L)

Check for
updates

Latent Weight-based Pruning for Small Binary Neural Networks

Tianen Chen Noah Anderson Younghyun Kim
University of Wisconsin-Madison Stanford University University of Wisconsin-Madison
tianen.chen@wisc.edu noah446@stanford.edu younghyun kim@wisc.edu

ABSTRACT

Binary neural networks (BNNs) substitute complex arithmetic oper-
ations with simple bit-wise operations. The binarized weights and
activations in BNNs can drastically reduce memory requirement
and energy consumption, making it attractive for edge ML applica-
tions with limited resources. However, the severe memory capacity
and energy constraints of low-power edge devices call for further
reduction of BNN models beyond binarization. Weight pruning is a
proven solution for reducing the size of many neural network (NN)
models, but the binary nature of BNN weights make it difficult to
identify insignificant weights to remove.

In this paper, we present a pruning method based on latent
weight with layer-level pruning sensitivity analysis which reduces
the over-parameterization of BNNs, allowing for accuracy gains
while drastically reducing the model size. Our method advocates
for a heuristics that distinguishes weights by their latent weights,
a real-valued vector used to compute the pseduogradient during
backpropagation. It is tested using three different convolutional
NNs on the MNIST, CIFAR-10, and Imagenette datasets with results
indicating a 33%-46% reduction in operation count, with no accu-
racy loss, improving upon previous works in accuracy, model size,
and total operation count.

KEYWORDS

binary neural network, pruning, latent weight

ACM Reference Format:

Tianen Chen, Noah Anderson, and Younghyun Kim. 2023. Latent Weight-
based Pruning for Small Binary Neural Networks. In 28th Asia and South
Pacific Design Automation Conference (ASPDAC °23), January 16—19, 2023,
Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3566097.3567873

1 INTRODUCTION

Despite the unprecedented success of machine learning (ML), bring-
ing intelligence to resource-constrained edge devices has not seen
similar success. While neural network (NN) models are rapidly
growing in complexity and size to serve more and more sophisti-
cated applications, the gap between their compute requirements
and the capabilities of edge devices has only been widening. Specif-
ically, for edge ML, the limited storage and memory capacity has
been identified as a major hindrance [18]. The recent emergence of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC °23, January 16-19, 2023, Tokyo, Japan

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9783-4/23/01...$15.00
https://doi.org/10.1145/3566097.3567873

751

binary neural networks (BNNs) has shed some light on the possi-
bility of making ML models smaller, in which all the weights and
activations are binarized to either +1 or -1 [11] Binarized weights
and activations require less memory and storage than their full-
precision (floating-point or integer) counterparts, and they can also
be processed with simple, low-power bit-wise logic units instead
of complex, power-hungry arithmetic units. It makes BNNs highly
suitable for ML applications on edge devices with small memory
and storage, and thin energy budget.

However, despite the dramatic size reduction of binarization,
BNN models still require further compression to be ported onto
more severely resource-constrained platforms. Compression meth-
ods have been proposed to further optimize BNNs, including compu-
tation skipping [6], and bit-level data pruning [16]. Weight pruning
is a widely applicable model compression technique that removes
unnecessary or unimportant weights from the network [8]. In tra-
ditional full-precision NN models, unnecessary or unimportant
weights can be easily identified by their small magnitude during
the forward pass. Removing such near-zero weights has only a
minimal impact on the output accuracy, and, in fact, it can even
reach a “sweet spot” in the model where accuracy can surpass
the original unpruned model accuracy due to the reduction of
overfitting from overparameterization of the model, in addition
to performance gains due to reduced computations [7]. This form
of unstructured pruning comes at a potential hardware overhead
cost identifying the sparsity within the weight matrix. However,
compression methods can overcome potential hardware overhead
by employing methods through quantization, encoding, and weight
permutation [4, 7]. Some forms of extremely low-power networks,
such as the combinational neural network, will require no hardware
overhead when identifying sparsity within the matrix by simply
removing the circuit component corresponding to the weight el-
ement [3, 19]. However, weight pruning for BNN models is not
a straightforward problem since the magnitude of all weights is
strictly 1, regardless of their sign, and thus magnitude cannot serve
as an indicator of the weights’ importance. Therefore, BNN pruning
requires a new significance metric to replace the weight magnitude.

