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ABSTRACT

Pretrained language models have been shown to be effective in

many software-related generation tasks; however, they are not well-

suited for editing tasks as they are not designed to reason about

edits. To address this, we propose a novel pretraining objective

which explicitly models edits and use it to build CoditT5, a large

language model for software-related editing tasks that is pretrained

on large amounts of source code and natural language comments.

We fine-tune it on various downstream editing tasks, including

comment updating, bug fixing, and automated code review. By

outperforming standard generation-based models, we demonstrate

the generalizability of our approach and its suitability for editing

tasks. We also show how a standard generation model and our edit-

basedmodel can complement one another through simple reranking

strategies, with which we achieve state-of-the-art performance for

the three downstream editing tasks.
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1 INTRODUCTION

Large language models pretrained on massive amounts of data

have led to remarkable progress in recent years, with models like

BART [26], GPT [7, 43], and T5 [44] yielding huge improvements

for a vast number of text generation tasks. Inspired by this, a new re-

search initiative has emerged around building large models that are

pretrained on source code and technical text to address software-

related tasks. This includes models like PLBART [1], CodeGPT-

2 [32], and CodeT5 [55]. While these models demonstrate impres-

sive performance on generation tasks like code summarization,

code generation, and code translation, it is unclear if they are well-

suited for the editing nature of many software-related tasks. For

instance, bug fixing [49] entails editing source code to resolve bugs,

automated code review [51] requires editing source code to in-

corporate feedback from review comments, and comment updat-

ing [16, 29, 31, 40] pertains to updating outdated natural language

comments to reflect code changes.

In principle, such editing tasks can be framed as standard gener-

ation tasks in which an input sequence (e.g., buggy code snippet) is

completely re-written to form the output sequence (e.g., fixed code

snippet). In this way, existing pretrained conditional generation

models can be fine-tuned to autoregressively generate a sequence

from scratch. However, this can be problematic in practice [40].

When applying large generation models like PLBART and CodeT5

to these tasks, we find that they can generate output which merely

copies the input without performing any edits (up to 34.25%) or

even deviates substantially from the input, introducing irrelevant

changes. We provide an example of automated code review in Fig-

ure 1, where a reviewer prescribes edits that need to be made to a

given code snippet: łGenerally better to qualify than making static

importž. Using the code snippet and this comment, PLBART gener-

ates an output sequence which copies the original code, without

applying any edits. While the output is valid and a likely sequence

according to PLBART’s language model, it makes no edits based

on the reviewer’s comments.

We attribute these weaknesses to the fact that such models rely

on pretraining objectives designed for generating code (or software-

related natural language) in sequence by exploiting patterns with

respect to preceding tokens. Therefore, a model has to learn to

implicitly perform edits by generating tokens one by one in accor-

dance with the underlying probability that it has learned for which
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tokens belong alongside one another, rather than being aware of

where information should be retained or modified.

Intuitively, edit-based generation requires a different approach

that more frequently refers back to the input sequence, and can

often be characterized by localized operations (e.g., insertion, dele-

tion, substitution). To guide a model in discerning edit locations

in the input sequence and reason about the necessary edit opera-

tions, we design a novel pretraining objective that explicitly models

edits. Our approach is inspired by content planning in natural

language generation where a skeleton of key elements are first

generated and used to guide more accurate and precise generation

of full text [14, 33, 42, 45]. Specifically, during decoding, a model

first generates an edit plan that explicitly details the edit opera-

tions. Then, it proceeds to autoregressively generate the target

edited sequence, during which it attends to the edit plan. Through

this, we effectively encourage the model to learn to better reason

about edits and how they should be applied to form the target se-

quence. Using this objective, we develop CoditT5, a large language

model for software-related edit tasks that is pretrained on more

than 5.9 million open-source programming language code snippets

and 1.6 million natural language comments from the CodeSearch-

Net [22] training data.

For evaluation, we fine-tune CoditT5 on three downstream

tasks: comment updating, bug fixing, and automated code review.

For each of these tasks, we show that CoditT5 outperforms state-

of-the-art models as well as large pretrained standard generation-

based models. Through this, we demonstrate that our model and the

proposed edit-based pretraining objective generalize across tasks

and are better suited for editing tasks in the software domain.

Furthermore, in our evaluation, we find that our edit-based

model, CoditT5, can be further improved if combined with a stan-

dard generation-based model. We find that the edit-based and stan-

dard generation-based models are complementary to one another.

Namely, while the edit-based model provides better explicit model-

ing of concrete edits, a standard generation-based model provides

certain advantages in terms of the contextual coherence of the gen-

erated target sequence. To exploit this complementary nature of

these models, we combine the two models through reranking strate-

gies which require no additional training. Our results show that

the combined approaches outperform the two models individually

by up to 19.35%.

We summarize our main contributions as follows:

• We formulate a novel pretraining objective that entails first gen-

erating a plan consisting of edit operations to be applied to the

input sequence followed by the resulting target sequence.

• Webuild and releaseCoditT5, a large languagemodel for software-

related editing tasks that is pretrained on large amounts of source

code and natural language with the new pretraining objective.

• Upon task-specific fine-tuning, we show that CoditT5 achieves

improved performance over existing models for three distinct

downstream editing tasks (comment updating, bug fixing and

automated code review), demonstrating its effectiveness and

generalizability.

• We show that by combining our edit-based CoditT5 model with

a standard generation model through simple reranking strategies,

Before Editing

default List<Pattern> getExcludedResponseHeaderPatterns() {

return emptyList();

}

Reviewer’s Comment

Generally better to qualify than making static import

PLBART

default List<Pattern> getExcludedResponseHeaderPatterns() {

return emptyList();

}

Figure 1: An example in automated code review task where

PLBART merely copies the input which does not match re-

viewer’s comment.

we can beat each of the individual models and achieve new state-

of-the-art in all three tasks, demonstrating the complementary

nature of edit-based and standard generation models.

