
Compiler Testing using Template Java Programs

Zhiqiang Zang
The University of Texas at Austin

Austin, Texas, USA
zhiqiang.zang@utexas.edu

Nathan Wiatrek
The University of Texas at Austin

Austin, Texas, USA
nwiatrek@utexas.edu

Milos Gligoric
The University of Texas at Austin

Austin, Texas, USA
gligoric@utexas.edu

August Shi
The University of Texas at Austin

Austin, Texas, USA
august@utexas.edu

ABSTRACT

We present JAttack, a framework that enables template-based test-

ing for compilers. Using JAttack, a developer writes a template

program that describes a set of programs to be generated and given

as test inputs to a compiler. Such a framework enables developers

to incorporate their domain knowledge on testing compilers, giv-

ing a basic program structure that allows for exploring complex

programs that can trigger sophisticated compiler optimizations. A

developer writes a template program in the host language (Java)

that contains holes to be filled by JAttack. Each hole, written using

a domain-specific language, constructs a node within an extended

abstract syntax tree (eAST). An eAST node defines the search space

for the hole, i.e., a set of expressions and values. JAttack generates

programs by executing templates and filling each hole by randomly

choosing expressions and values (available within the search space

defined by the hole). Additionally, we introduce several optimiza-

tions to reduce JAttack’s generation cost. While JAttack could

be used to test various compiler features, we demonstrate its ca-

pabilities in helping test just-in-time (JIT) Java compilers, whose

optimizations occur at runtime after a sufficient number of execu-

tions. Using JAttack, we have found six critical bugs that were

confirmed by Oracle developers. Four of them were previously un-

known, including two unknown CVEs (Common Vulnerabilities

and Exposures). JAttack shows the power of combining devel-

opers’ domain knowledge (via templates) with random testing to

detect bugs in JIT compilers.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; Just-in-time compilers.

KEYWORDS

Testing, test generation, program generation, compiler, templates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’22, October 10ś14, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556958

ACM Reference Format:

Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi. 2022.

Compiler Testing using Template Java Programs. In 37th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE ’22), Octo-

ber 10ś14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3551349.3556958

1 INTRODUCTION

Compilers are among the most critical components in the soft-

ware development toolchain, and their correctness is of utmost

importance. A bug in a compiler might lead to a crash during the

translation, an incorrect output (native code does not match the

semantics of the programwritten by developers [4]), or even expose

security vulnerabilities in the generated code.

Compiler developers have manually written thousands of tests,

i.e., programs in the compiler’s target programming language, as to

check for correctness [5, 48, 79]. Although manually-written tests

nicely capture developers’ intuition ofwhat programs are expected to

trigger corner cases, it is time-consuming to write a large number of

such tests. As a result, researchers and practitioners have developed

a number of automated techniques for testing compilers [14, 22, 23,

37, 42, 59, 64, 74, 94, 98], namely by generating a large number of

programs on which the compiler can run. Existing compiler-testing

techniques mainly fall in two categories: grammar-based [42, 64, 94,

98] and mutation-based [22, 23, 59, 74]. The former group generates

programs from scratch following the production rules available in

the language grammar. The latter group usually starts with some

seed programs and then genetically mutates the seeds.

Although existing approaches are valuable, they have shortcom-

ings. First, they provide limited ways for compiler developers to

fully embed their knowledge into the testing process. Second, they

frequently support only a subset of the language grammar (e.g.,

only integer values [94]).

We present JAttack, a framework that enables compiler testing

using templates. Using JAttack, a developer writes a template pro-

gram (template for short) that describes a set of concrete programs to

be used as inputs to a compiler. Unlike prior work, our framework

enables developers to express richer manual tests for compilers. Our

design of a template captures the developers’ intuition in very much

the same way as manually-written tests but provides an opportu-

nity to express variants of those tests that can be obtained by testing

the templates. The goal is similar to parameterized unit testing [89],

where developers manually write unit tests that encapsulate some

features they want to test in their code but have parameters that

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

a backend framework explores as to obtain deeper testing around

the insights the developers initially provide. Unlike with mutation-

based fuzzers, compiler developers can use templates to specify

exactly how to generate program variants. (Figure 1 shows an ex-

ample template, which is discussed in detail in Section 2.) JAttack

complements existing automated compiler-testing techniques that

can provide a structure of a program on which JAttack can further

build templates.

In JAttack, a developer writes a template in the host language

(Java), which contains holes to be filled by JAttack. Each hole

is written in a domain-specific language (DSL) embedded in the

host language, i.e., we do not change the syntax, compiler, nor

runtime environment of the host language. We define the DSL as

a set of APIs that allow developers to specify characteristics of

the hole they want explored in a template, where each API call

produces an instance of an extended abstract syntax tree (eAST)

node; an eAST node bounds the search space for the hole, i.e.,

defines a set of possible statements, expressions, and values. As

an example, consider the following API call that defines a hole:

relation(intVal(), intVal(), GT, LT).eval(), which represents a

logical relation between two integer literals (each can take any value

between Integer.MIN_VALUE and Integer.MAX_VALUE) using either >

(GT) or < (LT) relational operators; this hole evaluates to a boolean.

Using the JAttack’s API, each hole can then be type-checked by

the host compiler.

