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ABSTRACT

Design-by-contract as a programming technique is becoming pop-

ular in Python community as various tools have been developed

for automatically testing the code based on the contracts. However,

there is no sufficiently large and representative Python code base

with contracts to evaluate these different testing tools. We present

Python-by-contract dataset containing 514 Python functions an-

notated with contracts using icontract library. We show that our

Python-by-contract dataset can be easily used by existing testing

tools that take advantage of contracts. The demo video can be found

at https://youtu.be/08wZN-xh6mY.
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1 INTRODUCTION

Python is now one of the most popular programming languages

in the world due to its simple syntax, extensive support modules

and active community. Nevertheless, Python’s relatively dynamic

nature is likely to be one of the factors that contribute to it be-

ing deemed less suitable for the backbone of software systems.

Design-by-contract [16] which requires developers to write pre-

cise and verifiable specifications for software components, is one

of the techniques able to improve code robustness. Though inter-

est in contracts for Python dates back to early 2000s [27], fully
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functional libraries for Python contracts such as dpcontracts [12],

icontract [20] and deal [25] sprout out only in about last five

years. The library support for writing contracts in Python was lack-

ing, and changed only recentlywith libraries such as icontract [20].

Consequently, there are a few tools to help developers confirm (or re-

fute) code contracts in Python, e.g., CrossHair [22] and icontract-

hypothesis [19]. While various datasets capture Python programs

with bugs [14, 24, 28], to the best of our knowledge, there exist no

dataset of Python programs annotated with contracts that can be

used to evaluate or benchmark these Python-specific tools due to

little Python code with contracts in open-source projects.

In this paper, we present the Python-by-contract dataset - a

novel collection of Python programs annotated with contracts.

The programs solve problems spanning a wide range of computer

science domains, from simple string manipulation to file oper-

ations. The dataset contains both correct implementations and

ones with bugs that violate a contract. Besides, we carefully cu-

rate the bugs so that the correct and the incorrect programs have

only minimal differences, which makes it easier to confirm the

presence of a genuine bugs and debug problems in testing tools.

Furthermore, we show that our Python-by-contract dataset can

be used to evaluate and help the development of existing test-

ing tools. Our Python-by-contract dataset is publicly available

at https://github.com/mristin/python-by-contract-corpus.

The contribution of this work is thus three-fold: 1) We manually

write Python solutions to exercises to construct the Python-by-

contract dataset. 2) We explicitly annotate the Python functions

and classes with contracts. 3) We carefully curate the bugs detected

during developing to make tracing downstream defects easier and

include them in the dataset.

2 DATASET CONSTRUCTION

In this section, we first introduce the collection of programming

exercises that underlie our Python programs. Then we describe

our development of the Python programs and contracts, as well as

how we remold the bugs recorded during the development into the

incorrect programs.

2.1 Data Source

As the Python programs in our dataset serve as the benchmark

for different testing tools, they should not involve complicated

dependencies. It should be easy for users to reason about them and

trace the potential bugs. Due to the recency of the library support

for contracts in Python, publicly available programs with contracts
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a)

# ERROR:

# bus_id and min_time should be reversed.

wait_time = bus_id % min_time

return min_time + wait_time

b)

# CORRECT:

missed_last_bus_by = min_time % bus_id

if missed_last_bus_by == 0:

return min_time

else:

return (

min_time - missed_last_bus_by +

bus_id

)

c)

# ERROR:

# bus_id and min_time should be reversed.

missed_last_bus_by = bus_id % min_time

if missed_last_bus_by == 0:

return min_time

else:

return (

min_time - missed_last_bus_by +

bus_id

)

Figure 2: An example how a) the recorded error

wrong_mod.py from AoC 2020, Day 13 is combined with

the b) final solution to produce a minimally different c)

incorrect program. Evidently, the renaming of the variable

(wait_time to missed_last_bus_by) as well as the non-zero

check (if missed_last_bus_by == 0) have been added after

the recorded error, but replicated in the incorrect program.

This makes the incorrect program minimally different

from the final solution, while we keep the relevant bug.

Table 1: Statistics of the Python-by-contract dataset. Func.

represents Python function; Pre-C. represents precondition;

Post-C. represents postcondition; Inv. represents class in-

variant.

# Files LOC # Class # Func. # Pre-C. # Post-C. # Inv.

55 4,796 114 514 246 269 9

Table 2: Distribution of preconditions and postconditions.

