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ABSTRACT

Pretrained language models have been shown to be effective in
many software-related generation tasks; however, they are not well-
suited for editing tasks as they are not designed to reason about
edits. To address this, we propose a novel pretraining objective
which explicitly models edits and use it to build Cop1TT5, a large
language model for software-related editing tasks that is pretrained
on large amounts of source code and natural language comments.
We fine-tune it on various downstream editing tasks, including
comment updating, bug fixing, and automated code review. By
outperforming standard generation-based models, we demonstrate
the generalizability of our approach and its suitability for editing
tasks. We also show how a standard generation model and our edit-
based model can complement one another through simple reranking
strategies, with which we achieve state-of-the-art performance for
the three downstream editing tasks.
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1 INTRODUCTION

Large language models pretrained on massive amounts of data
have led to remarkable progress in recent years, with models like
BART [26], GPT [7, 43], and T5 [44] yielding huge improvements
for a vast number of text generation tasks. Inspired by this, a new re-
search initiative has emerged around building large models that are
pretrained on source code and technical text to address software-
related tasks. This includes models like PLBART [1], CodeGPT-
2 [32], and CodeT5 [55]. While these models demonstrate impres-
sive performance on generation tasks like code summarization,
code generation, and code translation, it is unclear if they are well-
suited for the editing nature of many software-related tasks. For
instance, bug fixing [49] entails editing source code to resolve bugs,
automated code review [51] requires editing source code to in-
corporate feedback from review comments, and comment updat-
ing [16, 29, 31, 40] pertains to updating outdated natural language
comments to reflect code changes.

In principle, such editing tasks can be framed as standard gener-
ation tasks in which an input sequence (e.g., buggy code snippet) is
completely re-written to form the output sequence (e.g., fixed code
snippet). In this way, existing pretrained conditional generation
models can be fine-tuned to autoregressively generate a sequence
from scratch. However, this can be problematic in practice [40].
When applying large generation models like PLBART and CodeT5
to these tasks, we find that they can generate output which merely
copies the input without performing any edits (up to 34.25%) or
even deviates substantially from the input, introducing irrelevant
changes. We provide an example of automated code review in Fig-
ure 1, where a reviewer prescribes edits that need to be made to a
given code snippet: “Generally better to qualify than making static
import”. Using the code snippet and this comment, PLBART gener-
ates an output sequence which copies the original code, without
applying any edits. While the output is valid and a likely sequence
according to PLBART’s language model, it makes no edits based
on the reviewer’s comments.

We attribute these weaknesses to the fact that such models rely
on pretraining objectives designed for generating code (or software-
related natural language) in sequence by exploiting patterns with
respect to preceding tokens. Therefore, a model has to learn to
implicitly perform edits by generating tokens one by one in accor-
dance with the underlying probability that it has learned for which
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tokens belong alongside one another, rather than being aware of
where information should be retained or modified.

Intuitively, edit-based generation requires a different approach
that more frequently refers back to the input sequence, and can
often be characterized by localized operations (e.g., insertion, dele-
tion, substitution). To guide a model in discerning edit locations
in the input sequence and reason about the necessary edit opera-
tions, we design a novel pretraining objective that explicitly models
edits. Our approach is inspired by content planning in natural
language generation where a skeleton of key elements are first
generated and used to guide more accurate and precise generation
of full text [14, 33, 42, 45]. Specifically, during decoding, a model
first generates an edit plan that explicitly details the edit opera-
tions. Then, it proceeds to autoregressively generate the target
edited sequence, during which it attends to the edit plan. Through
this, we effectively encourage the model to learn to better reason
about edits and how they should be applied to form the target se-
quence. Using this objective, we develop CopITT5, a large language
model for software-related edit tasks that is pretrained on more
than 5.9 million open-source programming language code snippets
and 1.6 million natural language comments from the CodeSearch-
Net [22] training data.

For evaluation, we fine-tune CopiTT5 on three downstream
tasks: comment updating, bug fixing, and automated code review.
For each of these tasks, we show that CoprTT5 outperforms state-
of-the-art models as well as large pretrained standard generation-
based models. Through this, we demonstrate that our model and the
proposed edit-based pretraining objective generalize across tasks
and are better suited for editing tasks in the software domain.

Furthermore, in our evaluation, we find that our edit-based
model, Cop1TT5, can be further improved if combined with a stan-
dard generation-based model. We find that the edit-based and stan-
dard generation-based models are complementary to one another.
Namely, while the edit-based model provides better explicit model-
ing of concrete edits, a standard generation-based model provides
certain advantages in terms of the contextual coherence of the gen-
erated target sequence. To exploit this complementary nature of
these models, we combine the two models through reranking strate-
gies which require no additional training. Our results show that
the combined approaches outperform the two models individually
by up to 19.35%.

We summarize our main contributions as follows:

e We formulate a novel pretraining objective that entails first gen-
erating a plan consisting of edit operations to be applied to the
input sequence followed by the resulting target sequence.

e We build and release Cop1TT5, a large language model for software-
related editing tasks that is pretrained on large amounts of source
code and natural language with the new pretraining objective.

e Upon task-specific fine-tuning, we show that CoprtT5 achieves
improved performance over existing models for three distinct
downstream editing tasks (comment updating, bug fixing and
automated code review), demonstrating its effectiveness and
generalizability.

o We show that by combining our edit-based CoprTT5 model with
a standard generation model through simple reranking strategies,
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Before Editing

default List<Pattern> getExcludedResponseHeaderPatterns() {
return emptyList();

3}

Reviewer’s Comment

Generally better to qualify than making static import
PLBART

default List<Pattern> getExcludedResponseHeaderPatterns() {
return emptylList();
)

Figure 1: An example in automated code review task where
PLBART merely copies the input which does not match re-
viewer’s comment.

we can beat each of the individual models and achieve new state-
of-the-art in all three tasks, demonstrating the complementary
nature of edit-based and standard generation models.

