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Abstract—With ever-increasing execution scale of the high
performance computing (HPC) applications, vast amount of data
are being produced by scientific research every day. Error-
bounded lossy compression has been considered a very promising
solution to address the big-data issue for scientific applications,
because it can significantly reduce the data volume with low
time cost meanwhile allowing users to control the compression
errors with a specified error bound. The existing error-bounded
lossy compressors, however, are all developed based on inflexible
designs or compression pipelines, which cannot adapt to diverse
compression quality requirements/metrics favored by different
application users. In this paper, we propose a novel dynamic
quality metric oriented error-bounded lossy compression frame-
work, namely QoZ. The detailed contribution is three fold. (1)
We design a novel highly-parameterized multi-level interpolation-
based data predictor, which can significantly improve the overall
compression quality with the same compressed size. (2) We
design the error bounded lossy compression framework QoZ
based on the adaptive predictor, which can auto-tune the critical
parameters and optimize the compression result according to
user-specified quality metrics during online compression. (3) We
evaluate QoZ carefully by comparing its compression quality
with multiple state-of-the-arts on various real-world scientific
application datasets. Experiments show that, compared with
the second best lossy compressor, QoZ can achieve up to 70%
compression ratio improvement under the same error bound, up
to 150% compression ratio improvement under the same PSNR,
or up to 270% compression ratio improvement under the same
SSIM.

Index Terms—error-bounded lossy compression, interpolation,
quality metrics, scientific datasets

I. INTRODUCTION

Modern high performance computing (HPC) applications
across different scientific domains easily produce vast volumes
of data for post hoc analysis because of the extremely large
scale of the execution required. The Gyrokinetic Toroidal Code
(GTC) [1] — an application simulating magnetic particles’
movement in a confined fusion plasma, for example, may
generate many petabytes of data over the course of a few hours
[2]. Climate applications such as Community Earth System
Model (CESM) [3], [4] may also easily generate vast amounts
of data every few seconds during one simulation run [5].
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In order to mitigate the serious burden of storage or transfer
of such a vast amount of scientific data, compression tech-
niques have been studied for years. Lossless compressors are
not suitable for compressing the scientific data because of their
fairly low compression ratios (generally around 2:1 or lower)
[6]. In contrast, error-bounded lossy compression has been
commonly recognized as the most effective data reduction
method for scientific application data [7]-[10]. Not only can it
significantly reduce the data volume with a compression ratio
of several hundreds or even higher, but it can also control the
data distortion based on user-specified error bounds.

The existing error-bounded lossy compressors, however, all
have inflexible designs, which cannot adapt to users’ diverse
requirements for reconstructed data quality. The most popular
error control mode (e.g., supported by SZ [11]-[14] and ZFP
[15]) is absolute error bound: i.e., the difference between
original data and reconstructed data must be confined within
a constant threshold for each data point. In addition to the
error bound constraint, the users may care about the rate
distortion (i.e., the relationship between compression ratio vs.
some specific quality metric value) according to their post
hoc analysis. Rate distortion may involve different quality
metrics in practice. For instance, peak signal-to-noise ratio
(PSNR) [16] (equivalent with normalized root mean squared
error (NRMSE)) is a common quality metric to assess the
overall statistical distortion of the data [12], [17]-[21]. Cli-
mate researchers [19], for example, often use NRMSE to
evaluate the quality of reconstructed data generated by lossy
compressors. Structural Similarity Index (SSIM) [22] is a
perceptual metric that quantifies the visualization quality for
a reconstructed data snapshot, which has also been widely
used to assess the reconstructed data quality [16], [19], [20],
[23], [24]. Low auto-correlation (AC) of compression errors
[16], [25] is often highly preferred by users because it is
consistent with white noise nature. In practice, under the same
error bound, the reconstructed data generated by various lossy
compression methods often exhibit different levels on these
distortion quality metrics, although they have the same max-
imum compression error. Although some lossy compressors
(such as MGARD [26] and Fixed-PSNR based compression
[18]) support preserving different quantity of interest (Qol)



metrics (such as L-infinity, L1-norm and L2-norm errors), they
are just preserving a threshold of the metric and none of them
can dynamically optimize the compression based on diverse
quality metrics under a certain error bound. That is, given a
particular error bound, the existing lossy compressors always
output the compressed and reconstructed data with a fixed
compression ratio, which leaves a significant gap for users to
control the compression quality on demand.

In this paper, we propose a novel quality metric oriented
error-bounded lossy compression framework, called QoZ,
which faces several challenging issues, regardless of the com-
pression models used in the study. (1) Combining the user-
specified quality metric with error-bounded lossy compression
requires an in-depth investigation of various lossy compression
models. (2) Based on a specified quality metric, determining
which steps or what parameters in the compression are tunable
and critical to the overall compression quality is non-trivial. (3)
How to optimize the reate distortion with respect to the user-
specified quality metric is non-trivial, since in this case the
compression result regards a co-optimization of compression
ratio and the quality metric instead of just maximizing the
compression ratio. A straight-forward method is using trial-
and-error search to run the compressor multiple times with
different tunable parameters, which inevitably introduces very
expensive computation cost [27], [28].

To the best of our knowledge, our developed QoZ com-
pression framework is a fresh attempt to adaptively adjust
compression quality based on different quality metrics online
under a particular error bound. The key contributions are
summarized as follows.

o We carefully explore and design the best-fit data predictor
for building our error-bounded lossy compression frame-
work QoZ.

e« We develop an efficient error-bounded lossy compres-
sion framework that can dynamically optimize differ-
ent inclined quality metrics in online compression. To
this end, we leverage multiple advanced techniques,
including block-wise anchor point structure, multi-level
interpolation-based data prediction, level-wise predictor
selection and error bound auto-tuning.

« We evaluate our proposed solution QoZ by using multiple
real-world scientific application datasets. Experiments
show that QoZ achieves considerable improvements upon
the second-best lossy compressor in terms of various
quality metrics: e.g., up to 70% compression ratio im-
provement under the same error bound, up to ~150%
compression ratio improvement under the same PSNR,
or up to ~270% compression ratio improvement under
the same SSIM.

