
Latent Weight-based Pruning for Small Binary Neural Networks

Tianen Chen
University of Wisconsin–Madison

tianen.chen@wisc.edu

Noah Anderson
Stanford University

noah446@stanford.edu

Younghyun Kim
University of Wisconsin–Madison

younghyun.kim@wisc.edu

ABSTRACT

Binary neural networks (BNNs) substitute complex arithmetic oper-

ations with simple bit-wise operations. The binarized weights and

activations in BNNs can drastically reduce memory requirement

and energy consumption, making it attractive for edge ML applica-

tions with limited resources. However, the severe memory capacity

and energy constraints of low-power edge devices call for further

reduction of BNN models beyond binarization. Weight pruning is a

proven solution for reducing the size of many neural network (NN)

models, but the binary nature of BNN weights make it difficult to

identify insignificant weights to remove.

In this paper, we present a pruning method based on latent

weight with layer-level pruning sensitivity analysis which reduces

the over-parameterization of BNNs, allowing for accuracy gains

while drastically reducing the model size. Our method advocates

for a heuristics that distinguishes weights by their latent weights,

a real-valued vector used to compute the pseduogradient during

backpropagation. It is tested using three different convolutional

NNs on the MNIST, CIFAR-10, and Imagenette datasets with results

indicating a 33%–46% reduction in operation count, with no accu-

racy loss, improving upon previous works in accuracy, model size,

and total operation count.

KEYWORDS

binary neural network, pruning, latent weight

ACM Reference Format:

Tianen Chen, Noah Anderson, and Younghyun Kim. 2023. Latent Weight-

based Pruning for Small Binary Neural Networks. In 28th Asia and South

Pacific Design Automation Conference (ASPDAC ’23), January 16–19, 2023,

Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

3566097.3567873

1 INTRODUCTION

Despite the unprecedented success of machine learning (ML), bring-

ing intelligence to resource-constrained edge devices has not seen

similar success. While neural network (NN) models are rapidly

growing in complexity and size to serve more and more sophisti-

cated applications, the gap between their compute requirements

and the capabilities of edge devices has only been widening. Specif-

ically, for edge ML, the limited storage and memory capacity has

been identified as a major hindrance [18]. The recent emergence of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567873

binary neural networks (BNNs) has shed some light on the possi-

bility of making ML models smaller, in which all the weights and

activations are binarized to either +1 or -1 [11] Binarized weights

and activations require less memory and storage than their full-

precision (floating-point or integer) counterparts, and they can also

be processed with simple, low-power bit-wise logic units instead

of complex, power-hungry arithmetic units. It makes BNNs highly

suitable for ML applications on edge devices with small memory

and storage, and thin energy budget.

However, despite the dramatic size reduction of binarization,

BNN models still require further compression to be ported onto

more severely resource-constrained platforms. Compression meth-

ods have been proposed to further optimize BNNs, including compu-

tation skipping [6], and bit-level data pruning [16]. Weight pruning

is a widely applicable model compression technique that removes

unnecessary or unimportant weights from the network [8]. In tra-

ditional full-precision NN models, unnecessary or unimportant

weights can be easily identified by their small magnitude during

the forward pass. Removing such near-zero weights has only a

minimal impact on the output accuracy, and, in fact, it can even

reach a “sweet spot" in the model where accuracy can surpass

the original unpruned model accuracy due to the reduction of

overfitting from overparameterization of the model, in addition

to performance gains due to reduced computations [7]. This form

of unstructured pruning comes at a potential hardware overhead

cost identifying the sparsity within the weight matrix. However,

compression methods can overcome potential hardware overhead

by employing methods through quantization, encoding, and weight

permutation [4, 7]. Some forms of extremely low-power networks,

such as the combinational neural network, will require no hardware

overhead when identifying sparsity within the matrix by simply

removing the circuit component corresponding to the weight el-

ement [3, 19]. However, weight pruning for BNN models is not

a straightforward problem since the magnitude of all weights is

strictly 1, regardless of their sign, and thus magnitude cannot serve

as an indicator of the weights’ importance. Therefore, BNN pruning

requires a new significance metric to replace the weight magnitude.

