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ABSTRACT

Design-by-contract as a programming technique is becoming pop-
ular in Python community as various tools have been developed
for automatically testing the code based on the contracts. However,
there is no sufficiently large and representative Python code base
with contracts to evaluate these different testing tools. We present
Python-by-contract dataset containing 514 Python functions an-
notated with contracts using icontract library. We show that our
Python-by-contract dataset can be easily used by existing testing
tools that take advantage of contracts. The demo video can be found
at https://youtu.be/08wZN-xhémY.
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1 INTRODUCTION

Python is now one of the most popular programming languages
in the world due to its simple syntax, extensive support modules
and active community. Nevertheless, Python’s relatively dynamic
nature is likely to be one of the factors that contribute to it be-
ing deemed less suitable for the backbone of software systems.
Design-by-contract [16] which requires developers to write pre-
cise and verifiable specifications for software components, is one
of the techniques able to improve code robustness. Though inter-
est in contracts for Python dates back to early 2000s [27], fully
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functional libraries for Python contracts such as dpcontracts [12],

icontract [20] and deal [25] sprout out only in about last five

years. The library support for writing contracts in Python was lack-
ing, and changed only recently with libraries such as icontract [20].
Consequently, there are a few tools to help developers confirm (or re-
fute) code contracts in Python, e.g., CrossHair [22] and icontract-
hypothesis [19]. While various datasets capture Python programs

with bugs [14, 24, 28], to the best of our knowledge, there exist no

dataset of Python programs annotated with contracts that can be

used to evaluate or benchmark these Python-specific tools due to

little Python code with contracts in open-source projects.

In this paper, we present the Python-by-contract dataset - a
novel collection of Python programs annotated with contracts.
The programs solve problems spanning a wide range of computer
science domains, from simple string manipulation to file oper-
ations. The dataset contains both correct implementations and
ones with bugs that violate a contract. Besides, we carefully cu-
rate the bugs so that the correct and the incorrect programs have
only minimal differences, which makes it easier to confirm the
presence of a genuine bugs and debug problems in testing tools.
Furthermore, we show that our Python-by-contract dataset can
be used to evaluate and help the development of existing test-
ing tools. Our Python-by-contract dataset is publicly available
at https://github.com/mristin/python-by-contract-corpus.

The contribution of this work is thus three-fold: 1) We manually
write Python solutions to exercises to construct the Python-by-
contract dataset. 2) We explicitly annotate the Python functions
and classes with contracts. 3) We carefully curate the bugs detected
during developing to make tracing downstream defects easier and
include them in the dataset.

2 DATASET CONSTRUCTION

In this section, we first introduce the collection of programming
exercises that underlie our Python programs. Then we describe
our development of the Python programs and contracts, as well as
how we remold the bugs recorded during the development into the
incorrect programs.

2.1 Data Source

As the Python programs in our dataset serve as the benchmark
for different testing tools, they should not involve complicated
dependencies. It should be easy for users to reason about them and
trace the potential bugs. Due to the recency of the library support
for contracts in Python, publicly available programs with contracts
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are scarce, complex and involve many dependencies, thus making
them unsuitable as a dataset. We resort to manually writing Python
programs as solutions to two public collection of programming
exercises: Advent of Code 2020 [26] (AoC 2020) and the exercises
for the lecture “Introduction to Programming” at ETH Zurich in
Fall 2019 [9] (ETHZ Eprog 2019).

AoC 2020. Advent of Code is an annual set of computer program-
ming challenges that follow an Advent calendar since 2015. The
programming puzzles include a variety of skill sets and skill levels
and can be solved using any programming language [26].

ETHZ Eprog 2019. “Introduction to Programming” course at ETH
Zurich aims to teach students to systematically develop simple
programs in Java. The exercises cover a wide scope of program-
ming concepts, such as basic data structures, iterative and recursive
algorithms, file operations, etc. [9].

These two sources are chosen because they are publicly available,
cover a wide enough spectrum of problems, and sufficient amount
of alternative solutions can be easily obtained for comparison. More
importantly, the solutions do not have complicated dependencies
and thus are easy for tracing of bugs.

2.2 Selection of ETHZ Eprog 2019 Exercises

Not all problems from ETHZ Eprog 2019 were suitable for our
dataset. We evaluated the problems and selected only the most
relevant ones according to the following steps. We exclude:

(1) Non-programming exercises: exercises which do not require
writing code are removed, such as exercises that introduce
students to version control systems.