In this paper, we propose to use latent weights for pruning. La-
tent weights are real-valued weights that are used to obtain the
pseudogradient vector during backpropagation as the real gradient
vector cannot be obtained from binary weights [9]. We present
a model compression technique that identifies the layer that has
the greatest potential to improve the compression ratio at a time
and prunes the layer based on the latent weights. The proposed
technique includes an effective method to find the target layers
based on the impact of pruning on the output accuracy without
time-consuming model exploration. As a result, the proposed tech-
nique can achieve a dramatic reduction in model size and operation
count, and reach the pareto-optimal of compressed networks that
suffer no accuracy loss.

ASPDAC 23, January 16-19, 2023, Tokyo, Japan

The contributions of this paper are as follows:

e We present a latent weight-based pruning technique that
selects layers that can be pruned with the minimum impact
on the output accuracy and prune the layers based on latent
weights.

We introduce a multidimensional analysis of pruning layer-
by-layer and include an optimization algorithm that intelli-
gently minimizes a BNN that selectively prunes error-tolerant
insensitive layers.

form of BNN pruning that decrease BOPs (binary operations)
and model size by 46% and 27%, respectively, while incur-
ring a small accuracy gain of +0.4% on the CIFAR-10 dataset,
and similar results on other datasets. Our work is the first
that can achieve a significant reduction in model size even
without any accuracy loss.

2 BACKGROUND AND RELATED WORK

The ever-increasing size of NN models not only poses a challenge
to fast and energy-efficient processing, but is a major barrier to
the deployment on devices with small memory and storage, which
calls for effective solutions for efficient model compression and
operation count reduction. In this section, we overview some key
notions related to BNNs and BNN model compression.

2.1 Binary Neural Networks

The high error resilience of NNs allows for aggressive quantiza-
tion for computation at reduced precision such as fixed-point or
ternary weights instead of complex full precision [12, 15]. BNNs are
an extreme case of quantized NNs, where weights and activations
are restricted solely to two values, +1 or -1 [11]. This binariza-
tion leads to a simplification of multiply-and-accumulate (MAC)
operations, which is the most fundamental but expensive aspect
of the convolutional operation, to extremely simpler XNOR and
popcount operations. This leads to a significant reduction in power
consumption and model size. The complexity of a BNN is measured
by the number of binary operations (BOPs), instead of the number
of floating-point operations (FLOPs).

A key observation is that the derivative of the binarization func-
tion at all spots is zero or undefined, making backpropagation
gradient calculation impossible. Therefore, the straight through es-
timator is used to allows the gradient to pass exactly as an identity,
generating a pseudogradient [2, 11]. Also, having only binary val-
ues for weights, it is impossible to distinguish distinct magnitudes
between the weights in BNNs. Thus, traditional magnitude-based
weight pruning is ineffective, as there is no way to determine which
weight affects classification accuracy more.

2.2 Flip Frequency-based Channel Shrinking

For the weight pruning of a BNN model, a new indicator of weight
significance that substitutes the weight magnitude is required. A
recent work has proposed to exploit the amount of weight flips (+1
to -1 or vice versa) that occur during training [17]. In this work, they
conjecture that the weights can be determined as “unstable” if they
flip frequently during training. Unstable weights are considered
to have little contribution in the minimization of loss within the

We show experimental results that indicate a highly-optimized

752

Tianen Chen, Noah Anderson, and Younghyun Kim

network. When the final stage of training is near (i.e., when the loss
is stabilizing), the occurrence of flips is counted for each weight
kernel as f. If the number of weight flips is above a predetermined
threshold, the corresponding weight is determined as negligible
and thus prunable. The portion of the prunable weights represents
the portion of channels that can be potentially removed. Therefore,
the number of channels is reduced by the portion of the prunable
weights, and the entire BNN is retrained. This is repeated until the
predetermined accuracy threshold has been reached.