In this paper, we propose to use latent weights for pruning. La-

tent weights are real-valued weights that are used to obtain the

pseudogradient vector during backpropagation as the real gradient

vector cannot be obtained from binary weights [9]. We present

a model compression technique that identifies the layer that has

the greatest potential to improve the compression ratio at a time

and prunes the layer based on the latent weights. The proposed

technique includes an effective method to find the target layers

based on the impact of pruning on the output accuracy without

time-consuming model exploration. As a result, the proposed tech-

nique can achieve a dramatic reduction in model size and operation

count, and reach the pareto-optimal of compressed networks that

suffer no accuracy loss.

751

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Tianen Chen, Noah Anderson, and Younghyun Kim

The contributions of this paper are as follows:

• We present a latent weight-based pruning technique that

selects layers that can be pruned with the minimum impact

on the output accuracy and prune the layers based on latent

weights.

• We introduce a multidimensional analysis of pruning layer-

by-layer and include an optimization algorithm that intelli-

gentlyminimizes a BNN that selectively prunes error-tolerant

insensitive layers.

• We show experimental results that indicate a highly-optimized

form of BNN pruning that decrease BOPs (binary operations)

and model size by 46% and 27%, respectively, while incur-

ring a small accuracy gain of +0.4% on the CIFAR-10 dataset,

and similar results on other datasets. Our work is the first

that can achieve a significant reduction in model size even

without any accuracy loss.

2 BACKGROUND AND RELATEDWORK

The ever-increasing size of NN models not only poses a challenge

to fast and energy-efficient processing, but is a major barrier to

the deployment on devices with small memory and storage, which

calls for effective solutions for efficient model compression and

operation count reduction. In this section, we overview some key

notions related to BNNs and BNN model compression.

2.1 Binary Neural Networks

The high error resilience of NNs allows for aggressive quantiza-

tion for computation at reduced precision such as fixed-point or

ternary weights instead of complex full precision [12, 15]. BNNs are

an extreme case of quantized NNs, where weights and activations

are restricted solely to two values, +1 or -1 [11]. This binariza-

tion leads to a simplification of multiply-and-accumulate (MAC)

operations, which is the most fundamental but expensive aspect

of the convolutional operation, to extremely simpler XNOR and

popcount operations. This leads to a significant reduction in power

consumption and model size. The complexity of a BNN is measured

by the number of binary operations (BOPs), instead of the number

of floating-point operations (FLOPs).

A key observation is that the derivative of the binarization func-

tion at all spots is zero or undefined, making backpropagation

gradient calculation impossible. Therefore, the straight through es-

timator is used to allows the gradient to pass exactly as an identity,

generating a pseudogradient [2, 11]. Also, having only binary val-

ues for weights, it is impossible to distinguish distinct magnitudes

between the weights in BNNs. Thus, traditional magnitude-based

weight pruning is ineffective, as there is no way to determine which

weight affects classification accuracy more.

2.2 Flip Frequency-based Channel Shrinking

For the weight pruning of a BNN model, a new indicator of weight

significance that substitutes the weight magnitude is required. A

recent work has proposed to exploit the amount of weight flips (+1

to -1 or vice versa) that occur during training [17]. In this work, they

conjecture that the weights can be determined as “unstable” if they

flip frequently during training. Unstable weights are considered

to have little contribution in the minimization of loss within the

network. When the final stage of training is near (i.e., when the loss

is stabilizing), the occurrence of flips is counted for each weight

kernel as 𝑓 . If the number of weight flips is above a predetermined

threshold, the corresponding weight is determined as negligible

and thus prunable. The portion of the prunable weights represents

the portion of channels that can be potentially removed. Therefore,

the number of channels is reduced by the portion of the prunable

weights, and the entire BNN is retrained. This is repeated until the

predetermined accuracy threshold has been reached.

2.3 Latent Weights in BNN

In a BNN model, the optimizer cannot directly compute the gradi-

ents required to update the weight kernels during backpropagation

because the gradient of the sign function is zero almost everywhere.