(2) Exercises specific to Java: since we want to build a Python
dataset, exercises focusing on Java-specific topics such as
Java-specific constructors are removed.

(3) Trivial exercises: problems considered too trivial are re-
moved, such as those about basic input/output operations.

(4) Technology-specific exercises: this includes, e.g., exercises
about the graphical user interfaces (GUIs). Although con-
tracts are useful in the GUI programming, we consider GUI
programming to be too technology-specific and thus outside
the scope of the dataset.

Additionally, some exercise statements are simplified to make
for a more pointed code. We explicitly mark the corresponding
changes in the description of the problem in Python files.

We provide the complete list of removed and simplified exercises
with the rationale on our dataset website!.

2.3 Dataset Construction Process

All the programs in our dataset are written by 2 experienced de-
velopers with 5-10 years of Python programming experience. Each
Python file is the solution to one programming exercise with func-
tions annotated with contracts using icontract [20] library. Fol-
lowing the common practice in industry, both the code and the
contracts were written by the same developer.

Figure 1 demonstrates the data construction process. For each
exercise, we iteratively develop the solution and the contracts

!https://python-by-contract-corpus.readthedocs.io/en/latest/correct_programs/
ethz_eprog_2019/details.html
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Figure 1: The flow of our data construction process.

with the help of two testing tools, cross-hair and icontract-
hypothesis, as well as manually written unit tests. Specifically, we
first write the solution as Python functions or classes together with
the contracts for them. We follow general software engineering
advice on writing contracts: we fully specify the preconditions,
while we specify the postconditions and class invariants based on
best effort. Then we check the correctness of our Python code ei-
ther by the automatic testing tools or the unit tests. The solutions
that violate the contracts or fail to pass the tests are recorded as
bugs. The developer keeps modifying them to get the final correct
solutions which pass all the checks and contain no obvious errors.
The bugs are further adapted by re-introducing them to the final
correct solution to obtain a minimally different incorrect programs.
Note that although the contracts may have mistakes (i.e., they may
not correctly encode the problem description); our expected use
cases for this dataset do not depend on full contract correctness.

2.4 Incorrect Programs

As we develop the solutions to the exercises, we record bugs de-
tected by the automatic testing tools or manually written unit tests.
The buggy programs captured during the development often blur
the cause of errors and diverge substantially from the final correct
solution. This is suboptimal since we need to clearly distinguish
between expected, collateral bugs, and the possible errors of test-
ing tools we use. To provide a better and more precise testbed, we
convert the recorded bugs into minimal changes of final correct
solutions. Specifically, we first manually inspect each recorded bug
to ensure that it is not caused by a defect in the tools. Then we
re-introduce the bug into the final correct solution such that the
buggy program is curated to be minimally different to the final
correct solution. This makes it easier to confirm the presence of a
genuine bug and provides succinct test cases for the testing tools.
The resulting curated bugs are kept in the dataset as the incor-
rect programs. We provide an example to illustrate the process of
curating a recorded bug to an incorrect program in Figure 2.
Although we are able to re-introduce most of the recorded bugs,
some cases are not suitable for re-introduction. This is either be-
cause the recorded bugs are not informative enough or because
the final correct solution ends up diverging too much from the
buggy one to be re-introduced in a meaningful manner. Namely,
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# ERROR:
a) # bus_id and min_time should be reversed.
wait_time = bus_id % min_time
return min_time + wait_time
# CORRECT:
missed_last_bus_by = min_time % bus_id
if missed_last_bus_by == 0:
return min_time
b) else:
return (
min_time - missed_last_bus_by +
bus_id
)
# ERROR:
# bus_id and min_time should be reversed.
missed_last_bus_by = bus_id % min_time
if missed_last_bus_by == 0:
C) return min_time
else:
return (
min_time - missed_last_bus_by +
bus_id
)

Figure 2: An example how a) the recorded error
wrong_mod.py from AoC 2020, Day 13 is combined with
the b) final solution to produce a minimally different c)
incorrect program. Evidently, the renaming of the variable
(wait_time to missed_last_bus_by) as well as the non-zero
check (if missed_last_bus_by == 0) have been added after
the recorded error, but replicated in the incorrect program.
This makes the incorrect program minimally different
from the final solution, while we keep the relevant bug.

Table 1: Statistics of the Python-by-contract dataset. Func.
represents Python function; Pre-C. represents precondition;
Post-C. represents postcondition; Inv. represents class in-
variant.

#Files LOC #Class #Func. #Pre-C. #Post-C. #Inv.

