Compiler Testing using Template Java Programs

Zhiqiang Zang
The University of Texas at Austin
Austin, Texas, USA
zhiqiang.zang@utexas.edu

Milos Gligoric
The University of Texas at Austin
Austin, Texas, USA
gligoric@utexas.edu

ABSTRACT

We present JATTACK, a framework that enables template-based test-
ing for compilers. Using JATTACK, a developer writes a template
program that describes a set of programs to be generated and given
as test inputs to a compiler. Such a framework enables developers
to incorporate their domain knowledge on testing compilers, giv-
ing a basic program structure that allows for exploring complex
programs that can trigger sophisticated compiler optimizations. A
developer writes a template program in the host language (Java)
that contains holes to be filled by JATTACK. Each hole, written using
a domain-specific language, constructs a node within an extended
abstract syntax tree (eAST). An eAST node defines the search space
for the hole, i.e., a set of expressions and values. JATTACK generates
programs by executing templates and filling each hole by randomly
choosing expressions and values (available within the search space
defined by the hole). Additionally, we introduce several optimiza-
tions to reduce JATTACK’s generation cost. While JATTACK could
be used to test various compiler features, we demonstrate its ca-
pabilities in helping test just-in-time (JIT) Java compilers, whose
optimizations occur at runtime after a sufficient number of execu-
tions. Using JATTACK, we have found six critical bugs that were
confirmed by Oracle developers. Four of them were previously un-
known, including two unknown CVEs (Common Vulnerabilities
and Exposures). JATTACK shows the power of combining devel-
opers’ domain knowledge (via templates) with random testing to
detect bugs in JIT compilers.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Just-in-time compilers.

KEYWORDS

Testing, test generation, program generation, compiler, templates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3556958

Nathan Wiatrek
The University of Texas at Austin
Austin, Texas, USA
nwiatrek@utexas.edu

August Shi
The University of Texas at Austin
Austin, Texas, USA
august@utexas.edu

ACM Reference Format:

Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi. 2022.
Compiler Testing using Template Java Programs. In 37th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE °22), Octo-
ber 10-14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3551349.3556958

1 INTRODUCTION

Compilers are among the most critical components in the soft-
ware development toolchain, and their correctness is of utmost
importance. A bug in a compiler might lead to a crash during the
translation, an incorrect output (native code does not match the
semantics of the program written by developers [4]), or even expose
security vulnerabilities in the generated code.

Compiler developers have manually written thousands of tests,
i.e., programs in the compiler’s target programming language, as to
check for correctness [5, 48, 79]. Although manually-written tests
nicely capture developers’ intuition of what programs are expected to
trigger corner cases, it is time-consuming to write a large number of
such tests. As a result, researchers and practitioners have developed
a number of automated techniques for testing compilers [14, 22, 23,
37,42, 59, 64, 74, 94, 98], namely by generating a large number of
programs on which the compiler can run. Existing compiler-testing
techniques mainly fall in two categories: grammar-based [42, 64, 94,
98] and mutation-based [22, 23, 59, 74]. The former group generates
programs from scratch following the production rules available in
the language grammar. The latter group usually starts with some
seed programs and then genetically mutates the seeds.

Although existing approaches are valuable, they have shortcom-
ings. First, they provide limited ways for compiler developers to
fully embed their knowledge into the testing process. Second, they
frequently support only a subset of the language grammar (e.g.,
only integer values [94]).

We present JATTACK, a framework that enables compiler testing
using templates. Using JATTACK, a developer writes a template pro-
gram (template for short) that describes a set of concrete programs to
be used as inputs to a compiler. Unlike prior work, our framework
enables developers to express richer manual tests for compilers. Our
design of a template captures the developers’ intuition in very much
the same way as manually-written tests but provides an opportu-
nity to express variants of those tests that can be obtained by testing
the templates. The goal is similar to parameterized unit testing [89],
where developers manually write unit tests that encapsulate some
features they want to test in their code but have parameters that

ASE 22, October 10-14, 2022, Rochester, MI, USA

a backend framework explores as to obtain deeper testing around
the insights the developers initially provide. Unlike with mutation-
based fuzzers, compiler developers can use templates to specify
exactly how to generate program variants. (Figure 1 shows an ex-
ample template, which is discussed in detail in Section 2.) JATTACK
complements existing automated compiler-testing techniques that
can provide a structure of a program on which JATTACK can further
build templates.

In JATTACK, a developer writes a template in the host language
(Java), which contains holes to be filled by JArTack. Each hole
is written in a domain-specific language (DSL) embedded in the
host language, i.e., we do not change the syntax, compiler, nor
runtime environment of the host language. We define the DSL as
a set of APIs that allow developers to specify characteristics of
the hole they want explored in a template, where each API call
produces an instance of an extended abstract syntax tree (eAST)
node; an eAST node bounds the search space for the hole, i.e.,
defines a set of possible statements, expressions, and values. As
an example, consider the following API call that defines a hole:
relation(intVal(), intval(), GT, LT).eval(), which representsa
logical relation between two integer literals (each can take any value
between Integer.MIN_VALUE and Integer.MAX_VALUE) using either >
(GT) or < (LT) relational operators; this hole evaluates to a boolean.
Using the JATTACK’S API, each hole can then be type-checked by
the host compiler.

JATTACK is useful for augmenting testing for many complex
compiler features as it leverages the developer insights from the
provided templates. For our evaluation, we focus specifically on
testing just-in-time (JIT) compilers. Unlike traditional ahead-of-
time compilers that translate a program into native code prior
to deployment [1], JIT compilers translate the program during
execution [7]. Certain optimizations only occur after executing
specific program structures a sufficient number of times.

JATTACK takes two inputs: (1) a template, and (2) an iteration
count (N), i.e., the number of times each generated program will
be executed in a loop to ensure that JIT compilation is triggered.
JATTACK generates a program by repeatedly executing the template
(up to N times) and filling each hole, when the hole is reached the
first time, by randomly choosing expressions and values available
within the search space defined by the hole. (In theory, a template
can be exhaustively explored, but it is generally not feasible.) Next,
to detect any JIT-related bugs, each generated program is executed
N times using different JIT compilers, potentially detecting bugs
via differential testing [66].

We also introduce three optimizations into JATTACK to reduce
the generation cost. The first optimization, early stop, involves stop-
ping after detecting that further generation would not fill any more
holes. The second optimization, hot filling, dynamically transforms
the template when a hole is reached the very first time; the API
call is transformed into the concrete expression that the call would
produce. The final optimization, eager pruning, uses a modern con-
straint solver (Z3 [29]) to detect holes for conditional statements
(e.g., if) that always evaluate to a constant value.

To demonstrate JATTACK’s capabilities in testing JIT compilers,
we wrote 23 templates. We focused on interesting Java language fea-
tures and took inspiration from existing tests for the Java compiler.
We report the cost of generation and execution, as well as benefits

Zhigiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

of our optimizations; our optimizations reduce the generation time
by 99.50%. We used the generated programs as inputs to multiple
commercial JIT compilers, including the Oracle JDK JIT compiler.
Using just our own templates, we were able to discover two bugs in
the Oracle JDK JIT compiler. These bugs were confirmed and fixed
by Oracle developers, and one of the bugs was previously unknown
and acknowledged on Oracle’s list of CVEs.

We also evaluated how well JATTACK can be used for automated
compiler testing by extracting templates from existing Java projects.
This evaluation is inspired by mutation testing [6, 23, 30, 55, 57, 59,
60], where we essentially “mutate” existing code to construct dif-
ferent tests for compilers. Note that, unlike in traditional mutation
testing, holes in our case are filled by randomly generating values
and expressions. Moreover, mutation testing uses a predefined set
of mutation operators while JATTACK provides a way for a user to
write holes anywhere in their code following their intuition (e.g.,
the way we wrote templates for JIT compilers). Each hole has its
own set of values (and the set is determined by the developer, not
by a tool).

Using 77 open-source Java projects that span a wide variety of
domains and therefore use of different Java language features, we
automatically extracted 5,419 templates. By running these templates
through JATTACK, We found four more bugs in the Oracle JDK JIT
compiler (out of which only one was previously known) including
one previously unknown CVE recently acknowledged by Oracle.

The key contributions of this paper include:

e Framework. We introduce JATTACK, the framework for tem-
plating tests for compilers. JATTACK is designed to complement
manually-written tests and blend developer’s intuition (via tem-
plates) and random testing to increase likelihood to detect bugs
in Java JIT compilers.

e Programming and execution models. We introduce a pro-
gramming and an execution model to integrate templates en-
tirely in the host language (Java), without changing the syntax or
the runtime environment. Templates are like manually-written
programs with holes; each hole, expressed using a DSL, builds
an eAST node that specifies values that the hole can take (i.e.,
defines a search space). We introduced three optimizations that
are applied when generating programs from templates.

e Use case. We implemented JATTACK for the Java programming
language and applied it to testing Java JIT compilers. We evalu-
ated JATTACK by writing 23 template programs. Our results show
that the optimizations substantially reduce test generation time,
making JATTACK practical. Furthermore, we discovered two bugs
in the Oracle JDK JIT compiler.

o Template extraction. We evaluated JATTACK as an automated
framework for JIT compiler testing by automatically extracting
templates from existing Java projects. Using 5,419 templates from
77 open-source Java projects, JATTACK discovered four more bugs
in the Oracle JDK JIT compiler.