2.3 Latent Weights in BNN

In a BNN model, the optimizer cannot directly compute the gradi-
ents required to update the weight kernels during backpropagation
because the gradient of the sign function is zero almost everywhere.
Therefore, a real-valued weight vector, w, is used instead of the
binary weights for training [2, 11]. Also called the latent weight [9],
it is used to calculate the pseudogradient during backpropagation.
During the forward pass, the binarized weights, wp;,, is simply the
sign of the latent weight:

+1 ifw>0

L 1)

Wpin = sign(w) = { ifw <0

The sign and magnitude can be thought of separately as follows [9]:
@)

Since there now exists a magnitude value of the latent weight, m,
different techniques typically reserved for floating-point models
can now be applied to BNNs. Weights build inertia m over time. The
higher the inertia, the stronger the gradient signal that is required
in order to make the weight flip. Weights in the forward pass can
only flip and not adjust their magnitude, unlike their floating-point
counterparts. However, in the backpropagation stage, m for each
latent weight can adjust during each training epoch, distinguishing
individual weights in the kernel from one another. This real-valued
vector allows for optimization methods to be applied to the BNN.
Each BNN model that is trained contains the pseudogradient infor-
mation along with latent weight information.

w = sign(w) - |W| = wpip - m, wpip € {—1,+1},m € [0,).

3 PROPOSED LATENT WEIGHT-BASED
PRUNING

We propose a new method to prune BNN models based on latent
weights that dramatically reduces the model size and operation
count, while maintaining accuracy. Specifically, we address the
challenges in BNN pruning mentioned in Section 2.1: i) identify
which layer should be pruned and determine how heavily it should
be pruned, and ii) select weight kernels within the identified layer
to be pruned.

3.1 Design Flow Overview

We first describe our pruning method in which a BNN model is
pruned based on latent weights. Unlike flip frequencies [17] which
are an “indirect” significance metric induced from the latent weights,
latent weight-based pruning offers a more “direct” indicator of
significance since the magnitude of the latent weight drives the
inertia of the weight flipping. This enables us to use the source of

Latent Weight-based Pruning for Small Binary Neural Networks

Trained model, M

Operation count
Target accuracy, 4,

Test set

Verification

Optimized model

Final accuracy

i

Figure 1: Proposed latent weight-based pruning method inte-
grated in the model optimization flow.

weight kernel optimization, which offers additional granularity as
we can tune pruning of real-valued weights.

The overall model optimization flow around the proposed latent
weight-based pruning is presented in Figure 1. During training, we
initialize all pruning percentages from zero and begin iterative prun-
ing. From zero, we begin pruning on the least accuracy-responsive
layer by increasing the pruning percentage on each layer iteratively.
We prune each layer to a pre-defined accuracy threshold and prune
the next least accuracy-responsive layer afterward. Our iterative
pruning ends when we no longer can prune and maintain accuracy
above the threshold. The following subsections describe the latent
weight-based pruning highlighted in Figure 1 and its subroutines
of the algorithm in detail.

3.2 Iterative Pruning Optimization

Algorithm 1 describes the main routine of the proposed latent-
weight based pruning method, which is highlighted in Figure 1. The
inputs to the pruning algorithm are M, A;, and §, where M is the
trained BNN with unpruned weights, A; is the target accuracy after
pruning, and § is the incremental increase in pruning percentage
upon each iteration. Since BNNs are easily overfitted [8], A; can be
set to the accuracy of the original model before pruning, but it can
also be any accuracy level that meets the application’s requirement.

The pruning algorithm is performed by the iterative execution of
GETSENSITIVITY to select a target layer through sensitivity analysis
and PRUNELAYER to actually prune the target layer. The algorithm
is iterated over each unpruned layer of M until all layers have
been pruned. We first find an unpruned layer that is most robust to
pruning using GETSENSITIVITY, which is described in Section 3.3,
and set it as the target layer [,. The target layer I, is gradually
pruned until further pruning violates the accuracy requirement A;.
The pruning percentage is gradually incremented by § each time.
As mentioned in Section 3.1, the initial pruning percentage for the
target layer, t(lp), is initialized to zero, and it is updated after every
iteration of pruning of the layer.

The value of § should be set small enough not to miss the fine-
grained optimal point of the pruning percentage, but not too big in
order to minimize computational overhead. We find § = 10% to be
reasonable for most cases. The layer-wise pruning is repeated from
the least sensitive layer to the most sensitive layer. We conclude

753

ASPDAC 23, January 16-19, 2023, Tokyo, Japan

Algorithm 1 Latent-weight based pruning

procedure PRUNE(M, A;,)
while exists an unpruned layer in M do
Smax < 0
t(lp) <0
for each unpruned layer [do
s] ¢ GETSENSITIVITY(])
if s > Smax then
Smax < Si; lp <1
end if
end for
while A, > A; do
PRUNELAYER(lp, t(Ip) + &)
t(lp) «— t(lp) +6
Ap « Accuracy of pruned M
end while
Mark I,, as pruned
17: end while
18: return M
19: end procedure

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

the iterative procedure once all layers have been pruned or further
pruning violates the target accuracy A;.

