the definition (9.1) of the weak derivative of p, and they converge to — [ p D;w dz, by

(14.5) with v = D;w. Thus
/pDiwdx: —/wqidac.

This shows that ¢; = D;p serve as generalized partial derivatives for p, so that p has a
generalized gradient Vp = (q1,...,¢,). Moreover, since p belongs to BV (R"), we get

Ipllrv = / |Vp|dx = /(gf 4o +q72,)1/2 da < .

Therefore, all D;p are integrable, and we may conclude that p € W} (RR"). In addition,
/wDipkdx—> /wDipdx as k — 00 (14.6)
for any bounded measurable function w on R"™ with a compact support.

Now, as we have observed in Proposition 13.1 and Lemma 13.2, the functions ,/pg
belong to W2(R") and have partial generalized derivatives

D;px

Yik = Di/pr = 2 /pe Lipe>o}

whose L?-norms are bounded by v/I. Since the balls in L?(R") are weakly compact, one
can extract a subsequence of (¢; ;)r>1 which is weakly convergent to some function
¥; € L?(R™). That is, we may assume that, forany i =1,...,n,

/vwi’kd:ﬁ — /vwidx as k — 00
with an arbitrary function v € L?(R"). Then, more generally, we have
/vki//i,k dx—>/v1/)id1: as k — o0, (14.7)
as long as vy — v in L?(R"™). Indeed, by the Cauchy and triangle inequalities,
’/Uk1/)i,k dx — /Wl)i d:r‘ /|v;C — | |9 5| dx + ‘ /U’L/Ji’kd.%' — /U’(/Jidw‘
\ﬁ||1};C —vll2 + ‘ /vw“C dr — /vwida:‘ — 0.

Thus, the property (14.7) holds true. Let us choose here v, = w,/p; and v = w,/p with
an arbitrary bounded measurable function w on R". Applying the pointwise inequality

(vPr — /P)? < |px — p|, from (14.4) we get

o= vl = [ ? (VFE — VB do < [ 0~ pldo 0

IA

IN
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as k — 0. Hence, (14.7) is applicable and gives

1 1
§/U)Dz'pk Lip,>o0y dz = §/WDipk dr — /w\/ﬁwq dz,

where we also used Corollary 9.3 so as to remove the indicator function. Comparing this
with (14.6), we obtain that the equality

1 1
i/wDipdxz §/wDip1{p>0} dx:/w\/p?widx

holds true for any bounded measurable function w on R"™ with a compact support. But
this is only possible when % Dip=./py; a.e., so

Dip
o =—1 =D,
vi= g U L0 VP
a.e. on the set p(z) > 0.
Finally, since v; x 1{;>0} are weakly convergent to ; 1{,~¢} in L?>(R"), by the lower

semi-continuity of the norm with respect to the weak topology, we have

i Lip>oyllz < Hminf [ 1gpsoy [l < Hminf [Jo k2.
But this is the same as

Dip\2 - Dipy. \?
/ (ﬁ) 1{p>0} dx < hkn—1>£f/ (2 pk) 1{Pk>0} dx.

Summing these inequalities over : < n, we arrive at the relations (14.1)-(14.2). O

15 Convexity of Fisher information

Recall that the collection 3,, of all probability densities on R represents a convex closed
set in L' (IR™). Another general property of the Fisher information is its convexity,

N
I(p) <> arl(pr), i € B, (15.1)
k=1

where p = Zszl aypr With arbitrary weights ay, > 0 such that Zgzl ar = 1. This follows
from the convexity of the function R(u,v) = u?/v in the upper half-plane v € R, v > 0.
Moreover, Cohen [7] showed that the inequality in (15.1) is strict.

As a consequence, the collection B, (I) of all probability densities on R™ with Fisher
information not exceeding a fixed number I represents a convex closed subset of [3,,.