JATTACK is available at https://github.com/EngineeringSoftware/
jattack.

2 EXAMPLE

Figure 1a shows a template program that we wrote while developing
JATTACK for Java. Our motivation for this template was to exercise

Compiler Testing using Template Java Programs

1 import static jattack.Boom.x;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arrl = { s1++, s2, intVal().eval() ©,

8 intval().eval() ®, intval().eval() © };
9 for (int i = 0; i < arrl.length; ++i)

10 if (logic(relation(intId(), intId(), LE),

11 relation(intId(), intId(), LE),

12 AND, OR).eval() @)

13 arr1[i] &=

14 arithmetic(intId(), intId(), ADD, MUL).eval() @®;
15 return 0; } }

(a) An example of a template.

1 import static jattack.Boom.x;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arrl = { s1++, s2, 45350238 @,
8

9

681339300 @, 125652422 @ };
for (int i = 0; i < arrl.length; ++i)

10 if (arr1[3] <= s2 || s2 <= arr1[2] @)
11 arr1[i] &= arr1[1] x s1 @;
12 return 0; } }

(b) An example of a generated program.

Figure 1: An example of a template and one of the generated
programs from the template.

Java JIT optimizations for programs that use local arrays and static
variables. It is important to note that every template for JATTACK
is a valid Java program. This template uses static methods (e.g.,
logic) that are defined in the jattack.Boom class. As such, the Java
compiler can also type-check the template.

The template contains five holes representing places where JAT-
TACK should generate expressions, filling them in to create a con-
crete generated program. Three holes are between lines 7 and 8, one
between lines 10 and 12, and one on line 14. The number of holes
is equal to the number of eval invocations. The eval invocation
as well as the type information of the expression calling the eval
allows JAttack to tell a hole from actual code.

The first three holes are defined by the intVal method calls;
each call to intVal represents a hole that will be filled by an integer
literal; note that without any arguments, intVal produces an integer
between Integer .MIN_VALUE and Integer.MAX_VALUE. The next hole
(lines 10-12) defines a logical “and” or “or” expression (logic with
the AND and OR arguments) between two relational expressions. Each
relational expression (relation) connects two free integer variables
intId, which can be s1, s2, i, or any element of arr1 (the array
index is randomly picked between 0 and the size of the array) at
this point, using the <= operator (LE). The final hole (line 14) is an
arithmetic expression (arithmetic) of two free integer variables,
which are combined using either a + or a * operator (ADD or MUL).

ASE ’22, October 10-14, 2022, Rochester, MI, USA

We describe more details on what type of expressions we support
for holes along with our API in Section 3.

JATTACK generates programs through an execution-based model.
In other words, JATTACK fills the holes in a template after executing
the template. (Unlike static generation, an execution-based model
prunes the search space by only filling holes reached during execu-
tion. See Section 7.1 for details.) A template must have a template
entry method, annotated with @Entry as shown in the example
(method m). When the execution reaches any unfilled hole, JATTACK
generates a valid expression for that hole based on the used API
calls. When all reachable holes are filled (see Section 3.3 for how
this is determined), JATTACK outputs the corresponding generated
program. JATTACK then calls the template entry method again to
generate the next program up to the specified maximum number
of programs. An example of a generated program that JATTACK
outputs for the template in Figure 1a is shown in Figure 1b. The
numbered circles in the generated program correspond to the same
ones next to holes in Figure 1a.

Finally, to detect any JIT-related bugs, JATTACK executes each
generated program starting from the same entry method a large
number of times using different JIT compilers, potentially detecting
bugs via differential testing [66]. The large number of re-executions
is necessary as to trigger JIT optimizations. In Java, a JVM starts ex-
ecuting a program with an interpreter and monitors the execution
for “hot” code sections, i.e., code that is frequently executed. The
JIT compiler then optimizes “hot” sections. Through repeated exe-
cutions of the generated method m, the generated program shown
in Figure 1b revealed a bug in the Oracle JDK JIT compiler, crashing
the JVM.

3 JATTACK FRAMEWORK

JATTACK introduces test templating, a way to define a set of programs
used for testing compilers. Templates written for JATTACK could
be useful for testing other program analysis tools, but we leave
such studies for future work. We designed JATTACK guided by
the following requirements: (1) developers decide where the holes
should be placed and bound the search space of each hole, and
(2) the domain-specific language (DSL) for writing holes is non-
intrusive, i.e., it requires no changes to the host compiler.

In this section, we describe our programming and execution
models (Section 3.1), implementation for Java (Section 3.2), the
generation procedure (Section 3.3), the optimizations for generation
(3.4) and the overall JIT-testing procedure (Section 3.5).

3.1 Programming and Execution Models

We define the syntax and operational semantics of a simple imper-
ative language with an extension to support templates. Note the
language shown here includes only integer type for ease of pre-
sentation; we greatly extend the scope in our implementation for
Java. The simple imperative language and extensions represent the
foundations for supporting templates for general imperative lan-
guages, and our implementation in Java, described in later sections,
is based on these extensions.

Syntax. Figure 2 defines the syntax of the simple language. A pro-
gram is a sequence of zero or more statements. Each statement is
either an assignment, conditional, goto, or halt. An expression in a

ASE 22, October 10-14, 2022, Rochester, MI, USA

Stmts := (LABEL:)? Stmt ";" Stmts | €

Stmt := AssignStmt | IfStmt | GotoStmt | halt
AssignStmt := ID "=" Exp

IfStmt := "if" "(" Exp ")" LABEL

GotoStmt := goto LABEL

Exp := ExpBasic | "[[" ExpAlt "]]"
ExpBasic := ExpBasic Op Operand | Operand

ExpAlt := ExpAlt "," ExpBasic | ExpBasic
Operand := ID | NUM | "[[c]]" | "[[v]]"
Op = "' | "=TOp MM | U8 | M==" | Mi=r | g

Figure 2: Syntax for an imperative language with holes.

(pc+1,I,M,Lyexp = (pc’,I'’,M,L)v

ASSIGN_EXP:
(pe,, M, L)id = exp = (pc’,I',M,L)id = v
M = M][o/id]
ASSIGN_VAL:
(pe, M, L)id =v = (pc+1,I,M',L)I(pc+1)
GOTO:

(pe,I, M, Lygoto I = (L(I),I, M, L)I(L(l))
(pc+1,I,M,Lyexp = (pc’,I’,M,L)v
(pe, I, M, L)if (exp) N = (pc’,I',M, L)if (v) N
pc’ =(v==0)?pc+1:L(I)

IF_EXP:

IF_VAL:
(pe, I, M, L)if (v) I = (pc’,I’, M, L)I(pc’)
[= alt MIN, MAX I’ =I[val
C_HOLE: val = alt(range(N)) [val/pc]
(pe. I, M, L) [[c]] = (pc,I', M, L)val
id = alt(identifi M I =1I[id
v HOLE: i alt(identifiers(M)) [id/pc]
- (pe,, M,L)[[0]] = {pc,I’,M,L)id
E. HOLE: e=alt([es, e,en]) I =1I[e/pc]

(pe, LM, L)[[e1, €2,en]] = (pc,I',M, L)e

Figure 3: Semantics for the simple language from Figure 2.

program can combine relational, arithmetic, and logical operators.
On top of these basic imperative features, the language also intro-
duces the concept of a hole, denoted with [[]]. These holes can be
used around a sequence of comma-separated expressions, or they
can be around individual operands, where [[c]] represents a hole
for a literal/constant and [[v]] represents a hole for a variable.
Semantics (core language). Valid programs can only use integer
literals. We define the state of a program with the following config-
uration: (pc, I, M, L), where pc is the program counter (initially 0),
I is the instruction memory (i.e., mapping from program counter to
statements or expressions), M is the main memory (i.e., mapping
from identifiers to integer values), and L is a map from labels to
indices in I. Prior to the execution, statements and expression in-
dices are placed into I by performing a pre-order traversal of the
program’s abstract syntax tree (first statement is at index 0). Also, L
is initialized to map each label to the appropriate index in I. We also
use the following operations: (1) map lookup _(val), and (2) map
update _[val/_].

Figure 3 shows the operational semantics of the language. For
simplicity, the rules do not include error handling. The assignment
statement simply updates the value of a variable in memory. The
conditional statement evaluates the expression and then jumps
if the expression evaluates to true (val # 0). The goto statement
unconditionally jumps to the statement with the specified label.
We do not show the rules for computing basic expressions, as we

Zhigiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

assume the same semantics as in the C programming language. The
halt statement terminates the execution.

Semantics (template language). We define several utility func-
tions: (1) identifiers(M) - returns a list of available variable
names in M at the point of an invocation, (2) range(x, y) - returns a
list of integers between x and y, and (3) alt([...]) - takes a sequence
as input and outputs one of its elements.