JAttack is useful for augmenting testing for many complex

compiler features as it leverages the developer insights from the

provided templates. For our evaluation, we focus specifically on

testing just-in-time (JIT) compilers. Unlike traditional ahead-of-

time compilers that translate a program into native code prior

to deployment [1], JIT compilers translate the program during

execution [7]. Certain optimizations only occur after executing

specific program structures a sufficient number of times.

JAttack takes two inputs: (1) a template, and (2) an iteration

count (𝑁), i.e., the number of times each generated program will

be executed in a loop to ensure that JIT compilation is triggered.

JAttack generates a program by repeatedly executing the template

(up to 𝑁 times) and filling each hole, when the hole is reached the

first time, by randomly choosing expressions and values available

within the search space defined by the hole. (In theory, a template

can be exhaustively explored, but it is generally not feasible.) Next,

to detect any JIT-related bugs, each generated program is executed

𝑁 times using different JIT compilers, potentially detecting bugs

via differential testing [66].

We also introduce three optimizations into JAttack to reduce

the generation cost. The first optimization, early stop, involves stop-

ping after detecting that further generation would not fill any more

holes. The second optimization, hot filling, dynamically transforms

the template when a hole is reached the very first time; the API

call is transformed into the concrete expression that the call would

produce. The final optimization, eager pruning, uses a modern con-

straint solver (Z3 [29]) to detect holes for conditional statements

(e.g., if) that always evaluate to a constant value.

To demonstrate JAttack’s capabilities in testing JIT compilers,

we wrote 23 templates. We focused on interesting Java language fea-

tures and took inspiration from existing tests for the Java compiler.

We report the cost of generation and execution, as well as benefits

of our optimizations; our optimizations reduce the generation time

by 99.50%. We used the generated programs as inputs to multiple

commercial JIT compilers, including the Oracle JDK JIT compiler.

Using just our own templates, we were able to discover two bugs in

the Oracle JDK JIT compiler. These bugs were confirmed and fixed

by Oracle developers, and one of the bugs was previously unknown

and acknowledged on Oracle’s list of CVEs.

We also evaluated how well JAttack can be used for automated

compiler testing by extracting templates from existing Java projects.

This evaluation is inspired by mutation testing [6, 23, 30, 55, 57, 59,

60], where we essentially łmutatež existing code to construct dif-

ferent tests for compilers. Note that, unlike in traditional mutation

testing, holes in our case are filled by randomly generating values

and expressions. Moreover, mutation testing uses a predefined set

of mutation operators while JAttack provides a way for a user to

write holes anywhere in their code following their intuition (e.g.,

the way we wrote templates for JIT compilers). Each hole has its

own set of values (and the set is determined by the developer, not

by a tool).

Using 77 open-source Java projects that span a wide variety of

domains and therefore use of different Java language features, we

automatically extracted 5,419 templates. By running these templates

through JAttack, we found four more bugs in the Oracle JDK JIT

compiler (out of which only one was previously known) including

one previously unknown CVE recently acknowledged by Oracle.

The key contributions of this paper include:

• Framework. We introduce JAttack, the framework for tem-

plating tests for compilers. JAttack is designed to complement

manually-written tests and blend developer’s intuition (via tem-

plates) and random testing to increase likelihood to detect bugs

in Java JIT compilers.

• Programming and execution models. We introduce a pro-

gramming and an execution model to integrate templates en-

tirely in the host language (Java), without changing the syntax or

the runtime environment. Templates are like manually-written

programs with holes; each hole, expressed using a DSL, builds

an eAST node that specifies values that the hole can take (i.e.,

defines a search space). We introduced three optimizations that

are applied when generating programs from templates.

• Use case. We implemented JAttack for the Java programming

language and applied it to testing Java JIT compilers. We evalu-

ated JAttack by writing 23 template programs. Our results show

that the optimizations substantially reduce test generation time,

making JAttack practical. Furthermore, we discovered two bugs

in the Oracle JDK JIT compiler.

• Template extraction. We evaluated JAttack as an automated

framework for JIT compiler testing by automatically extracting

templates from existing Java projects. Using 5,419 templates from

77 open-source Java projects, JAttack discovered four more bugs

in the Oracle JDK JIT compiler.

JAttack is available at https://github.com/EngineeringSoftware/

jattack.

2 EXAMPLE

Figure 1a shows a template program that wewrote while developing

JAttack for Java. Our motivation for this template was to exercise

Compiler Testing using Template Java Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

1 import static jattack.Boom.*;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, intVal().eval() ❶,

8 intVal().eval() ❷, intVal().eval() ❸ };

9 for (int i = 0; i < arr1.length; ++i)

10 if (logic(relation(intId(), intId(), LE),

11 relation(intId(), intId(), LE),

12 AND, OR).eval() ❹)

13 arr1[i] &=

14 arithmetic(intId(), intId(), ADD, MUL).eval() ❺;

15 return 0; } }

(a) An example of a template.

1 import static jattack.Boom.*;

2 public class C {

3 static int s1;

4 static int s2;

5 @Entry

6 public static int m() {

7 int[] arr1 = { s1++, s2, 45350238 ❶,

8 681339300 ❷, 125652422 ❸ };

9 for (int i = 0; i < arr1.length; ++i)

10 if (arr1[3] <= s2 || s2 <= arr1[2] ❹)

11 arr1[i] &= arr1[1] * s1 ❺;

12 return 0; } }

(b) An example of a generated program.