The remaining of the paper is organized as follows. Section

IT discusses the related state-of-the-art work. Section III for-
mulates the research problem. In Section IV, we present the
overview of the design. In Section V, we detail the critical part
of our design — data predictor. In Section VI, we describe our
predictor optimization strategies in details. In Section VII, we
present and analyze the evaluation results. Finally, we present

the concluding remark and future work in Section VIIIL.

II. RELATED WORK

In this section, we discuss the related work, which in-
cludes two topics: (1) the state-of-the-art error-bounded lossy
compressor, and (2) the analysis algorithm to select the best
compressor or predictor based on a specific dataset.

There have been many state-of-the-art lossy compressors
developed for scientific applications. Basically, they can be
split into four categories: prediction-based model, transform-
based model, dimension-reduction model and neural network
based model. The prediction-based compression model pre-
dicts each data point based on its neighbor values or saved
coefficients (e.g., using Lorenzo predictor [29] and linear-
regression predictor [13]) then use a quantization or similar
methods to control the errors within user-specified error bound.
Typical examples include FPZIP [30], SZ2 [13] and MGARD
[26]. Recently proposed SZ3 [6] leverages dynamic spline
interpolation for data prediction, and greatly outperforms
other existing lossy compressors in terms of rate-distortion
in multiple cases. The transform-based compression model
transforms the data into another coefficient domain such that
the coefficient data are much easier to compress because of
its fairly high sparsity in nature. One typical example is ZFP
[15], which adopts exponent alignment + orthogonal transform
+ embedded encoding on non-overlapped split small blocks.
The dimension-reduction model aims to reduce the dimen-
sions of the dataset by leveraging (high-order) singular vector
decomposition (SVD). One typical example is TTHRESH
[31]. The neural network based compression model [32]-[35]
leverages neural networks such as autoencoder [36] and its
variations (VAE [37], SWAE [38] et al.) for data compression
and reconstruction. Typical examples are AE-SZ [32] and the
work of Liu et al. [34]. All the existing error-bounded lossy
compressors, however, always have fixed static designs so that
none of them allows to optimize the compression quality in
terms of specific quality metric adaptively.

Since different lossy compression algorithms exhibit distinct
pros and cons on different datasets, several existing works
have studied how to select the best compression model, best
predictor or parameters at runtime. Lu et al. [39] proposed a
compression-selection method by estimating the compression
ratio for SZ and ZFP based on a particular relative error
bound. Tao et al. [40] proposed an analysis method that can
select the better choice between SZ and ZFP based on the
PSNR, which is a very popular metric used in the visualization
community. Liang et al. [41] developed a method integrating
ZFP compressor as a predictor in SZ compression model
and proposed a method to select the best-fit predictor for
the whole input data at runtime. Zhao et al. [25] proposed a
sampling method to search for the best-fit parameter settings
and predictors under the SZ compression model, which can
significantly improve the compression quality over SZ2 [13] in
turn. However, each of them supports only one specific quality
metric (such as PSNR and error bound) because of their static
analysis, which cannot adapt to diverse quality metrics. Our



proposed QoZ overcomes this limitation, having the cabability
of online auto-tuning parameters for different user-given qual-
ity metrics. Moreover, all these existing methods select the
better compressor or predictor for the entire dataset, while our
method is able to fine-tune the best-fit solution/predictor for
different data points (based on levels) in the dataset, leading
to a substantially higher flexibility and compression quality.

III. PROBLEM FORMULATION

In this section, we formulate the research problem to
clarify our research objective. Basically, we focus on a dual-
objective lossy compression problem: meeting the necessary
condition (error bound constraint) meanwhile optimizing the
compression result in terms of user-specified quality metric.
For example, Rate distortion is a very common method to
assess the lossy compression quality. Rate here refers to the
bit-rate, which is defined as the average number of the bits
used to represent a data point after compression. Obviously,
the lower the bit-rate, the better the compression result.
Distortion measures the different between the original data and
the decompressed data, and in literature it is mainly referred
to as peak signal-to-noise ratio (PSNR) [16] (to be detailed
later). In our work, we extend the concept of the rate distortion
to fit more generic distortion metrics such as SSIM [22] and
autocorrelation (AC) [16] of compression errors, which is a
critical advancement to optimize compression quality based on
user’s requirement on data fidelity in practice. In the following
text, we first briefly introduce the fundamental concept of
error-bounded lossy compression then formulate the quality
metric oriented compression problem.

The error-bounded lossy compression is formulated as fol-
lows. Given an input data array (denoted by X) and a user-
specified absolute error bound e, the error bounded lossy
compression consists of a compressor C' and a decompressor
D. It generates the compressed data (denoted Z) and the
decompressed data (denoted X "), which strictly respects the
error bound (denoted e) on each data point. For each data value
d;, |d; — d;| < e must be satisfied, where d;€X and d,eX’
represent the original data value and decompressed data value,
respectively.

In this paper, we aim at developing a highly parameterized
error-bounded lossy compression framework, which can auto-
tune the parameters to obtain the best rate distortion in terms
of different quality metrics such as PSNR, SSIM and AC. We
denote the error bound by e and the user-specified quality
metric by 7. For a specific parameter set § and parameterized
compressor Cy and decompressor Dy, our QoZ can auto-
matically determine 6 according to the optimization problem
formulated as follows:

0 = arg OPT T(X, X, Z)
6
s.t. Z = CQ(X)
X' =Dy(2)
|z, — x| < e,Vz; € X

where OPT refers to a optimization operation (e.g., max, min)
according to the specific quality metric.

We describe a few well-known quality metrics as follows
(but not limited in practice):

1) PSNR: PSNR is a metric commonly used in the rate
distortion evaluation [16]. PSNR measures the data distortion
(i.e., compression errors) according to the following formula
(vrange means the value range = max(X)-min(X)):

vrange(X)

mse(X, X)

2) SSIM: SSIM [22] is a significant metric commonly
used to measure the visual quality of decompressed data.
The formula for calculating SSIM with input data X and
decompressed data X is:

SSIM = L SN SSIM(X, X") 2)

SSIM;(X,X') is the calculation of SSIM for a local sliding
window 7, which is calculated as follows:

. N Cuxpxrtcr)(20x xr+c2)
SSIM;(X, X') = 7.2 f@j +Clg(giﬁ§§(,;’cz) (3)

PSNR = 20log,, (1)

where g is the mean, o is the standard variance/covariance.
For details, We refer readers to read Wang et al.’s papers [22].