We need to extend Jensen’s inequality (15.1) to arbitrary convex mixtures of proba-
bility densities. In order to formulate this more precisely, let us recall the definition of
mixtures. For any Borel set A in R”, the linear functional ¢ — [, ¢(z) dx is continuous on
L'(R™) and takes values in [0, 1] when ¢ € *B,,. So, given a Borel probability measure 7
on 3, one may introduce the Borel probability measure on R™ by virtue of the formula

J(A) = /% [/Aq(a:) dm} dr(g). (15.2)

It is absolutely continuous with respect to the Lebesgue measure and has some density
p(z) = du(z)/dx called the (convex) mixture of ¢’s with mixing measure 7. For short,

p:/ qdn(q). (15.3)

n
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Proposition 15.1. For the probability density p as above,

HMS/I@W@~ (15.4)

n

Proof. Note that the integral in (15.4) makes sense, since the functional ¢ — I(q) is lower
semi-continuous and hence Borel measurable on ‘3,, (Proposition 14.1). We may assume
that this integral is finite, so that 7 is supported on the convex (Borel measurable) set

mn(oo) =Ur mn(I)

Step 1. Suppose that the measure 7 is supported on some convex compact set K
contained in B,,(I). We apply the following general theorem (cf. e.g. Meyer [14],
Chapter XI, Theorem T7): If a function I : K — R is convex and lower semi-continuous
on a convex compact set K in a locally convex space F, then it admits the representation

I(q) =sup l(q), q€K,
leL

where L denotes the family of all continuous affine functionals on E such that I(q) < I(q)
for all ¢ € K. In our particular case with £ = L'(R"), any such functional acts on
probability densities as I(q) = [ 4 ¢ dz with some bounded measurable function ¢) on R".
Hence
I@) = swp [v(@ale)ds, qe K,
e

for some family ¥ of bounded measurable functions 7 on R"™. As a consequence, by the
definition (15.2) for the measure p with density p,

/ ) I(q)dr(q) > sup /q3 ) [ / Y(z) q(x) dl} dr(q)
= sup /1/)(I)p(z) dz = I(p),

pew

V

which is the desired inequality (15.4).

Step 2. Suppose that 7 is supported on 93, (I) for some I > 0. Since any finite measure on
E is Radon, and since the set %B,,(I) is closed and conveg, there is an increasing sequence
of compact subsets K; C ,,(I) such that 7(U;K;) = 1. Moreover, K, can be chosen to
be convex (since the closure of the convex hull will be compact as well). Let m; denote
the normalized restriction of 7 to K with sufficiently large [ so that ¢; = 7(K;) > 0, and
define its barycenter

m®:Ad@M@, (15.5)

which is a density of some probability measure p; on R" as in the definition (15.3). Then,
for any Borel measurable function f on R™ such that |f| < 1, we have

[ s~ [ ran /;nL/f@ﬂﬁxﬂm]dwﬂq%—W@D

||’/Tl — 7T||TV = 2(1 — Cl).
Taking the supremum over all admissible f, we get

IA

/|pl—p|d:€§2(1—cl)—>0 as | — oo,
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which means that p, are convergent to p in L!(R"). Hence the relation (14.1) holds:
I(p) < liminf;_, . I(p;). On the other hand, by the previous step,

I(p) < /K Iq) dmi(q) = © /K I(q) dn(q) = /m RO (15.6)

a

as | — oo, and we obtain (15.4).

Step 3. In the general case, we may apply Step 2 to the normalized restrictions m;
of 7 to the sets K; = B,,(l). Again, for the densities 7; defined as in (15.5), we obtain
(15.6), where ,,(I) should be replaced with 93,,(c0). Another application of the lower
semi-continuity of the Fisher information finishes the proof. O

Corollary 15.2. If a probability density p on R™ has a generalized gradient, then the
regularized probability densities p. defined in (8.2) satisfy

I(pe) < I(p), lim I(pc) = I(p).
In fact, this approximation property may be generalized similarly to the setting of
Proposition 14.2.

Corollary 15.3. Given independent random vectors X and Z with values in R", for the
random vectors X, = X +¢Z, ¢ € R, we have

I(X.) < I(X), 511_13% I(X.) =I1(X). (15.7)
Proof. For the first claim in (15.7), we may assume that I(X) is finite, so that X has
an absolutely continuous distribution with density p having a generalized gradient. In
this case, X. has a density p. representing a convex mixture of probability densities
of the form ¢y, (z) = p(x — h), h € R™. Since I(qn) = I(p), we obtain the inequality in
(15.7) by applying Proposition 15.1. The second claim in (15.7) is obtained by applying
Proposition 14.2. Since X. = X weakly in distribution as ¢ — 0, it follows that

I(X) <liminf I(X.). O

e—0
The inequality in (15.7) can be sharpened by virtue of the Stam inequality

Lot 1
I(X+Y) " I(X) " I(Y)

(15.8)

which holds whenever the random vectors X and Y in R” are independent (cf. [15],
[11]).