Figure 1: An example of a template and one of the generated

programs from the template.

Java JIT optimizations for programs that use local arrays and static

variables. It is important to note that every template for JAttack

is a valid Java program. This template uses static methods (e.g.,

logic) that are defined in the jattack.Boom class. As such, the Java

compiler can also type-check the template.

The template contains five holes representing places where JAt-

tack should generate expressions, filling them in to create a con-

crete generated program. Three holes are between lines 7 and 8, one

between lines 10 and 12, and one on line 14. The number of holes

is equal to the number of eval invocations. The eval invocation

as well as the type information of the expression calling the eval

allows JAttack to tell a hole from actual code.

The first three holes are defined by the intVal method calls;

each call to intVal represents a hole that will be filled by an integer

literal; note that without any arguments, intVal produces an integer

between Integer.MIN_VALUE and Integer.MAX_VALUE. The next hole

(lines 10-12) defines a logical łandž or łorž expression (logic with

the AND and OR arguments) between two relational expressions. Each

relational expression (relation) connects two free integer variables

intId, which can be s1, s2, i, or any element of arr1 (the array

index is randomly picked between 0 and the size of the array) at

this point, using the <= operator (LE). The final hole (line 14) is an

arithmetic expression (arithmetic) of two free integer variables,

which are combined using either a + or a ∗ operator (ADD or MUL).

We describe more details on what type of expressions we support

for holes along with our API in Section 3.

JAttack generates programs through an execution-based model.

In other words, JAttack fills the holes in a template after executing

the template. (Unlike static generation, an execution-based model

prunes the search space by only filling holes reached during execu-

tion. See Section 7.1 for details.) A template must have a template

entry method, annotated with @Entry as shown in the example

(method m). When the execution reaches any unfilled hole, JAttack

generates a valid expression for that hole based on the used API

calls. When all reachable holes are filled (see Section 3.3 for how

this is determined), JAttack outputs the corresponding generated

program. JAttack then calls the template entry method again to

generate the next program up to the specified maximum number

of programs. An example of a generated program that JAttack

outputs for the template in Figure 1a is shown in Figure 1b. The

numbered circles in the generated program correspond to the same

ones next to holes in Figure 1a.

Finally, to detect any JIT-related bugs, JAttack executes each

generated program starting from the same entry method a large

number of times using different JIT compilers, potentially detecting

bugs via differential testing [66]. The large number of re-executions

is necessary as to trigger JIT optimizations. In Java, a JVM starts ex-

ecuting a program with an interpreter and monitors the execution

for łhotž code sections, i.e., code that is frequently executed. The

JIT compiler then optimizes łhotž sections. Through repeated exe-

cutions of the generated method m, the generated program shown

in Figure 1b revealed a bug in the Oracle JDK JIT compiler, crashing

the JVM.

3 JATTACK FRAMEWORK

JAttack introduces test templating, a way to define a set of programs

used for testing compilers. Templates written for JAttack could

be useful for testing other program analysis tools, but we leave

such studies for future work. We designed JAttack guided by

the following requirements: (1) developers decide where the holes

should be placed and bound the search space of each hole, and

(2) the domain-specific language (DSL) for writing holes is non-

intrusive, i.e., it requires no changes to the host compiler.

In this section, we describe our programming and execution

models (Section 3.1), implementation for Java (Section 3.2), the

generation procedure (Section 3.3), the optimizations for generation

(3.4) and the overall JIT-testing procedure (Section 3.5).

3.1 Programming and Execution Models

We define the syntax and operational semantics of a simple imper-

ative language with an extension to support templates. Note the

language shown here includes only integer type for ease of pre-

sentation; we greatly extend the scope in our implementation for

Java. The simple imperative language and extensions represent the

foundations for supporting templates for general imperative lan-

guages, and our implementation in Java, described in later sections,

is based on these extensions.

Syntax. Figure 2 defines the syntax of the simple language. A pro-

gram is a sequence of zero or more statements. Each statement is

either an assignment, conditional, goto, or halt. An expression in a

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

Stmts := (LABEL:)? Stmt ";" Stmts | 𝜖

Stmt := AssignStmt | IfStmt | GotoStmt | halt

AssignStmt := ID "=" Exp

IfStmt := "if" "(" Exp ")" LABEL

GotoStmt := goto LABEL

Exp := ExpBasic | "[[" ExpAlt "]]"

ExpBasic := ExpBasic Op Operand | Operand

ExpAlt := ExpAlt "," ExpBasic | ExpBasic

Operand := ID | NUM | "[[c]]" | "[[v]]"

Op := "+" | "-" | "||" | "&&" | "==" | "!=" | "<"

Figure 2: Syntax for an imperative language with holes.