Therefore, a real-valued weight vector, 𝑤̃ , is used instead of the

binary weights for training [2, 11]. Also called the latent weight [9],

it is used to calculate the pseudogradient during backpropagation.

During the forward pass, the binarized weights,𝑤𝑏𝑖𝑛 , is simply the

sign of the latent weight:

𝑤𝑏𝑖𝑛 = sign(𝑤̃) =

{

+1 if 𝑤̃ ≥ 0

−1 if 𝑤̃ < 0
. (1)

The sign and magnitude can be thought of separately as follows [9]:

𝑤̃ = sign(𝑤̃) · |𝑤̃ | =: 𝑤𝑏𝑖𝑛 ·𝑚,𝑤𝑏𝑖𝑛 ∈ {−1, +1},𝑚 ∈ [0,∞). (2)

Since there now exists a magnitude value of the latent weight,𝑚,

different techniques typically reserved for floating-point models

can now be applied to BNNs. Weights build inertia𝑚 over time. The

higher the inertia, the stronger the gradient signal that is required

in order to make the weight flip. Weights in the forward pass can

only flip and not adjust their magnitude, unlike their floating-point

counterparts. However, in the backpropagation stage,𝑚 for each

latent weight can adjust during each training epoch, distinguishing

individual weights in the kernel from one another. This real-valued

vector allows for optimization methods to be applied to the BNN.

Each BNN model that is trained contains the pseudogradient infor-

mation along with latent weight information.

3 PROPOSED LATENTWEIGHT-BASED
PRUNING

We propose a new method to prune BNN models based on latent

weights that dramatically reduces the model size and operation

count, while maintaining accuracy. Specifically, we address the

challenges in BNN pruning mentioned in Section 2.1: i) identify

which layer should be pruned and determine how heavily it should

be pruned, and ii) select weight kernels within the identified layer

to be pruned.

3.1 Design Flow Overview

We first describe our pruning method in which a BNN model is

pruned based on latent weights. Unlike flip frequencies [17] which

are an “indirect” significancemetric induced from the latent weights,

latent weight-based pruning offers a more “direct” indicator of

significance since the magnitude of the latent weight drives the

inertia of the weight flipping. This enables us to use the source of

752

Latent Weight-based Pruning for Small Binary Neural Networks ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Model training

Target accuracy, At
Latent weight-

based pruning

Trained model, M

Operation count

Final accuracy

Optimized model

Training set

Test set

Verification

Figure 1: Proposed latent weight-based pruning method inte-

grated in the model optimization flow.

weight kernel optimization, which offers additional granularity as

we can tune pruning of real-valued weights.

The overall model optimization flow around the proposed latent

weight-based pruning is presented in Figure 1. During training, we

initialize all pruning percentages from zero and begin iterative prun-

ing. From zero, we begin pruning on the least accuracy-responsive

layer by increasing the pruning percentage on each layer iteratively.

We prune each layer to a pre-defined accuracy threshold and prune

the next least accuracy-responsive layer afterward. Our iterative

pruning ends when we no longer can prune and maintain accuracy

above the threshold. The following subsections describe the latent

weight-based pruning highlighted in Figure 1 and its subroutines

of the algorithm in detail.

3.2 Iterative Pruning Optimization

Algorithm 1 describes the main routine of the proposed latent-

weight based pruning method, which is highlighted in Figure 1. The

inputs to the pruning algorithm are𝑀 , 𝐴𝑡 , and 𝛿 , where𝑀 is the

trained BNN with unpruned weights,𝐴𝑡 is the target accuracy after

pruning, and 𝛿 is the incremental increase in pruning percentage

upon each iteration. Since BNNs are easily overfitted [8], 𝐴𝑡 can be

set to the accuracy of the original model before pruning, but it can

also be any accuracy level that meets the application’s requirement.