Our code and data is publicly available at
https://github.com/EngineeringSoftware/CoditT5.

2 BACKGROUND

We first give a high-level overview of the building blocks that are
necessary to understand our approach.

2.1 Generation with Transformer-Based
Models

Conditional Sequence Generation. Conditional sequence genera-
tion entails generating an output sequence given an input sequence.
Many tasks are framed in this manner, including machine transla-
tion (e.g., translating a sentence from French to English) [2], text
summarization (e.g., generating a brief summary for a given news
article) [46], and code generation (e.g., generating a code snippet
for a given natural language specification) [58].

Encoder-Decoder Framework. Inrecent years, conditional sequence
generation tasks are being addressed with encoder-decoder models.
An encoder-decoder model consists of two neural components: an
encoder and a decoder. The input sequence is fed into the encoder,
which produces learned vector representations of the tokens in that
sequence. These learned vector representations are then passed into
the decoder, which generates the output sequence one token at a
time. Specifically, the decoder predicts the next token by reasoning
over the input sequence and the tokens generated at previous time
steps.

Transformers. Transformers [52] are powerful neural models
that are commonly adopted as the encoder and decoder in the
encoder-decoder framework. These models rely on an attention
mechanism to learn representations for tokens by relating them to
other tokens in the sequence. Namely, a transformer-based encoder
will learn representations for each token in the input sequence by
“attending” to other input tokens. For the decoder, when generating
a token at timestep t, it will “attend” to the representations of the
output tokens generated from timestep 1 to t — 1 as well as the
representations of tokens from the input sequence. Transformer
models can become very large with huge numbers of attention
heads, encoder and decoder layers.
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@param users List of user objects
lnoising function

@param [MASK] List of objects
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l
[ Bncoder ]—{ DecIder ]

<ReplaceOld> [MASK] <ReplaceNew> users <ReplaceEnd> <Insert> user <InsertEnd> @

@param users List of user objects @

Figure 2: The corrupted text is encoded with a bidirectional encoder, and the decoder is pretrained to generate sequences of
edit actions to recover the original text followed by a separation token (<s>), and finally the target sequence

2.2 Large Pretrained Language Models

Large pretrained language models generally refer to the class of
large transformer-based models that are trained on large amounts
of unlabeled data (collected from webpages, news articles, etc.) with
unsupervised training objectives. This includes a vast number of
models like GPT [7, 43], BART [26], and T5 [44].

Denoising Autoencoder Pretraining. BART and T5 models are
pretrained using denoising autoencoding unsupervised training
objectives. Namely, a noising function is first applied to a given
input sequence inp to form inp’. Common noising functions include
Token Masking: tokens in the input sequence are randomly masked;
Token Deletion: random tokens are deleted from the input sequence;
Token Infilling: a span of tokens are sampled and replaced with a
mask token; Sentence Permutation: sentences in the document are
shuffled in a random order. Then, inp’ is fed into a model’s encoder,
and the encoder’s learned representation is passed into the decoder,
which generates an output sequence, out, that is expected to resem-
ble the original input sequence (inp). In other words, the model is
trained to “denoise” inp’, using a training objective that minimizes
the error between out and the original input, inp. Through this, the
model learns to extract meaning from the input sequence and also
generate fluent and coherent output. Therefore, by pretraining on
massive amounts of data, the model develops an understanding of
how things in the world relate to one another as a strong language
modeling capability.

Fine-tuning for Downstream Tasks. Since large pretrained lan-
guage models are trained using unsupervised training objectives
on huge amounts of data, they cannot generally be directly applied
to downstream tasks (e.g., translation, summarization). Fine-tuning
is a common technique to transfer the knowledge learned during
pretraining to target downstream tasks. Specifically, the pretrained
model is further trained for the downstream task on some amount
of supervised data.

2.3 Large Pretrained Language Models for
Software Engineering

Inspired by the success of large pretrained models in Natural Lan-
guage Processing (NLP), a number of machine learning models

pretrained on source code and technical text have been proposed
for solving various software-related problems.

For instance, inspired by BART, Ahmad et al. [1] developed
PLBART, which is a large pretrained language model that can be
fine-tuned for a number of code understanding (e.g., code sum-
marization) and generation (e.g., code translation) tasks. Similarly,
inspired by T5, Wang et al. [55] built a larger model CodeT5, which
is pretrained on six programming languages together with their nat-
ural language comments collected from open-source repositories.
Specially, it is pretrained to incorporate information from identifiers
in the code. CodeT5 has shown promising results in code-related
generation tasks such as code summarization, code generation and
code-related understanding tasks such as clone detection and vul-
nerability identification. However, aforementioned models are for
generation and they are only implicitly aware of edit operations if
at all.

3 CODITT5

CoprTT5 is built upon the encoder-decoder framework with the
same architecture as CodeT5. As shown in Figure 2, the model is
pretrained with our proposed objective: generating the edit-based
output sequence given the corrupted input sequence. In this section,
we first explain our proposed pretraining objective (Section 3.1).
We then discuss how we build CopITT5 by pretraining on this
objective, including the data used for pretraining (Section 3.2), and
additional details of the pretraining setup (Section 3.3).