A hole for an integer literal (C_HOLE) evaluates to an integer lit-

eral and rewrites itself to that literal. A hole for a variable (V_HOLE)
evaluates to an available identifier and rewrites itself to that identi-
fier. Finally, a hole for an expression (E_HOLE) evaluates to one of
the given expressions (and rewrites itself to that expression). Note
that the rewrite rules are such that the entire hole is replaced with
the choice of a concrete expression upon execution, so the hole
no longer exists after the first evaluation, ensuring that each hole
evaluates only to a single expression per execution. The program
in I at the end of execution is the generated program in the same
language as the original template.
Filling a hole. Given a list of candidates for a hole, we need to
explore different candidates every time we execute the program,
which would in turn rewrite the template into new concrete pro-
grams that we can later use for testing compilers. While one can try
and systematically explore all the possible candidates, the search
space can be incredibly large (e.g., for [[c]] the range of possible inte-
gers go from MIN to MAX), especially when considering combinations
of candidates chosen across all holes in the program.

For this work, we choose candidates for a hole randomly. Random

exploration has been found effective in prior work [64, 74, 94, 98].
We keep re-executing the template to rewrite into concrete pro-
grams up until we reach a specified limit for number of generated
programs. Note that each execution of a template is independent
of other executions, i.e., any modifications to the template during
one run is not observable in another run.
Example. Consider the following example in our language: s1 =
[[cll; s2 = [[c]l; if C[[v]] < [[v]]) 19; 19: halt;.Executing this
template once might generate: s1 = 45350238; s2 = 681339300; if
(s1 < s2) 19; 19: halt;. Another execution can lead to a different
generated program: s1 = 125652422; s2 = 23297; if (s2 < s2)
19; 19: halt;.

3.2 JArTACK Implementation for Java

We implement the semantics of JATTACK for the host Java program-
ming language. To support the concept of holes while integrating it
into Java, we introduce a set of API methods that construct holes.

Figure 4 shows a subset of the full API we provide. This API
represents a DSL that maps to our simple imperative language. All
methods in the API return an instance of a node rooting an extended
abstract syntax tree (eAST). An Exp<Integer>node corresponds to an
expression (evaluating to integer due to Java typing, so Exp<Boolean>
is the same for boolean type). An IntVal (extends Exp<Integer>)
node and an IntId (extends Exp<Integer>) node correspond to an
integer literal and variable, respectively. We define Boolval and
BoolId to correspond to the boolean type for Java. BAriExp<Integer>
(extends Exp<Integer>) is for binary arithmetic expressions, while
RelExp (extends Exp<Boolean>) and LogExp (extends Exp<Boolean>)
are for relational and logical expressions. These nodes are therefore

Compiler Testing using Template Java Programs

BoolVal boolVal();

IntVal intVal(int min, int max);
IntVal intVal(Q);

BoolId boolId(String... names);
IntId intId(String... names);

<T> RefId<T> refId(Class<T> type, String... names);
<T extends Number> BAriExp<T> arithmetic(
Exp<T> left, Exp<T> right, Op... ops);
<T extends Number> RelExp<T> relation(
Exp<T> left, Exp<T> right, Op... ops);
LogExp logic(
Exp<Boolean> left, Exp<Boolean> right, Op... ops);

<T> ExprStmt exprStmt(Exp<T> exp);
IfStmt ifStmt(

Exp<Boolean> cond, Stmt thenStmt, Stmt elseStmt);
WhileStmt whileStmt(Exp<Boolean> cond, Stmt body);

<T> Exp<T> alt(Exp<T>... exps);
Stmt alt(Stmt... stmts);

Figure 4: API for writing holes; a call to any of the methods
in the API instantiates an eAST node.

placeholders for the actual, concrete expressions to be generated
at runtime, so they represent holes to be filled. For example, an
IntVal node created using the method intVval represents [[c]], a
hole that can evaluate to any integer from Integer.MIN_VALUE to
Integer.MAX_VALUE. We also provide an intVal API that can specify
the range of integer values, and an intId API that can enumerate
available variables (at any point) by analyzing bytecode, when no
variable is specified.

While specific API methods can create corresponding nodes,
e.g., arithmetic for BAriExp, we also provide method alt that can
choose from a provided list of Exp<Integer> or Exp<Boolean> nodes,
like the semantics for an expression hole (E_HOLE) in our simple
imperative language.

Although we illustrate the implementation of JATTACK using
int and boolean, we support any other primitive type, e.g., long and
double, or any reference type. For instance, refId can enumerate
available variables (at any point) with type T that can be specified
using argument Class<T> type, e.g., refId(String.class) returns
a RefId<String> node corresponding to any available String vari-
ables at this execution point. We provide API methods to create
statements as well, such as exprStmt, ifStmt and whileStmt. Further-
more, one can extend our implementation to include more language
constructs in Java, as along as they can be represented in an eAST.

As an alternative, we originally designed our API to use a list
of concrete Java expressions to choose from, e.g., alt(i++, j++).
However, these expressions would get executed and result in side-
effects, and the final execution would not match executing the
corresponding generated program with the concrete expressions
substituting for the hole, so we abandoned that direction.

Instead, when using eAST nodes, we do not actually generate
an expression to fill a hole until the eval method is invoked on the
node, e.g., intVal().eval(). Only after calling eval does a concrete
node get generated for that hole. Once generated, the node is in-
terpreted to compute the result of the expression. Furthermore, all

ASE ’22, October 10-14, 2022, Rochester, MI, USA

subsequent calls to the same API method (from the same location)
will always return the same node. For our Java implementation,
we define a hole to be where the developer calls eval for a built
eAST. The eAST constructed for an API call represents a range
of candidates to fill the hole. As an example, consider the hole
specified by the logic call (lines 10-12 in Figure 1a). Executing the
logic method returns a root node of an eAST, illustrated in Fig-
ure 5. Candidates for the hole are obtained by recursively obtaining
candidates for nodes in subtrees and combining them together.
In this example, the
RelExp nodes would re-

i:Ell sult in candidates that

<= - ~ < combine choice of inte-
RelExp RelExp ger variables combined
/ N\ 7\ with the specified op-

IntId IntId IntId IntId erators (just LE in the

example); the top-level
LogExp node would use
the returned candidates
and combine with the
specified AND or OR to create the final candidates. This eAST struc-
ture corresponds to an expression hole in our imperative language,
namely the following:

([IvIl <= (vl && [IvDl <= [(vIl, (vl <= [vDD 11 QivIE <= (vl
Unlike our simple imperative language, our API provides syntactic
sugars to describe a large set of similar candidates without having
to enumerate all of them by specifying multiple operators at once
(see Op. .. ops in Figure 4).

Figure 5: eAST corresponding to
logic hole from Figure 1a.

3.3 Generation Procedure

Figure 6 shows the overall algorithm for JATTACK’s Generate func-
tion that executes a template repeatedly to generate concrete pro-
gram instances. The input to Generate is a template T and the
number of programs to generate N. The output is a set of generated
programs G.

Function Generate starts by initializing the empty set of gener-
ated programs G and then capturing the initial global state of the
template T into variable S (line 6). We currently support capturing
static fields with primitive and array types as the global state; fu-
ture work could also capture reference types [9, 10]. We capture the
global state to be used later when generating programs, ensuring
the generation of each (out of N) program is done from the clean
state. (We use the Java reflection mechanism to capture the state.)
Additionally, Generate finds the template entry method (line 7),
which is the entry point for executing T (in our Java implementa-
tion, this is the method annotated with @Entry), and also counts the
total number of holes that should be filled in the template (line 8).

Next, Generate repeatedly calls RunTemplate, which executes the
template, resulting in a generated program that is added to G. As-
sume that a template always terminates, which can be guaranteed
through carefully specifying the search space for the holes in con-
ditions, the overall loop in Generate ends when the number of
uniquely generated programs has reached the maximum necessary
number N. We set a timeout, for RunTemplate, as it might not be
feasible to generate the specified number of unique programs.

ASE 22, October 10-14, 2022, Rochester, MI, USA

Before calling RunTemplate in each iteration, Generate sets the

global state to be the same as the initial global state S (line 10). Set-
ting the initial state to S ensures that subsequent runs of RunTemplate
always start the generation process, which executes the same tem-
plate entry method, in the clean state.
Example. Consider the template from Figure 1a. The template has
a static variable s1 that is modified (line 7). Subsequent executions
should make sure s1 starts at 0 again, otherwise they would not be
starting at the same state and would not generate programs that
are even possible.

Function RunTemplate is responsible for generating a single con-
crete program from the given template T. First, it initializes H as
an empty mapping from holes to their filled expressions (line 21).
RunTemplate then sets an intermediate program Q to be the in-
put template program T to start with (line 23), and then it repeat-
edly executes the entry method entryMeth on Q (line 25). The
ExecEntryMethod returns a mapping H’ of holes it filled to the ac-
tual expressions.

Example. In Figure 1a, executing the hole on line 7 would result
in a mapping of that hole to concrete value 45350238 (line 7 in
Figure 1b).

The overall mapping H gets updated with H’. If all holes have

been filled, then the loop terminates (line 27). The reason for exe-
cuting the template entry method entryMeth many times is to
ensure all holes that can be reached get filled. Eventually, our
goal is to execute a corresponding generated entry method up
to MAX_NUM_ITERATIONS times as to trigger JIT optimizations (Sec-
tion 3.5). Some holes may only be reachable after multiple iterations,
so executing just once would not fill those holes.
Example. Consider the template from Figure 1a. The last hole
(line 14) could be skipped in the first run because the condition
(line 10-12) is evaluated to false. However, the hole could be filled
later when static variable s1 gets updated (line 7), making the con-
dition true.