Our code and data is publicly available at

https://github.com/EngineeringSoftware/CoditT5.

2 BACKGROUND

We first give a high-level overview of the building blocks that are

necessary to understand our approach.

2.1 Generation with Transformer-Based
Models

Conditional Sequence Generation. Conditional sequence genera-

tion entails generating an output sequence given an input sequence.

Many tasks are framed in this manner, including machine transla-

tion (e.g., translating a sentence from French to English) [2], text

summarization (e.g., generating a brief summary for a given news

article) [46], and code generation (e.g., generating a code snippet

for a given natural language specification) [58].

Encoder-Decoder Framework. In recent years, conditional sequence

generation tasks are being addressed with encoder-decoder models.

An encoder-decoder model consists of two neural components: an

encoder and a decoder. The input sequence is fed into the encoder,

which produces learned vector representations of the tokens in that

sequence. These learned vector representations are then passed into

the decoder, which generates the output sequence one token at a

time. Specifically, the decoder predicts the next token by reasoning

over the input sequence and the tokens generated at previous time

steps.

Transformers. Transformers [52] are powerful neural models

that are commonly adopted as the encoder and decoder in the

encoder-decoder framework. These models rely on an attention

mechanism to learn representations for tokens by relating them to

other tokens in the sequence. Namely, a transformer-based encoder

will learn representations for each token in the input sequence by

łattendingž to other input tokens. For the decoder, when generating

a token at timestep 𝑡 , it will łattendž to the representations of the

output tokens generated from timestep 1 to 𝑡 − 1 as well as the

representations of tokens from the input sequence. Transformer

models can become very large with huge numbers of attention

heads, encoder and decoder layers.
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Encoder

@param [MASK] List of objects

@param users List of user objects

Decoder

<ReplaceOld> [MASK] <ReplaceNew> users <ReplaceEnd> <Insert> user <InsertEnd>

<s>

@param users List of user objects

1

2

noising function

Figure 2: The corrupted text is encoded with a bidirectional encoder, and the decoder is pretrained to generate sequences of

edit actions to recover the original text followed by a separation token (<s>), and finally the target sequence

2.2 Large Pretrained Language Models

Large pretrained language models generally refer to the class of

large transformer-based models that are trained on large amounts

of unlabeled data (collected from webpages, news articles, etc.) with

unsupervised training objectives. This includes a vast number of

models like GPT [7, 43], BART [26], and T5 [44].

Denoising Autoencoder Pretraining. BART and T5 models are

pretrained using denoising autoencoding unsupervised training

objectives. Namely, a noising function is first applied to a given

input sequence inp to form inp′. Common noising functions include

Token Masking: tokens in the input sequence are randomly masked;

Token Deletion: random tokens are deleted from the input sequence;

Token Infilling: a span of tokens are sampled and replaced with a

mask token; Sentence Permutation: sentences in the document are

shuffled in a random order. Then, inp′ is fed into a model’s encoder,

and the encoder’s learned representation is passed into the decoder,

which generates an output sequence, out, that is expected to resem-

ble the original input sequence (inp). In other words, the model is

trained to łdenoisež inp′, using a training objective that minimizes

the error between out and the original input, inp. Through this, the

model learns to extract meaning from the input sequence and also

generate fluent and coherent output. Therefore, by pretraining on

massive amounts of data, the model develops an understanding of

how things in the world relate to one another as a strong language

modeling capability.

Fine-tuning for Downstream Tasks. Since large pretrained lan-

guage models are trained using unsupervised training objectives

on huge amounts of data, they cannot generally be directly applied

to downstream tasks (e.g., translation, summarization). Fine-tuning

is a common technique to transfer the knowledge learned during

pretraining to target downstream tasks. Specifically, the pretrained

model is further trained for the downstream task on some amount

of supervised data.

2.3 Large Pretrained Language Models for
Software Engineering

Inspired by the success of large pretrained models in Natural Lan-

guage Processing (NLP), a number of machine learning models

pretrained on source code and technical text have been proposed

for solving various software-related problems.

For instance, inspired by BART, Ahmad et al. [1] developed

PLBART, which is a large pretrained language model that can be

fine-tuned for a number of code understanding (e.g., code sum-

marization) and generation (e.g., code translation) tasks. Similarly,

inspired by T5, Wang et al. [55] built a larger model CodeT5, which

is pretrained on six programming languages together with their nat-

ural language comments collected from open-source repositories.

Specially, it is pretrained to incorporate information from identifiers

in the code. CodeT5 has shown promising results in code-related

generation tasks such as code summarization, code generation and

code-related understanding tasks such as clone detection and vul-

nerability identification. However, aforementioned models are for

generation and they are only implicitly aware of edit operations if

at all.

3 CODITT5

CoditT5 is built upon the encoder-decoder framework with the

same architecture as CodeT5. As shown in Figure 2, the model is

pretrained with our proposed objective: generating the edit-based

output sequence given the corrupted input sequence. In this section,

we first explain our proposed pretraining objective (Section 3.1).

We then discuss how we build CoditT5 by pretraining on this

objective, including the data used for pretraining (Section 3.2), and

additional details of the pretraining setup (Section 3.3).

3.1 Pretraining Objective

We formulate a new pretraining objective that is designed to en-

courage a model to explicitly reason about edits. At a high-level,

this objective falls under the realm of denoising autoencoding in

which an input sequence is first corrupted with noising functions

and the model is trained to denoise the corrupted sequence by gener-

ating an output sequence that matches the original input sequence.