3.1 Pretraining Objective

We formulate a new pretraining objective that is designed to en-
courage a model to explicitly reason about edits. At a high-level,
this objective falls under the realm of denoising autoencoding in
which an input sequence is first corrupted with noising functions
and the model is trained to denoise the corrupted sequence by gener-
ating an output sequence that matches the original input sequence.
While existing models like PLBART and CodeT5 pretrained using
this setup perform very well on various generation tasks (e.g., code
summarization/generation), we find that they do not generalize
well when fine-tuned on editing tasks. Namely, they are susceptible
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to learning to copy the original input sequence instead of actually
performing edits, up to 34.25% of the time (Table 3).

We propose the following edit-based output sequence representa-
tion (shown in Figure 2): [Edit Plan] <s> [Target Sequence], where
the model is trained to generate an edit plan (D)) consisting of ex-
plicit edit operations that must be applied to the corrupted sequence
to reconstruct the original input sequence, followed by a separation
token (<s>), and finally the target sequence (2)) that matches the
original input sequence. This is inspired by the concept of content
planning, originating from natural language generation [45]. In
content planning, a high-level plan is first outlined, specifying the
discourse structure of the content to be generated, and then lexical
realization is performed to generate the text.

3.1.1 Edit Plan. The edit plan entails the specific edit operations
that are needed to recover the original input sequence. For example,
in Figure 2, the input sequence: “@param users List of user objects” is
corrupted by masking “users” and removing token “user”: “@param
[MASK] List of objects”. With this, a model must first reason about
the fact that [MASK] in the corrupted input sequence needs to be
replaced with “users” and “user” should be inserted between “of”
and “objects” when producing the target sequence. To construct the
sequence of edit operations, we closely follow the format proposed
by Panthaplackel et al. [40]:

<Operation> [span of tokens] <OperationEnd>

Here, <Operation> is either Insert or Delete. We also include
the Replace operation, with a slightly different structure (since
both the old content to be replaced as well as the new content to
replace it with must be specified):

<Replace0ld> [span of old tokens]
<ReplaceNew> [span of new tokens] <ReplaceEnd>

To determine the specific edit operations for a given example, we use
difflib! to compute the optimal set of edits needed to transform the
corrupted input sequence into the original input sequence. Multiple
edit operations are placed in the same order as the span of tokens
under editing appears in the input sequence (for example, the edit
plan in Figure 2 consists of two edit operations).

3.1.2  Target Sequence. One might ask whether we could simply
apply the sequence of edit operations in the generated edit plan to
the corrupted input sequence directly to recover the original input
sequence heuristically. For example, if we align “<Replace0ld>
[MASK] <ReplaceNew> user <Replace0ld>” with a corrupted
input sequence “@param [MASK] List of user objects”, it is very clear
that all we need to do is replace [MASK] with “user”and no additional
generation is needed. However, there are two main issues with this.
First, not all operations will be specified in a deterministic manner.
For example, if the edit plan is “<Insert> user <InsertEnd>” it
is not clear where the new token “user” should be added to. Second,
the generated edit plan does not correspond to contiguous output
tokens since it consists of fragmented information (edit operations
and token spans) rather than a complete sentence. As a result, neural
language models may fail to generate correct edit plans due to their
lack of language properties such as fluency and coherency [40].

!https://docs.python.org/3/library/difflib.html
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Table 1: Statistics collected from downstream tasks for cre-
ating pretraining dataset. Avg. No. of Tokens represents the
average number of tokens in each edited span; Avg. No. of
Spans represents the average number of edited spans in each
input sequence.

PL NL

Probability of Delete edit | 0.49 0.07
Probability of Insert edit | 0.21 0.11
Probability of Replace edit | 0.30 0.82
Avg. No. of Tokens 6.50 3.00
Avg. No. of Spans 1.90 1.40

Therefore, we need an additional step for learning to apply edits
while simultaneously maintaining fluency and coherency. For this
reason, once the edit plan is outlined as a sequence of edit opera-
tions, the target sequence (which is expected to recover the original
input sequence) must also be generated: “@param users List of user
objects”. The decoder generates tokens in a left-to-right manner,
meaning that when generating a token at a given timestep, it is
aware of all tokens generated in previous timesteps. So, when gen-
erating the target sequence, the decoder can exploit the sequence
of edits that was generated in the edit plan earlier. In this way, the
model can reason the edits and the generation simultaneously.

3.1.3  Noising Functions. To support learning across a diverse set
of edit actions during pretraining, we consider multiple noising
functions for corrupting the input sequence: 1) randomly masking
spans with the special [MASK] token which requires the model
to replace it with the correct spans, 2) inserting [MASK] token at
random positions which requires the model to identify the useless
spans and delete them and 3) deleting spans of tokens in the input
sequence which requires the model pinpoint the position and add
back the missing pieces.

3.2 Pretraining Data

3.2.1 Data Collection. Following prior work, we pretrain Cop1tT5
on large amounts of source code and natural language comments
from the CodeSearchNet [22] dataset which consists of functions
of six programming languages (Java, Python, Ruby, Php, Go and
JavaScript) together with the natural language comments. Code-
SearchNet is widely used to pretrain large language models, such
as CodeT5 [55] and UniXcoder [18]. We use the training set of
the processed CodeSearchNet dataset provided by Guo et al. [18]
which contains 6.1 million programming languages code snippets
(functions/methods) and 1.9 million natural language comments.