The pruning algorithm is performed by the iterative execution of

getSensitivity to select a target layer through sensitivity analysis

and pruneLayer to actually prune the target layer. The algorithm

is iterated over each unpruned layer of 𝑀 until all layers have

been pruned. We first find an unpruned layer that is most robust to

pruning using getSensitivity, which is described in Section 3.3,

and set it as the target layer 𝑙𝑝 . The target layer 𝑙𝑝 is gradually

pruned until further pruning violates the accuracy requirement 𝐴𝑡 .

The pruning percentage is gradually incremented by 𝛿 each time.

As mentioned in Section 3.1, the initial pruning percentage for the

target layer, 𝑡 (𝑙𝑝), is initialized to zero, and it is updated after every

iteration of pruning of the layer.

The value of 𝛿 should be set small enough not to miss the fine-

grained optimal point of the pruning percentage, but not too big in

order to minimize computational overhead. We find 𝛿 = 10% to be

reasonable for most cases. The layer-wise pruning is repeated from

the least sensitive layer to the most sensitive layer. We conclude

Algorithm 1 Latent-weight based pruning

1: procedure prune(𝑀 , 𝐴𝑡 , 𝛿)

2: while exists an unpruned layer in𝑀 do

3: 𝑠𝑚𝑎𝑥 ← 0

4: 𝑡 (𝑙𝑝) ← 0

5: for each unpruned layer 𝑙 do

6: 𝑠𝑙 ← getSensitivity(𝑙)

7: if 𝑠𝑙 > 𝑠𝑚𝑎𝑥 then

8: 𝑠𝑚𝑎𝑥 ← 𝑠𝑙 ; 𝑙𝑝 ← 𝑙

9: end if

10: end for

11: while 𝐴𝑝 > 𝐴𝑡 do

12: pruneLayer(𝑙𝑝 , 𝑡 (𝑙𝑝) + 𝛿)

13: 𝑡 (𝑙𝑝) ← 𝑡 (𝑙𝑝) + 𝛿

14: 𝐴𝑝 ← Accuracy of pruned𝑀

15: end while

16: Mark 𝑙𝑝 as pruned

17: end while

18: return𝑀

19: end procedure

the iterative procedure once all layers have been pruned or further

pruning violates the target accuracy 𝐴𝑡 .

3.3 Layer Sensitivity Analysis

When pruning convolutional layers, certain layers react with more

volatility than others due to the low operation count after max-

pooling or intrinsic small weight kernel size. Therefore, in order to

get the most BOPs reduction without hurting accuracy, we deter-

mine the sensitivity, 𝑠 , for every layer and prune the least sensitive

layers first. For layer 𝑙 , its sensitivity 𝑠𝑙 is defined as the amount of

accuracy loss, Δ𝐴, over the operation count reduction, Δ𝐵𝑂𝑃𝑠 , as:

𝑠𝑙 =
Δ𝐴

Δ𝐵𝑂𝑃𝑠
, (3)

after pruning 𝑝 percentage of theweights of layer 𝑙 in isolationwhile

other layers remain unpruned. The value 𝑝 must be high enough

to introduce accuracy instability within the network, generating

a sufficient accuracy response. We find 𝑝 = 95% to be reasonable

in most cases to provoke a negative accuracy response within the

network. This metric allows us to see which layers are less sensitive

and likely to fluctuate less in accuracy when pruned. Effectively,

this metric tells us how much accuracy loss we can expect a layer

to contribute for a given amount of BOPs reduction. Therefore, the

less sensitive a layer is, the better candidate for pruning it is.

The operation count for binarized layer 𝑙 is calculated as the

following:

𝐵𝑂𝑃𝑠𝑙 =

(

𝑛
∏

𝑖=1

𝑤𝑖

)

× 𝑖ℎ × 𝑖� (4)

where � is the dimension of the weights (� = 4 for convolutional

layers and � = 2 for dense layers),𝑤𝑖 is the 𝑖-th index of the weight

kernel, and 𝑖ℎ , 𝑖� is the height and width of the output, respectively.

753

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Tianen Chen, Noah Anderson, and Younghyun Kim

0 0.1 0.2 0.3

Latent weight

5

10

15

20

25
F

li
p

 f
re

q
u

en
cy

100

102

104

High

flip frequency

Low latent weight

Region 1Region 3

Region 2

W
ei

g
h
t

b
in

 c
o
u
n
ts

Figure 2: Comparison of the magnitude of latent weights and

flips of layer 3 of BinaryNet’s weight kernel.