While existing models like PLBART and CodeT5 pretrained using

this setup perform very well on various generation tasks (e.g., code

summarization/generation), we find that they do not generalize

well when fine-tuned on editing tasks. Namely, they are susceptible
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to learning to copy the original input sequence instead of actually

performing edits, up to 34.25% of the time (Table 3).

We propose the following edit-based output sequence representa-

tion (shown in Figure 2): [Edit Plan] <s> [Target Sequence], where

the model is trained to generate an edit plan ( 1 ) consisting of ex-

plicit edit operations that must be applied to the corrupted sequence

to reconstruct the original input sequence, followed by a separation

token (<s>), and finally the target sequence ( 2 ) that matches the

original input sequence. This is inspired by the concept of content

planning, originating from natural language generation [45]. In

content planning, a high-level plan is first outlined, specifying the

discourse structure of the content to be generated, and then lexical

realization is performed to generate the text.

3.1.1 Edit Plan. The edit plan entails the specific edit operations

that are needed to recover the original input sequence. For example,

in Figure 2, the input sequence: ł@param users List of user objectsž is

corrupted by masking łusersž and removing token łuserž: ł@param

[MASK] List of objectsž. With this, a model must first reason about

the fact that [MASK] in the corrupted input sequence needs to be

replaced with łusersž and łuserž should be inserted between łofž

and łobjectsž when producing the target sequence. To construct the

sequence of edit operations, we closely follow the format proposed

by Panthaplackel et al. [40]:

<Operation> [span of tokens] <OperationEnd>

Here, <Operation> is either Insert or Delete. We also include

the Replace operation, with a slightly different structure (since

both the old content to be replaced as well as the new content to

replace it with must be specified):

<ReplaceOld> [span of old tokens]

<ReplaceNew> [span of new tokens] <ReplaceEnd>

To determine the specific edit operations for a given example, we use

difflib1 to compute the optimal set of edits needed to transform the

corrupted input sequence into the original input sequence. Multiple

edit operations are placed in the same order as the span of tokens

under editing appears in the input sequence (for example, the edit

plan in Figure 2 consists of two edit operations).

3.1.2 Target Sequence. One might ask whether we could simply

apply the sequence of edit operations in the generated edit plan to

the corrupted input sequence directly to recover the original input

sequence heuristically. For example, if we align ł<ReplaceOld>

[MASK] <ReplaceNew> user <ReplaceOld>ž with a corrupted

input sequence ł@param [MASK] List of user objectsž, it is very clear

that all we need to do is replace [MASK]with łuseržand no additional

generation is needed. However, there are two main issues with this.

First, not all operations will be specified in a deterministic manner.

For example, if the edit plan is ł<Insert> user <InsertEnd>ž, it

is not clear where the new token łuserž should be added to. Second,

the generated edit plan does not correspond to contiguous output

tokens since it consists of fragmented information (edit operations

and token spans) rather than a complete sentence. As a result, neural

language models may fail to generate correct edit plans due to their

lack of language properties such as fluency and coherency [40].

1https://docs.python.org/3/library/difflib.html

Table 1: Statistics collected from downstream tasks for cre-

ating pretraining dataset. Avg. No. of Tokens represents the

average number of tokens in each edited span; Avg. No. of

Spans represents the average number of edited spans in each

input sequence.

PL NL

Probability of Delete edit 0.49 0.07

Probability of Insert edit 0.21 0.11

Probability of Replace edit 0.30 0.82

Avg. No. of Tokens 6.50 3.00

Avg. No. of Spans 1.90 1.40

Therefore, we need an additional step for learning to apply edits

while simultaneously maintaining fluency and coherency. For this

reason, once the edit plan is outlined as a sequence of edit opera-

tions, the target sequence (which is expected to recover the original

input sequence) must also be generated: ł@param users List of user

objectsž. The decoder generates tokens in a left-to-right manner,

meaning that when generating a token at a given timestep, it is

aware of all tokens generated in previous timesteps. So, when gen-

erating the target sequence, the decoder can exploit the sequence

of edits that was generated in the edit plan earlier. In this way, the

model can reason the edits and the generation simultaneously.

3.1.3 Noising Functions. To support learning across a diverse set

of edit actions during pretraining, we consider multiple noising

functions for corrupting the input sequence: 1) randomly masking

spans with the special [MASK] token which requires the model

to replace it with the correct spans, 2) inserting [MASK] token at

random positions which requires the model to identify the useless

spans and delete them and 3) deleting spans of tokens in the input

sequence which requires the model pinpoint the position and add

back the missing pieces.

3.2 Pretraining Data

3.2.1 Data Collection. Following prior work, we pretrain CoditT5

on large amounts of source code and natural language comments

from the CodeSearchNet [22] dataset which consists of functions

of six programming languages (Java, Python, Ruby, Php, Go and

JavaScript) together with the natural language comments. Code-

SearchNet is widely used to pretrain large language models, such

as CodeT5 [55] and UniXcoder [18]. We use the training set of

the processed CodeSearchNet dataset provided by Guo et al. [18]

which contains 6.1 million programming languages code snippets

(functions/methods) and 1.9 million natural language comments.

3.2.2 Data Preparation. To enable CoditT5 to capture common

edit patterns, we want the pretraining dataset to reflect the common

activities conducted by software developers. Specifically, in the

pretraining dataset, the probability of each edit operations applied

to the spans in the input sequence and the length (number of tokens)

of the corrupted span should be consistent with the distributions

and sizes of real-world edits in downstream editing tasks.
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Table 2: Statistics of the datasets used to pretrain CoditT5.

First row: number of programming language and natural

language; second row: average number of tokens in cor-

rupted input sequences; third row: average number of to-

kens in the output sequence (edit plan + target sequence).