ASSIGN_EXP:
⟨𝑝𝑐 + 1, 𝐼 , 𝑀, 𝐿⟩𝑒𝑥𝑝 ⇒ ⟨𝑝𝑐′, 𝐼 ′, 𝑀, 𝐿⟩𝑣

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩𝑖𝑑 = 𝑒𝑥𝑝 ⇒ ⟨𝑝𝑐′, 𝐼 ′, 𝑀, 𝐿⟩𝑖𝑑 = 𝑣

ASSIGN_VAL:
𝑀′ = 𝑀 [𝑣/𝑖𝑑]

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩𝑖𝑑 = 𝑣 ⇒ ⟨𝑝𝑐 + 1, 𝐼 , 𝑀′, 𝐿⟩𝐼 (𝑝𝑐 + 1)
GOTO:

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩goto 𝑙 ⇒ ⟨𝐿 (𝑙), 𝐼 , 𝑀, 𝐿⟩𝐼 (𝐿 (𝑙))

IF_EXP:
⟨𝑝𝑐 + 1, 𝐼 , 𝑀, 𝐿⟩𝑒𝑥𝑝 ⇒ ⟨𝑝𝑐′, 𝐼 ′, 𝑀, 𝐿⟩𝑣

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩if (𝑒𝑥𝑝) 𝑁 ⇒ ⟨𝑝𝑐′, 𝐼 ′, 𝑀, 𝐿⟩if (𝑣) 𝑁

IF_VAL:
𝑝𝑐′ = (𝑣 == 0) ? 𝑝𝑐 + 1 : 𝐿 (𝑙)

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩if (𝑣) 𝑙 ⇒ ⟨𝑝𝑐′, 𝐼 ′, 𝑀, 𝐿⟩𝐼 (𝑝𝑐′)

C_HOLE:
𝑣𝑎𝑙 = 𝑎𝑙𝑡 (𝑟𝑎𝑛𝑔𝑒 (𝑀𝐼𝑁,𝑀𝐴𝑋)) 𝐼 ′ = 𝐼 [𝑣𝑎𝑙/𝑝𝑐]

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩ [[𝑐]] ⇒ ⟨𝑝𝑐, 𝐼 ′, 𝑀, 𝐿⟩𝑣𝑎𝑙

V_HOLE:
𝑖𝑑 = 𝑎𝑙𝑡 (𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑠 (𝑀)) 𝐼 ′ = 𝐼 [𝑖𝑑/𝑝𝑐]

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩ [[𝑣]] ⇒ ⟨𝑝𝑐, 𝐼 ′, 𝑀, 𝐿⟩𝑖𝑑

E_HOLE:
𝑒 = 𝑎𝑙𝑡 ([𝑒1, 𝑒2,, 𝑒𝑛]) 𝐼 ′ = 𝐼 [𝑒/𝑝𝑐]

⟨𝑝𝑐, 𝐼 ,𝑀, 𝐿⟩ [[𝑒1, 𝑒2, ..., 𝑒𝑛]] ⇒ ⟨𝑝𝑐, 𝐼
′, 𝑀, 𝐿⟩𝑒

Figure 3: Semantics for the simple language from Figure 2.

program can combine relational, arithmetic, and logical operators.

On top of these basic imperative features, the language also intro-

duces the concept of a hole, denoted with [[]]. These holes can be

used around a sequence of comma-separated expressions, or they

can be around individual operands, where [[c]] represents a hole

for a literal/constant and [[v]] represents a hole for a variable.

Semantics (core language). Valid programs can only use integer

literals. We define the state of a program with the following config-

uration: ⟨𝑝𝑐, 𝐼 , 𝑀, 𝐿⟩, where 𝑝𝑐 is the program counter (initially 0),

𝐼 is the instruction memory (i.e., mapping from program counter to

statements or expressions),𝑀 is the main memory (i.e., mapping

from identifiers to integer values), and 𝐿 is a map from labels to

indices in 𝐼 . Prior to the execution, statements and expression in-

dices are placed into 𝐼 by performing a pre-order traversal of the

program’s abstract syntax tree (first statement is at index 0). Also, 𝐿

is initialized to map each label to the appropriate index in 𝐼 . We also

use the following operations: (1) map lookup _(𝑣𝑎𝑙), and (2) map

update _[𝑣𝑎𝑙/_].

Figure 3 shows the operational semantics of the language. For

simplicity, the rules do not include error handling. The assignment

statement simply updates the value of a variable in memory. The

conditional statement evaluates the expression and then jumps

if the expression evaluates to true (𝑣𝑎𝑙 ≠ 0). The goto statement

unconditionally jumps to the statement with the specified label.

We do not show the rules for computing basic expressions, as we

assume the same semantics as in the C programming language. The

halt statement terminates the execution.

Semantics (template language). We define several utility func-

tions: (1) identifiers(𝑀) - returns a list of available variable

names in𝑀 at the point of an invocation, (2) range(𝑥,𝑦) - returns a

list of integers between 𝑥 and𝑦, and (3) alt([...]) - takes a sequence

as input and outputs one of its elements.

A hole for an integer literal (C_HOLE) evaluates to an integer lit-

eral and rewrites itself to that literal. A hole for a variable (V_HOLE)

evaluates to an available identifier and rewrites itself to that identi-

fier. Finally, a hole for an expression (E_HOLE) evaluates to one of

the given expressions (and rewrites itself to that expression). Note

that the rewrite rules are such that the entire hole is replaced with

the choice of a concrete expression upon execution, so the hole

no longer exists after the first evaluation, ensuring that each hole

evaluates only to a single expression per execution. The program

in 𝐼 at the end of execution is the generated program in the same

language as the original template.