3.2.2 Data Preparation. To enable CopITT5 to capture common
edit patterns, we want the pretraining dataset to reflect the common
activities conducted by software developers. Specifically, in the
pretraining dataset, the probability of each edit operations applied
to the spans in the input sequence and the length (number of tokens)
of the corrupted span should be consistent with the distributions
and sizes of real-world edits in downstream editing tasks.
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Table 2: Statistics of the datasets used to pretrain CopirT5.
First row: number of programming language and natural
language; second row: average number of tokens in cor-
rupted input sequences; third row: average number of to-
kens in the output sequence (edit plan + target sequence).

| PL NL
Examples 5,956,069 1,675,277
Avg. C-Tokens 102.01 15.42
Avg. O-Tokens 120.23 26.57

To this end, we collect statistics for source code edits from the
training sets of the bug fixing and automated code review down-
stream tasks and statistics for natural language edits from the com-
ment updating’s training set. As shown in Table 1, we collect the
probability of each edit operation (insert, delete and replace) to be
performed on a span; the average number of tokens in each span
that is edited; and the average number of spans that are edited in
each input sequence. For each example in the pretraining dataset,
we then uniformly sample the spans and the edit operations that
should be applied in accordance with the statistics collected from
the downstream datasets.

Similar to CodeT5 [55], we use the RoBERTa [30] tokenizer to
tokenize all sequences (input, edit plan, target). More concretely,
the tokenizer splits words in the sequence into tokens (subwords)
that are used by the model. Moreover, we remove input sequences
that are shorter than 3 tokens and longer than 512 tokens after
tokenization which leave us with 5.9 million programming language
code snippets and 1.6 million natural language comments. This is
because too short inputs are usually incomplete and CodeT5 is
designed to only handle sequence of length 512. Table 2 presents
the statistics of the pretraining dataset.

3.3 Pretraining Setup

Model Architecture. Cop1TT5 consists of 12 encoder and decoder
layers, 12 attention heads, and a hidden dimension size of 768.
The total number of parameters is 223M. Model parameters are
initialized from the CodeT5-base model, and we further pretrain it
on the CodeSearchNet pretraining dataset (Section 3.2) using our
proposed objective (Section 3.1).

Training. We implement CopITT5 using PyTorch 1.9.0 and use 16
NVidia 1080-TT GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
for pretraining for 4 days. For fine-tuning, we run the experiments
on 4 NVidia 1080-TI GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz with the same hyper-parameters as CodeT5.

4 EXPERIMENTAL DESIGN

To assess CoprTT5 and our proposed pretraining objective, we fine-
tune the model on three software-related downstream tasks. Note
that during fine-tuning, the model is still trained to generate the
edit-based output sequence. However, at test time, we discard the
edit plan and take the generated target sequence as the final model
output. Namely, we use the generated sequence after the separation
token <s> as model’s prediction.
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Table 3: Percentage that model just copy the input.

Models | PLBART CodeT5 CoditT5
B2F 6.48 7.97 0.55
B2F,, 10.92 10.08 0.78
Comment Updating (clean) 21.33 16.67 2.67
Comment Updating (full) 34.25 25.47 5.73
Automated Code Review 22.24 29.28 1.28

Table 4: Statistics for the datasets used for downstream
tasks.

Task ‘ Train Valid Test
1 16,494 1,878 150
Comment Updating cean
full 16,494 1,878 1,971
.. B2Fs 46,628 5,828 5,831
Bug Fixing
B2F,, 52,324 6,542 6,538
Automated Code Review ‘ 13,753 1,719 1,718

4.1 Downstream Tasks

Comment Updating. The task of comment updating entails auto-
matically updating a natural language comment to reflect changes
in the corresponding body of code [40]. For instance, in Example 2
in Figure 5, the old @return comment needs to be revised based
on the changes in the method. Instead of directly returning the
yaw Euler angle measured in radians, the unit of the return value
is changed to degrees in the new version, with the method call
Math. toDegrees().

Bug Fixing. Given a buggy code snippet, the task of bug fixing
entails generating a fixed code snippet, which no longer contains

the bug [48].

Automated Code Review. Given a code snippet under review and
a brief natural language sentence prescribing code edits, automated
code review requires automatically generating the revised code
snippet, which captures the recommended changes [51]. For exam-
ple, in Figure 1, emptyList () should be changed to Collections.-
emptyList() because the reviewer suggests not using static import.

4.2 Data for Downstream Tasks

We use datasets that have been established and previously used
for each of the three tasks. The statistics of the datasets is shown
in Table 4. Unlike pretraining where the goal is to recover the
corrupted input sequences, during fine-tuning, CopItT5 is trained
to generate an edit plan for completing the downstream editing
task, that can be applied to a part of the input (e.g., old comment),
followed by the target sequence (e.g., new comment).

Comment Updating. For this task, Panthaplackel et al. [39] has
released a corpus of Java method changes paired with changes
in the corresponding comments (spanning @return, @param, and
summary comments). This dataset also comes with a clean subset of
the test set which was manually curated. The input sequence used



ASE 22, October 10-14, 2022, Rochester, MI, USA

for fine-tuning is formed by concatenating the old comment and
code edits. The code edits follow the representation described in
Section 3.1.1, except that an additional Keep operation is included
to denote spans that are left unchanged.

Bug Fixing. We consider the Java BugFixPairs-Small (B2Fs) and
BugFixPairs-Medium (B2Fy,) datasets, originally released by Tufano
et al. [48]. Chakraborty and Ray [8] supplemented these datasets
with additional context, namely natural language guidance from
the developer, and the method where the patch should be applied.
B2F; contains shorter methods with a maximum token length 50,
and B2F,, contains longer methods with up to 100 tokens in length.
The input sequence used for fine-tuning is formed with the buggy
code, natural language guidance, and code context.