3.4 Pruning based on Latent Weights

Within the function pruneLayer(𝑙𝑝 , 𝑝), we prune the target layer

𝑙𝑝 by removing the 𝑝 percentile of the weight kernels with the

lowest latent weight magnitude. Using latent weights offers distinct

advantages over using the flip frequency. First, latent weights are

a better indicator of the significance of weight kernels, which is

often not correctly captured by flip frequencies. As described in

Section 2.3, the larger the magnitude of the latent weights, the

less likely the weight is unstable. Figure 2 shows the relationship

between latent weights and flip frequencies captured from the

BinaryNet as an example. It shows that themaximum latent weight

is inversely proportional to flip frequency, but the near-zero latent

weights, which are the majority of the weights (Region 3), show

widely varying flip frequencies, between 0 and 21 in this example. In

other words, a low flipping frequency does not always represent an

important weight kernel with a high latent weight, and removing

only high flip frequency weights (Region 2) may lead to ineffective

pruning of weights. On the other hand, our method keeps the high

latent weights (Region 1) for better pruning results, as we show in

the experimental results.

Second, the real-valued nature of the latent weights allows us

to perform more fine-grained pruning. We can distinguish almost

every individual weight within the kernel and prune by the per-

centage of weights that fall below a certain threshold as opposed to

pruning on discrete integer values. The ability to prune based on

real-valued weights allows us to distinguish individual layers based

on our sensitivity analysis as well. To illustrate the disadvantages of

discretized pruning, Figure 3 shows that an overwhelming majority

of flip frequencies have stabilized and are at 𝑓 = 0, making them

impossible to discern. Furthermore, flip frequencies that comprise

the remainder of weights in the kernel comprise a small fraction

of the overall weights. Therefore, there is no way to distinguish

sensitivities and selectively choose layers to prune for a baseline

flip frequency of 𝑓 > 2. Simply pruning intermediate 𝑓 values at

𝑓 = 1 and 𝑓 = 2 is unable to produce a sufficient accuracy response

for sensitivity analysis. This is in contrast to real-valued pruning on

BNNs using latent weights, where we can adjust the entire pruning

threshold on a real-valued scale and effectively observe sensitivities.

f = 0 f > 2f = 2f = 1

1 2 3 4 5

Convolutional layer number

0

20

40

60

80

100

P
er

ce
n

t
o

f
w

ei
g

h
ts

 p
ru

n
ed

 (
%

)

Figure 3: Discrete pruning for flip frequencies 𝑓 = 0, 𝑓 = 1,

𝑓 = 2, and 𝑓 > 2 of BinaryNet.

Table 1: Models and datasets used in the experiments.

Model Dataset Bin. conv. Total Base

layers BOPs acc.

3ConvNet MNIST [14] 2 4.5 × 106 97.4%

BinaryNet [11] CIFAR-10 [13] 5 5.1 × 108 80.5%

XNOR-net [20] Imagenette [10] 5 2.9 × 109 63.0%

As a result, the proposed latent weight-based pruning achieves

higher reduction in BOPs while maintaining high accuracy, as

demonstrated in the following section.

4 EXPERIMENTS

In this section, we demonstrate the efficacy of our BNN pruning

algorithm in comparison to the baseline unpruned networks as well

as network shrinking based on flip frequency [17].

4.1 Experimental Setup

We consider three neural networks, a simple three-layer CNN with

two binarized convolutional layers (3ConvNet), BinaryNet [11], and

XNOR-Net [20], trained for classification of the MNIST [14], CIFAR-

10 [13], and Imagenette [10] datasets, respectively, to demonstrate

the proposed pruning method on different sized image inputs and

network complexities. Table 1 summarizes their complexities. The

models are trained using Tensorflow and each BNN is built using

the Larq API [1] and pruned using the proposed method. We use

batch normalization after every layer and use 20% of the training

set as a validation set used to determine the accuracy. Accuracy of

the final result is evaluated once on the test set previously unseen

to the algorithm. We do not retrain on the validation set and only

determine the accuracy threshold strictly on the validation set. Fine

tuning is done post-pruning with ten epochs with a learning rate at

10% of the original training learning rate. As discussed in Section 3.2,

𝐴𝑡 is set to the baseline accuracy of the unpruned network to enable

iso-accuracy comparison.