3) Auto-correlation of compression error (AC): Au-
correlation of compression error (AC) is a very important
metric concerned by many application users. It is defined as
follows.

E(ei—#i)(eg+k_#i+k) 4)

AC =
where e; denotes the compression error at data point % and
k is the lag (or offset) used to calculate the auto-correlation.
The lower the AC value, the higher randomness of the error
correlation at adjacent data points. In general, the users expect
to have random error correlation between adjacent data points
(i.e., low AC values).

We demonstrate our proposed error-bounded quality metric
oriented compression framework in Figure 1, by using the
above-mentioned quality metrics as an example.

QoZ compression framework
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Fig. 1. Error-bounded Quality Metric Oriented Compression Framework

IV. DESIGN OVERVIEW

In this section, we describe the overall design of our quality
metric oriented error bounded compression framework — QoZ.
QoZ leverages and extends the SZ lossy compression frame-
work, which is the fundamental of multiple existing lossy
compressors [6], [11]-[13]. Compared with the existing lossy



compressors, the key advantage of QoZ is two-fold. On one
hand, not only does QoZ support error bounding constraint, at
the same time it allows users to tune the compression results
based on a preferred quality metric important for their post
hoc analysis. On the other hand, QoZ significantly improves
the compression quality by a series of optimization strategies
such as level-wise predictor and parameter auto-tuning.

The overall QoZ framework is presented in Figure 2, in
which our key design of QoZ is in the blue-dotted rectangle.
This part corresponds to the data prediction stage in SZ
compression framework, which is the core of the whole
compression pipeline. Compared with the latest version of SZ
— SZ3 [6], we developed two new modules (shown as green
boxes in the figure), which not only significantly improve
the compression quality but also support the optimization of
diverse quality metrics. Specifically, our careful observation
with masses of real-world scientific datasets indicates that the
error controls on high levels of the multi-level interpolation
based predictor is critical to the overall prediction accuracy
which directly affects the compression ratio. As such, we adopt
lossless compression and high precision lossy compression on
high interpolation levels to increase the prediction accuracy.
We also integrate the quality metric assessment into the
prediction stage to tune the compression quality. That is, QoZ
dynamically parameterizes the selected best-fit predictor on
different levels according to the user-specified quality metric
for optimizing the overall compression quality.
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Fig. 2. Design Architecture of QoZ (Quality Oriented Compression)

V. LEVEL-ADAPTED INTERPOLATION-BASED PREDICTION

In this section, we present our developed level-adapted
interpolation-based data predictor used in QoZ framework. To
optimize the compression with various compression quality
requirements in terms of different quality metrics, the com-
pression framework needs to be flexible enough to provide
multiple compression results under the same error bound
constraint or the same compression ratio. As such, a flexible
prediction method is critical to the QoZ framework.

In our design, our prediction stage is based on the spline
interpolation based data predictor [6], because of the following
two reasons:

o According to Zhao et al.’s study [6], the spline interpola-
tion based predictor can obtain outstanding compression
qualities over many other existing lossy compressors such
as ZFP and SZ in most of cases.

o The spline interpolation based prediction is executed
based on a level-wise architecture, which provides a great
potential for parameterization and auto-tuning.

In what follows, we first introduce the basic design of
the spline interpolation based data predictor, then describe
our developed level-adapted interpolation based data predictor.
These newly proposed designs are not only for the target
of quality metric driven compression, but also improve the
data prediction accuracy in lossy compression, which will be
detailed in next section.

A. Basic spline interpolation based predictor

Compared to the traditional extrapolation methods such
as Lorenzo predictor and regression models such as Lin-
ear regression, the interpolation based predictor can improve
the prediction accuracy prominently especially for smooth
datasets, as presented in Zhao et al.’s recent studies [6]. In
the interpolation based predictor, the data points in a data
array are predicted based on a fixed interpolation method
with varied strides, following a fixed propagation policy (as
demonstrated in Figure 3 based on a 2D example). The entire
prediction procedure starts with the first data point (see Stage
1 in the figure), which will be used to predict large-stride data
points through the whole data array, followed by a linear-
scale quantization to make sure the reconstructed value is
close to the true data value within the expected error bound.
Then, more data points would be predicted and quantized
along another dimension alternatively, as demonstrated in the
figure, until all the data points are covered (see Stage K
in the figure). Note that each interpolation operation has
to use the reconstructed data values (i.e., the approximated
values after prediction+quantization on that data point) instead
of the original data values, in order to make sure that the
reconstructed data during the decompression would definitely
respect the expected error bound.

|:| dataset ‘@ Dim-0 interpolation predictor
o data points @ Dim-1 interpolation predictor !

Fig. 3. Illustration of Basic Interpolation Predictor

B. Level-adapted spline interpolation based prediction in QoZ

Our developed interpolation-based data predictor in QoZ
eliminates several critical limitations of the basic interpolation
based predictor.

1) Improving prediction accuracy by avoiding long-range
interpolation: The first serious issue in the basic interpolation
based predictor is that it suffers from considerably low ac-
curacy in long-range interpolation. As mentioned previously,
the basic interpolation based prediction method is executed



in the order from large strides to small strides. Since it
does not control the maximum stride length, the prediction
accuracy would be fairly low when the interpolation spans
a long distance in the data array. This situation turns even
worse especially when the data exhibits different smoothness
or patterns in different areas. In Figure 4, we use an example
to illustrate this serious situation of the SZ3 which adopts the
basic interpolation-based prediction method. We can clearly
observe more artifacts in the compression errors generated by
SZ3 [6] than by SZ2.1 [13] (using block-wise linear regression
and Lorenzo predictor for data prediction) under the same
absolute error bound of 1E-2. This is mainly due to the fact
that the interpolation method cannot predict the distant data
values accurately in SZ3, while SZ2 always predict data points
with their neighbours.