Some choice of candidate for a hole may possibly make another,
later hole unreachable, putting it in dead code. JATTACK may fill
a hole in a condition, such as for an if statement, that always
evaluates to false, and therefore any holes within the block of
these conditional statements cannot be reached. To prevent the
execution from RunTemplate from continuously executing while
being unable to fill those unreachable holes, RunTemplate stops after
the MAX_NUM_ITERATIONS maximum number of iterations. Having
unfilled dead-code holes in a generated program is fine because
such code should never even be executed within the maximum
number of iterations later (and if it is executed, that would indicate
a bug in the JIT compiler). RunTemplate does stop earlier when all
holes are filled (line 27).

Three optimizations are introduced to reduce generation cost
(line 28-32) and we describe the optimizations in detail in Section 3.4.
Note that Q is an intermediate program, and we do not directly
return Q. As such, we can optimize and make extra changes in Q
to speed up generation, and these changes do not belong in a final
generated program P.

The final returned program P is then the original template T with
all its holes filled using the mapping H (computed using function
ApplyFilledHoles in line 33, which is not shown). Essentially, each

Zhigiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

1: Input: template program T

2: Input: number of programs to generate N
3: Output: set of generated programs G

4: function GENERATE(T, N)

5: G0

6 S « CaPTUREGLOBALSTATE(T)

7 entryMeth < FINDENTRYMETHOD(T)
8: num <« CountHoLes(T)

9: repeat

10: RESETGLOBALSTATE(S)

11: P « RunTemrLaTE(T, entryMeth, num)
12: G« GuU{P}

13: until |G| =N

14: return G

16: Input: template program T

17: Input: entry method entryMeth

18: Input: number of holes num

19: Output: generated program P

20: function RUNTEmMPLATE(T, entryMeth, num)

21: H« {}

22: seenStates «— ()

23: Q«T

24: for i « 1to MAX_NUM_ITERATIONS do
25: H’' « EXecCENTRYMETHOD (entryMeth, Q)
26: H—HUH

27: if |H| = num then break

28: R « CAPTUREGLOBALSTATE(Q)

29: if R € seenStates then break

30: seenStates «— seenStates U {R}
31: Q « HotFLL(Q, H)

32: Q « RemoveDEADCODE(Q, H)

33: return AppLYFILLEDHOLES(T, H)

Figure 6: Generation algorithm.

node corresponding to a filled hole can output the concrete code
snippet for the expression it currently holds, and the hole expression
in the template T gets replaced with this concrete code snippet.
Generate then takes the returned program P and adds it to the
running set of generated programs G. Note that Generate will keep
calling RunTemplate until obtaining a sufficient number of programs;
each time, Generate will use the fresh template program T, which
has no filled holes, as to create a brand new generated program.

3.4 Optimizations for Generation

We develop three optimizations to speed up the generation process.
Note that these optimizations all apply only for a single run of
RunTemplate, to just a single generated program at a time. Also,
these optimizations do not impact the generated programs, they
only speed up the generation process.

Early stop. We can have an even earlier stopping condition based
on the insight that if the global state after execution is the same as
an already seen state, then any future run would lead to the same
behavior (as a previous execution). Starting execution in the same
global state cannot lead to new executions that fill new holes. In
RunTemplate, we keep track of the seen global states in seenStates
and check the global state after each execution (line 29 in Figure 6).
This type of program state hashing has been extensively used in
software model checking [50].

Hot filling. In our preliminary experiments, we found that exe-
cuting a template entry method many times is time-consuming,
especially compared to executing the generated entry method as
part of our evaluation. The extra overhead comes from repeated

Compiler Testing using Template Java Programs

executions of our Java API methods that build and evaluate eAST
nodes. Recall during generation the filled hole is not rewritten into
the concrete expression, but just evaluated to produce the same
value as the concrete expression. The filled holes get replaced with
the actual code only when the entire template gets translated into
a new generated program (line 33 in Figure 6). Thus, while our
implementation ensures that repeated execution of the same API
method returns the same eAST node, invoking the eval method
to evaluate the node is still expensive compared to evaluating the
concrete code that replaces the hole in the generated program.
The hot filling optimization replaces the hole at runtime (during
generation) with the concrete expression when the hole is evalu-
ated for the first time, so that execution in the following iterations
can use concrete code rather than invoking our Java API meth-
ods, including the eval method that evaluates the filled hole. In
RunTemplate, we invoke the method HotFill (line 31 in Figure 6) on
the resulting Q after execution that finds all API calls with set nodes
and, using the mapping of holes to expressions H, replaces those
calls with the concrete expressions. Then, using interfaces provided
from package javax.tools, e.g., javax.tools.JavaCompiler, we im-
plement an in-memory Java compiler, file manager, and associated
class loader to dynamically compile Q and then reload this modified
template’s class, resulting in a new Q. The next iteration starts from
the new Q as the template (line 25 in Figure 6). This technique is
conceptually similar to “quickening” optimization implemented in
self-optimizing interpreters [16, 45].
Eager pruning. In our preliminary experiments, we also noticed a
significant number of generated programs with conditional expres-
sions that are trivially false, e.g., (var1 > var1). The body of such
conditional statements would never be executed, so it is unneces-
sary to execute any further to fill holes within statements guarded
by that condition. After executing the template entry method and
obtaining filled holes in H, we invoke function RemoveDeadCode to
eliminate any such dead code in the program Q (line 32 in Figure 6),
completely rewriting the body into an empty statement. This tech-
nique is conceptually similar to partial evaluation [56]. We leverage
a modern SMT solver (Z3 [29]) in our implementation to determine
whether any conditional expression is satisfiable or not, eliminat-
ing code in case the expression is unsatisfiable. Note that we only
temporarily remove the code as a means to speed up generating
a single program. The returned generated program does not have
any unreachable code removed. Later calls to RunTemplate always
start with the same template T that has all the code still there.

3.5 JIT-Testing Procedure

Revealing JIT-related bugs requires not just programs but also
executing those programs many times. For each generated program,
we iterate though different JIT compilers. For each JIT compiler,
we repeatedly execute the generated entry method, hashing the
output of each execution (a generated entry method’s return value is
always encoded into an integer) into a running total. After executing
MAX_NUM_ITERATIONS times (the same limit in Figure 6), we capture
the global state of generated program (values of all static fields) and
encode it within a checksum value, adding this to the running total.
The final total representing the combination of all the executions.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

For a given generated program, we use differential testing [66]
to check if the running totals computed from all JIT compilers are
all the same. Any difference should indicate that the generated
program detected a bug within some JIT compiler. However, the
program may itself be non-deterministic, i.e., having different out-
puts when run multiple times on the same JIT compiler. Note that
non-determinism was only observed from the templates extracted
from existing Java projects, e.g., involving randomness, while our
manually created templates are guaranteed to be deterministic. To
avoid being misled by non-determinism, when there are differences
in output across different JIT compilers, we choose a JIT compiler
as a reference point and run the program twice using that same
compiler. If the outputs from running on the same JIT compiler dif-
fer, then output differences between JIT compilers do not indicate
a bug. While this step may potentially miss detecting some bugs, it
gives higher guarantees that reported bugs are true bugs.

Besides checking for differences in final running totals, we also
report a bug if the execution crashes on some JIT compiler. Execut-
ing any unfilled hole (left as the API method call in the generated
program) would also trigger a crash, because an unfilled hole should
not be reachable. The ultimate output of the entire JIT-testing pro-
cedure is a subset of generated programs that expose a bug in one
of the input JIT compilers.

4 EXTRACTING TEMPLATES

We also evaluate JATTACK for automated end-to-end compiler test-
ing. Namely, we provide an approach to automatically extract
templates from existing Java projects. The code written for these
projects are naturally representative of Java language features and
can be used as the foundation for templates that can find bugs in
Java JIT compilers. We can then also easily and automatically scale
up the number of templates to run through JATTACK.

Given a Java class, we first parse all the available methods in the
class to detect potential holes. For each statement, we recursively
convert each subexpression into the corresponding hole, starting
from the leaves of the expression tree. For example, the expression a
+ b would be converted into arithmetic(intId(), intId()).eval()
(specifying no operator argument means using all valid operators),
which matches the expression structure. Note that the final call to
eval is on the outermost API call, allowing for the greatest space
of combination of values that JATTACK can explore.

After inserting holes into the Java class, we then scan the class
for available static methods, which are the candidate template en-
try methods. If the static method takes any parameters, we insert
additional parameter methods, one for each parameter; a parameter
method returns a concrete value for the corresponding parameter
type upon execution. For primitive values, we leverage JATTACK
to provide a possible value, e.g., if the parameter is an int type we
simply use intVal to represent an integer value. For non-primitive
types, i.e., classes, we search if such classes have default construc-
tors or constructors with primitive arguments that we can simply
use to create an instance of that class. If there are no such construc-
tors, we search from other classes for a public static method that
returns an instance of the class. If none of the above cases applies,
we then use null as the concrete value.

ASE 22, October 10-14, 2022, Rochester, MI, USA

Note that our approach for extracting templates and then us-
ing them to generate concrete programs is similar in nature to
concepts in mutation testing [30], where existing programs are
mutated into other similar programs through syntactic mutation
operators [23, 59, 60]. Conceptually, converting a program into a
template program and then generating additional programs through
JATTACK is like mutating the original program. However, our way
of generating programs leverages the capabilities of JATTACK and
its DSL to allow more expressive transformations that are beyond
traditional mutation operators, and more similar to what can be
generated using higher-order mutation operators [54].