4.2 Pruning Analysis

We describe results on all three datasets with different networks.

754

Latent Weight-based Pruning for Small Binary Neural Networks ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

(a) 3ConvNet (b) BinaryNet (c) XNOR-net

2 3
0

1

2

3

B
O

P
s

(
1

0
6
)

2 3 4 5 6

BOPs per layer

0

50

100

150

2 3 4 5 6
0

500

1000

2 3
0

50

100

A
cc

u
ra

cy
 (

%
)

2 3 4 5 6

Accuracy drop per layer pruning by p=95%

0

50

100

2 3 4 5 6
0

20

40

60

2 3
0

100

200

300

 s

(
1

0
-9

)

2 3 4 5 6

Sensitivity per layer

0

1

2

3

2 3 4 5 6
0

2

4

Figure 4: BOPs and sensitivities of the binarized convolu-

tional layers of the three models. The dashed line indicates

the baseline classi�cation accuracy without any pruning.

4.2.1 MNIST Classification. We first implement a small 3-layer

CNN with two binary convolutional layers to classify MNIST. The

first layer is a floating point activation layer with 32 output channels

followed by two binary convolutional layers with 32 and 64 output

channels. The small network used is immediately responsive to

pruning on both layers. The initial sensitivity analysis reports that

the second convolutional layer is the least sensitive to pruning with

𝑠 = 64 × 10−9 opposed to 𝑠 = 308 × 10−9 as displayed in Figure 4(a).

We first iterate through layer 2 with 𝛿 = 10% and then proceed onto

layer 2 with the same granularity. Results indicate a 42% reduction

in BOPs and 30% reduction in model size compared to the unpruned

base model with no accuracy loss as demonstrated in Figure 5(a).

Latent weight pruning outperforms flip frequency pruning by 19.4%

in BOPs reduction and by 12.5% in model size reduction.

4.2.2 CIFAR-10 Classification. The second model classifies CIFAR-

10 using the BinaryNet architecture [11]. The initial sensitivity

analysis reports that convolutional layer 4 is the least sensitive to

pruning with 𝑠 = 0.71 × 10−9 in Figure 4(b). The initial sensitivity

analysis indicates binary convolutional layer 6 is the least sensitive

to pruning, with the lowest magnitude 𝑠 value. Since each layer

contributes differently to the total number of operations within the

network due to max pooling layers and increasing channel output

width, imbalances occur as evidenced in Figure 4(b) on the right-

hand side. This proves to be beneficial in the case of layer 6, as there

is a very high BOPs count within this layer, allowing great BOPs

reduction at the cost of little accuracy degradation. Therefore, we

prune layer 6 to its entirety until the𝐴𝑡 is reached after fine-tuning.

At each end of each pruning iteration, we recalculate 𝑠 for every

unpruned layer. In BinaryNet’s case with CIFAR-10 dataset, we

prune layers four and six as they are the least sensitive layers. In

BL FF LW
0

2

4

T
o

ta
l

B
O

P
s

(
1

0
6
)

BL FF LW

Total BOPs before and after pruning

0

200

400

600

BL FF LW
0

1000

2000

3000

BL FF LW
0

0.2

0.4

M
o

d
el

 s
iz

e
(M

B
)

BL FF LW

Model size before and after pruning

0

20

40

BL FF LW
0

100

200

BL FF LW

60

80

100

A
cc

u
ra

cy
 (

%
)

BL FF LW

Accuracy before and after pruning

60

80

100

BL FF LW
50

60

70

(a) 3ConvNet (b) BinaryNet (c) XNOR-net

-42%
-28%

-46%

-23% -33%
-23%

-30%-20% -27%
-16%

-40%
-26%

+0.1%-1.9%

+0.4%-0.4%
0.0%

-1.5%

Figure 5: Comparison of total BOPs, model size, and accuracy

before and after pruning. BL: baseline before pruning, FF:

flip frequency-based pruning with channel shrinking [17],

LW: latent weight-based pruning (proposed).