0.01

0.005

-0.005

-0.01

(a) Visualization of
original data

(b) Error of reconstructed
data (SZ2.1: error=1E-2)

(c) Error of reconstructed
data (SZ3: error=1E-2)
Fig. 4. Visualization of original data and compression error (Hurricane Cloud)

QoZ leverages grid-wise anchor points to avoid those
inaccurate long-range interpolations, which mitigates the
inaccurate-prediction issue effectively. Specifically, for inter-
polation, anchor points are data points that are considered to
be known in advance and losslessly encoded and saved. These
anchor points split the whole data array into many blocks
and all other data points would be predicted/reconstructed
by other points within a certain range, using the multi-level
based interpolation method. We note that the storage overhead
introduced by saving the losslessly compressed anchor points
would be nearly negligible if we set an appropriate stride
for the anchor point grid. The key advantage of utilizing
anchor points is that it may greatly improve the quality of the
distortion metric, which will be presented later on in Section
VIIL.

2) Level-adapted interpolation and error bound auto-
tuning: To have better prediction accuracy, QoZ data predictor
selects the best interpolation method at corresponding levels
during the compression. As described previously, the basic
interpolation based prediction method can be decomposed into
multiple stages (as shown in Figure 3). In QoZ design, we treat
these stages as non-overlapping levels: stage 1 corresponds to
level K, ---, stage K corresponds to level 1. We have two
important takeaways regarding these different interpolation
levels.

o These interpolation levels may have different data pat-

terns or characteristics with each other, which motivates
us to adopt different predictors on different levels.

o The compression quality of points at higher levels may
affect the compression quality of points at lower levels
significantly, in that the prediction of points always relies
on the decompressed data points at higher levels.

Based on the above two critical takeaways, we develop the

level-adapted interpolation based predictor as follows.

First, the QoZ interpolation based predictor adopts diverse
interpolation methods at different levels. Specifically, the in-
terpolation type includes both linear interpolation and cubic
spline interpolation. As mentioned in Section V-A, the multi-
dimensional interpolation method is actually composed of
multiple 1D interpolation operations. In a high-dimensional
data array (such as 3D), even for the same interpolation type,
each interpolation level may also involve multiple dimensions.
As such, different permutations of the dimensions may lead
to different prediction qualities. As an example, for 3D data
there are 6 different permutations based on the three dimen-
sions (dim0, diml and dim?2): 012, 021, 102, 120, 201, 210.
Accordingly, considering the two types of interpolation, there
are totally 12 prediction methods to select at each level.

Second, the QoZ interpolation based predictor sets different
error bounds for different levels. Such a design is moti-
vated by the following important observation. In the whole
interpolation-based prediction, a large majority of the data
points (75% in 2D case or 87.5% in 3D case) are at the
lowest level (level 1) , but they are mostly predicted by the
reconstructed data points from higher levels: a total of 25%
of the data points in 2D case or 12.5% of the data points in
3D case. Therefore, setting a smaller error bound at a higher
level may preserve a very good overall prediction accuracy,
which improves the compression quality in turn. Another
important motivation is that, having flexible and online-tuned
level-wise error bounds makes the metric-driven optimization
of lossy compression possible, with which the compressor can
dynamically set error bounds to provide different compression
results according to different optimization targets.

In Figure 5, we demonstrate the key differences between
QoZ and SZ3 using an example (based on a 2D data array).
As shown in the figure, there are three key differences: (1) QoZ
adopts anchor points that can minimize the error propagation
in the interpolation methods from the top level to the lower
levels; (2) QoZ dynamically tunes the parameters (i.e., error
bounds) at different levels, which can improve compression
ratio in turn; (3) QoZ uses a level-adapted interpolation
method (highlighted in red font), which can further improve
compression ratio in turn. In the example illustrated in the
figure, under error bound 0.05 QoZ interpolates along dim 0
— dim 1 at level 2 with cubic spline interpolation, while its
interpolation dynamically switches to dim 1 — dim 0 with
linear spline interpolation under error bound 0.1 at level 1.
How to select the best-fit prediction method will be discussed
later on in Section VI-B in detail.

In our implementation, we design two critical parameters ( «
and () to tune the level-wise error bounds for the interpolation
based predictors. Specifically, given a global error bound e, the
error bound for the interpolation level [ is:
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e
€l:m(azlandﬂ21) 4)
The availability and effectiveness of e; is determined by the
following policy:
e ¢; < e, Vi. This is to make sure compression errors for
all data points must be within the user-set error bound e.
e ¢1 = e. This means that the compression of the data
points at level 1 which involves 75% (87.5%) of data
points in the 2D (3D) input uses the maximum acceptable
error bound (e) to optimize the compression ratio.
e e, > e, when [; < ls. Since every interpolation has to
use lossy reconstructed data instead of the original data
(to respect error bound strictly during decompression),
the data reconstruction errors would be propagated to all
data points at lower levels. Thus, the error bound at higher
levels should be more accurate than that on lower levels.
It is worth noting that since QoZ is a dynamic quality metric
driven lossy compressor, there would be multiple choices for
« and [ based on the same input dataset and user-set error
bound, because of various user-specified quality metrics to
target. In Section VI-C, we will present how values of o and
[ are determined during the online compression.

VI. ONLINE OPTIMIZATION OF COMPRESSION BASED ON
USER-SPECIFIED INCLINED QUALITY METRIC

In this section we describe our tuning and optimization
strategies for the proposed data predictor in section V. In
the regard of the above-mentioned parameterized level-wise
interpolation-based predictor, there are several great challeng-
ing issues to resolve. For example, what type of the interpola-
tion operation should be used on each interpolation level? How
to set prediction parameters (« and 3 for computing level-wise
error bounds) in order to optimize the user-specified quality
metric?

In QoZ, we propose an efficient online tuning method,
which not only can select the best-fit predictor and optimize
the parameters at different levels based on diverse quality
metrics, but also has very low execution overhead such that
the overall compression performance can still be maintained
well. We detail our optimization strategies in the following
text.