5 EXPERIMENTAL SETUP

We briefly describe our evaluation setup.

5.1 Evaluation Subjects

We wrote 13 templates that exercise Java language features. We
also studied the available optimizations used in the Oracle JDK
JIT compiler, creating six templates whose basic structure would
trigger those optimizations while including holes for JATTACK to
explore. Finally, we studied existing bug reports for JIT-related
bugs, creating four templates by modifying the programs attached
to bug reports to include holes. In our evaluation, we refer to the
templates based on our own understanding of Java and the compiler
developers’ intuition of optimizations using prefix “M”. We refer
to the templates based on bug reports using prefix “B”. Overall, we
created 23 templates, with the goal to evaluate the effectiveness of
our optimizations.

To evaluate JATTACK in the context of automated test generation,
we collect templates automatically from existing Java code. We
use 77 open-source Java Maven projects from GitHub to extract
templates from their classes. Given a project or a module of a multi-
module Maven project, we find classes defined in all “java” files.
We extract templates from these classes following the procedures
described in Section 4.

5.2 Configuring JATTACK

For each template we created ourselves, we configure JATTACK to
generate 1,000 concrete programs (N in Figure 6). While genera-
tion is fastest when we turn on all three generation optimizations
(Section 3.4), we also evaluate running generation without any op-
timization and with each optimization separately, measuring each
one’s effectiveness. For each of the generated programs, we exe-
cute it 100,000 times (MAX_NUM_ITERATIONS in Figure 6) on different
JIT compilers. The JIT compilers we evaluate on are Oracle JDK,
OpenJDK, and Open]9, all based on JDK 11.0.8.

For templates extracted from existing Java projects, we follow
the same approach, except we configure JATTACK to generate only
10 concrete programs from each template program, because of the
large number of templates, and we test only on the latest Oracle
JDK, which was 16.0.2 at that time.

In our evaluation, we configure Oracle JDK to restrict the specific
tiers, L1 and L4, using the option -XX: TieredStopAtLevel, in order to
test C1 and C2 compilers [3], respectively. We treat each restricted
tier configuration for Oracle JDK as conceptually a new JIT compiler
for use in our JIT-testing procedure (Section 3.5).

Zhigiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

We run all experiments on a 64-bit Ubuntu 18.04.1 desktop with
an Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 64GB RAM. For
all time measurements, we run the evaluation five times and report
the average of those times.

6 EVALUATION
We evaluate JATTACK by asking:

RQ1: How efficient is JATTACK at generating programs and execut-
ing those generated programs with different JIT compilers?

RQ2: How well can JATTACK be used for automated compiler test-
ing via extracted templates from a large number of existing
Java programs, and how does it compare with state-of-the-art
automated JIT compiler testing?

RQ3: What critical bugs does JATTACK detect in JIT compilers?

We address RQ1 as to better understand how efficient JATTACK is
at generating programs from templates, as well as the impact of
our optimizations for generation, and to understand the efficiency
of JATTACK's testing procedure. We address RQ2 to understand
how well JATTACK can be used for automated compiler testing and
compare the effectiveness with tools used in industry. We address
RQ3 to understand the bugs that we exposed. JATTACK and all JIT-
bugs we detected, including associated templates and generated
programs, are available at https://github.com/EngineeringSoftware/
jattack.

6.1 Performance and Optimizations

Table 1 shows the time for JATTACK to generate 1,000 programs for
each of our manually created 23 templates. The different columns
show the total time to generate all 1,000 programs when using
different generation optimizations (Section 3.4). Namely, “Non-opt.”
means no optimizations, “Early Stop” means using only early stop,
“Hot Filling” means using only hot filling, and “Eager Pruning”
means using only eager pruning. The final column for “Full Opt.”
is the time when using all optimizations. In addition to time, for
each optimization column, we also show the percentage of time
reduced relative to “Non-opt.” time (the higher the reduction the
better). The final row shows the sum of generation time across all
templates and the overall reduction over this total time.

Without any optimizations, the total time for generation across
all templates (essentially 1,000 * 23 = 23,000 programs total) is
over two days. We find that the overall time drops tremendously
after the optimizations are in place. When all optimizations are
enabled (“Full Opt.”), the overall time to generate all programs for
all templates is around 20 minutes, which is a 99.50% reduction over
the time it takes to generate all programs without any optimization.

Breaking down the effectiveness of our optimizations even fur-
ther, we find that the hot filling optimization is in general the most
effective, with hot filling reducing the generation time by 99.34%
versus 46.34% for early stop and 20.79% for eager pruning. Further-
more, we also see that early stop and eager pruning have cases
where they result in taking more time to generate programs than
without any optimization (the negative percentages in the table),
which suggests the extra checks required by early stop and the time
to invoke Z3 to solve constraints end up introducing more overhead
than actually helping. (We did not set a timeout for Z3, because we
did not observe Z3 getting stuck; however, setting a timeout could

Compiler Testing using Template Java Programs

Table 1: Time ((dd:)hh:mm:ss) and relative reduction to Non-
opt. (%) to generate 1,000 programs in various configurations.
Tmpl. is Templates; Rdct. is the relative reduction.

Tmpl. Non-opt. Early Stop Hot Filling Eager Pruning Full Opt.
Time Time Rdct. Time Rdct. Time Rdct. Time Rdct.
B1 05:00:36 00:14 99.92 01:31 99.50 02:55:07 41.74 00:56 99.69
B2 12:51:25 00:14 99.97 04:14 9945 12:53:50 -0.31 01:03 99.86
B3 01:19 00:12 84.33 00:33 58.57 02:01 -53.59 00:13 84.08
B4 01:43 01:41 237 01:41 2.03 01:41 245 01:43 0.29
M1 11:32 00:10 98.60 00:42 93.96 10:17 10.82 00:33 95.22
M2 12:57 00:12 9849 00:44 9429 14:40 -13.22 00:3¢ 95.59
M3 11:00 02:19 7890 01:05 90.14 13:04 -18.88 00:56 91.49
M4 19:44 04:31 77.12 00:28 97.60 20:35 -4.26 00:31 97.39
Ms 05:14:14 46:01 8536 01:04 99.66 04:20:07 17.22 00:46 99.76
Mo 03:05 00:09 95.08 00:45 75.79 04:21 -41.40 00:38 79.43
M7 05:24 05:31 -2.40 00:38 88.19 05:41 -5.39 00:49 84.74
M8 19:19 12:26 35.62 01:08 94.14 21:10 -9.62 01:16 93.43
M9 02:25 00:14 9042 00:28 80.59 02:49 -16.18 00:20 85.98
M10 09:07 02:55 67.96 00:41 92.50 10:32 -15.63 00:39 92.90
Mi1 10:58 00:10 98.48 02:15 79.44 08:35 2179 01:02 90.62
Mi2 04:23 04:40 -6.38 00:36 86.51 05:24 -22.88 00:43 83.64
M13 11:35:19 11:26:37 1.25 01:06 99.84 00:57 99.86 00:51 99.88
Mi14 11:40:46 05:43:54 5093 01:38 99.77 11:58:25 -2.52 01:17 99.82
Mi1s 03:55:35 00:09 99.94 00:45 99.68 02:49:16 28.15 00:14 99.90
Mie 07:38:42 07:47:57 -2.02 01:02 99.77 07:57:36 -4.12 01:09 99.75
M17 10:38:24 11:28:05 -7.78 03:12 99.50 10:51:56 =212 03:32 99.45
Mi8 04:57 00:09 96.81 00:41 86.07 05:43 -1545 00:32 89.08
M19 05:47 05:53 -1.82 01:01 82.34 03:51 3341 01:02 82.16
h) 2:22:38:42 1:13:54:24 4634 27:59 99.34 2:07:57:38 20.79 21:20 99.50

impact the performance of the eager pruning optimization.) We see
just one case for hot filling (and ultimately for when all optimiza-
tions are on) where there is little reduction in time. However, this
one case (B4) takes very little time even without any optimizations,
and the difference in time is seemingly just noise. Ultimately, all
optimizations do help overall, with the reduction in time when
using all optimizations still higher than each individually.

We also measure the time to execute the generated programs
from each of the 23 manually created templates. The total time
across all generated programs is around two hours on L4 and around
two and a half hours on L1.

6.2 Template Extraction

We extract 5,419 templates from 16,309 methods in 15,325 classes,
resulting in 50,609 generated programs. Recall that we let JATTACK
generate 10 programs from every template (Section 5), but not
every template includes sufficient number of holes from which 10
programs can be generated (JATTACK only explores the reachable
holes), which is why the total number of generated programs is
less than 10 * 5,419 = 54,190. We found 137 out of 50,609 generated

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Table 2: Comparing results of JATTACK and Java® Fuzzer.

C %,
#Generated #Timeout #Failures w
C1 C2
JATTACK 50609 1243 137 843 80.3
Java* Fuzzer 15931 2336 0 80.6 67.5

programs failed during our JIT-testing procedure. We inspected all
these 137 programs and discovered four unique bugs (Section 6.3).