Automated Code Review. We use the automated code review
dataset released by Tufano et al. [51], which consists of Java meth-
ods (before and after the review) paired with pull request comments,
derived from pull request reviews on GitHub and Gerrit. To reduce
the vocabulary size, they further abstracted Java methods by re-
placing identifiers and literals with special tokens. In this work,
we use the data with concrete tokens. The input sequence used for
fine-tuning is formed using the code snippet before review and the
pull request comment from reviewers.

4.3 Baselines

4.3.1 Generation Baselines. We consider two large standard gen-
eration language models trained with denoising autoencoding pre-
training objectives which are not edit-based: PLBART and CodeT5.
Both of these are fine-tuned to directly generate the target output
sequence. Furthermore, to better assess the value of actually pre-
training using the proposed objective instead of simply fine-tuning
a model to generate an edit-based output sequence, we also con-
sider fine-tuning CodeT5 to generate the specialized edit-based
output sequence representation. We refer to this as CodeT5 (w/
edit-based output). We fine-tune each of these models using the
same input context as CopITT5.

4.3.2  Task-Specific Baselines. We additionally compare against the
state-of-the-art models for each of the downstream tasks.

For comment updating, the state-of-the-art model is Panthap-
lackel et al. [40], which entails Recurrent Neural Network (RNN)
based encoders for representing the old comment and code ed-
its, and an RNN-based decoder for decoding edits. These edits are
parsed at test time and reranked based on similarity to the old
comment and likelihood based on a comment generation model.

For bug fixing, the state-of-the-art model is essentially PLBART
fine-tuned on the B2Fs and B2F,, to generate the fixed code [8].

For automated code review, no baselines are available for the
specific version of the dataset we used with concrete identifiers and
literals (rather than the one with abstracted identifiers and literals).
Therefore, we rely on those described in Section 4.3.1 and establish
new baselines for this version of the dataset.

4.4 Evaluation Metrics

For comment updating, we report performance on the same met-
rics that have been used previously to benchmark models for this
task [40]. This includes: xMatch (whether the model prediction
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Before Editing:

public HashConfigurationBuilder capacityFactor (float capacityFactor) {
if ( numSegments < @ )
throw new IllegalArgumentException ("capacityFactor must be positive");
this.capacityFactor = capacityFactor ;
return this;

¥
Reviewer’s Comment:

typo: capacityFactor instead of numSegments
CodeT5:

public HashConfigurationBuilder capacityFactor(float capacityFactor) {
this.capacityFactor = capacityFactor;
return this;

¥
CopITT5:

public HashConfigurationBuilder capacityFactor (float capacityFactor) {
if ( capacityFactor < 0 )
throw new IllegalArgumentException ("capacityFactor must be positive") ;
this.capacityFactor = capacityFactor;
return this;

Figure 3: Comparing the output of CodeT5 and CoprrT5
for a automated code review example. CodeT5 generates in-
correct output that drastically deviates from the input code
while CoprTT5 generates the correct output, performing
only relevant edits.

exactly matches the ground truth), common metrics that measure
lexical overlap for evaluating text generation (BLEU-4 ? [41] and
METEOR [3]), and common metrics for measuring text editing
(GLEU [35] and SARI [56]). For bug fixing, we use xMatch, as done
in prior work [8]. For automated code review, we report perfor-
mance on xMatch and BLEU-4, which have been used previously
to benchmark models for this task [51].

5 EVALUATION

We organize our evaluation around three main research questions:
RQ1: How does our edit-based model, Cop1TT5, compare to gener-
ation and task-specific baselines for edit-related tasks?

RQ2: Does our proposed pretraining objective help a model in
better reasoning about and performing edits?

RQ3: Can a standard generation model complement Cop1TT5 by
integrating the two models?

5.1 Comparing Cop1iTT5 to Baselines

We present results in Tables 5-8. Note that the results shown in the
last two rows in each of the tables are explained later in Section 5.3.
We perform statistical significance testing using bootstrap tests [4]
with confidence level 95%.

RQ1: How does our edit-based model, CoprtT5, compare to
generation and task-specific baselines for edit-related tasks?

We find that CoprTT5 (and most of the pretrained models) drasti-
cally outperforms Panthaplackel et al. [40] (a non-pretrained model)
across metrics for comment updating. This demonstrates the value

2We measure 1~4-gram overlap and compute the average.
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Table 5: Results for comment updating on the clean test set. The results with the same prefixes (e.g., f) are NOT statistically

significantly different.
Models ‘ xMatch BLEU-4 METEOR GLEU SARI
Panthaplackel et al. [40] 33.33 56.55 52.26 51.88 56.23
PLBART 35.33 62.04Y 56.79 54.75 52.83
CodeT5 38.00 65.20% 59.63 58.848 58.80
CodeT5 (w/ edit-based output) 40.00 62.97 59.08 58.728  61.11¢"
CoditT5 43.33X 64.56 60.75 59.53  61.41%¢
CoditT5 (reranked with CodeT5) | 45.33 66.80 63.33 61.60 61.48%7
CodeT5 (reranked with CoditT5) | 44.00X 65.58% 62.44 60.48 62.57

Table 6: Results for comment updating on the full test set. The results with the same prefixes (e.g., f) are NOT statistically

significantly different.
Models ‘ xMatch BLEU-4 METEOR GLEU SARI
Panthaplackel et al. [40] 24.81 48.89 44.58 45.69 47.93
PLBART 22.98 55.42M 49.12 47.83 43.40
CodeT5 28.56 58.37% 53.13 51.90 49.23
CodeT5 (w/ edit-based output) 29.83%Y 54.83 50.71 50.67¢  52.017
CoditT5 2938%  5530P"  51.14¥ 5062 5139
CoditT5 (reranked with CodeT5) | 30.147  58.72¢ 53.60 52.81  50.47
CodeT5 (reranked with CoditT5) 27.80 55.5457% 51.44X 50.02 52.247

Table 7: Results on bug fixing dataset. The results with the
same prefixes (e.g., ) are NOT statistically significantly dif-
ferent.

xMatch

Models

B2F,  B2Fy,
PLBART 31.09 24.18
CodeT5 34.81 26.66
CodeT5 (w/ edit-based output) 36.37 29.28%
CoditT5 37.52  29.96%
CoditT5 (reranked with CodeT5) | 40.22  32.06°
CodeT5 (reranked with CoditT5) | 39.56 32.248

of large language model pretrained on vast amounts of data using
unsupervised pretraining objectives.