A. Efficient uniform sampling in QoZ

In order to control the online analysis overhead, we adopt
a data sampling method in QoZ, which plays an important
role in reaching a good trade-off between the accuracy of the
predictor/parameter selection and the computation overhead of
this selection. To this end, the sampled data should be small
enough to keep a very low time cost for the analysis and
they should be good representatives for the whole input data.
As such, we adopt a uniform block-based sampling method,
which can catch not only the pattern of local area in the data
but also the global picture of the data effectively. Our sampling
method is based on fixed block size and fixed sampling stride,
as illustrated in Figure 6 using an example based on CESM-
ATM climate simulation dataset. The sampling rate (defined as
the percentage of the number of sampled data points over the
total number of data points) is determined by both block size
and sampling stride. For instance, for a 2D dataset, if the block
size is 4 x4 and sampling stride is 10, the sampling rate will be
lgi‘;o—m% In our parameter tuning over the sampled data,
the prediction step is performed separately on each data block
while the Huffman and dictionary encoding [42] are applied
on the entire aggregated quantization bins for accurate bit rate
estimation.

Fig. 6. Illustrating Data Sampling using CESM-ATM dataset (field FSUTOA)

B. Level-adapted selection of best-fit predictor

Unlike SZ3 [6] which uses a fixed interpolation method at
different levels throughout the whole data array, QoZ selects
and applies the online-determined best-fit interpolation method
on different levels with very limited computational overhead
compared with the entire compression time.

We present the pseudo-code of the online selection algo-
rithm in Algorithm 1. First, QoZ samples data blocks with
the method introduced in section VI-A (line 1). Next, on each
interpolation level (line 4), QoZ runs a few trial compression
runs with different interpolation/prediction methods (a.k.a.,
interpolators) over the sampled data blocks. As mentioned



previously, the candidate interpolators involve two different
types of interpolation and different dimension orders for a
multi-dimensional input. As the total number of dimension
orders grows very fast with the dimension number of the
data (e.g. 6 for 3D), being consistent with SZ3 [6], QoZ
only tests 2 dimension orders: dimension index increasing or
decreasing, (e.g. 012 and 210 for 3D) as they covers the best
choices in almost all cases. Then, the algorithm compares
the mean absolute prediction errors (L1) and select the one
with the lowest mean absolute prediction error as the best-
fit interpolator for the corresponding level (see line 10~19).
The reason we use absolute error is that it is most closely
related to compression ratio of quantization bins, which was
verified in [13]. The selection of interpolators does not need
to be specifically tuned according to different quality metrics,
because its purpose is to minimize prediction errors, which
both benefits bit rate and quality metrics. Since the interpolator
selection is based on the sampled blocks, a tricky situation is
that when the sampled block size is smaller than the anchor
point stride, the blocks cannot cover some high interpolation
levels. To solve this issue, we use the best-fit interpolator
selected on the highest level of the sampled blocks (L in
algorithm 1) for all higher levels in the whole data.
Algorithm 1 Level-adapted selection of best-fit predictor

Input: Input data D, interpolator candidates I, sample block size b, anchor
point stride s,sample rate r, error-bound e.
Output: Selected interpolator list Is.

I: L < log, min(b, s) /*Determine max interpolation level in selection.*/

2: Sample data blocks B < from D with block size b and sampling rate r.

3: Is « [] /*Initialized empty result*/

4: for level [ from L to 1 do

5: best_error < +oo

6: for interpolator ¢ in I do

7 Based on error bound e, run trial compression with 7 on the level
[l of B. Compute mean L prediction error cur_error.

8: if cur_error < best_error then

9: best_error < cur_error

10: ip <— ¢ /*Determine the best interpolator on current level.*/
11: end if

12: end for

13: I[l] < iy /*Set the interpolator on level I as i*/
14: end for
15: return Ig

C. Quality metric oriented parameter auto-tuning

In this subsection, we describe more technical details about
the user-specified quality metric oriented parameter auto-
tuning algorithm in QoZ, which is critical to the user-specified
quality metric driven lossy compression. It includes construct-
ing parameter candidates, online compression result evaluation
and online parameter auto-tuning.

1) Constructing parameter candidates: As mentioned pre-
viously, we formulate the parameter optimization problem as
Formula (5), which includes two critical parameters « and [ to
determine the best error bound setting for level [. According
to masses of our experiments with different datasets across
various domains, we narrow the best parameter candidates as
follows: o ={1, 1.25, 1.5, 1.75, or 2} and 8 = {1.5, 2, 3,
or 4}, because these values cover the optimal or near-optimal
settings of o and § in most cases without too much pairs to

test with. In our algorithm (to be shown later), the optimal
combination of the o and S will be determined online based
on a lightweight compression result evaluation, which brings
little computational overhead.

2) Online compression quality evaluation: Online opti-
mization of the rate distortion based on a user-specified quality
metric with different parameter settings is non-trivial. The
key reason is that rate distortion refers to the relationship
between bit-rate and the user-specified quality metric. Thus,
accurately identifying the rate distortion for a specific solution
generally needs to collect quite a few compression results
based on different compression ratios and various levels of data
distortions. Specifically, given two different parameter sets
(or solutions) each corresponding to a particular compression
result, determining which one is better requires a meticulous
analysis as described below. Suppose we are checking two
solutions: setting I (=1 and 8=1.5) and setting II (=2 and
£=3). For a user-given error bound e, suppose the setting
I gets the compression result of {bit rate= B;, PSNR=P},
and the setting II gets the compression result {bit rate=DBjj,
PSNR=Py;}. If B; > By and P} < Pjj, we can easily identify
that II is better than I as II has lower bit rate (i.e., higher
compression ratio) and higher PSNR (higher reconstructed
data quality) meanwhile. However, if By > By and P > Pj
or By < By and P < Py (we call it sophisticated situation in
the following text), additional analysis is needed to determine
which solution is superior.

We adopt an efficient online comparison method to de-
termine the better choice for the sophisticated situation.
Specifically, in this situation, QoZ uses another error bound
(denoted as e’) which has a small offset to e to perform a
sampling-based trial compression for the solution B, which
can obtain another compression result (i.e., a pair of bit rate
and quality metric (such as PSNR)): denoted as Bj; and F].
Then, we can determine the better solution by checking the
relationship between the solution I's result (By, P;) versus the
line constructed by (B, Pii) and (Bfy, P}). If the P is below
the constructed line in space, QoZ asserts that the setting II
is better, and vice versa. The second error bound ¢’ used for
computing Bj; and P} is set to 1.2e if P; > Py or 0.8e if
P < Py. Such a design can make By lie in the range between
By and Bj; in most of the cases based on our experience,
obtaining a very accurate judgement accordingly.