PL NL

Examples 5,956,069 1,675,277

Avg. C-Tokens 102.01 15.42

Avg. O-Tokens 120.23 26.57

To this end, we collect statistics for source code edits from the

training sets of the bug fixing and automated code review down-

stream tasks and statistics for natural language edits from the com-

ment updating’s training set. As shown in Table 1, we collect the

probability of each edit operation (insert, delete and replace) to be

performed on a span; the average number of tokens in each span

that is edited; and the average number of spans that are edited in

each input sequence. For each example in the pretraining dataset,

we then uniformly sample the spans and the edit operations that

should be applied in accordance with the statistics collected from

the downstream datasets.

Similar to CodeT5 [55], we use the RoBERTa [30] tokenizer to

tokenize all sequences (input, edit plan, target). More concretely,

the tokenizer splits words in the sequence into tokens (subwords)

that are used by the model. Moreover, we remove input sequences

that are shorter than 3 tokens and longer than 512 tokens after

tokenizationwhich leave us with 5.9 million programming language

code snippets and 1.6 million natural language comments. This is

because too short inputs are usually incomplete and CodeT5 is

designed to only handle sequence of length 512. Table 2 presents

the statistics of the pretraining dataset.

3.3 Pretraining Setup

Model Architecture. CoditT5 consists of 12 encoder and decoder

layers, 12 attention heads, and a hidden dimension size of 768.

The total number of parameters is 223M. Model parameters are

initialized from the CodeT5-base model, and we further pretrain it

on the CodeSearchNet pretraining dataset (Section 3.2) using our

proposed objective (Section 3.1).

Training. We implementCoditT5 using PyTorch 1.9.0 and use 16

NVidia 1080-TI GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

for pretraining for 4 days. For fine-tuning, we run the experiments

on 4 NVidia 1080-TI GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @

2.10GHz with the same hyper-parameters as CodeT5.

4 EXPERIMENTAL DESIGN

To assess CoditT5 and our proposed pretraining objective, we fine-

tune the model on three software-related downstream tasks. Note

that during fine-tuning, the model is still trained to generate the

edit-based output sequence. However, at test time, we discard the

edit plan and take the generated target sequence as the final model

output. Namely, we use the generated sequence after the separation

token <s> as model’s prediction.

Table 3: Percentage that model just copy the input.

Models PLBART CodeT5 CoditT5

𝐵2𝐹𝑠 6.48 7.97 0.55

𝐵2𝐹𝑚 10.92 10.08 0.78

Comment Updating (clean) 21.33 16.67 2.67

Comment Updating (full) 34.25 25.47 5.73

Automated Code Review 22.24 29.28 1.28

Table 4: Statistics for the datasets used for downstream

tasks.

Task Train Valid Test

Comment Updating
clean 16,494 1,878 150

full 16,494 1,878 1,971

Bug Fixing
𝐵2𝐹𝑠 46,628 5,828 5,831

𝐵2𝐹𝑚 52,324 6,542 6,538

Automated Code Review 13,753 1,719 1,718

4.1 Downstream Tasks

Comment Updating. The task of comment updating entails auto-

matically updating a natural language comment to reflect changes

in the corresponding body of code [40]. For instance, in Example 2

in Figure 5, the old @return comment needs to be revised based

on the changes in the method. Instead of directly returning the

yaw Euler angle measured in radians, the unit of the return value

is changed to degrees in the new version, with the method call

Math.toDegrees().

Bug Fixing. Given a buggy code snippet, the task of bug fixing

entails generating a fixed code snippet, which no longer contains

the bug [48].

Automated Code Review. Given a code snippet under review and

a brief natural language sentence prescribing code edits, automated

code review requires automatically generating the revised code

snippet, which captures the recommended changes [51]. For exam-

ple, in Figure 1, emptyList() should be changed to Collections.-

emptyList() because the reviewer suggests not using static import.

4.2 Data for Downstream Tasks

We use datasets that have been established and previously used

for each of the three tasks. The statistics of the datasets is shown

in Table 4. Unlike pretraining where the goal is to recover the

corrupted input sequences, during fine-tuning, CoditT5 is trained

to generate an edit plan for completing the downstream editing

task, that can be applied to a part of the input (e.g., old comment),

followed by the target sequence (e.g., new comment).

Comment Updating. For this task, Panthaplackel et al. [39] has

released a corpus of Java method changes paired with changes

in the corresponding comments (spanning @return, @param, and

summary comments). This dataset also comes with a clean subset of

the test set which was manually curated. The input sequence used



ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

for fine-tuning is formed by concatenating the old comment and

code edits. The code edits follow the representation described in

Section 3.1.1, except that an additional Keep operation is included

to denote spans that are left unchanged.

Bug Fixing. We consider the Java BugFixPairs-Small (𝐵2𝐹𝑠 ) and

BugFixPairs-Medium (𝐵2𝐹𝑚) datasets, originally released by Tufano

et al. [48]. Chakraborty and Ray [8] supplemented these datasets

with additional context, namely natural language guidance from

the developer, and the method where the patch should be applied.

𝐵2𝐹𝑠 contains shorter methods with a maximum token length 50,

and 𝐵2𝐹𝑚 contains longer methods with up to 100 tokens in length.

The input sequence used for fine-tuning is formed with the buggy

code, natural language guidance, and code context.

Automated Code Review. We use the automated code review

dataset released by Tufano et al. [51], which consists of Java meth-

ods (before and after the review) paired with pull request comments,

derived from pull request reviews on GitHub and Gerrit. To reduce

the vocabulary size, they further abstracted Java methods by re-

placing identifiers and literals with special tokens. In this work,

we use the data with concrete tokens. The input sequence used for

fine-tuning is formed using the code snippet before review and the

pull request comment from reviewers.