One interesting case in Corollary 15.3 is when Z has a standard normal distribution.
Combining both claims in (15.7), we then obtain that the function ¢ — I(X.) is mono-
tone. This choice of smoothing allows one to reduce various relations about the Fisher
information /(p) such as (15.8) to the case of C*°-smooth densities p. Here is another
example.

Corollary 15.4. Given a random vector X in R", we have I(U(X)) = I(X) for any linear
orthogonal map U : R™ — R".

Indeed, by (13.1), I(U(X)) = I(X) as long as X has a C"*°-smooth density. Hence,
in the general case, we have I(U(X) +¢Z) = I(X +¢Z), where 7 is a standard normal
random vector in R", independent of X (since U(Z) is standard normal). It remains to
apply Corollary 15.3.
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16 Upper bounds. Proof of Theorem 1.2

We are now prepared to extend several upper bounds for the Fisher information

@RS [ @ap@)?
0= 5 dy;/ p)

from the one-dimesnional case to higher dimensions (as before, one may adopt the
agreement that 0/0 = 0). The first upper bounds were developed for densities from the
classes ¢! on the real line with [ = 2 and / = 3. Analogously, one may say that p belongs
to ¢/(R"), if for for any i = 1,...,n, for almost all (z;);.; € R"!, the function

i = p(x) =p(X1, . L1, Ty, Tig 1,0 Tn) (16.1)

belongs to ¢'(R) with an additional requirement that the [-th derivative 9., p(x) with
respect to z; in the Radon-Nikodym sense is locally integrable on R™. According to
Proposition 9.1, such densities describe representatives of functions p on R™ having
generalized partial derivatives Dlp = 8:]’“]). With this definition, Propositions 2.2-2.3
yield:

Proposition 16.1. If the probability density p belongs to the class ¢*(R") and is sup-
ported on a bounded, open, convex set ) in R", then

I(p) <2Cnl|Q|, C= max esssup,, 92 p(x).

Here || = mes, (Q?) denotes the n-dimensional volume of (2.

Proof. Note that the inequality (2.2) is homogeneous in p. Applying it to the function in
(16.1) with fixed = (z;),2 € R"!, we obtain that

(Oz,p(x))?

<2C;, C; =esssup, 0 p(x).
@) S P, 9,p()

By the convexity assumption, the section
Q(i’) = {(L’Z cR: (1’1, PR R N 1 T EN ,xn) c Q}

represents a certain interval (a;, b;) depending on Z. Let us integrate the last inequality
over this section to get that

biM i i\0; — a4 R
/ (@) dz; < 2C;(b; — a;) < 2C(b; — a;).

The next integration over z gives, by Fubini’s theorem,

2
/degz(] (bs —a;) dz = 2C|9)].
Q p(z) Rn=t

It remains to perform summation over i < n. O

Let us now turn to the multidimensional variant of Proposition 7.1, i.e. Theorem 1.2.
It may be stated for a slightly more general class of densities as the following.

Proposition 16.2. If the probability density p belongs to the class ¢€3(R"), then
n 2/3
I(p) < 10n'/3 (Z/Iaiip(x)lda . (16.2)
i=1
Moreover, this inequality holds true as long as p has generalized partial derivatives 8% P.
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Proof. Applying (7.1) to the functions in (16.1) together with the arithmetic-geometric
inequality, we have

! /O; (ax%»? d < | /_Zp(x)dxi)l/?)( /_Z|5§ip(m)dx)2/3
< 5[ s [ (st as

with constant ¢ = 10, which holds for almost all (z;);«; € R"~'. The integration over the
remaining variables gives a similar relation

1 [ (3e,p(x))* el
/ p(x) sy

2

= 192 p(x)| d.
- +3 [ 105000
Performing summation over all « < n, we arrive at

1 n o2
-I(p)< -+ = Z/|8§’p($)| dz.
c 3 3 pr
Moreover, applying this to densities py(z) = A" p(\zx) with parameter A > 0, we get
Lipy< 2 4 2B B—i/w?’ (z)| do
c p)=> 3)\2 3 ) - P :clp .
It remains to optimize this inequality over all A, which leads to 1 I(p) < n!/2B2/3. O

17 Proof of Theorem 1.1

Using the regularization operation, we may assume that the densities p; are C"°°-smooth,
so that

bj = lpjllrv = / |Vpj(x)|dr < oo, j=1,2,3 (17.1)

(to give more details, let us return to this reduction in the end of the proof).
The convolution p = p; * ps * p3 is defined by

plz) = / / (e —y— pa(y)ps(z) dydz, @ € R™.