In Table I, we summarize all the four situations for two
comparative solutions I and II based on different compression
results. Their compression results are denoted as { By, M;} and
{Bmn, My}, respectively, where M refers to the quality metric
(such as PSNR, SSIM, AC). As shown in the table, we can
directly identify the better solution for case 1 and 2. For case
3 and 4, an additional sampling-based trial compression run
would be done for the solution II with another error bound.
Since all the trial compression runs are on top of sampled data,
the computational overhead is very low, to be verified later.
With this well-designed evaluation method, we can traverse
all the candidate parameter sets and select the best one for the
practical compression.



TABLE I
COMPARISON CASES OF TWO COMPRESSION RESULTS (B, M) AND
(Brr, Mrr) FOR SOLUTION I AND I UNDER THE ERROR BOUND e

Casetf Case
1 By <= By and M >= M
2 By >= By and My <= My

Comparison
I is better
1T is better
compute (B[}, M) with sol I and 0.8¢

3 By > By and My > My draw a line with the 2 points from sol II
check whether (By, Mj) is above or below

compute (B[}, M{;)with sol I and 1.2¢

4 By < By and My < My draw a line with the 2 points from sol II

check whether (Bj, M) is above or below

VII. PERFORMANCE EVALUATION

In this section we demonstrate the setup of our experiments
then present and analyze the experimental results. We evaluate
our solution — QoZ compared with four other state-of-the-art
error-bounded lossy compressors, which have been verified
as the leading related works by many prior studies [6], [13],
[15], [25], [39], [43]. We perform the evaluation based on
multiple indicators comprehensively, including data distortion
with various quality metrics, compression ratio, compression
speed, visual quality, etc. The experiments are performed
based on six well-known real-world scientific datasets across
different domains, which are described as follows.

A. Experimental Setup

1) Execution Environment: The experiments of this paper
are performed on the Argonne Bebop supercomputer which
features over 2,000 nodes, and we used the bdwall nodes of it
each having Intel Xeon E5-2695v4 CPU with 64 CPU cores
and a total of 128GB of DRAM.

2) Applications: We evaluate the lossy compressors using
six real world scientific applications from different domains
which are often used for the scientific data compression
evaluation [44]:

o CESM-ATM: CESM is a well-known climate simulation

package, and we use its atmosphere model CESM-ATM
[44] in our experiments.

o RTM: Reverse time migration for seismic imaging [45].

¢ NYX: A cosmological hydrodynamics simulation based
on adaptive mesh [46].

o Hurricane: Simulation of Hurricane Isabel from the Na-
tional Center for Atmospheric Research [47].

e Scale-LETKF: Local Ensemble Transform Kalman Filter
(LETKF) data assimilation package for the SCALE-RM
weather model [48].

e Miranda: Large-eddy simulation of multi-component
flows by turbulent mixing via a radiation hydrodynamics
code [49].

We detail the information about the datasets in Table II.

TABLE II
INFORMATION OF THE DATASETS IN EXPERIMENTS
App. # fields Dimensions Total Size Domain
RTM 3600 449x449 %235 635GB Seismic Wave
Miranda 7 256x384x384 1GB Turbulence
CESM-ATM 26 1800 3600 1.5GB Weather
Scale-LETKF 13 98x1200x 1200 6.4GB Climate
NYX 6 512x512x512 3.1GB Cosmology
Hurricane 48x13 100x500x 500 58GB ‘Weather

3) Comparison of Lossy Compressors in Our Evaluation:
In our experiments, we compare QoZ with four other lossy
compressors. The first one is SZ3 [6], which is a state-
of-the-art error bounded lossy compressor exhibiting very
competitive compression quality in most of cases. The second
and third are SZ2.1 [11]-[13] and ZFP0.5.5 [15], which
have been widely used in the community. The last one is
MGARD-+ [43], an improved version of MGARD [26]. We use
MGARD-+ instead of MGARD in that MGARD+ can achieve
both significantly higher performance and compression quality
over MGARD according to [43].

4) Experimental Configurations: In our implementation,
for 2D input data the sample block size and anchor point
stride are set to both 64, and for 3D input data the sample
block size and anchor point stride are set to 16 and 32. For
interpolation/parameter selection, we sample 1% of the input
for 2D data or 0.5% of the input for 3D data. For other
compressors including SZ2.1, ZFP0.5.5, SZ3, and MGARD+,
we use their default configurations for fairness of comparison.

5) Evaluation Metrics: We perform the evaluation based
on five critical metrics:

o Compression ratio (CR) under the same error bound: We
have described CR and error bound in Section III. We
adopt value-range-based error bound (denoted by ¢), as it
has been widely used in the lossy compression commu-
nity [6], [13], [25], [43]. It is essentially equivalent to the
absolute error bound (denoted e), as e = e€-value_range.

e Rate-PSNR plots: A critical rate-distortion evaluation
used in lossy compression (see Section III for details).

e Rate-SSIM plots: Another rate distortion evaluation in
which SSIM is commonly used to assess visual quality
[22] and reconstructed data quality in scientific analysis
[19], [23].

o rate-AC: Autocorrelation of compression errors is a con-
cerned metric for many applications, as discussed in
Section III.

o Visualization with the same CR: We compare the visual
quality of the reconstructed data based on the same CR.

« Compression/decompression speed: We check the overall
compression/decompression speed of our QoZ framework
to show the low computational overhead in our solution.

o Parallel I/O performance: We perform a parallel data
transfer evaluation on a supercomputer.

B. Evaluation Results and Analysis

1) Verification of compression errors versus error bound:
First of all, we verified the compression errors for QoZ based
on each experimental dataset under different error bounds. We
confirm that QoZ always strictly respects the user-specified
error bounds, as exemplified in Figure 7: the distribution of
compression errors for QoZ based on two application datasets
with different error bounds. We can clearly observe that the
compression errors are always confined within the error bound
(e) for all data points.