In addition, we compare JATTACK against an existing automated
compiler testing tool, Java* Fuzzer [27], which is a fuzzer tool Or-
acle has been using daily for years and has been successful at
detecting bugs in the Oracle JDK (JIT) compiler. Guided by gram-
mar rules and pre-defined heuristics on program structures, Java*
Fuzzer generates hundreds of thousands of small, random Java pro-
grams as tests, and it then performs differential testing between a
JVM under test and a reference JVM. In contrast, JATTACK is pri-
marily developed for developers to embed their knowledge into
program generation by specifying holes in templates with auto-
mated template extraction from existing Java programs. Although
JATTACK and Java® Fuzzer have similar intentions, they work quite
differently, which is why the comparison results should be taken
with a grain of salt. We run Java* Fuzzer using the same resources
(CPU/RAM) for the same amount of time (which matches the total
execution time for JATTACK in Section 6.2). We perform differential
testing by comparing outputs from executions across different JIT
tiers, same as for JATTACK. We also collect code coverage of both
the C1 (src/hotspot/share/c1/) and C2 (src/hotspot/share/opto/)
compilers from executing the programs generated by both tools sep-
arately. Table 2 compares the results of JATTACK and Java” Fuzzer.
Java® Fuzzer did not generate any program that would expose a
bug in the Oracle JDK JIT compiler in this time frame. The code
coverage achieved using both tools are close to each other, though
JATTACK achieves slightly higher code coverage on both C1 and C2.

6.3 Detected JIT-Bugs

Bug m12gen61!, from template M12, showed mismatching outputs
on different tiers because C2’s range-check elimination leads to in-
correct loop executions. The Oracle JDK developers labeled the bug
we reported as a CVE (Common Vulnerabilities and Exposures)?,
and they fixed the bug in a recent Oracle Critical Patch Update>.
The JDK developers also confirmed Bug mdgen152%, where a crash
occurred from C2, as a P3% bug; this bug was discovered in parallel
by others and was fixed in JDK 16. Our template that exposed this
bug is shown in Figure 1a.

Additionally, we discovered four bugs using extracted templates
from existing Java projects. Bug math182° crashed on tiers L1 and
L4 because an array store in C1 compiled code writes to an arbitrary
location due to index overflow. The JDK developers labeled the bug

Lhttps://bugs.openjdk java.net/browse/JDK-8239244 (Login required)
Zhttps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020- 14792
Shttps://www.oracle.com/security-alerts/cpuoct2020.html
“https://bugs.openjdk.java.net/browse/JDK-8258981

5P3: Major loss of function.
®https://bugs.openjdk.java.net/browse/JDK-8271130 (Login required)

ASE 22, October 10-14, 2022, Rochester, MI, USA

as a CVE’, and they fixed the bug in another recent Oracle Critical
Patch Update®. Bug checkstyle106° was confirmed as a crash bug,
with priority P21°, related to wrong JVM state used for a receiver
null check, and it was fixed in JDK 17. Bug codec292!! missed
throwing some NegativeArraySizeException on tier L4 caused by
C2 optimizations; the JDK developers labeled it as a P2 bug and
fixed it in JDK 18. Bug compress208'2 crashed due to incorrect C2
loop optimizations before calling Arrays.copyof with a negative
parameter; this bug was confirmed with priority P3 and was also
discovered in parallel by others. The bug was fixed in JDK 18.

7 DISCUSSION

In this section, we contrast JATTACK's execution-based generation
to static generation, describe limitations of JATTACK, and provide
directions for future work.

7.1 Execution-Based vs. Static Generation

Recall JATTACK generates programs through an execution-based
model (Section 3.3) but we could have generated programs stati-
cally by processing an entire template and replacing all holes with
concrete expressions. Static generation would process the template
repeatedly, putting in different concrete expressions per hole to
output a new generated program, up to some maximum number.
Generating programs statically could be faster, because it would
not be executing the program at any point.

However, the execution-based generation provides a number
of advantages over static generation. Execution-based generation
(1) knows what exactly would be executed in a generated program
after being compiled, i.e., which parts are dead code or which parts
are executable (such information can be leveraged to guide the
exploration of holes instead of relying on randomness, which we
leave as future work) and (2) makes it possible to use values available
at runtime to construct holes; consider:
int m(int[] a) {

return alintVal(@, a.length).eval()];
}
where the hole would be a random integer between @ and the length
of the array a, which depends on the value of a, known only when
actually executing the template. An execution-based model allows
for expressing more complex programs that static generation cannot
generate, as it does not have such runtime information.

To compare execution-based and static generation, we create a
variant of JATTACK that generates programs statically. This variant
relies on the same syntax and semantics, but it statically processes
the template once to replace all the holes with concrete expressions.
Similarly to execution-based generation, we construct eASTs for
all the holes. Each eAST per hole contains all the choices for the
hole, i.e., concrete expressions that can be filled in the hole. For
each hole written in the template, we randomly choose one of the
concrete expressions to replace the hole, resulting in a generated
program. The generated program has every hole filled, unlike for

"https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21305
8https://www.oracle.com/security-alerts/cpujan2022.html
“https://bugs.openjdk java.net/browse/JDK-8271276

10p2: Crashes, loss of data, severe memory leak.
"https://bugs.openjdk.java.net/browse/JDK-8271459
2https://bugs.openjdk.java.net/browse/JDK-8271926

Zhigiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

execution-based generation where some holes may remain unfilled
if they are not reached during execution.

For this evaluation, we use the same configuration (1,000 pro-
grams for each template) for our static variant of JATTACK as to
allow for proper comparison against the execution-based model.
The total generation time with static generation is around three
minutes, which is shorter than execution-based generation (around
20 minutes), but they both generate a large number of programs,
and executing all generated programs for both approaches still
takes almost four and a half hours. As such, generation time is prac-
tically negligible compared against the differential testing part of
JATTACK. Furthermore, since static generation fills every hole in the
template, some generated programs could be syntactically different
from each other, but their differences are only for expressions in the
unreachable holes, so essentially the same code would be executed.
Execution-based generation would skip unreachable holes, ensur-
ing every generated program is not only syntactically different
but also executed differently. We collected reachability of the filled
holes when executing the generated programs. 78.44% of filled holes
are reached during execution of generated programs from static
generation while execution-based generation guarantees 100.00%
reachability. In terms of detected bugs, compared against execution-
based generation, statically generated programs detected only Bug
m12gen61 and missed detecting Bug m4gen152.

7.2 Limitations & Future Work

There are two main reasons why a relatively small number (5,419)
of templates are extracted from a relatively large number (15,325) of
classes in existing projects. First, JATTACK currently supports only
static Java methods as template entry methods. We leave support of
instance methods as template entry methods for future work, e.g.,
using EvoSuite [33] to create receiver objects and inputs for instance
methods. Second, we use a different name for the extracted template
class from the original class, which sometimes made the template
not pass Java type-checking due to circular dependencies between
the template class and other classes. We will explore editing the
original class in place instead of creating a renamed template class
as future work.

JATTACK requires re-executing programs many times just to trig-
ger JIT optimizations for testing. We considered other options such
as -XX:CompileThreshold that controls the number of interpreted
method invocations before optimization. We also considered the
option -XX:Tier4InvocationThreshold that controls the minimum
number of method invocations before transitioning to L4. However,
we found these other options also have a big effect on when JIT op-
timizations occur, so just using these options would not truly reflect
actual JIT usage, similar to just enabling C2 from the beginning [40].

Not all bugs we detected are reproducible each time due to the
non-deterministic nature of executions and JIT profiling (which is
different from non-determinism within programs under execution,
discussed in Section 3.5). For example, in one of the generated
programs for M4, we could not always observe failure (crashing
the JVM) when run on the same JIT compiler multiple times. We
plan to investigate such flakiness in the future.

Although we designed and implemented JATTACK for Java and
JIT compilers, the simple imperative language and extensions, as

Compiler Testing using Template Java Programs

shown in Section 3.1, represent the foundations for supporting tem-
plates for general imperative languages. Thus the ideas of template-
based testing and execution-based generation, can be also applied to
other languages and compilers, e.g., Scala, C#, etc., or even software
systems in general. We leave this as future work.

8 RELATED WORK

Compiler testing. There is a large body of work on compiler
testing, systematically reviewed in recent surveys [19, 88]. For
example, Csmith [80, 94] is a well-known tool for testing C com-
pilers by randomly generating C programs. It found bugs in main-
stream compilers [95, 96] and led to significant attention for com-
piler testing [2, 20, 42, 64, 67]. Mutation-based fuzzing [62, 65, 75—
77, 92, 99] is another approach to testing compilers by mutating
existing programs, with several techniques and tools specifically
for Java [11, 17, 22, 23, 51, 58, 73, 74, 91, 101]. Concerning JIT com-
pilers, Yoshikawa et al. [98] presented a generation approach that
produces random Java bytecode . Java* Fuzzer [27, 47, 49] generates
random Java programs to test Java JIT compilers. There is also
work on testing the C# JIT compilers [70, 71] and Smalltalk JIT
compilers [78]. Unlike all these techniques, JATTACK was primar-
ily developed to complement manually-written tests. Developers
can embed their knowledge into program generation by specifying
holes for exploration, enabling better testing of JIT compilers that
require complex structures and execution to reveal bugs. We do
compare against Java* Fuzzer as part of our evaluation.