3.3 Layer Sensitivity Analysis

When pruning convolutional layers, certain layers react with more
volatility than others due to the low operation count after max-
pooling or intrinsic small weight kernel size. Therefore, in order to
get the most BOPs reduction without hurting accuracy, we deter-
mine the sensitivity, s, for every layer and prune the least sensitive
layers first. For layer I, its sensitivity s; is defined as the amount of
accuracy loss, AA, over the operation count reduction, ABOPs, as:

_AA
" ABOPs’

S1 ®)
after pruning p percentage of the weights of layer in isolation while
other layers remain unpruned. The value p must be high enough
to introduce accuracy instability within the network, generating
a sufficient accuracy response. We find p = 95% to be reasonable
in most cases to provoke a negative accuracy response within the
network. This metric allows us to see which layers are less sensitive
and likely to fluctuate less in accuracy when pruned. Effectively,
this metric tells us how much accuracy loss we can expect a layer
to contribute for a given amount of BOPs reduction. Therefore, the
less sensitive a layer is, the better candidate for pruning it is.

The operation count for binarized layer [is calculated as the
following:

n

BOPs; = ([Twi

i=1

) X ip X iy (4)
where n is the dimension of the weights (n = 4 for convolutional

layers and n = 2 for dense layers), w; is the i-th index of the weight
kernel, and iy, iy is the height and width of the output, respectively.

ASPDAC 23, January 16-19, 2023, Tokyo, Japan

25

Low latent weight: 10*
20k = 1] . ngh
el . flip frequency "
S\' 11 E E
d=) 15 F - mmmEE H g
=] w— 102 ©
=3 . smm =
L“}:’ Region 2 s : £
£10 ,7..:.". 5
E= =k, 2
J— T . [
= . o
R egion 3 e w Region 1
— . e m
0 0.1 0.2 0.3

Latent weight

Figure 2: Comparison of the magnitude of latent weights and
flips of layer 3 of BinaryNet’s weight kernel.

3.4 Pruning based on Latent Weights

Within the function PRUNELAYER(), p), we prune the target layer
Ip by removing the p percentile of the weight kernels with the
lowest latent weight magnitude. Using latent weights offers distinct
advantages over using the flip frequency. First, latent weights are
a better indicator of the significance of weight kernels, which is
often not correctly captured by flip frequencies. As described in
Section 2.3, the larger the magnitude of the latent weights, the
less likely the weight is unstable. Figure 2 shows the relationship
between latent weights and flip frequencies captured from the
BinaryNet as an example. It shows that the maximum latent weight
is inversely proportional to flip frequency, but the near-zero latent
weights, which are the majority of the weights (Region 3), show
widely varying flip frequencies, between 0 and 21 in this example. In
other words, a low flipping frequency does not always represent an
important weight kernel with a high latent weight, and removing
only high flip frequency weights (Region 2) may lead to ineffective
pruning of weights. On the other hand, our method keeps the high
latent weights (Region 1) for better pruning results, as we show in
the experimental results.

Second, the real-valued nature of the latent weights allows us
to perform more fine-grained pruning. We can distinguish almost
every individual weight within the kernel and prune by the per-
centage of weights that fall below a certain threshold as opposed to
pruning on discrete integer values. The ability to prune based on
real-valued weights allows us to distinguish individual layers based
on our sensitivity analysis as well. To illustrate the disadvantages of
discretized pruning, Figure 3 shows that an overwhelming majority
of flip frequencies have stabilized and are at f = 0, making them
impossible to discern. Furthermore, flip frequencies that comprise
the remainder of weights in the kernel comprise a small fraction
of the overall weights. Therefore, there is no way to distinguish
sensitivities and selectively choose layers to prune for a baseline
flip frequency of f > 2. Simply pruning intermediate f values at
f =1and f = 2 is unable to produce a sufficient accuracy response
for sensitivity analysis. This is in contrast to real-valued pruning on
BNNs using latent weights, where we can adjust the entire pruning
threshold on a real-valued scale and effectively observe sensitivities.