Univ. Q. Bound Pattern Misc.

Precondition 36 49 27 134

Postcondition 44 10 3 212

the initial and the final solutions pursue different directions as we

had to completely change the approach and re-model the problem

with different abstractions. In other cases, the bugs result from the

under-specification of the exercise itself. We consequently ignore

such cases though they represent valid bugs.

3 PYTHON-BY-CONTRACT DATASET

Our dataset contains 1) Python solutions to the AoC 2020 annotated

with contracts; 2) Python solutions to the ETHZ Eprog 2019 anno-

tated with contracts; 3) Python incorrect programs with minimal

difference to the solutions to AoC 2020 and ETHZ Eprog 2019.

Table 1 shows the statistics of the correct programs in the Python-

by-contract dataset. Since a precondition is given as a set of con-

junctions, the total number of preconditions is calculated as the

sum of all the conjunctions. Our dataset consists of 55 Python files

as the solutions to the exercises and 59 Python files as the incorrect

programs. There are more incorrect than correct programs since

for each exercise we find zero, one or multiple bugs during the

development.

The correct programs are broken down into manageable chunks,

so a file on average contains 9.3 functions. For a large fraction of

the functions we could write the contracts. Among them, 37.7%

are annotated with at least one precondition or postcondition. The

remaining functions dealt with general inputs, so no preconditions

were necessary, or no postconditions could be defined with mean-

ingful effort or sufficient readability. We specified very few class

invariants because the natural solutions did not usually employ

mutable classes.

We classify the preconditions and postconditions in the correct

programs into four categories and show the distribution in Table 2.

Univ. Q. means the condition involves universal quantifiers (łfor

allž). Boundmeans the condition specifies the boundaries on a value.

Pattern means the condition defines a matching of a regular ex-

pression pattern. The remaining are regarded as miscellaneous. As

shown in Table 2, our dataset covers different kinds of preconditions

and postconditions evenly. This contrasts previous datasets, where

the basic checks (e.g., non-null check) dominate [23]. Moreover,

the complexity shifts from the preconditions (with a substantial

mass in łBoundž and łPatternž) to postconditions (with much less

respective mass). This is expected as the functions and the underly-

ing problems in our dataset are general. Restricting the inputs of a

general function is often easier than checking the validity of the

result of the function.

4 USE CASES

While different uses of our dataset are possible, we demonstrate

its utility by examining how it is used to evaluate and aid the

development of two testing tools, CrossHair [22] and icontract-

hypothesis [19].

4.1 Use Case: CrossHair

CrossHair [22] is a concolic [10] testing tool. It uses a constraint

solver to confirm or refute properties for symbolic inputs over

concrete execution paths. Unlike most concolic execution tools

that analyze binary executables, CrossHair models the Python

language itself. CrossHair natively checks contracts in a variety of

formats, including the contract format used in our dataset: icontract.

Application. We ran the łcrosshair checkž command both over

the solution files and the files with recorded bugs. This revealed

bugs in both CrossHair and the dataset, and provided valuable

insight into CrossHair’s performance.

Insights. The Python-by-contract dataset helps improve the sta-

bility of CrossHair. In particular, some contracts triggered fatal

errors in CrossHair. We diagnosed and fixed two CrossHair bugs

before completing a fully successful check of the solutions. The two

bugs pertained to regular expression matching on sliced strings

and directive parsing for some multi-line strings.
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After applying the fixes above, we checked the correct solution

files. Though one might expect to find no failures, CrossHair found

23 counterexamples. With extended timeout settings, Cross-

Hair is able to find 7 additional counterexamples. The counterex-

amples largely pointed to omitted preconditions, rather than bugs

in the solution itself. That said, in many cases the problems are

under-specified, and a reasonable fix can have been made to ei-

ther the contracts or the code underneath. Finally, the dataset in-

cludes 59 Python files that contain known bugs, most of which are

revealed by contracts. Since CrossHair is presently able to find

counterexamples in some correct solutions, we limit our analysis

to incorrect programs for which the corresponding correct solution

passes CrossHair’s checks: 35 of those 59. CrossHair successfully

found counterexamples in 26 out of those 35.