4.3 Baselines

4.3.1 Generation Baselines. We consider two large standard gen-

eration language models trained with denoising autoencoding pre-

training objectiveswhich are not edit-based:PLBART andCodeT5.

Both of these are fine-tuned to directly generate the target output

sequence. Furthermore, to better assess the value of actually pre-

training using the proposed objective instead of simply fine-tuning

a model to generate an edit-based output sequence, we also con-

sider fine-tuning CodeT5 to generate the specialized edit-based

output sequence representation. We refer to this as CodeT5 (w/

edit-based output). We fine-tune each of these models using the

same input context as CoditT5.

4.3.2 Task-Specific Baselines. We additionally compare against the

state-of-the-art models for each of the downstream tasks.

For comment updating, the state-of-the-art model is Panthap-

lackel et al. [40], which entails Recurrent Neural Network (RNN)

based encoders for representing the old comment and code ed-

its, and an RNN-based decoder for decoding edits. These edits are

parsed at test time and reranked based on similarity to the old

comment and likelihood based on a comment generation model.

For bug fixing, the state-of-the-art model is essentially PLBART

fine-tuned on the 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚 to generate the fixed code [8].

For automated code review, no baselines are available for the

specific version of the dataset we used with concrete identifiers and

literals (rather than the one with abstracted identifiers and literals).

Therefore, we rely on those described in Section 4.3.1 and establish

new baselines for this version of the dataset.

4.4 Evaluation Metrics

For comment updating, we report performance on the same met-

rics that have been used previously to benchmark models for this

task [40]. This includes: xMatch (whether the model prediction

Before Editing:

public HashConfigurationBuilder capacityFactor (float capacityFactor) {

if ( numSegments < 0 )

throw new IllegalArgumentException ("capacityFactor must be positive");

this.capacityFactor = capacityFactor ;

return this;

}

Reviewer’s Comment:

typo: capacityFactor instead of numSegments

CodeT5:

public HashConfigurationBuilder capacityFactor(float capacityFactor) {

this.capacityFactor = capacityFactor;

return this;

}

CoditT5:

public HashConfigurationBuilder capacityFactor (float capacityFactor) {

if ( capacityFactor < 0 )

throw new IllegalArgumentException ("capacityFactor must be positive") ;

this.capacityFactor = capacityFactor;

return this;

}

Figure 3: Comparing the output of CodeT5 and CoditT5

for a automated code review example. CodeT5 generates in-

correct output that drastically deviates from the input code

while CoditT5 generates the correct output, performing

only relevant edits.

exactly matches the ground truth), common metrics that measure

lexical overlap for evaluating text generation (BLEU-4 2 [41] and

METEOR [3]), and common metrics for measuring text editing

(GLEU [35] and SARI [56]). For bug fixing, we use xMatch, as done

in prior work [8]. For automated code review, we report perfor-

mance on xMatch and BLEU-4, which have been used previously

to benchmark models for this task [51].

5 EVALUATION

We organize our evaluation around three main research questions:

RQ1: How does our edit-based model, CoditT5, compare to gener-

ation and task-specific baselines for edit-related tasks?

RQ2: Does our proposed pretraining objective help a model in

better reasoning about and performing edits?

RQ3: Can a standard generation model complement CoditT5 by

integrating the two models?

5.1 Comparing CoditT5 to Baselines

We present results in Tables 5-8. Note that the results shown in the

last two rows in each of the tables are explained later in Section 5.3.

We perform statistical significance testing using bootstrap tests [4]

with confidence level 95%.

RQ1: How does our edit-based model, CoditT5, compare to

generation and task-specific baselines for edit-related tasks?

We find that CoditT5 (and most of the pretrained models) drasti-

cally outperforms Panthaplackel et al. [40] (a non-pretrained model)

across metrics for comment updating. This demonstrates the value

2We measure 1∼4-gram overlap and compute the average.
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Table 5: Results for comment updating on the clean test set. The results with the same prefixes (e.g., 𝛽) are NOT statistically

significantly different.

Models xMatch BLEU-4 METEOR GLEU SARI

Panthaplackel et al. [40] 33.33 56.55 52.26 51.88 56.23

PLBART 35.33 62.04𝛾 56.79 54.75 52.83

CodeT5 38.00 65.20𝛼 59.63 58.84𝛽 58.80

CodeT5 (w/ edit-based output) 40.00 62.97𝛾 59.08 58.72𝛽 61.11𝜖𝜂

CoditT5 43.33𝜒 64.56 60.75 59.53 61.41𝛿𝜖

CoditT5 (reranked with CodeT5) 45.33 66.80 63.33 61.60 61.48𝛿𝜂

CodeT5 (reranked with CoditT5) 44.00𝜒 65.58𝛼 62.44 60.48 62.57

Table 6: Results for comment updating on the full test set. The results with the same prefixes (e.g., 𝛽) are NOT statistically

significantly different.

Models xMatch BLEU-4 METEOR GLEU SARI

Panthaplackel et al. [40] 24.81 48.89 44.58 45.69 47.93

PLBART 22.98 55.42ℏ𝜄 49.12 47.83 43.40

CodeT5 28.56 58.37𝛼 53.13 51.90 49.23

CodeT5 (w/ edit-based output) 29.83𝛿𝛾 54.83 50.71 50.67𝜖 52.01𝜂

CoditT5 29.38𝛿 55.30𝛽𝜄 51.14𝜒 50.62𝜖 51.39

CoditT5 (reranked with CodeT5) 30.14𝛾 58.72𝛼 53.60 52.81 50.47

CodeT5 (reranked with CoditT5) 27.80 55.54𝛽ℏ 51.44𝜒 50.02 52.24𝜂

Table 7: Results on bug fixing dataset. The results with the

same prefixes (e.g., 𝛽) are NOT statistically significantly dif-

ferent.