754

Tianen Chen, Noah Anderson, and Younghyun Kim

F=0 W /=1 2

—

f=2 mmf>2

IS
3

o®
S
L

D
S
L

IS
o
L

[\53
S
L

Percent of weights pruned (%)

S

1 2 3 4 5
Convolutional layer number

Figure 3: Discrete pruning for flip frequencies f =0, f =1,
f =2,and f > 2 of BinaryNet.

Table 1: Models and datasets used in the experiments.

Model Dataset Bin. conv. Total Base

layers BOPs acc.
3ConvNet MNIST [14] 2 45x10° 97.4%
BinaryNet [11] CIFAR-10 [13] 5 51x10% 80.5%
XNOR-net [20] Imagenette [10] 5 2.9%10° 63.0%

As a result, the proposed latent weight-based pruning achieves
higher reduction in BOPs while maintaining high accuracy, as
demonstrated in the following section.

4 EXPERIMENTS

In this section, we demonstrate the efficacy of our BNN pruning
algorithm in comparison to the baseline unpruned networks as well
as network shrinking based on flip frequency [17].

4.1 Experimental Setup

We consider three neural networks, a simple three-layer CNN with
two binarized convolutional layers (3ConvNet), BinaryNet [11], and
XNOR-Net [20], trained for classification of the MNIST [14], CIFAR-
10 [13], and Imagenette [10] datasets, respectively, to demonstrate
the proposed pruning method on different sized image inputs and
network complexities. Table 1 summarizes their complexities. The
models are trained using Tensorflow and each BNN is built using
the Larq API [1] and pruned using the proposed method. We use
batch normalization after every layer and use 20% of the training
set as a validation set used to determine the accuracy. Accuracy of
the final result is evaluated once on the test set previously unseen
to the algorithm. We do not retrain on the validation set and only
determine the accuracy threshold strictly on the validation set. Fine
tuning is done post-pruning with ten epochs with a learning rate at
10% of the original training learning rate. As discussed in Section 3.2,
Ay is set to the baseline accuracy of the unpruned network to enable
iso-accuracy comparison.

4.2 Pruning Analysis

We describe results on all three datasets with different networks.

Latent Weight-based Pruning for Small Binary Neural Networks

3 150 1000 —
&=
S
X 2 100
- 500
@
0 0 0 mlm
2 3 23456 23456
BOPs per layer
100 freeeees TEeTEeE TEREeew 100
S e S N O S S S (0 St
>
g 50 50 40
3 20
Q
<
0 0 0
2 3 2 3 456 23 456
Accuracy drop per layer pruning by p=95%
300 3 4
N
S 200 2
X 2
~ 100 1 I_l
“
oL L HEEEN | | mEEN
2 3 2 3 456 23 456
Sensitivity per layer
(a) 3ConvNet (b) BinaryNet (c) XNOR-net

Figure 4: BOPs and sensitivities of the binarized convolu-
tional layers of the three models. The dashed line indicates
the baseline classification accuracy without any pruning.

4.2.1 MNIST Classification. We first implement a small 3-layer
CNN with two binary convolutional layers to classify MNIST. The
first layer is a floating point activation layer with 32 output channels
followed by two binary convolutional layers with 32 and 64 output
channels. The small network used is immediately responsive to
pruning on both layers. The initial sensitivity analysis reports that
the second convolutional layer is the least sensitive to pruning with
s = 64 x 1077 opposed to s = 308 x 10~ as displayed in Figure 4(a).
We first iterate through layer 2 with § = 10% and then proceed onto
layer 2 with the same granularity. Results indicate a 42% reduction
in BOPs and 30% reduction in model size compared to the unpruned
base model with no accuracy loss as demonstrated in Figure 5(a).
Latent weight pruning outperforms flip frequency pruning by 19.4%
in BOPs reduction and by 12.5% in model size reduction.