Figure 6(a), the first three iterations with multiple pruning steps

are displayed, with layers 6, 4, and 2 only being pruned once before

reaching the accuracy threshold. Beyond these first two iterations,

we degrade accuracy beyond the 𝐴𝑡 threshold. Results indicate a

46% reduction in BOPs and 27% reduction in model size compared

to the unpruned base model with no accuracy loss as demonstrated

in Figure 5(b). Latent weight pruning outperforms flip frequency

pruning by 29.9% in BOPs reduction and by 13.1% in model size

reduction.

4.2.3 Imagene�e Classification. We implement the XNOR-net ar-

chitecture to classify the Imagenette dataset for our third network

analysis [10, 20]. We initialize pruning on the fourth convolutional

layer due to its sensitivity being the lowest at 𝑠 = 0.43 × 10−9 as

displayed in Figure 4(c). Layer 6 of XNOR-net contains a 6 × 6 con-

volutional filter, allowing for this layer to be significantly reduced

by pruning over 80% of the original weights. Additionally, pruning

layer 6 has massive implications on overall model size, since layer 6

comprises 62% of the total model storage size, allowing us to greatly

reduce the model size more than the other designs. Following the

pruning of layer 6, layer 5 is pruned according to it having the low-

est sensitivity, which is again re-evaluated at the end of each layer

pruning iteration. Within Figure 4(c), the sensitivities only indicate

what layer will be pruned on the first iteration, which is layer 6.

The sensitivity is recalculated at the end of each iteration, meaning

that while layer 2 has a lower sensitivity than layer 5 on the first

iteration, layer 2 will not necessarily be pruned before layer 5. We

increase pruning at 𝛿 = 10% and prune layer-by-layer until the

accuracy threshold is reached at 63%. In Figure 6(b), the first three

755

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Tianen Chen, Noah Anderson, and Younghyun Kim

20 40 60

Pruning percentage (%)

60

70

80

90

100

N
o

rm
al

iz
ed

 B
O

P
s

(%
)

20 40 60

Pruning percentage (%)

63

63.5

64

64.5

A
cc

u
ra

cy
 (

%
)

20 40 60

Pruning percentage (%)

80.5

81

81.5

82

A
cc

u
ra

cy
 (

%
)

20 40 60

Pruning percentage (%)

50

60

70

80

90

100

N
o

rm
al

iz
ed

 B
O

P
s

(%
)

(a) BinaryNet

(b) XNOR-net

Iteration 1 (l = 6)

Iteration 1 (l = 6)

Iteration 2 (l = 5)

Starting accuracy
Final accuracy

Starting accuracy

Final accuracy

Iteration 2 (l = 4)

Iteration 3 (l = 2)

Figure 6: BOPs reduction and classi�cation accuracy during

pruning of (a) BinaryNet and (b) XNOR-net.

iterations with multiple pruning steps are displayed, with layer 1

only being pruned once before reaching the accuracy threshold.

Results indicate a 33% reduction in BOPs and 40% reduction in

model size compared to the unpruned base model with no accuracy

loss as demonstrated in Figure 5(c). Latent weight pruning outper-

forms flip frequency pruning by 13.0% in BOPs reduction and by

18.9% in model size reduction.

4.3 Discussion

We compared our method to purely using a channel shrinking

method based on weight flipping frequencies described in [17]. Our

method provides a distinct advantage where channel shrinking

is removing complexity from the network without exploiting the

sparse resilience and lottery-ticket behavior of the network. In

this method, we demonstrate the importance of exploiting sparsity

within the network, as only a select few connections within the net-

work are shown to be major contributors to the final classification

accuracy [5].