Models
xMatch

𝐵2𝐹𝑠 𝐵2𝐹𝑚

PLBART 31.09 24.18

CodeT5 34.81 26.66

CodeT5 (w/ edit-based output) 36.37 29.28𝛼

CoditT5 37.52 29.96𝛼

CoditT5 (reranked with CodeT5) 40.22 32.06𝛽

CodeT5 (reranked with CoditT5) 39.56 32.24𝛽

of large language model pretrained on vast amounts of data using

unsupervised pretraining objectives.

Next, across all three tasks, CoditT5 achieves higher perfor-

mance than the two standard generation-based pretrained models,

significantly outperforming PLBART and CodeT5 for most of the

metrics, highlighting the benefit of explicitly modeling edits for

these editing tasks. In fact, CodeT5 (w/ edit-based output), which ex-

plicitly models edits only during fine-tuning rather than pretraining,

outperforms CodeT5 on edit-based metrics (xMatch, SARI). This

further underlines the utility of the edit-based output sequence

representation that we developed.

Nonetheless, across most metrics, CoditT5 still outperforms

CodeT5 (w/ edit-based output), which is not pretrained using the

Table 8: Results for automated code review. The results with

the same prefixes (e.g., 𝛽) are NOT statistically significantly

different.

Models xMatch BLEU-4

PLBART 26.78 79.38

CodeT5 34.98 83.20

CodeT5 (w/ edit-based output) 36.38𝛼 80.06𝛽

CoditT5 37.19𝛼 80.50𝛽

CoditT5 (reranked with CodeT5) 40.98 84.12𝜒

CodeT5 (reranked with CoditT5) 43.42 83.92𝜒

pretraining objective but uses the same edit-based output sequence

representation during fine-tuning. This demonstrates the impor-

tance of actually pretraining with this representation rather than

relying on fine-tuning alone.

5.2 Evaluating our Pretraining Objective

While we observe that CoditT5 tends to achieve slightly lower

performance than CodeT5 on generation-based metrics (BLEU-4,

METEOR) for two of the tasks, we find that it significantly out-

performs other metrics which capture whether the correct edits

are generated, such as xMatch and GLEU and SARI for comment

updating. This suggests that CoditT5 is indeed better at editing. By

inspecting the outputs of the twomodels, we find that CodeT5 tends

to make drastic and unnecessary edits while CoditT5 appears to be
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Example 1

Before Editing:

protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {

long last = tracker.readLastCommittedOffset();

return ( last > 0 ) && ( last >= offset );

}

Reviewer’s Comment:

No need for parentheses.

Edit plan

⟨Delete⟩ ( ⟨Delete_End⟩ ⟨Delete⟩ ) ⟨Delete_End⟩

Target sequence:

protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {

long last = tracker.readLastCommittedOffset();

return last > 0 && last >= offset;

}

Example 2

Before Editing:

public Builder setDataSize(Estimate dataSize) {

this.dataSize = requireNonNull(dataSize, "dataSize can not be null");

return this;

}

Reviewer’s Comment

you don’t validate in other builders method (and you don’t have to)

Edit plan

⟨Delete⟩ requireNonNull(dataSize, "dataSize can not be null"); ⟨Delete_End⟩

Target sequence:

public Builder setDataSize(Estimate dataSize) {

this.dataSize = dataSize;

return this;

}

Figure 4: Examples for automated code review for which

CoditT5 generated ambiguous or erroneous edit plans but

still managed to generate the correct target sequences.

Table 9: Percentages of target sequence generated by

CoditT5 being consistent with the edit plan.

Datasets Is Consistent (%)

𝐵2𝐹𝑠 92%

𝐵2𝐹𝑚 88%

Comment Updating (clean) 87%

Comment Updating (full) 85%

Automated Code Review 74%

better at making more fine-grained edits. For example, in Figure 3,

CodeT5 generates output that completely discards critical state-

ments in the code, whereas CoditT5 is able to correctly localize the

part of the input code that needs to be changed and make editions

properly. We attribute this to the fact that CodeT5 is not designed to

reason about edits while CoditT5 is. We further evaluate the influ-

ence of our proposed pretraining objective on this editing capability.

RQ2: Does our proposed pretraining objective help a model in

better reasoning about and performing edits?

First, we compare how often CoditT5 naively copies the input

content without actually performing any edits, to two pretrained

models which use generation-based pretraining objectives. We re-

port the percentages in Table 3. By copying substantially less often

than the PLBART and CodeT5, we find that CoditT5 learns to more

frequently perform edits with our proposed edit-based pretraining

objective which indicates it is suitable for editing tasks.

CoditT5’s decoder is encouraged to generate a target sequence

that follows the outlined edit plan; however, we do not constrain

the decoder in any way to do this.3 Nonetheless, we find that in

the majority of cases (74%-92%), the target sequence is consistent

with the edit plan, as shown in Table 9. More concretely, the target

sequence generally resembles what would be produced if the edit

operations in the edit plan were applied to the original content.

This suggests that the pretraining objective does in fact guide the

model in reasoning about edits.

For cases in which there is ambiguity or errors in the edit plan,

we find that CoditT5 still often manages to generate the correct tar-

get sequence, by disregarding unreasonable edits or disambiguating

ambiguous edits. We show two examples in automated code review

in Figure 4 with the Java method before review, the generated edit

plan, and the generated target sequence. In Example 1, the edit plan

is ambiguous since there are multiple instances of ł(ž and it does

not specify which one(s) should be deleted. However, the gener-

ated target sequence is correct, as the model was able to correctly

reason about the most appropriate edit locations. In Example 2,

the edit plan is imprecise and blindly following this plan would

result in syntactically incorrect code, but the model still managed

to perform the correct edits and produced valid output by ignoring

the fallacious edit. Overall, we find that both components of the

edit-based output sequence representation used in the pretraining

objective (edit plan and target sequence) are critical.