4.2.2 CIFAR-10 Classification. The second model classifies CIFAR-
10 using the BinaryNet architecture [11]. The initial sensitivity
analysis reports that convolutional layer 4 is the least sensitive to
pruning with s = 0.71 X 1077 in Figure 4(b). The initial sensitivity
analysis indicates binary convolutional layer 6 is the least sensitive
to pruning, with the lowest magnitude s value. Since each layer
contributes differently to the total number of operations within the
network due to max pooling layers and increasing channel output
width, imbalances occur as evidenced in Figure 4(b) on the right-
hand side. This proves to be beneficial in the case of layer 6, as there
is a very high BOPs count within this layer, allowing great BOPs
reduction at the cost of little accuracy degradation. Therefore, we
prune layer 6 to its entirety until the A; is reached after fine-tuning.
At each end of each pruning iteration, we recalculate s for every
unpruned layer. In BinaryNet’s case with CIFAR-10 dataset, we
prune layers four and six as they are the least sensitive layers. In

755

ASPDAC 23, January 16-19, 2023, Tokyo, Japan

N 600 3000 ———
- — -23%
x 4 ~ 7170, 2210,
v 28% oe | 400 2 2000 33%
z -46%
g°2 200 1000
=
S0 0 0
= BL FF LW BL FF LW BL FF LW
Total BOPs before and after pruning
a 40 o -16%]
= 04 12700 779, 200 -26%
= zoa_ﬂ% 27% 0%
N
:)) H - IH
Q
=
3
= 0 0 0
BL FF LW BL FF LW BL FF LW
Model size before and after pruning
100 ——=19%+0.1%_ 100 70
IS 0,
= % % 0.4%+0.4% -15%0%
3 60
-
it
2 60 60
50
BL FF LW BL FF LW BL FF LW
Accuracy before and after pruning
(a) 3ConvNet (b) BinaryNet (c) XNOR-net

Figure 5: Comparison of total BOPs, model size, and accuracy
before and after pruning. BL: baseline before pruning, FF:
flip frequency-based pruning with channel shrinking [17],
LW: latent weight-based pruning (proposed).

Figure 6(a), the first three iterations with multiple pruning steps
are displayed, with layers 6, 4, and 2 only being pruned once before
reaching the accuracy threshold. Beyond these first two iterations,
we degrade accuracy beyond the A; threshold. Results indicate a
46% reduction in BOPs and 27% reduction in model size compared
to the unpruned base model with no accuracy loss as demonstrated
in Figure 5(b). Latent weight pruning outperforms flip frequency
pruning by 29.9% in BOPs reduction and by 13.1% in model size
reduction.

4.2.3 Imagenette Classification. We implement the XNOR-net ar-
chitecture to classify the Imagenette dataset for our third network
analysis [10, 20]. We initialize pruning on the fourth convolutional
layer due to its sensitivity being the lowest at s = 0.43 x 107 as
displayed in Figure 4(c). Layer 6 of XNOR-net contains a 6 X 6 con-
volutional filter, allowing for this layer to be significantly reduced
by pruning over 80% of the original weights. Additionally, pruning
layer 6 has massive implications on overall model size, since layer 6
comprises 62% of the total model storage size, allowing us to greatly
reduce the model size more than the other designs. Following the
pruning of layer 6, layer 5 is pruned according to it having the low-
est sensitivity, which is again re-evaluated at the end of each layer
pruning iteration. Within Figure 4(c), the sensitivities only indicate
what layer will be pruned on the first iteration, which is layer 6.
The sensitivity is recalculated at the end of each iteration, meaning
that while layer 2 has a lower sensitivity than layer 5 on the first
iteration, layer 2 will not necessarily be pruned before layer 5. We
increase pruning at § = 10% and prune layer-by-layer until the
accuracy threshold is reached at 63%. In Figure 6(b), the first three

ASPDAC 23, January 16-19, 2023, Tokyo, Japan

Ttery,:
100 lion 1, 82
g 9
~ 90 <
& 8815
80 >
3
=
g 70 g s
E A
<Z> Final accuracy
50 80.5 Starting accuracy__. |
20 40 60 20 40 60
Pruning percentage (%) Pruning percentage (%)
(a) BinaryNet
100 64.5
S Starting accuracy
¢ 90 ~
5 S
/M >
= 80 8
:
s 70 é:% 635 Final accuracy
E /
5
Z
60 63
20 40 60
Pruning percentage (%) Pruning percentage (%)
(b) XNOR-net

Figure 6: BOPs reduction and classification accuracy during
pruning of (a) BinaryNet and (b) XNOR-net.

iterations with multiple pruning steps are displayed, with layer 1
only being pruned once before reaching the accuracy threshold.

Results indicate a 33% reduction in BOPs and 40% reduction in
model size compared to the unpruned base model with no accuracy
loss as demonstrated in Figure 5(c). Latent weight pruning outper-
forms flip frequency pruning by 13.0% in BOPs reduction and by
18.9% in model size reduction.