55 4,796 114 514 246 269 9

Table 2: Distribution of preconditions and postconditions.

Univ. Q. Bound Pattern Misc.

Precondition 36 49 27 134
Postcondition 44 10 3 212

the initial and the final solutions pursue different directions as we
had to completely change the approach and re-model the problem
with different abstractions. In other cases, the bugs result from the
under-specification of the exercise itself. We consequently ignore
such cases though they represent valid bugs.

3 PYTHON-BY-CONTRACT DATASET

Our dataset contains 1) Python solutions to the AoC 2020 annotated
with contracts; 2) Python solutions to the ETHZ Eprog 2019 anno-
tated with contracts; 3) Python incorrect programs with minimal
difference to the solutions to AoC 2020 and ETHZ Eprog 2019.
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Table 1 shows the statistics of the correct programs in the Python-
by-contract dataset. Since a precondition is given as a set of con-
junctions, the total number of preconditions is calculated as the
sum of all the conjunctions. Our dataset consists of 55 Python files
as the solutions to the exercises and 59 Python files as the incorrect
programs. There are more incorrect than correct programs since
for each exercise we find zero, one or multiple bugs during the
development.

The correct programs are broken down into manageable chunks,
so a file on average contains 9.3 functions. For a large fraction of
the functions we could write the contracts. Among them, 37.7%
are annotated with at least one precondition or postcondition. The
remaining functions dealt with general inputs, so no preconditions
were necessary, or no postconditions could be defined with mean-
ingful effort or sufficient readability. We specified very few class
invariants because the natural solutions did not usually employ
mutable classes.

We classify the preconditions and postconditions in the correct
programs into four categories and show the distribution in Table 2.
Univ. Q. means the condition involves universal quantifiers (“for
all’). Bound means the condition specifies the boundaries on a value.
Pattern means the condition defines a matching of a regular ex-
pression pattern. The remaining are regarded as miscellaneous. As
shown in Table 2, our dataset covers different kinds of preconditions
and postconditions evenly. This contrasts previous datasets, where
the basic checks (e.g., non-null check) dominate [23]. Moreover,
the complexity shifts from the preconditions (with a substantial
mass in “Bound” and “Pattern”) to postconditions (with much less
respective mass). This is expected as the functions and the underly-
ing problems in our dataset are general. Restricting the inputs of a
general function is often easier than checking the validity of the
result of the function.

4 USE CASES

While different uses of our dataset are possible, we demonstrate
its utility by examining how it is used to evaluate and aid the
development of two testing tools, CrossHair [22] and icontract-
hypothesis [19].

4.1 Use Case: CrossHair

CrossHair [22] is a concolic [10] testing tool. It uses a constraint
solver to confirm or refute properties for symbolic inputs over
concrete execution paths. Unlike most concolic execution tools
that analyze binary executables, CrossHair models the Python
language itself. CrossHair natively checks contracts in a variety of
formats, including the contract format used in our dataset: icontract.
Application. We ran the “crosshair check” command both over
the solution files and the files with recorded bugs. This revealed
bugs in both CrossHair and the dataset, and provided valuable
insight into CrossHair’s performance.

Insights. The Python-by-contract dataset helps improve the sta-
bility of CrossHair. In particular, some contracts triggered fatal
errors in CrossHair. We diagnosed and fixed two CrossHair bugs
before completing a fully successful check of the solutions. The two
bugs pertained to regular expression matching on sliced strings
and directive parsing for some multi-line strings.
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After applying the fixes above, we checked the correct solution
files. Though one might expect to find no failures, CrossHair found
23 counterexamples. With extended timeout settings, Cross-
Hair is able to find 7 additional counterexamples. The counterex-
amples largely pointed to omitted preconditions, rather than bugs
in the solution itself. That said, in many cases the problems are
under-specified, and a reasonable fix can have been made to ei-
ther the contracts or the code underneath. Finally, the dataset in-
cludes 59 Python files that contain known bugs, most of which are
revealed by contracts. Since CrossHair is presently able to find
counterexamples in some correct solutions, we limit our analysis
to incorrect programs for which the corresponding correct solution
passes CrossHair’s checks: 35 of those 59. CrossHair successfully
found counterexamples in 26 out of those 35.