2) Compression ratio under the same error bounds: We
compare the compression ratios of all lossy compressors under
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Fig. 7. Distribution of Compression Errors

the same certain error bounds, in which QoZ’s tuning mode
is set to ‘maximizing compression ratio’ (i.e., compression
ratio is most concerned). Table III shows the compression
ratios of the 5 lossy compressors on the 6 datasets under
3 error bounds (le-2, le-3, le-4). It can be concluded that
QoZ has the leading compression ratios in most of the cases,
though the improvement is not significant in some cases. In
particular, under le-2 error bound, QoZ’s compression ratio
is 70% higher than that of SZ3 on Miranda dataset; and 20%
higher on RTM dataset.

TABLE III
COMPRESSION RATIO COMPARISON BASED ON THE SAME ERROR BOUND

Sz SZ QozZ OurSol

Dataset € 21 3 ZFP MGARD+ (OurSol) | Improve %
1E-2 | 283.3 | 2041.6 | 110.9 2342 2461.2 20.6%
RTM IE-3 | 106.8 | 417.0 59.2 78.5 447.8 7.4%
1E-4 | 544 118.1 35.0 38.3 122.3 3.6%
1E-2 | 1263 | 574.6 46.6 52.1 987.2 T1.8%
Miranda 1E-3 | 595 168.0 25.6 26.2 177.1 5.5%
1E-4 | 29.6 473 14.5 12.9 48.2 1.9%
IE-2 | 1515 | 380.9 7.7 493 373.8 -1.9%
CESM-ATM | 1E-3 | 383 57.6 5.4 20.8 60.2 4.4%
1E-4 14.5 16.6 4.0 9.5 16.9 2.2%
1E-2 | 84.0 167.3 14.5 53.8 163.4 -2.3%
SCALE-LKF [ 1E-3 | 265 40.4 7.8 20.3 41.8 3.4%
1E-4 139 14.1 4.6 10.4 13.4 -5.3%
1E-2 | 441 61.3 12.0 247 62.0 1.2%
NYX 1E-3 17.1 21.5 6.0 11.2 21.7 1.3%
1E-4 7.7 9.1 3.7 55 9.2 0.7%
1E-2 | 498 69.0 11.3 284 70.3 1.8%
Hurricane 1E-3 17.5 21.8 6.7 12.7 22.2 1.7%
1E-4 9.8 10.5 43 T4 9.3 -12.6%

3) Rate distortion evaluation: In the following text, we
present the overall rate distortion results of QoZ versus other
state-of-the-art error-bounded lossy compressors, in the regard
of different quality metrics.

Figure 8 shows the rate-PSNR evaluation results of each
lossy compressor on all datasets in which QoZ applies tuning
mode of ‘rate-PSNR preferred’. In the plots, the x-axis is bit
rate and y-axis is PSNR. We can observe that QoZ achieves the
best rate distortion curve on all the datasets. For example, QoZ
achieves ~150%/~70% improvement in compression ratio on
Miranda dataset than the second-best (SZ3) when PSNR is
around 55/65, and ~80% improvement in compression ratio
on RTM dataset when PSNR is ~60. QoZ also provides
~20% improvement in compression ratio on SCALE-LETKF
dataset than SZ3 at a PSNR of 55. The reason QoZ achieves
better rate-PSNR over SZ3 is mainly 3-fold: First, the level-
wise error bounds in SZ3 are fixed for the entire dataset,
but QoZ uses an auto-tuning algorithm to dynamically set
appropriate error bounds for each level, according to preferred
quality metric — PSNR. Second, QoZ fine-tunes different
interpolators on different prediction levels to improve the

prediction accuracy. Last, the anchor points in QoZ eliminates
the long-range prediction in SZ3, which significantly increases
the prediction accuracy on inputs having various data patterns
in different regions (especially for Miranda and RTM datasets).
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Fig. 8. Rate Distortion Evaluation (PSNR)

Figure 9 shows the rate-SSIM plots of different lossy
compressors: the more top-left the curve approaches, the better
the result. We observe that our AoZ has the best (or near best)
rate-SSIM in most of cases for different datasets. In absolute
terms, when SSIM reaches 0.9 on CESM-ATM dataset, QoZ
has ~120% compression ratio improvement over the second-
best solution (SZ3). On Miranda dataset, when SSIM is around
0.6/0.65, QoZ’s compression ratio is about 270%/150% higher
than that of the second best (SZ3). For Hurricane-Isabel
dataset, QoZ obtains 25% gains in compression ratio over
the second best (SZ2) when SSIM is around 0.9. Another
interesting observation is that QoZ is not always the best at
all bit-rates in the rate-SSIM plots, which implies that PSNR
and SSIM are two distinct important metrics, which cannot be
substituted with each other in practice.

4) Autocorrelations: Figure 10  presents  rate-
autocorrelation (Lag 1 autocorrelation of errors) for SZ3, QoZ
(PSNR preferred mode) and QoZ (autocorrelation preferred
mode) on all the 6 datasets. As lower autocorrelation
means compression errors are more randomly distributed
therefore better, we can observer that QoZ always has
better autocorrelations than SZ3 under the same bit rate no
matter which mode is used, especially on RTM, Miranda
and SCALE-LETKF datasets. Moreover, when using
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Fig. 9. Rate Distortion Evaluation (SSIM)

autocorrelation preferred mode, the autocorrelation of QoZ
is further improved than using the PSNR preferred mode,
which confirms the importance and effectiveness of our
quality-metric oriented design in QoZ. In particular, on
Miranda dataset, QoZ with the AC preferred mode can
achieve up to 427% improvement in compression ratio over
the compression result with the PSNR preferred mode.

5) Decompression data visualizations: We demonstrate the
high visual quality of QoZ in figure 11, as compared with other
compressors under the same compression ratio (65) based
on the SCALE-LETKF dataset. It is observed that QoZ has
the highest PSNR visual quality (with a tiny data distortion
though), which is mainly due to the level-adapted prediction
design and parameter fine-tuning at different levels.