4.3 Discussion

We compared our method to purely using a channel shrinking
method based on weight flipping frequencies described in [17]. Our
method provides a distinct advantage where channel shrinking
is removing complexity from the network without exploiting the
sparse resilience and lottery-ticket behavior of the network. In
this method, we demonstrate the importance of exploiting sparsity
within the network, as only a select few connections within the net-
work are shown to be major contributors to the final classification
accuracy [5].

Our results using iterative pruning incurs additional offline costs
but produce a more efficient final pruned model. These offline costs
can be handled by GPUs, producing a portable model for loading
onto storage and computation-constrained systems. In particular,
we have greatly reduced the amount of BOPs within the network.
Our goal is to take computationally demanding training and not
have it be handled by the edge device. The only edge device re-
sponsibility is inference with the ported model. While the accuracy
gain is mild, this unstructured pruning regularizes the network
efficiently. Channel shrinking, on the other hand, does not take
advantage of the inertia of the binary weights and provides no guar-
antee for regularization. Thus, we conclude that with our method,

756

Tianen Chen, Noah Anderson, and Younghyun Kim

we produce a more efficient and accuracy-robust pruned model
than the previous work.

5 CONCLUSIONS

Latent weight-based BNN pruning is a promising approach which
mixes two popular neural network compression techniques: quanti-
zation and weight pruning. The classical unstructured pruning that
has been used in floating point models is difficult to integrate with
BNNs due to their binary nature and the lack of weight magnitude
in the forward pass. We demonstrated that latent weights that exist
during backpropagation are a promising alternative that allows
pseudogradient weights to represent how negligible a weight is. We
presented a pruning solution that is precision-tuned to each layer,
querying the sensitivities of individual components of the network
to prune in a coordinated manner. In particular, our method fo-
cuses on reducing computational complexity and memory storage
overhead of the pruned model. Compared to the previous work of
pruning binary neural networks, we achieve a lower OPs count and
smaller model size. On all three datasets with three different ar-
chitecture sizes, we demonstrated 33%-46% reduction in operation
count and a 27%-40% reduction in model size with no accuracy loss
or up to a +0.4% gain.

ACKNOWLEDGMENTS

This work was supported by NSF under awards CNS-1845469, CNS-
2112562, and DGE-1747503.

REFERENCES
(1]

[2]

Tom Bannink et al. 2021. Larq compute engine: Design, benchmark and deploy
state-of-the-art binarized neural networks. MLSys.
Yoshua Bengio et al. 2013. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432.
Tianen Chen et al. 2022. SynthNet: A High-throughput yet Energy-efficient
Combinational Logic Neural Network. ASP-DAC.
Xizi Chen et al. 2020. Tight compression: compressing CNN model tightly through
unstructured pruning and simulated annealing based permutation. DAC.
Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635.
Jiabao Gao et al. 2021. An Approach of Binary Neural Network Energy-Efficient
Implementation. Electronics.
Song Han et al. 2015. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
Song Han et al. 2015. Learning both weights and connections for efficient neural
network. NIPS.
Koen Helwegen et al. 2019. Latent weights do not exist: Rethinking binarized
neural network optimization. NIPS.
[10] Jeremy Howard. 2019. Imagewang. https://github.com/fastai/imagenette/

] Itay Hubara et al. 2016. Binarized neural networks. NIPs.
Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342.
Alex Krizhevsky et al. 2014. The CIFAR-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html.
Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/
Fengfu Li et al. 2016. Ternary weight networks. arXiv preprint arXiv:1605.04711.
Yixing Li et al. 2020. Build a compact binary neural network through bit-level
sensitivity and data pruning. Neurocomputing.
Yixing Li and Fengbo Ren. 2020. BNN Pruning: Pruning Binary Neural Network
Guided by Weight Flipping Frequency. ISQED.
JiLin et al. 2020. MCUNet: Tiny deep learning on IoT devices. NIPS.
Mahdi Nazemi et al. 2019. Energy-efficient, Low-latency Realization of Neural
Networks Through Boolean Logic Minimization. ASP-DAC.
Mohammad Rastegari et al. 2016. XNOR-Net: Imagenet classification using binary
convolutional neural networks. ECCV.

=
2a