5.3 Integrating CoditT5 and CodeT5

CoditT5 is designed to complement a generation model by pro-

viding more explicit guidance for edits. However, a model that is

trained to generate edits can struggle with coherence and fluency

since it is not actually trained to generate consecutive text [40]. By

including the generation of the target sequence in the pretraining

objective, we do mitigate this to some extent, even when there are

ambiguities or errors in the edit plan. However, there appears to be

a trade-off between performing the correct edits while maintaining

performance with respect to generation metrics. More specifically,

in Tables 5-8, CoditT5 outperforms CodeT5 with respect to xMatch

(and SARI for comment updating), but underperforms with respect

to BLEU-4. To exploit the slight superiority of CodeT5 in this re-

spect, we consider incorporating CodeT5 into our approach.

RQ3: Can a pure generation model complement CoditT5 by

integrating the two models?

5.3.1 Experimental Setup. We combine the two models using sim-

ple likelihood-based reranking strategies at test time (with no addi-

tional training). Namely, at test time, CoditT5 and CodeT5 each

generate 20 candidates using beam search. While we have been

only looking at the top one prediction for all previous experiments,

we will consider all 20 candidates for reranking. We compute a

3We do not want potential errors in the edit plan to propagate to the target sequence.
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Example 1

Buggy Code

public List<TagVFilter> getFilters() {

if ((filters) == null ) {

filters = new ArrayList<TagVFilter>();

}

return filters;

}

CoditT5:

public List<TagVFilter> getFilters() {

if ((filters) == null ) {

filters = new ArrayList<TagVFilter>();

}

return new ArrayList(filters);

}

CoditT5 (reranked with CodeT5):

public List<TagVFilter> getFilters() {

if ((filters) == null ) {

filters = new ArrayList<TagVFilter>();

}

return new ArrayList<TagVFilter>(filters);

}

Example 2
/** @return double The yaw Euler angle. */

public double getRotY() {

return mOrientation.getRotationY();

}

/** @return ? */

public double getRotY() {

return Math.toDegrees(mOrientation.getRotationY());

}

CodeT5: @return double The yaw Euler angle.

Reranked CodeT5: @return double The yaw Euler angle in degrees.

Figure 5: Examples from comment updating and bug fixing

which demonstrate the impact of reranking.

reranking score for each of these to essentially re-score them. The

candidate which has the highest reranking score will be the final

model prediction. We investigate two different reranking strategies:

CoditT5 (reranked with CodeT5): To exploit the language-specific

norms learned by CodeT5, we rerank the candidates generated by

CoditT5 based on the probability score CodeT5’s language model

assigns to the corresponding target sequences (namely after <s>).

We compute the length-normalized conditional log probability

score of CodeT5 generating the target sequence, conditioned on

the same input:

𝑠𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔(𝑃 (𝑇 |𝐼 )
1

𝑁 )

where 𝑇 is the target sequence, 𝐼 is the model’s input, 𝑁 is the

length of 𝑇 . We also length-normalize the log probability of the

candidate, as scored by CoditT5, and then add the two probability

scores together to obtain the reranking score.

CodeT5 (reranked with CoditT5): Conversely, we also rerank the

output of CodeT5 based on the likelihood of CoditT5, such that

the generated sequence can be assessed in terms of explicit edits.

We first parse the output of CodeT5 into the edit-based output

sequence representation (as described in Section 3.1.1) and then

concatenate it with the model’s output using <s>. Then we compute

the likelihood of CoditT5 generating this sequence, conditioned on

the same input. We then add the length-normalized log probability

score of CoditT5 with the score originally assigned by CodeT5

(after length-normalizing and applying log).

5.3.2 Results. We provide results in the bottom two rows of Ta-

bles 5-8. By reranking the output of CoditT5 using CodeT5, we are

able to achieve improved performance on all the metrics including

BLEU-4 across tasks (and the other generation-based metric, ME-

TEOR, for comment updating). To illustrate this, consider Example 1

in Figure 5, with a buggy code snippet and outputs corresponding

to CoditT5 before and after reranking. We observe that CoditT5

correctly localizes the bug and correctly identifies that the edit

entails initializing an ArrayList in the return statement. However,

the generated target sequence is a defective code snippet which

does not properly initialize an ArrayList with the correct type

TagVFilter. By leveraging CodeT5’s likelihood score, we are able

to effectively filter out the defective prediction and obtain the cor-

rect output.

By reranking the output of CodeT5 using CoditT5, we see signif-

icant improvements with respect to CodeT5 on metrics that more

directly evaluate whether the correct edits were performed, in-

cluding xMatch as well as GLEU and SARI for comment updating.

This suggests that the edit-based and generation-based models are

indeed complementary to one another. As a case study, consider

Example 2 in Figure 5. CodeT5 produces a sequence which simply

copies the old comment, without capturing the code changes. While

this may be a likely comment sequence, according to CodeT5’s lan-

guage model, copying without applying any edits is not a likely

edit plan to be generated for CoditT5.

By combining CoditT5 and CodeT5 through reranking, we can

further boost performance substantially across most metrics for

all three tasks, outperforming the two models individually, and

achieving new state-of-the-art.

6 LIMITATIONS

Other Programming Languages. The downstream editing tasks

we studied in this work are using Java. Since CoditT5’s pretraining

is on the dataset consisting of six programming languages, we

expect it to also performwell on editing tasks in other programming

languages, but we leave empirically verifying this as future work.