6) Ablation Study: As shown before, the design of QoZ
is based on several different new components, including an-
chor points, level-wise interpolator/error bound, metric-driven
auto-tuning, etc. To verify and illustrate how each single
design component in QoZ takes effect and contribute to the
compression with QoZ, we perform an ablation study to
understand the various contribution of different components
in our design to the overall compression quality. Specifi-
cally, we construct different compression methods/versions by
adding our designed components one by one, and observe
the change of overall compression ratios. The decomposed
design components in this study include the design of anchor
point (denoted as AP), our designed uniform sampling method
(denoted as §), optimized level-based interpolation selection
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Fig. 10. Rate Distortion Evaluation (AutoCorrelation of Errors)

(e) MGARD+ (PSNR=35.6)
Fig. 11. Visualization of Reconstructed Data with CR=65 (Scale-LETKF)

(d) SZ2 (PSNR=33.6) (f) QoZ (PSNR=45.4)

(denoted as LIS) and parameter autotuning (PA). As such,
there are five compression methods in total: SZ3 is the
original baseline version [6]; SZ3+AP is applying AP over
SZ3; SZ3+AP+S is further applying our improved uniform
sampling on SZ3+AP to select the best-fit interpolation method
for overall dataset; SZ3+AP+S+LIS is adopting fine-grained
selection of interpolation method for different levels on top
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Fig. 13. Analysis of Impact of Parameter Tuning on Compression Quality

of SZ3+AP+S; QoZ is our final solution with all techniques
including AP, S, LIS and PA. Due to the space limit, we
demonstrate the evaluation results using only two typical
application datasets (CESM-ATM and Miranda). As shown
in Figure 12, by adding our designed components to SZ3,
the rate distortion keeps increasing. Our final solution — QoZ
exhibits the best rate distortion (see the black curve) in class,
which verifies the importance and effectiveness of each of our
designed optimization components.

Then, we analyze the lossy compression qualities of QoZ
with different parameter tuning methods to verify the effec-
tiveness of our parameter auto-tuning algorithm. As mentioned
previously, there are two critical parameters (i.e., « and ) to
tune for controlling the error propagation in our multi-level
interpolation-based predictor (see Formula 5). Figure 13 shows
the different rate distortion (w.r.t. PSNR) generated by QoZ
using different parameter settings on 2 datasets (CESM-ATM
and NYX). These results verify that the best parameter settings
often alter at different bit rates (i.e., compression ratios), which
indicates a strong motivation for our parameter auto-tuning
design. As verified in the figure, our designed parameter auto-
tuning method can always lead to the best rate-distortions at
different bit rates.

7) Compression/decompression Speeds: We present both
compression and decompression speed in Table IV, under the
error bound of le-3, in which QoZ applies the PSNR preferred
mode. QoZ keeps comparable performances with SZ3 and
MGARD-+. This verifies the low computational overhead of
our quality-metric oriented design, which is mainly attributed
to the efficient uniform sampling method (Section VI-A) and
the narrowed parameter candidates (VI-C1). Although SZ2 and
ZFP has higher speed than QoZ does, they suffer significantly
worse rate distortions (as shown in Figure 8 and 9).

TABLE IV
COMPRESSION/DECOMPRESSION SPEEDS (MB/S) WITH e=1E-3

Type Dataset gzl 532 ZFP | MGARD+ | o?;?szo D
- RTM 207 | 147 | 556 142 129
2 Miranda 201 | 134 | 239 149 124
4 CESM-ATM IS8T | 127 | 194 125 133
‘% SCALE-LETKF | 158 | 135 | 131 143 131
g NYX 18T | 98 | 149 131 97
© Hurricane 159 127 137 152 119
g RTM 452 [ 410 | 996 210 388
Z Miranda 404 | 374 | 659 212 350
2 CESM-ATM 344 | 381 | 246 203 375
g SCALE-LETKF | 305 | 359 | 362 202 342
3 NYX 281 | 172 | 281 1438 169
A Hurricane 266 | 279 | 321 196 278
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Fig. 14. Parallel Performance Evaluation of Hurricane-Isabel Simulation
(Compression ratios shown on bottom-left)

8) Parallel Data Dumping/Loading Performance: We eval-
uate the data dumping and loading performance of the
Hurricane-Isabel simulation with different lossy compressors
using 1K~8K cores (each core possessing fixed amount of
data data 1.3GB). Figure 14 shows that QoZ provides the best
overall performance especially when the total data size reaches
several terabytes (over STB in total), which is attributed to the
best compression ratio under QoZ and limited I/O bandwidth
of the Bebop supercomputer.

VIII. CONCLUSION AND FUTURE WORK

We propose QoZ, a quality metric oriented error-bounded
compressor. The critical feature of our design is being able
to flexibly adjust rate distortion based on various quality met-
rics, also respecting error bound constraint. We evaluate our
solution and other state-of-the-arts with 6 real-world datasets
on up to 8K cores. The key observations are summarized as
follows.

e QoZ locates and analyzes the limitations of the interpo-
lation based data predictor in SZ3, then presents a new
design to overcome those limitations and adapt to the
quality metric driven lossy compression.

o Compared with the second best compressor, QoZ gains up
to 70% improvement in compression ratio under the same
error bound, up to 150% compression ratio improvement



under the same PSNR, or up to 270% compression ratio
improvement under the same SSIM. QoZ also improves
autocorrelation over SZ3 in all cases.
o QoZ has the best visual quality on reconstructed data with
the same compression ratio among all tested compressors.
¢ QoZ has comparable sequential compression/decompres-
sion speeds with the other state-of-the-arts, and achieves
the leading data dumping/loading performance on large-
scale parallel running.
Currently, QoZ has a few limitations. First, its running speed
is still lower than SZ2.1 and ZFP. Second, the interpolation
types included in QoZ could be improved (currently including
only linear and cubic spline interpolations). Third, dynamically
adjusting hyper-parameters in QoZ leads to a high adaptability
for QoZ, while the hyper-parameter selection policy stems
from empirical studies. In the future work, we will refine QoZ
in several ways such as developing better predictors, designing
better predictor selection policy and hyper-parameter auto-
tuning methods, and improving QoZ’s running speed.
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