Filling a hole. Given a list of candidates for a hole, we need to

explore different candidates every time we execute the program,

which would in turn rewrite the template into new concrete pro-

grams that we can later use for testing compilers. While one can try

and systematically explore all the possible candidates, the search

space can be incredibly large (e.g., for [[c]] the range of possible inte-

gers go from MIN to MAX), especially when considering combinations

of candidates chosen across all holes in the program.

For this work, we choose candidates for a hole randomly. Random

exploration has been found effective in prior work [64, 74, 94, 98].

We keep re-executing the template to rewrite into concrete pro-

grams up until we reach a specified limit for number of generated

programs. Note that each execution of a template is independent

of other executions, i.e., any modifications to the template during

one run is not observable in another run.

Example. Consider the following example in our language: s1 =

[[c]]; s2 = [[c]]; if ([[v]] < [[v]]) l9; l9: halt;. Executing this

template once might generate: s1 = 45350238; s2 = 681339300; if

(s1 < s2) l9; l9: halt;. Another execution can lead to a different

generated program: s1 = 125652422; s2 = 23297; if (s2 < s2)

l9; l9: halt;.

3.2 JAttack Implementation for Java

We implement the semantics of JAttack for the host Java program-

ming language. To support the concept of holes while integrating it

into Java, we introduce a set of API methods that construct holes.

Figure 4 shows a subset of the full API we provide. This API

represents a DSL that maps to our simple imperative language. All

methods in the API return an instance of a node rooting an extended

abstract syntax tree (eAST). An Exp<Integer> node corresponds to an

expression (evaluating to integer due to Java typing, so Exp<Boolean>

is the same for boolean type). An IntVal (extends Exp<Integer>)

node and an IntId (extends Exp<Integer>) node correspond to an

integer literal and variable, respectively. We define BoolVal and

BoolId to correspond to the boolean type for Java. BAriExp<Integer>

(extends Exp<Integer>) is for binary arithmetic expressions, while

RelExp (extends Exp<Boolean>) and LogExp (extends Exp<Boolean>)

are for relational and logical expressions. These nodes are therefore

Compiler Testing using Template Java Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

BoolVal boolVal();

IntVal intVal(int min, int max);

IntVal intVal();

BoolId boolId(String... names);

IntId intId(String... names);

...

<T> RefId<T> refId(Class<T> type, String... names);

<T extends Number> BAriExp<T> arithmetic(

Exp<T> left, Exp<T> right, Op... ops);

<T extends Number> RelExp<T> relation(

Exp<T> left, Exp<T> right, Op... ops);

LogExp logic(

Exp<Boolean> left, Exp<Boolean> right, Op... ops);

...

<T> ExprStmt exprStmt(Exp<T> exp);

IfStmt ifStmt(

Exp<Boolean> cond, Stmt thenStmt, Stmt elseStmt);

WhileStmt whileStmt(Exp<Boolean> cond, Stmt body);

...

<T> Exp<T> alt(Exp<T>... exps);

Stmt alt(Stmt... stmts);

Figure 4: API for writing holes; a call to any of the methods

in the API instantiates an eAST node.

placeholders for the actual, concrete expressions to be generated

at runtime, so they represent holes to be filled. For example, an

IntVal node created using the method intVal represents [[c]], a

hole that can evaluate to any integer from Integer.MIN_VALUE to

Integer.MAX_VALUE. We also provide an intVal API that can specify

the range of integer values, and an intId API that can enumerate

available variables (at any point) by analyzing bytecode, when no

variable is specified.

While specific API methods can create corresponding nodes,

e.g., arithmetic for BAriExp, we also provide method alt that can

choose from a provided list of Exp<Integer> or Exp<Boolean> nodes,

like the semantics for an expression hole (E_HOLE) in our simple

imperative language.

Although we illustrate the implementation of JAttack using

int and boolean, we support any other primitive type, e.g., long and

double, or any reference type. For instance, refId can enumerate

available variables (at any point) with type T that can be specified

using argument Class<T> type, e.g., refId(String.class) returns

a RefId<String> node corresponding to any available String vari-

ables at this execution point. We provide API methods to create

statements as well, such as exprStmt, ifStmt and whileStmt. Further-

more, one can extend our implementation to include more language

constructs in Java, as along as they can be represented in an eAST.

As an alternative, we originally designed our API to use a list

of concrete Java expressions to choose from, e.g., alt(i++, j++).

However, these expressions would get executed and result in side-

effects, and the final execution would not match executing the

corresponding generated program with the concrete expressions

substituting for the hole, so we abandoned that direction.

Instead, when using eAST nodes, we do not actually generate

an expression to fill a hole until the eval method is invoked on the

node, e.g., intVal().eval(). Only after calling eval does a concrete

node get generated for that hole. Once generated, the node is in-

terpreted to compute the result of the expression. Furthermore, all

subsequent calls to the same API method (from the same location)

will always return the same node. For our Java implementation,

we define a hole to be where the developer calls eval for a built

eAST. The eAST constructed for an API call represents a range

of candidates to fill the hole. As an example, consider the hole

specified by the logic call (lines 10-12 in Figure 1a). Executing the

logic method returns a root node of an eAST, illustrated in Fig-

ure 5. Candidates for the hole are obtained by recursively obtaining

candidates for nodes in subtrees and combining them together.