Data Contamination. CoditT5 is pretrained on data collected

from open-source projects. It is possible that similar examples in

pretraining data exist in downstream tasks’ test set. While prior

work [7] has shown that data contamination may have little im-

pact on the performance of pretrained models in natural language

processing tasks, future work can investigate this problem for pre-

trained models for software engineering.

7 RELATED WORK

In this section, we consider the most closely related work on learn-

ing edits, large pretrained models for code, pretrained models for

code edits and combining complementary models.

Learning Edits. Prior work has studied learning edits in both

natural language and programming language. We followed the

approach of explicitly representing edits as sequences with edit
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actions. Our edit representation is inspired by Panthaplackel et al.

[39, 40], who studied learning comment edits based on code edits.

Brody et al. [6], Chen et al. [10], Tarlow et al. [47], Yao et al. [57]

represented code as ASTs (abstract syntax trees) and the code edits

as edit actions over the AST nodes rather than tokens. We do not

focus on editing structured data (AST) as it can not be generalized

to natural language, and it can not be easily combined with large

pretrained models which are primarily based on sequence of tokens.

Alternatively, edits can be encoded into vector representations

(or embeddings). Guu et al. [20] studied learning edit embeddings

for natural language generation in a prototype-then-edit style. Yin

et al. [59] studied learning code edits as embeddings and then

applying them to natural language insertion and code bug fixing.

Hashimoto et al. [21] developed a retrieve-and-edit framework for

text-to-code generation, where the edits are learned as parameters

of a seq2seq model. Similarly, Li et al. [27] proposed a retrieve-

and-edit framework for code summarization task where the model

first learns an edit vector and then generate the revised summary

conditioned on it. Although learning edits as embeddings can be

effective for individual tasks, it is not suitable to be used in the

pretraining fine-tuning paradigm, because there is a large domain

gap between the edit embeddings learned on different tasks. More

over, edit embeddings are less explainable compared to the explicit

edit representations we use.

Another line of work that carries out the idea of learning edits is

copying mechanism, including copying individual tokens [17, 53]

and spans [38, 60], which helps the model to łkeepž unchanged

tokens and focus on generating the edited part. Iv et al. [23] built a

T5-based model to update the existing articles based on the given

new evidence. The model is trained to output a copy token instead

of the copied sentence and a special reference token before the

updated text which identifies the evidence to support the update.

Ding et al. [12] trained the model to emit pointers that indicate

the positions for editions and new tokens to be inserted at the

same time. Similarly, Chen et al. [10], Tarlow et al. [47] augmented

the transformer-based decoder with pointers to the input graph

representation of the code which specify the input locations to edit.

Although related, it is orthogonal to our work of learning edits with

pretraining.

Large Pretrained Models for Code. Motivated by the success

of large pretrained models for many NLP tasks, domain-specific

models that are pretrained on source code and technical text have

emerged, including CodeBERT [15], GraphCodeBERT [19], CodeGPT-

2 [32], CodeT5 [55], PLBART [1], PyMT5 [11], SynCoBERT [54],

SPT-Code [37], Codex [9] and UniXcoder [18]. Similar to our ap-

proach, GraphCodeBERT, CodeT5, SynCoBERT, SPT-Code andUniX-

coder also designed specialized pretraining objectives driven by

their targeted tasks. As we showed in this work, the combination

of an edit-based language model and a standard language model

can achieve better performance than using the standard language

model alone.

Pretrained Models for Code Edits. Prior work already explored

applying pretrained models, despite not well-suited, on editing

tasks. Chakraborty and Ray [8] used PLBART for code bug fixing,

which we compared to in our work. Similarly, Drain et al. [13] fur-

ther pretrained BART model on 67K Java repositories mined from

GitHub and fine-tuned specifically on the bug fixing dataset [49].

Mastropaolo et al. [34], Wang et al. [55] both pretrained T5 model

on CodeSerchNet and used it for bug fixing, which we included

as a baseline (CodeT5). Codex [9] showed promising performance

on editing tasks by specifying the existing code as a prompt and

providing an edit instruction to the model. Tufano et al. [50] and

Li et al. [28] both proposed a transformer-based encoder-decoder

model pretrained on large code reviewer specific data for code re-

view related tasks including code change quality estimation, review

comment generation and code refinement. While they demonstrate

impressive performance on various tasks, none of them are fun-

damentally well-suited for edit tasks. In this work, we develop

CoditT5 with a novel pretraining objective for generating edit

sequences, which can complement the generation model such as

CodeT5 for edit tasks.

Combining Complementary Models. We used reranking [24,

36] to combine complementarymodels in this work. Ensembling [25]

is another approach for combining complementary models for gen-

eration tasks, but requires additional training. Co-training [5] and

tri-training [61] approaches, although shown to be very effective in

combining complementary models, are designed for classification

models rather than generation models.

8 CONCLUSION

In this paper, we present a novel edit-driven pretraining objec-

tive and use it to develop CoditT5, a pretrained language model

for software-related editing tasks. CoditT5 is pretrained on large

amounts of source code and natural language comments to perform

edits, and we evaluate this model by fine-tuning it on three distinct

downstream tasks: comment updating, bug fixing and automated

code review. By outperforming task-specific baselines and pure

generation baselines across tasks, we demonstrate the suitability of

CoditT5 (and our pretraining objective) for editing tasks and its

generalizability. We additionally find that a pure generation-based

model and CoditT5 can complement one another through simple

reranking strategies, which outperform each of the models indi-

vidually and also achieve new state-of-the-art performance for the

three downstream editing tasks that we consider.
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