While JATTACK relies on differential testing [66] to determine
whether a test fails, other means to construct a test oracle include
metamorphic testing [21] and specification-based testing [81, 97].
Equivalence Modulo Inputs (EMI) [25, 31, 59-61, 63, 69, 87] is a
representative of metamorphic testing technique. EMI produces
equivalent but different test programs and compares behaviors
across these programs on a single compiler. Chen et al. [18] com-
pared differential testing and EMI techniques.

Template-based program synthesis. There has been work on
synthesizing programs given initial templates. These techniques
can either synthesize programs using SAT/SMT solvers [32, 39,
52, 53, 83, 85, 86], using combinatorial techniques focusing on just
variables [100], or define holes using domain-specific languages [15,
84]. Ching and Katz [24] proposed to generate tests for APL-to-C
compiler COMPC through a template that denotes functions and
data types, which leverages the dynamic nature of APL to execute
programs as soon as holes get filled. CodeHint [34] synthesizes
sequences of API method invocations by running code with holes
to be filled. EdSketch [44] synthesizes implementations for holes
through test executions, aiming to pass the tests it runs on, focusing
on exploring field references. In contrast to all of these, JATTACK
generates concrete programs for testing a JIT compiler by executing
templates and allows richer expressions to be generated in holes.

Test input generation. Randoop [72] and EvoSuite [33] automat-
ically generate JUnit tests by incrementally extending sequences of
method invocations. Neither is able to effectively explore inside a
method, e.g., at the expression level, as JATTACK. ASTGen [28] and
UDITA [35] bounded-exhaustively generate complex test inputs,
including programs, but both require developers to manually write
extra predicates or generators to encode their intuition of guiding

ASE ’22, October 10-14, 2022, Rochester, MI, USA

exploration. Similarly, QuickCheck [26, 43], as a property-based
testing tool, is also capable of randomly generating test inputs but
requires developers to provide generators for complex data types. In
contrast to all of these, JATTACK provides a different way for devel-
opers to write templates. Developers simply write programs with
holes to make templates or even automatically extract templates
from existing code. Templates are written in the host language the
developers are already using.

Other research on JIT and JVM. There has been work on formal
verification of JIT compilers [8, 14, 38, 41, 68, 82, 90, 93], JIT-induced
side-channel detection [12, 13], and on identifying hard-to-optimize
code [36] and unspecified JNI behaviors of a JVM [46].

9 CONCLUSION

We presented JATTACK, a framework that enables template-based
testing for compilers. Using JATTACK, compiler developers can write
templates in the same language as the compiler they are testing
(Java), enabling them to leverage their domain knowledge to set
up a code structure likely to lead to compiler optimizations while
leaving holes representing expressions they want explored. JAT-
TACK executes templates, exploring possible expressions for holes
and filling them in, generating programs to later be run on com-
pilers. To speed up the generation process, we introduced three
optimizations that reduced overall generation time by 99.50% in
our experiments. Using 23 templates created on our own and 5,419
templates extracted from existing Java projects, JATTACK found
six critical (P3 or higher) bugs in Oracle JDK, all of which were
confirmed and fixed by Oracle developers. Four of them were pre-
viously unknown, including two unknown CVEs. JATTACK blends
the power of developers insights, who are providing templates, and
random testing to detect critical bugs.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Kush Jain, Sandeep Konchady, Owolabi Le-
gunsen, Yu Liu, Pengyu Nie, Aditya Thimmaiah, Jiyang Zhang, and
the anonymous reviewers for their comments and feedback. This
work is partially supported by a Google Faculty Research Award,
Army Futures Command, and the US National Science Foundation
under Grant Nos. CCF-1652517, CCF-2107291, and CCF-2217696.

REFERENCES

[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. 2007. Compilers:
Principles, Techniques, and Tools. Addison-Wesley.

[2] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi.
2016. Generating Focused Random Tests Using Directed Swarm Testing. In
International Symposium on Software Testing and Analysis. ACM, 70-81.

[3] Oracle Corporation and/or its affiliates. 2021. The Java HotSpot Performance
Engine Architecture. https://www.oracle.com/java/technologies/whitepaper.
html.

[4] Oracle Corporation and/or its affiliates. 2021. [JDK-8251535] Partial peeling
at unsigned test adds incorrect loop exit check - Java Bug System. https://bugs.
openjdk.java.net/browse/JDK-8251535.

[5] Oracle Corporation and/or its affiliates. 2021. Regression Test Harness for the
JDK: jtreg. https://openjdk.java.net/jtreg.

[6] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin.
2006. Using Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria. IEEE Transactions on Software Engineering 32, 8 (2006), 608—-624.

[7] John Aycock. 2003. A Brief History of Just-in-Time. Comput. Surveys 35, 2

(2003), 97-113.

Auréle Barriére, Sandrine Blazy, and David Pichardie. 2020. Towards Formally

Verified Just-in-Time compilation. In International Workshop on Coq for Pro-

gramming Languages.

8

ASE 22, October 10-14, 2022, Rochester, MI, USA

[9]

[10

[11

(12]

[13]

[14

(15

[16

(17

(18]

[19

[20]

[21]

[22

[23

[24]

[25]

[26]

&
=

[28

[29

[30

[31

(32]

[33

(34]

Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In
International Conference on Software Engineering. ACM, 550-561.

Jonathan Bell and Luis Pina. 2018. CROCHET: Checkpoint and Rollback via
Lightweight Heap Traversal on Stock JVMs. In Proceedings of the 2018 European
Conference on Object-Oriented Programming. Dagstuhl, 17:1-17:31.

William Blair, Andrea Mambretti, Sajjad Arshad, Michael Weissbacher, William
Robertson, Engin Kirda, and Manuel Egele. 2020. HotFuzz: Discovering Algorith-
mic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing. In The
Symposium on Network and Distributed System Security. The Internet Society.
Tegan Brennan, Nicolas Rosner, and Tevfik Bultan. 2020. JIT Leaks: Inducing
Timing Side Channels through Just-In-Time Compilation. In Symposium on
Security and Privacy. IEEE, 1207-1222.

Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing for
JIT-Induced Side-Channel Detection. In International Conference on Software
Engineering. ACM, 1011-1023.

Fraser Brown, John Renner, Andres Noétzli, Sorin Lerner, Hovav Shacham, and
Deian Stefan. 2020. Towards a Verified Range Analysis for JavaScript JITs. In
Programming Language Design and Implementation. ACM, 135-150.

Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators. In
International Conference on Very Large Data Bases. VLDB Endowment, 1097~
1107.

Stefan Brunthaler. 2010. Efficient Interpretation Using Quickening. In Sympo-
sium on Dynamic Languages. ACM, 1-14.

Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur Gervais,
Benjamin Livshits, and Dimitris Mitropoulos. 2022. Finding Typing Compiler
Bugs. In Programming Language Design and Implementation. ACM, 183-198.
Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An Empirical Comparison of Compiler Testing Techniques.
In International Conference on Software Engineering. ACM, 180-190.

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53, 1
(2020), 4:1-4:36.

Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and
Lu Zhang. 2019. History-Guided Configuration Diversification for Compiler
Test-Program Generation. In International Conference on Software Engineering.
IEEE, 305-316.

TY Chen, SC Cheung, and SM Yiu. 1998. Metamorphic testing: a new approach
for generating next test cases. Technical Report.

Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of
JVM Implementations. In International Conference on Software Engineering. IEEE,
1257-1268.

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-Directed Differential Testing of JVM Implementations. In Program-
ming Language Design and Implementation. ACM, 85-99.

Wai-Mee Ching and Alex Katz. 1993. The Testing of an APL Compiler. In
International Conference on APL. ACM, 55-62.

Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink. In International Conference on
Software Engineering. ACM, 335-346.

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In International Conference on Functional
Programming. ACM, 268-279.

Intel Corporation. 2016. android-art-intel/Fuzzer: Java* Fuzzer for Android*.
https://github.com/android-art-intel/Fuzzer.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Test-
ing of Refactoring Engines. In Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering. ACM,
185-194.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337-340.

R.A. DeMillo, R]. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (1978), 34-41.

Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, An-
dré Perez Maselco, and Antoni Karpinski. 2021. Test-Case Reduction and
Deduplication Almost for Free with Transformation-Based Compiler Testing.
In Programming Language Design and Implementation. ACM, 1017-1032.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Struc-
ture Transformations from Input-Output Examples. In Programming Language
Design and Implementation. ACM, 229-239.

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite gener-
ation for object-oriented software. In Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software Engi-
neering (Szeged, Hungary). ACM, 416-419.

Joel Galenson, Philip Reames, Rastislav Bodik, Bjorn Hartmann, and Koushik
Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets. In
International Conference on Software Engineering. ACM, 653-663.

[35]

[36]

[37]

[38]

[39

[40

[41

[42

[43

[44]

[45

[46]

[47

[48

[49

[50

[51

[52

[53]

[54

[55

[56]

[57

[58]

[59

[60]

[61]

Zhigiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kun-
cak, and Darko Marinov. 2010. Test Generation through Programming in UDITA.
In International Conference on Software Engineering. ACM, 225-234.

Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
Unfriendly JavaScript Code. In Joint Meeting of the European Software Engineer-
ing Conference and the Symposium on the Foundations of Software Engineering.
ACM, 357-368.