Next, across all three tasks, Cop1TT5 achieves higher perfor-
mance than the two standard generation-based pretrained models,
significantly outperforming PLBART and CodeT5 for most of the
metrics, highlighting the benefit of explicitly modeling edits for
these editing tasks. In fact, CodeT5 (w/ edit-based output), which ex-
plicitly models edits only during fine-tuning rather than pretraining,
outperforms CodeT5 on edit-based metrics (xMatch, SARI). This
further underlines the utility of the edit-based output sequence
representation that we developed.

Nonetheless, across most metrics, CoprTT5 still outperforms
CodeT5 (w/ edit-based output), which is not pretrained using the

Table 8: Results for automated code review. The results with
the same prefixes (e.g., f) are NOT statistically significantly
different.

Models | xMatch BLEU-4
PLBART 26.78 79.38
CodeT5 34.98 83.20
CodeT5 (w/ edit-based output) 36.38% 80.068
CoditT5 3719 80.508
CoditT5 (reranked with CodeT5) | 40.98 84.12%
CodeT5 (reranked with CoditT5) | 43.42 83.92X

pretraining objective but uses the same edit-based output sequence
representation during fine-tuning. This demonstrates the impor-
tance of actually pretraining with this representation rather than
relying on fine-tuning alone.

5.2 Evaluating our Pretraining Objective

While we observe that CopITT5 tends to achieve slightly lower
performance than CodeT5 on generation-based metrics (BLEU-4,
METEOR) for two of the tasks, we find that it significantly out-
performs other metrics which capture whether the correct edits
are generated, such as xMatch and GLEU and SARI for comment
updating. This suggests that Cop1TT5 is indeed better at editing. By
inspecting the outputs of the two models, we find that CodeT5 tends
to make drastic and unnecessary edits while Cop1TT5 appears to be
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Example 1
Before Editing:

protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {
long last = tracker.readLastCommittedOffset();
return ( last > @ ) & ( last >= offset );

3}

Reviewer’s Comment:

No need for parentheses.

Edit plan

(Delete) ( (Delete_End) (Delete) ) (Delete_End)

Target sequence:

protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {
long last = tracker.readLastCommittedOffset();
return last > 0 && last >= offset;

}

Example 2
Before Editing:

public Builder setDataSize(Estimate dataSize) {
this.dataSize = requireNonNull(dataSize, "dataSize can not be null");
return this;
3}
Reviewer’s Comment
you don’t validate in other builders method (and you don’t have to)
Edit plan
(Delete) requireNonNull(dataSize, "dataSize can not be null"); (Delete_End)
Target sequence:

public Builder setDataSize(Estimate dataSize) {
this.dataSize = dataSize;
return this;

Figure 4: Examples for automated code review for which
CopITT5 generated ambiguous or erroneous edit plans but
still managed to generate the correct target sequences.

Table 9: Percentages of target sequence generated by
CopITT5 being consistent with the edit plan.

Datasets ‘ Is Consistent (%)
B2F; 92%
B2F,, 88%
Comment Updating (clean) 87%
Comment Updating (full) 85%
Automated Code Review 74%

better at making more fine-grained edits. For example, in Figure 3,
CodeT5 generates output that completely discards critical state-
ments in the code, whereas CopITT5 is able to correctly localize the
part of the input code that needs to be changed and make editions
properly. We attribute this to the fact that CodeT5 is not designed to
reason about edits while Cop1TT5 is. We further evaluate the influ-
ence of our proposed pretraining objective on this editing capability.

RQ2: Does our proposed pretraining objective help a model in
better reasoning about and performing edits?

First, we compare how often Cop1TT5 naively copies the input
content without actually performing any edits, to two pretrained
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models which use generation-based pretraining objectives. We re-
port the percentages in Table 3. By copying substantially less often
than the PLBART and CodeT5, we find that Cop1TT5 learns to more
frequently perform edits with our proposed edit-based pretraining
objective which indicates it is suitable for editing tasks.

CoprTT5’s decoder is encouraged to generate a target sequence
that follows the outlined edit plan; however, we do not constrain
the decoder in any way to do this.? Nonetheless, we find that in
the majority of cases (74%-92%), the target sequence is consistent
with the edit plan, as shown in Table 9. More concretely, the target
sequence generally resembles what would be produced if the edit
operations in the edit plan were applied to the original content.
This suggests that the pretraining objective does in fact guide the
model in reasoning about edits.

For cases in which there is ambiguity or errors in the edit plan,
we find that Cop1TTS5 still often manages to generate the correct tar-
get sequence, by disregarding unreasonable edits or disambiguating
ambiguous edits. We show two examples in automated code review
in Figure 4 with the Java method before review, the generated edit
plan, and the generated target sequence. In Example 1, the edit plan
is ambiguous since there are multiple instances of “(” and it does
not specify which one(s) should be deleted. However, the gener-
ated target sequence is correct, as the model was able to correctly
reason about the most appropriate edit locations. In Example 2,
the edit plan is imprecise and blindly following this plan would
result in syntactically incorrect code, but the model still managed
to perform the correct edits and produced valid output by ignoring
the fallacious edit. Overall, we find that both components of the
edit-based output sequence representation used in the pretraining
objective (edit plan and target sequence) are critical.