By Proposition 12.1, the density p belongs to the Sobolev space W (IR"). In fact, its gener-
alized partial derivatives may be expressed as convolutions. Indeed, by Proposition 10.2,
for everyi =1,....n, p has a generalized derivative of the third order

D}p = D;p1 * D;psy * D;p3,

so that
/ D3p(x)|dz < | Dip1 |1 | Dipa |l | Dipsll-

We are in position to apply Proposition 16.2 which yields

n 2/3
119) < con® (3 10l |Dipels [1Dipals

=1

with constant ¢y = 10, or equivalently,

I(p)*? < e/ ST 1(Vpr,ea) 1 1 (Vs ei) 11 | (Vps, i) [, (17.2)

=1
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where €4, ..., e, denote the canonical basis in R”. But, as emphasized in Corollary 15.4,
the functional I(p) does not depend on the choice of the orthonormal basis, in the sense
that I(p) = I(py) for any linear othogonal map U : R® — R", where py(z) = p(U(z)).
Hence, the inequality (17.2) remains to hold for any orthonormal basis F = (e, ..., ¢e,)
in R™.

Every such collection FE may be viewed as an element of the orthogonal group O(n),
which is equipped with the Haar probability measure 7. The map F — e; pushes forward
7 to the uniform distribution ¢,,_; on the unit sphere S"~! = {§ € R" : |§] = 1}. Hence,
averaging (17.2) over the measure 7, we arrive at the relation

I(p)*? < (cOn)?’/?/L(ﬁ) do,—1(0), (17.3)

where
£0) = [[ [ 1901(0).0)11(Vpa(0).0) || (Vpa(a). ) | dwdydz, 0 € 57,

In order to estimate the integral in (17.3), it is sufficient to bound the L3-norm of the
linear functional f(#) = (v,6) with v € S"~! over the measure o,,_; via its L*-norm. As is
well-known, if Z = (Z3,..., Z,) is a standard normal random vector in R", then Z/|Z] is
independent of |Z| and is uniformly distributed on the sphere. Therefore, (v, Z) /|Z| has
the same distribution as f(6). In addition, by independence, and since (v, Z) ~ N(0,1),

(v, Z)
2]

3:E<v,Z)4:]E< )4|Z|4:Ef(9)4E|Z\4.

Here, using the independence of Z;, we also have
E|Z|* = (E|Z|*)? + Var(|Z|*) = n® + nVar(Z}) = n® + 2n,

that is, 5
EfO)*= ——.
This gives

3 1/4  gl/4
7) <2
n?+2n ~ Vn
Hence, for any 3 linear functionals f;(§) = (v;,0), v; € R", we have, by Hoélder’s
inequality,

102500y < W lzsonny = (

IN

/\f1(9)f2(9)f3(9)|d0n—1(9) I f1ll23 () 1 f2ll L3 () [ 3l L3 (1)

33/4
< W|U1|\U2||U3\-

Applying this with v; = Vp;(z), (17.3) is simplified to

I(p)®/? < ¢3/* 33/4 // IVp1(2)] [Vp2(y)| [Vps(2)| dz dy dz,

which is the same as
I(p) S C(b1b2b3)2/3 (17-4)

wiith constant ¢ = co\/§ < 18, according to (17.1).

As the last step, we use the regularized densities p; . = (p;)., € > 0. By the assump-
tion, the densities p; of X; have finite total variation norms b; = ||p;||rv. By Proposi-
tion 12.1, the random vector X = X; + X, + X3 has an absolutely continuous distribution,
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whose density p belongs to the Sobolev space W} (R"). Let X, = X; . + Xo . + X3, with
independent summands X; . having densities p; .. By the previous step (17.4),

2/3

I(X2) < c(llprellov pzellov psellov) ™.

As we know, cf. (11.4), the total variation norm may only decrease under regularization,
so that we get

2/3
1(x2) < e (Ilpallov Ipallr [lpsllov )2 (17.5)

On the other hand, according to Corollaries 15.2-15.3, the Fisher information is contin-
uous under regularization, that is, I(X.) — I(X) as € — 0. Hence, (17.5) yields in the
limit the desired relation (1.4) with constant ¢ = 18. O
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