LogExp

RelExp

IntId IntId

RelExp

IntId IntId

&&, ||

<= <=

Figure 5: eAST corresponding to

logic hole from Figure 1a.

In this example, the

RelExp nodes would re-

sult in candidates that

combine choice of inte-

ger variables combined

with the specified op-

erators (just LE in the

example); the top-level

LogExp node would use

the returned candidates

and combine with the

specified AND or OR to create the final candidates. This eAST struc-

ture corresponds to an expression hole in our imperative language,

namely the following:

[[[[v]] <= [[v]] && [[v]] <= [[v]], [[v]] <= [[v]] || [[v]] <= [[v]]]].

Unlike our simple imperative language, our API provides syntactic

sugars to describe a large set of similar candidates without having

to enumerate all of them by specifying multiple operators at once

(see Op... ops in Figure 4).

3.3 Generation Procedure

Figure 6 shows the overall algorithm for JAttack’s Generate func-

tion that executes a template repeatedly to generate concrete pro-

gram instances. The input to Generate is a template 𝑇 and the

number of programs to generate 𝑁 . The output is a set of generated

programs 𝐺 .

Function Generate starts by initializing the empty set of gener-

ated programs 𝐺 and then capturing the initial global state of the

template 𝑇 into variable 𝑆 (line 6). We currently support capturing

static fields with primitive and array types as the global state; fu-

ture work could also capture reference types [9, 10]. We capture the

global state to be used later when generating programs, ensuring

the generation of each (out of 𝑁) program is done from the clean

state. (We use the Java reflection mechanism to capture the state.)

Additionally, Generate finds the template entry method (line 7),

which is the entry point for executing 𝑇 (in our Java implementa-

tion, this is the method annotated with @Entry), and also counts the

total number of holes that should be filled in the template (line 8).

Next, Generate repeatedly calls RunTemplate, which executes the

template, resulting in a generated program that is added to 𝐺 . As-

sume that a template always terminates, which can be guaranteed

through carefully specifying the search space for the holes in con-

ditions, the overall loop in Generate ends when the number of

uniquely generated programs has reached the maximum necessary

number 𝑁 . We set a timeout, for RunTemplate, as it might not be

feasible to generate the specified number of unique programs.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

Before calling RunTemplate in each iteration, Generate sets the

global state to be the same as the initial global state 𝑆 (line 10). Set-

ting the initial state to 𝑆 ensures that subsequent runs of RunTemplate

always start the generation process, which executes the same tem-

plate entry method, in the clean state.

Example. Consider the template from Figure 1a. The template has

a static variable s1 that is modified (line 7). Subsequent executions

should make sure s1 starts at 0 again, otherwise they would not be

starting at the same state and would not generate programs that

are even possible.

Function RunTemplate is responsible for generating a single con-

crete program from the given template 𝑇 . First, it initializes 𝐻 as

an empty mapping from holes to their filled expressions (line 21).

RunTemplate then sets an intermediate program 𝑄 to be the in-

put template program 𝑇 to start with (line 23), and then it repeat-

edly executes the entry method 𝑒𝑛𝑡𝑟𝑦𝑀𝑒𝑡ℎ on 𝑄 (line 25). The

ExecEntryMethod returns a mapping 𝐻 ′ of holes it filled to the ac-

tual expressions.

Example. In Figure 1a, executing the hole on line 7 would result

in a mapping of that hole to concrete value 45350238 (line 7 in

Figure 1b).

The overall mapping 𝐻 gets updated with 𝐻 ′. If all holes have

been filled, then the loop terminates (line 27). The reason for exe-

cuting the template entry method 𝑒𝑛𝑡𝑟𝑦𝑀𝑒𝑡ℎ many times is to

ensure all holes that can be reached get filled. Eventually, our

goal is to execute a corresponding generated entry method up

to MAX_NUM_ITERATIONS times as to trigger JIT optimizations (Sec-

tion 3.5). Some holes may only be reachable after multiple iterations,

so executing just once would not fill those holes.

Example. Consider the template from Figure 1a. The last hole

(line 14) could be skipped in the first run because the condition

(line 10-12) is evaluated to false. However, the hole could be filled

later when static variable s1 gets updated (line 7), making the con-

dition true.

Some choice of candidate for a hole may possibly make another,

later hole unreachable, putting it in dead code. JAttack may fill

a hole in a condition, such as for an if statement, that always

evaluates to false, and therefore any holes within the block of

these conditional statements cannot be reached. To prevent the

execution from RunTemplate from continuously executing while

being unable to fill those unreachable holes, RunTemplate stops after

the MAX_NUM_ITERATIONS maximum number of iterations. Having

unfilled dead-code holes in a generated program is fine because

such code should never even be executed within the maximum

number of iterations later (and if it is executed, that would indicate

a bug in the JIT compiler). RunTemplate does stop earlier when all

holes are filled (line 27).

Three optimizations are introduced to reduce generation cost

(line 28-32) andwe describe the optimizations in detail in Section 3.4.

Note that 𝑄 is an intermediate program, and we do not directly

return 𝑄 . As such, we can optimize and make extra changes in 𝑄

to speed up generation, and these changes do not belong in a final

generated program 𝑃 .