5.3 Integrating CopIiTT5 and CodeT5

CopITT5 is designed to complement a generation model by pro-
viding more explicit guidance for edits. However, a model that is
trained to generate edits can struggle with coherence and fluency
since it is not actually trained to generate consecutive text [40]. By
including the generation of the target sequence in the pretraining
objective, we do mitigate this to some extent, even when there are
ambiguities or errors in the edit plan. However, there appears to be
a trade-off between performing the correct edits while maintaining
performance with respect to generation metrics. More specifically,
in Tables 5-8, CopITT5 outperforms CodeT5 with respect to xMatch
(and SARI for comment updating), but underperforms with respect
to BLEU-4. To exploit the slight superiority of CodeT5 in this re-
spect, we consider incorporating CodeT5 into our approach.

RQ3: Can a pure generation model complement Cop1TT5 by
integrating the two models?

5.3.1 Experimental Setup. We combine the two models using sim-
ple likelihood-based reranking strategies at test time (with no addi-
tional training). Namely, at test time, Cop1TT5 and CodeT5 each
generate 20 candidates using beam search. While we have been
only looking at the top one prediction for all previous experiments,
we will consider all 20 candidates for reranking. We compute a

3We do not want potential errors in the edit plan to propagate to the target sequence.



CopITT5: Pretraining for Source Code and Natural Language Editing

Example 1

Buggy Code

public List<TagVFilter> getFilters() {
if ((filters) == null ) {
filters = new ArraylList<TagVFilter>();
¥
return filters;
}
CobItT5:
public List<TagVFilter> getFilters() {
if ((filters) == null ) {
filters = new ArraylList<TagVFilter>();
}

return new ArraylList(filters);

}

CoprTT5 (reranked with CodeT5):
public List<TagVFilter> getFilters() {
if ((filters) == null ) {
filters = new ArrayList<TagVFilter>();
}

return new ArraylList<TagVFilter>(filters);

}

Example 2
/%% @return double The yaw Euler angle. */
public double getRotY() {

return mOrientation.getRotationY();

}

/*% @return ? x/
public double getRotY() {
return Math.toDegrees(mOrientation.getRotationY());

}
CodeT5: @return double The yaw Euler angle.

Reranked CodeT5: @return double The yaw Euler angle in degrees.

Figure 5: Examples from comment updating and bug fixing
which demonstrate the impact of reranking,.

reranking score for each of these to essentially re-score them. The
candidate which has the highest reranking score will be the final
model prediction. We investigate two different reranking strategies:

CobpITT5 (reranked with CodeT5): To exploit the language-specific
norms learned by CodeT5, we rerank the candidates generated by
Cop1TT5 based on the probability score CodeT5’s language model
assigns to the corresponding target sequences (namely after <s>).

We compute the length-normalized conditional log probability
score of CodeT5 generating the target sequence, conditioned on
the same input:

score = log(P(T|I)%)

where T is the target sequence, I is the model’s input, N is the
length of T. We also length-normalize the log probability of the
candidate, as scored by Cop1TT5, and then add the two probability
scores together to obtain the reranking score.

CodeT5 (reranked with CoprTT5): Conversely, we also rerank the
output of CodeT5 based on the likelihood of CopiTT5, such that

the generated sequence can be assessed in terms of explicit edits.

We first parse the output of CodeT5 into the edit-based output
sequence representation (as described in Section 3.1.1) and then
concatenate it with the model’s output using <s>. Then we compute
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the likelihood of CopITT5 generating this sequence, conditioned on
the same input. We then add the length-normalized log probability
score of CoprTT5 with the score originally assigned by CodeT5
(after length-normalizing and applying log).

5.3.2  Results. We provide results in the bottom two rows of Ta-
bles 5-8. By reranking the output of CopITT5 using CodeT5, we are
able to achieve improved performance on all the metrics including
BLEU-4 across tasks (and the other generation-based metric, ME-
TEOR, for comment updating). To illustrate this, consider Example 1
in Figure 5, with a buggy code snippet and outputs corresponding
to CobpITT5 before and after reranking. We observe that Cop1tT5
correctly localizes the bug and correctly identifies that the edit
entails initializing an ArrayList in the return statement. However,
the generated target sequence is a defective code snippet which
does not properly initialize an ArrayList with the correct type
TagVFilter. By leveraging CodeT5’s likelihood score, we are able
to effectively filter out the defective prediction and obtain the cor-
rect output.

By reranking the output of CodeT5 using CopITT5, we see signif-
icant improvements with respect to CodeT5 on metrics that more
directly evaluate whether the correct edits were performed, in-
cluding xMatch as well as GLEU and SARI for comment updating.
This suggests that the edit-based and generation-based models are
indeed complementary to one another. As a case study, consider
Example 2 in Figure 5. CodeT5 produces a sequence which simply
copies the old comment, without capturing the code changes. While
this may be a likely comment sequence, according to CodeT5’s lan-
guage model, copying without applying any edits is not a likely
edit plan to be generated for CoprrT5.

By combining CoprTT5 and CodeT5 through reranking, we can
further boost performance substantially across most metrics for
all three tasks, outperforming the two models individually, and
achieving new state-of-the-art.