4.2 Use Case: icontract-hypothesis

The icontract-hypothesis [19] is a testing tool that infers strate-

gies for random generation of function’s input. The generated input

is supplied to the function under test, while the function’s post-

conditions serve as a test oracle checking the correctness. The

hypothesis [15] library is used to generate the data given the

inferred strategies. At current version (1.1.7), the strategies are in-

ferred based on a basic set of patterns matched against the precondi-

tions (lower/upper bounds and regular expressions). The generated

data is further filtered by unmatched preconditions (i.e., reduced

through rejection sampling).

Application. We manually selected function points (i.e., func-

tions or methods of classes) for which the tool can infer a fea-

sible generation strategy for the input. Out of total 514 function

points in the dataset, we are able to cover 67 points for which

icontract-hypothesis can directly be applied. We can test 10

further points by wrapping them in more restrictive preconditions,

since their original preconditions were too permissive and resulted

in valid, but practically inexecutable strategies (e.g., functions on

strings with a length argument for which the strategy generates

excessively large numbers). The remaining points can not be tested

as the inferred strategies are computationally prohibitive since the

generated data are almost constantly rejected.

Insights. We are positively surprised that such a small testing

surface results in a high code coverage. We can thus cover 76%

of code statements (with negligible standard deviation over 10

runs, <1%). As it turned out, simple preconditions were enough

to narrow down the generation strategies such that consequent

rejection sampling by the further complex preconditions did not

incur too high computational cost. It is important to note that we

heavily apply the recipe for deduplicating the preconditions by

refactoring them into separate classes [21] in the dataset instead of

writing conditions with all(.) quantifiers. This generalizes well

throughout the programs, and largely explains the simplicity of the

preconditions. Hence, as long as this recipe can be applied to keep

the preconditions simple, we expect other code bases to achieve

similar levels of code coverage with icontract-hypothesis.

5 RELATED WORK

Contracts. Thinking about program correctness in terms of con-

tracts goes back to seminal works of Sir Hoare [11], Floyd [8] and

Naur [17]. Eventually, the theory flowed into practice of writing

the contracts in the code to be checked either statically, at compile-

time, or at runtime. This approach found wide popularity with Eiffel

language [16], followed by Java [13], C# [7] and others.

Contracts in Python. Libraries for writing contracts for Python

like dpcontracts [12], icontract [20] and deal [25] appear in

the recent five years. Because of few libraries for python contracts,

there is also only a nascent community around tools for ensuring

correctness of practical Python programs based on contracts such

as CrossHair and icontract-hypothesis.

Datasets of programs with contracts in Python. Because of

the recency of the library support, there is impractically little

Python code with contracts in the wild that can be collected by

researchers. While various datasets capture programs with bugs,

such as BugsInPy [28], BugSwarm [24], QuixBugs [14], they contain

no contracts. This makes them thus impractical for tool develop-

ers which need insights into kinds of contracts used in practical

programs as well as an appropriate testbed (see below).

Corpora of programs with contracts in other languages. In

contrast to Python, there are many large program datasets with

contracts in other languages. Notably, EiffelBase, the Eiffel’s stan-

dard library, has been meticulously written contracts-first [4]. Since

contracts are a core feature of the Eiffel language, solutions to school

exercises usually contain contracts similar to our dataset [2]. Others

looked into datasets to assess how programmers write contracts

in practice. Chalin [3] analyzed a dataset of 85 Eiffel projects and

8M lines of code (LOC). Estler et al. [6] combed a suite of projects

in Eiffel, C# and Java with high contract usage totaling 260M LOC.

Shiller et al. [23] compiled a dataset of 90 C# programs listed on

OpenHub of around 3.5M LOC, while Dietrich et al. [5] studied 200

most popular Java projects in Maven Central, and Casalnuovo et

al. [1] looked into 100 most popular C/C++ projects on GitHub. Nie

et al. [18] proposed a framework, Deuterium, for implementing Java

methods as executable contracts and created a new benchmark for

evaluating the executable contracts. Though our dataset is smaller

in scope and volume, we see it as a valuable family member of the

aforementioned corpora in other languages and hope it to be a first

step towards this goal for Python community. As the design-by-

contract gains more traction in the community, we hope that larger

and more complex code bases with contracts will emerge.

6 CONCLUSION

In this paper, we present the Python-by-contract dataset contain-

ing both correct Python programs and curated incorrect Python

programs with contracts. The Python programs in the dataset cover

a wide variety of programming concepts with different types of

contracts. We show that it can be utilized by researchers and practi-

tioners for developing and evaluating correctness and testing tools.

Our dataset is the first step in this direction, and we plan to keep

expanding it in the future.
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