The final returned program 𝑃 is then the original template𝑇 with

all its holes filled using the mapping 𝐻 (computed using function

ApplyFilledHoles in line 33, which is not shown). Essentially, each

1: Input: template program𝑇
2: Input: number of programs to generate 𝑁
3: Output: set of generated programs𝐺
4: function Generate(𝑇 , 𝑁)
5: 𝐺 ← ∅
6: 𝑆 ← CaptureGlobalState(𝑇)
7: entryMeth← FindEntryMethod(𝑇)
8: 𝑛𝑢𝑚 ← CountHoles(𝑇)
9: repeat
10: resetGlobalState(𝑆)
11: 𝑃 ← RunTemplate(𝑇, entryMeth, 𝑛𝑢𝑚)
12: 𝐺 ← 𝐺 ∪ {𝑃 }
13: until |𝐺 | = 𝑁
14: return𝐺
15:
16: Input: template program𝑇
17: Input: entry method entryMeth
18: Input: number of holes 𝑛𝑢𝑚
19: Output: generated program 𝑃
20: function RunTemplate(𝑇, entryMeth, 𝑛𝑢𝑚)
21: 𝐻 ← {}
22: 𝑠𝑒𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ← ∅
23: 𝑄 ← 𝑇
24: for 𝑖 ← 1 to MAX_NUM_ITERATIONS do
25: 𝐻 ′ ← ExecEntryMethod(entryMeth,𝑄)
26: 𝐻 ← 𝐻 ∪𝐻 ′

27: if |𝐻 | = 𝑛𝑢𝑚 then break

28: 𝑅 ← CaptureGlobalState(𝑄)
29: if 𝑅 ∈ 𝑠𝑒𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 then break
30: 𝑠𝑒𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ← 𝑠𝑒𝑒𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ∪ {𝑅 }
31: 𝑄 ← HotFill(𝑄,𝐻)
32: 𝑄 ← RemoveDeadCode(𝑄,𝐻)

33: return ApplyFilledHoles(𝑇,𝐻)

Figure 6: Generation algorithm.

node corresponding to a filled hole can output the concrete code

snippet for the expression it currently holds, and the hole expression

in the template 𝑇 gets replaced with this concrete code snippet.

Generate then takes the returned program 𝑃 and adds it to the

running set of generated programs𝐺 . Note that Generate will keep

calling RunTemplate until obtaining a sufficient number of programs;

each time, Generate will use the fresh template program 𝑇 , which

has no filled holes, as to create a brand new generated program.

3.4 Optimizations for Generation

We develop three optimizations to speed up the generation process.

Note that these optimizations all apply only for a single run of

RunTemplate, to just a single generated program at a time. Also,

these optimizations do not impact the generated programs, they

only speed up the generation process.

Early stop. We can have an even earlier stopping condition based

on the insight that if the global state after execution is the same as

an already seen state, then any future run would lead to the same

behavior (as a previous execution). Starting execution in the same

global state cannot lead to new executions that fill new holes. In

RunTemplate, we keep track of the seen global states in seenStates

and check the global state after each execution (line 29 in Figure 6).

This type of program state hashing has been extensively used in

software model checking [50].

Hot filling. In our preliminary experiments, we found that exe-

cuting a template entry method many times is time-consuming,

especially compared to executing the generated entry method as

part of our evaluation. The extra overhead comes from repeated

Compiler Testing using Template Java Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

executions of our Java API methods that build and evaluate eAST

nodes. Recall during generation the filled hole is not rewritten into

the concrete expression, but just evaluated to produce the same

value as the concrete expression. The filled holes get replaced with

the actual code only when the entire template gets translated into

a new generated program (line 33 in Figure 6). Thus, while our

implementation ensures that repeated execution of the same API

method returns the same eAST node, invoking the eval method

to evaluate the node is still expensive compared to evaluating the

concrete code that replaces the hole in the generated program.

The hot filling optimization replaces the hole at runtime (during

generation) with the concrete expression when the hole is evalu-

ated for the first time, so that execution in the following iterations

can use concrete code rather than invoking our Java API meth-

ods, including the eval method that evaluates the filled hole. In

RunTemplate, we invoke the method HotFill (line 31 in Figure 6) on

the resulting𝑄 after execution that finds all API calls with set nodes

and, using the mapping of holes to expressions 𝐻 , replaces those

calls with the concrete expressions. Then, using interfaces provided

from package javax.tools, e.g., javax.tools.JavaCompiler, we im-

plement an in-memory Java compiler, file manager, and associated

class loader to dynamically compile𝑄 and then reload this modified

template’s class, resulting in a new𝑄 . The next iteration starts from

the new 𝑄 as the template (line 25 in Figure 6). This technique is

conceptually similar to łquickeningž optimization implemented in

self-optimizing interpreters [16, 45].