4.2 Use Case: icontract-hypothesis

The icontract-hypothesis [19] is a testing tool that infers strate-
gies for random generation of function’s input. The generated input
is supplied to the function under test, while the function’s post-
conditions serve as a test oracle checking the correctness. The
hypothesis [15] library is used to generate the data given the
inferred strategies. At current version (1.1.7), the strategies are in-
ferred based on a basic set of patterns matched against the precondi-
tions (lower/upper bounds and regular expressions). The generated
data is further filtered by unmatched preconditions (i.e., reduced
through rejection sampling).

Application. We manually selected function points (i.e., func-
tions or methods of classes) for which the tool can infer a fea-
sible generation strategy for the input. Out of total 514 function
points in the dataset, we are able to cover 67 points for which
icontract-hypothesis can directly be applied. We can test 10
further points by wrapping them in more restrictive preconditions,
since their original preconditions were too permissive and resulted
in valid, but practically inexecutable strategies (e.g., functions on
strings with a length argument for which the strategy generates
excessively large numbers). The remaining points can not be tested
as the inferred strategies are computationally prohibitive since the
generated data are almost constantly rejected.

Insights. We are positively surprised that such a small testing
surface results in a high code coverage. We can thus cover 76%
of code statements (with negligible standard deviation over 10
runs, <1%). As it turned out, simple preconditions were enough
to narrow down the generation strategies such that consequent
rejection sampling by the further complex preconditions did not
incur too high computational cost. It is important to note that we
heavily apply the recipe for deduplicating the preconditions by
refactoring them into separate classes [21] in the dataset instead of
writing conditions with all(.) quantifiers. This generalizes well
throughout the programs, and largely explains the simplicity of the
preconditions. Hence, as long as this recipe can be applied to keep
the preconditions simple, we expect other code bases to achieve
similar levels of code coverage with icontract-hypothesis.

5 RELATED WORK

Contracts. Thinking about program correctness in terms of con-
tracts goes back to seminal works of Sir Hoare [11], Floyd [8] and
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Naur [17]. Eventually, the theory flowed into practice of writing
the contracts in the code to be checked either statically, at compile-
time, or at runtime. This approach found wide popularity with Eiffel
language [16], followed by Java [13], C# [7] and others.

Contracts in Python. Libraries for writing contracts for Python
like dpcontracts [12], icontract [20] and deal [25] appear in
the recent five years. Because of few libraries for python contracts,
there is also only a nascent community around tools for ensuring
correctness of practical Python programs based on contracts such
as CrossHair and icontract-hypothesis.

Datasets of programs with contracts in Python. Because of
the recency of the library support, there is impractically little
Python code with contracts in the wild that can be collected by
researchers. While various datasets capture programs with bugs,
such as BugsInPy [28], BugSwarm [24], QuixBugs [14], they contain
no contracts. This makes them thus impractical for tool develop-
ers which need insights into kinds of contracts used in practical
programs as well as an appropriate testbed (see below).

Corpora of programs with contracts in other languages. In
contrast to Python, there are many large program datasets with
contracts in other languages. Notably, EiffelBase, the Eiffel’s stan-
dard library, has been meticulously written contracts-first [4]. Since
contracts are a core feature of the Eiffel language, solutions to school
exercises usually contain contracts similar to our dataset [2]. Others
looked into datasets to assess how programmers write contracts
in practice. Chalin [3] analyzed a dataset of 85 Eiffel projects and
8M lines of code (LOC). Estler et al. [6] combed a suite of projects
in Eiffel, C# and Java with high contract usage totaling 260M LOC.
Shiller et al. [23] compiled a dataset of 90 C# programs listed on
OpenHub of around 3.5M LOC, while Dietrich et al. [5] studied 200
most popular Java projects in Maven Central, and Casalnuovo et
al. [1] looked into 100 most popular C/C++ projects on GitHub. Nie
et al. [18] proposed a framework, Deuterium, for implementing Java
methods as executable contracts and created a new benchmark for
evaluating the executable contracts. Though our dataset is smaller
in scope and volume, we see it as a valuable family member of the
aforementioned corpora in other languages and hope it to be a first
step towards this goal for Python community. As the design-by-
contract gains more traction in the community, we hope that larger
and more complex code bases with contracts will emerge.

6 CONCLUSION

In this paper, we present the Python-by-contract dataset contain-
ing both correct Python programs and curated incorrect Python
programs with contracts. The Python programs in the dataset cover
a wide variety of programming concepts with different types of
contracts. We show that it can be utilized by researchers and practi-
tioners for developing and evaluating correctness and testing tools.
Our dataset is the first step in this direction, and we plan to keep
expanding it in the future.
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