6 LIMITATIONS

Other Programming Languages. The downstream editing tasks
we studied in this work are using Java. Since CopITT5’s pretraining
is on the dataset consisting of six programming languages, we
expect it to also perform well on editing tasks in other programming
languages, but we leave empirically verifying this as future work.
Data Contamination. CopITT5 is pretrained on data collected
from open-source projects. It is possible that similar examples in
pretraining data exist in downstream tasks’ test set. While prior
work [7] has shown that data contamination may have little im-
pact on the performance of pretrained models in natural language
processing tasks, future work can investigate this problem for pre-
trained models for software engineering.

7 RELATED WORK

In this section, we consider the most closely related work on learn-
ing edits, large pretrained models for code, pretrained models for
code edits and combining complementary models.

Learning Edits. Prior work has studied learning edits in both
natural language and programming language. We followed the
approach of explicitly representing edits as sequences with edit
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actions. Our edit representation is inspired by Panthaplackel et al.
[39, 40], who studied learning comment edits based on code edits.
Brody et al. [6], Chen et al. [10], Tarlow et al. [47], Yao et al. [57]
represented code as ASTs (abstract syntax trees) and the code edits
as edit actions over the AST nodes rather than tokens. We do not
focus on editing structured data (AST) as it can not be generalized
to natural language, and it can not be easily combined with large
pretrained models which are primarily based on sequence of tokens.

Alternatively, edits can be encoded into vector representations
(or embeddings). Guu et al. [20] studied learning edit embeddings
for natural language generation in a prototype-then-edit style. Yin
et al. [59] studied learning code edits as embeddings and then
applying them to natural language insertion and code bug fixing.
Hashimoto et al. [21] developed a retrieve-and-edit framework for
text-to-code generation, where the edits are learned as parameters
of a seq2seq model. Similarly, Li et al. [27] proposed a retrieve-
and-edit framework for code summarization task where the model
first learns an edit vector and then generate the revised summary
conditioned on it. Although learning edits as embeddings can be
effective for individual tasks, it is not suitable to be used in the
pretraining fine-tuning paradigm, because there is a large domain
gap between the edit embeddings learned on different tasks. More
over, edit embeddings are less explainable compared to the explicit
edit representations we use.

Another line of work that carries out the idea of learning edits is
copying mechanism, including copying individual tokens [17, 53]
and spans [38, 60], which helps the model to “keep” unchanged
tokens and focus on generating the edited part. Iv et al. [23] built a
T5-based model to update the existing articles based on the given
new evidence. The model is trained to output a copy token instead
of the copied sentence and a special reference token before the
updated text which identifies the evidence to support the update.
Ding et al. [12] trained the model to emit pointers that indicate
the positions for editions and new tokens to be inserted at the
same time. Similarly, Chen et al. [10], Tarlow et al. [47] augmented
the transformer-based decoder with pointers to the input graph
representation of the code which specify the input locations to edit.
Although related, it is orthogonal to our work of learning edits with
pretraining.

Large Pretrained Models for Code. Motivated by the success
of large pretrained models for many NLP tasks, domain-specific
models that are pretrained on source code and technical text have
emerged, including CodeBERT [15], GraphCodeBERT [19], CodeGPT-
2 [32], CodeT5 [55], PLBART [1], PyMT5 [11], SynCoBERT [54],
SPT-Code [37], Codex [9] and UniXcoder [18]. Similar to our ap-
proach, GraphCodeBERT, CodeT5, SynCoBERT, SPT-Code and UniX-
coder also designed specialized pretraining objectives driven by
their targeted tasks. As we showed in this work, the combination
of an edit-based language model and a standard language model
can achieve better performance than using the standard language
model alone.

Pretrained Models for Code Edits. Prior work already explored
applying pretrained models, despite not well-suited, on editing
tasks. Chakraborty and Ray [8] used PLBART for code bug fixing,
which we compared to in our work. Similarly, Drain et al. [13] fur-
ther pretrained BART model on 67K Java repositories mined from
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GitHub and fine-tuned specifically on the bug fixing dataset [49].
Mastropaolo et al. [34], Wang et al. [55] both pretrained T5 model
on CodeSerchNet and used it for bug fixing, which we included
as a baseline (CodeT5). Codex [9] showed promising performance
on editing tasks by specifying the existing code as a prompt and
providing an edit instruction to the model. Tufano et al. [50] and
Li et al. [28] both proposed a transformer-based encoder-decoder
model pretrained on large code reviewer specific data for code re-
view related tasks including code change quality estimation, review
comment generation and code refinement. While they demonstrate
impressive performance on various tasks, none of them are fun-
damentally well-suited for edit tasks. In this work, we develop
CopITT5 with a novel pretraining objective for generating edit
sequences, which can complement the generation model such as
CodeT5 for edit tasks.

Combining Complementary Models. We used reranking [24,
36] to combine complementary models in this work. Ensembling [25]
is another approach for combining complementary models for gen-
eration tasks, but requires additional training. Co-training [5] and
tri-training [61] approaches, although shown to be very effective in
combining complementary models, are designed for classification
models rather than generation models.

8 CONCLUSION

In this paper, we present a novel edit-driven pretraining objec-
tive and use it to develop CopITT5, a pretrained language model
for software-related editing tasks. CoprTT5 is pretrained on large
amounts of source code and natural language comments to perform
edits, and we evaluate this model by fine-tuning it on three distinct
downstream tasks: comment updating, bug fixing and automated
code review. By outperforming task-specific baselines and pure
generation baselines across tasks, we demonstrate the suitability of
CobITT5 (and our pretraining objective) for editing tasks and its
generalizability. We additionally find that a pure generation-based
model and CopITT5 can complement one another through simple
reranking strategies, which outperform each of the models indi-
vidually and also achieve new state-of-the-art performance for the
three downstream editing tasks that we consider.
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