Alex Groce, Chaogiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.
Swarm Testing. In International Symposium on Software Testing and Analysis.
ACM, 78-88.

Shu-yu Guo and Jens Palsberg. 2011. The Essence of Compiling with Traces. In
Symposium on Principles of Programming Languages. ACM, 563-574.

Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. 2011. Interactive Synthesis
of Code Snippets. In Computer Aided Verification. Springer, 418-423.

Andrew Haley. 2015. How to change compilation policy to trigger C2 compilation
ASAP? https://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-
May/018010.html.

Chris Hawblitzel, Shuvendu K. Lahiri, Kshama Pawar, Hammad Hashmi, Sedar
Gokbulut, Lakshan Fernando, Dave Detlefs, and Scott Wadsworth. 2013. Will You
Still Compile Me Tomorrow? Static Cross-Version Compiler Validation. In Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering. ACM, 191-201.

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In USENIX Security Symposium. USENIX, 38.

Paul Holser. 2020. junit-quickcheck — junit-quickcheck: Property-based testing,
JUnit-style. https://pholser.github.io/junit-quickcheck/index.html.

Jinru Hua and Sarfraz Khurshid. 2017. EdSketch: Execution-Driven Sketching
for Java. In International SPIN Symposium on Model Checking of Software. ACM,
162-171.

Christian Humer, Christian Wimmer, Christian Wirth, Andreas W68, and
Thomas Wirthinger. 2014. A Domain-Specific Language for Building Self-
Optimizing AST Interpreters. In International Conference on Generative Program-
ming: Concepts and Experiences. ACM, 123-132.

Sungjae Hwang, Sungho Lee, Jihoon Kim, and Sukyoung Ryu. 2021. JUSTGen:
Effective Test Generation for Unspecified JNI Behaviors on JVMs. In International
Conference on Software Engineering. IEEE, 1708-1718.

Azul Systems, Inc. 2018. AzulSystems/JavaFuzzer: Java™ Fuzzer for Android™.
https://github.com/AzulSystems/JavaFuzzer.

Free Software Foundation, Inc. 2021. Testsuites (GNU Compiler Collection (GCC)
Internals). https://gcc.gnu.org/onlinedocs/gccint/Testsuites.html.

Red Hat, Inc. 2018. shipilev/JavaFuzzer: Java™ Fuzzer for JVM. https://github.
com/shipilev/JavaFuzzer.

Radu Iosif. 2002. Symmetry Reduction Criteria for Software Model Checking. In
International SPIN Symposium on Model Checking of Software. Springer, 22—41.
Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. 2009.
jFuzz: A Concolic Whitebox Fuzzer for Java. In NASA Formal Methods Sympo-
sium.

Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. 2015.
JSketch: Sketching for Java. In Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering. ACM,
934-937.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
Guided Component-Based Program Synthesis. In International Conference on
Software Engineering. ACM, 215-224.

Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher
Order Mutation Testing. In IEEE International Working Conference on Source
Code Analysis and Manipulation. IEEE, 249-258.

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011),
649-678.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation
and Automatic Program Generation. Prentice Hall.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in
Software Testing?. In International Symposium on the Foundations of Software
Engineering. 654-665.

Rody Kersten, Kasper Luckow, and Corina S. Pasareanu. 2017. POSTER: AFL-
based Fuzzing for Java with Kelinci. In Conference on Computer and Communi-
cations Security. ACM, 2511-2513.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-
alence modulo Inputs. In Programming Language Design and Implementation.
ACM, 216-226.

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs
via Guided Stochastic Program Mutation. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, 386-399.
Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-Testing
of Link-Time Optimizers. In International Symposium on Software Testing and
Analysis. ACM, 327-337.

Compiler Testing using Template Java Programs

(62]

[63

(64

(65

(66

[67]

(68

[69

[70

~
—

[72

[73

(74

[75

[76

[77

[78

[79]

(80]

[81

(82

Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing. In USENIX Security Symposium. USENIX, 3559-3576.
Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-Core Compiler Fuzzing. In Programming Language Design and
Implementation. ACM, 65-76.

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Test-
ing for C and C++ Compilers with YARPGen. In International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM, 196:1-
196:25.

Valentin J. M. Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
47, 11 (2021), 2312-2331.

William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100-107.

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
Testing via a Theory of Sound Optimisations in the C11/C++11 Memory Model.
In Programming Language Design and Implementation. ACM, 187-196.
Magnus O. Myreen. 2010. Verified Just-in-Time Compiler on X86. In Symposium
on Principles of Programming Languages. ACM, 107-118.

Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random testing of C compilers
based on test program generation by equivalence transformation. In Asia Pacific
Conference on Circuits and Systems. IEEE, 676-679.

Jakob Botsch Nielsen. 2018. Fuzzing the NET JIT Compiler. https://mattwarren.
org/2018/08/28/Fuzzing-the- NET-JIT- Compiler/.

Jakob Botsch Nielsen. 2020. jakobbotsch/Fuzzlyn: Fuzzer for the .NET toolchains,
developed as a project for the 2018 Language-Based Security course at Aarhus
University. https://github.com/jakobbotsch/Fuzzlyn.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In International Conference on
Software Engineering. IEEE, 75-84.

Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-Guided
Property-Based Testing in Java. In International Symposium on Software Testing
and Analysis. ACM, 398-401.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In International Symposium on
Software Testing and Analysis. ACM, 329-340.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints. In
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 174:1-174:29.

Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In Symposium on Security
and Privacy. IEEE, 1629-1642.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by
Program Transformation. In Symposium on Security and Privacy. IEEE, 697-710.
Guillermo Polito, Stéphane Ducasse, and Pablo Tesone. 2022. Interpreter-guided
Differential JIT Compiler Unit Testing. In Programming Language Design and
Implementation. ACM, 981-992.

LLVM Project. 2021. LLVM Testing Infrastructure Guide. https://llvm.org/docs/
TestingGuide.html.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-Case Reduction for C Compiler Bugs. In Programming Language
Design and Implementation. ACM, 335-346.

Richard Schumi and Jun Sun. 2021. SpecTest: Specification-Based Compiler
Testing. In Fundamental Approaches to Software Engineering. Springer, 269-291.
Boris Shingarov. 2019. Formal Verification of JIT by Symbolic Execution. In
International Workshop on Virtual Machines and Intermediate Languages.

[83]

[84]

[85

[86

[87

[88

[89

[90

[o1

[92

[93

[94

[95

[96

[97

[98

[99

[100

[101

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure
Manipulations from Storyboards. In Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software Engi-
neering. ACM, 289-299.

Emin Giin Sirer and Brian N. Bershad. 2000. Using Production Grammars in
Software Testing. In Conference on Domain-Specific Languages. ACM, 1-13.
Armando Solar-Lezama. 2013. Program Sketching. International Journal on
Software Tools for Technology Transfer 15, 5-6 (2013), 475-495.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 404-415.

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live
Code Mutation. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 849-863.

Yixuan Tang, Zhilei Ren, Weigiang Kong, and He Jiang. 2020. Compiler testing:
a systematic literature analysis. Frontiers of Computer Science 14, 1 (2020), 1:20.
Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized Unit Tests. In Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering. ACM, 253-262.

Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak. 2020.
Synthesizing JIT Compilers for In-Kernel DSLs. In Computer Aided Verification.
Springer, 564-586.

Vasudev Vikram, Rohan Padhye, and Koushik Sen. 2021. Growing A Test Corpus
with Bonsai Fuzzing. In International Conference on Software Engineering. ACM,
723-735.

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection.
In Symposium on Security and Privacy. IEEE, 497-512.

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock.
2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastructure. In Symposium
on Operating Systems Design and Implementation. USENIX, 33-47.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Programming Language Design and Implemen-
tation. ACM, 283-294.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2021. GCC Bug List Found
by Random Testing (Total 79). https://embed.cs.utah.edu/csmith/gcc-bugs.html.
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2021. LLVM Bug List
Found by Random Testing (Total 203). https://embed.cs.utah.edu/csmith/llvm-
bugs.html.

Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang,
Xiaoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
Conformance Testing for JavaScript Engines via Deep Compiler Fuzzing. In
Programming Language Design and Implementation. ACM, 435-450.

Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003. Random Pro-
gram Generator for Java JIT Compiler Test System. In International Conference
on Quality Software. IEEE, 20-23.

Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In Symposium on Security and Privacy. IEEE,
769-786.

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-
meration for Rigorous Compiler Testing. In Programming Language Design and
Implementation. ACM, 347-361.

Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis
for JVM Testing. In International Conference on Software Engineering. ACM,
1133-1144.

	Abstract
	1 Introduction
	2 Example
	3 JAttack Framework
	3.1 Programming and Execution Models
	3.2 JAttack Implementation for Java
	3.3 Generation Procedure
	3.4 Optimizations for Generation
	3.5 JIT-Testing Procedure

	4 Extracting Templates
	5 Experimental Setup
	5.1 Evaluation Subjects
	5.2 Configuring JAttack

	6 Evaluation
	6.1 Performance and Optimizations
	6.2 Template Extraction
	6.3 Detected JIT-Bugs

	7 Discussion
	7.1 Execution-Based vs. Static Generation
	7.2 Limitations & Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