Our results using iterative pruning incurs additional o�ine costs

but produce a more efficient final pruned model. These o�ine costs

can be handled by GPUs, producing a portable model for loading

onto storage and computation-constrained systems. In particular,

we have greatly reduced the amount of BOPs within the network.

Our goal is to take computationally demanding training and not

have it be handled by the edge device. The only edge device re-

sponsibility is inference with the ported model. While the accuracy

gain is mild, this unstructured pruning regularizes the network

efficiently. Channel shrinking, on the other hand, does not take

advantage of the inertia of the binary weights and provides no guar-

antee for regularization. Thus, we conclude that with our method,

we produce a more efficient and accuracy-robust pruned model

than the previous work.

5 CONCLUSIONS

Latent weight-based BNN pruning is a promising approach which

mixes two popular neural network compression techniques: quanti-

zation and weight pruning. The classical unstructured pruning that

has been used in floating point models is difficult to integrate with

BNNs due to their binary nature and the lack of weight magnitude

in the forward pass. We demonstrated that latent weights that exist

during backpropagation are a promising alternative that allows

pseudogradient weights to represent how negligible a weight is. We

presented a pruning solution that is precision-tuned to each layer,

querying the sensitivities of individual components of the network

to prune in a coordinated manner. In particular, our method fo-

cuses on reducing computational complexity and memory storage

overhead of the pruned model. Compared to the previous work of

pruning binary neural networks, we achieve a lower OPs count and

smaller model size. On all three datasets with three different ar-

chitecture sizes, we demonstrated 33%–46% reduction in operation

count and a 27%–40% reduction in model size with no accuracy loss

or up to a +0.4% gain.

ACKNOWLEDGMENTS

This work was supported by NSF under awards CNS-1845469, CNS-

2112562, and DGE-1747503.

REFERENCES
[1] Tom Bannink et al. 2021. Larq compute engine: Design, benchmark and deploy

state-of-the-art binarized neural networks. MLSys.
[2] Yoshua Bengio et al. 2013. Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint arXiv:1308.3432.
[3] Tianen Chen et al. 2022. SynthNet: A High-throughput yet Energy-efficient

Combinational Logic Neural Network. ASP-DAC.
[4] Xizi Chen et al. 2020. Tight compression: compressing CNNmodel tightly through

unstructured pruning and simulated annealing based permutation. DAC.
[5] Jonathan Frankle andMichael Carbin. 2018. The lottery ticket hypothesis: Finding

sparse, trainable neural networks. arXiv preprint arXiv:1803.03635.
[6] Jiabao Gao et al. 2021. An Approach of Binary Neural Network Energy-Efficient

Implementation. Electronics.
[7] Song Han et al. 2015. Deep compression: Compressing deep neural net-

works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

[8] Song Han et al. 2015. Learning both weights and connections for efficient neural
network. NIPS.

[9] Koen Helwegen et al. 2019. Latent weights do not exist: Rethinking binarized
neural network optimization. NIPS.

[10] Jeremy Howard. 2019. Imagewang. https://github.com/fastai/imagenette/
[11] Itay Hubara et al. 2016. Binarized neural networks. NIPs.
[12] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks

for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342.
[13] Alex Krizhevsky et al. 2014. The CIFAR-10 dataset. online: http://www. cs. toronto.

edu/kriz/cifar. html.
[14] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/
[15] Fengfu Li et al. 2016. Ternary weight networks. arXiv preprint arXiv:1605.04711.
[16] Yixing Li et al. 2020. Build a compact binary neural network through bit-level

sensitivity and data pruning. Neurocomputing.
[17] Yixing Li and Fengbo Ren. 2020. BNN Pruning: Pruning Binary Neural Network

Guided by Weight Flipping Frequency. ISQED.
[18] Ji Lin et al. 2020. MCUNet: Tiny deep learning on IoT devices. NIPS.
[19] Mahdi Nazemi et al. 2019. Energy-efficient, Low-latency Realization of Neural

Networks Through Boolean Logic Minimization. ASP-DAC.
[20] Mohammad Rastegari et al. 2016. XNOR-Net: Imagenet classification using binary

convolutional neural networks. ECCV.

756