Eager pruning. In our preliminary experiments, we also noticed a

significant number of generated programs with conditional expres-

sions that are trivially false, e.g., (var1 > var1). The body of such

conditional statements would never be executed, so it is unneces-

sary to execute any further to fill holes within statements guarded

by that condition. After executing the template entry method and

obtaining filled holes in 𝐻 , we invoke function RemoveDeadCode to

eliminate any such dead code in the program𝑄 (line 32 in Figure 6),

completely rewriting the body into an empty statement. This tech-

nique is conceptually similar to partial evaluation [56]. We leverage

a modern SMT solver (Z3 [29]) in our implementation to determine

whether any conditional expression is satisfiable or not, eliminat-

ing code in case the expression is unsatisfiable. Note that we only

temporarily remove the code as a means to speed up generating

a single program. The returned generated program does not have

any unreachable code removed. Later calls to RunTemplate always

start with the same template 𝑇 that has all the code still there.

3.5 JIT-Testing Procedure

Revealing JIT-related bugs requires not just programs but also

executing those programs many times. For each generated program,

we iterate though different JIT compilers. For each JIT compiler,

we repeatedly execute the generated entry method, hashing the

output of each execution (a generated entrymethod’s return value is

always encoded into an integer) into a running total. After executing

MAX_NUM_ITERATIONS times (the same limit in Figure 6), we capture

the global state of generated program (values of all static fields) and

encode it within a checksum value, adding this to the running total.

The final total representing the combination of all the executions.

For a given generated program, we use differential testing [66]

to check if the running totals computed from all JIT compilers are

all the same. Any difference should indicate that the generated

program detected a bug within some JIT compiler. However, the

program may itself be non-deterministic, i.e., having different out-

puts when run multiple times on the same JIT compiler. Note that

non-determinism was only observed from the templates extracted

from existing Java projects, e.g., involving randomness, while our

manually created templates are guaranteed to be deterministic. To

avoid being misled by non-determinism, when there are differences

in output across different JIT compilers, we choose a JIT compiler

as a reference point and run the program twice using that same

compiler. If the outputs from running on the same JIT compiler dif-

fer, then output differences between JIT compilers do not indicate

a bug. While this step may potentially miss detecting some bugs, it

gives higher guarantees that reported bugs are true bugs.

Besides checking for differences in final running totals, we also

report a bug if the execution crashes on some JIT compiler. Execut-

ing any unfilled hole (left as the API method call in the generated

program) would also trigger a crash, because an unfilled hole should

not be reachable. The ultimate output of the entire JIT-testing pro-

cedure is a subset of generated programs that expose a bug in one

of the input JIT compilers.

4 EXTRACTING TEMPLATES

We also evaluate JAttack for automated end-to-end compiler test-

ing. Namely, we provide an approach to automatically extract

templates from existing Java projects. The code written for these

projects are naturally representative of Java language features and

can be used as the foundation for templates that can find bugs in

Java JIT compilers. We can then also easily and automatically scale

up the number of templates to run through JAttack.

Given a Java class, we first parse all the available methods in the

class to detect potential holes. For each statement, we recursively

convert each subexpression into the corresponding hole, starting

from the leaves of the expression tree. For example, the expression a

+ b would be converted into arithmetic(intId(), intId()).eval()

(specifying no operator argument means using all valid operators),

which matches the expression structure. Note that the final call to

eval is on the outermost API call, allowing for the greatest space

of combination of values that JAttack can explore.

After inserting holes into the Java class, we then scan the class

for available static methods, which are the candidate template en-

try methods. If the static method takes any parameters, we insert

additional parameter methods, one for each parameter; a parameter

method returns a concrete value for the corresponding parameter

type upon execution. For primitive values, we leverage JAttack

to provide a possible value, e.g., if the parameter is an int type we

simply use intVal to represent an integer value. For non-primitive

types, i.e., classes, we search if such classes have default construc-

tors or constructors with primitive arguments that we can simply

use to create an instance of that class. If there are no such construc-

tors, we search from other classes for a public static method that

returns an instance of the class. If none of the above cases applies,

we then use null as the concrete value.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

Note that our approach for extracting templates and then us-

ing them to generate concrete programs is similar in nature to

concepts in mutation testing [30], where existing programs are

mutated into other similar programs through syntactic mutation

operators [23, 59, 60]. Conceptually, converting a program into a

template program and then generating additional programs through

JAttack is like mutating the original program. However, our way

of generating programs leverages the capabilities of JAttack and

its DSL to allow more expressive transformations that are beyond

traditional mutation operators, and more similar to what can be

generated using higher-order mutation operators [54].

5 EXPERIMENTAL SETUP

We briefly describe our evaluation setup.

5.1 Evaluation Subjects

We wrote 13 templates that exercise Java language features. We

also studied the available optimizations used in the Oracle JDK

JIT compiler, creating six templates whose basic structure would

trigger those optimizations while including holes for JAttack to

explore. Finally, we studied existing bug reports for JIT-related

bugs, creating four templates by modifying the programs attached

to bug reports to include holes. In our evaluation, we refer to the

templates based on our own understanding of Java and the compiler

developers’ intuition of optimizations using prefix łMž. We refer

to the templates based on bug reports using prefix łBž. Overall, we

created 23 templates, with the goal to evaluate the effectiveness of

our optimizations.

To evaluate JAttack in the context of automated test generation,

we collect templates automatically from existing Java code. We

use 77 open-source Java Maven projects from GitHub to extract

templates from their classes. Given a project or a module of a multi-

module Maven project, we find classes defined in all ł.javaž files.

We extract templates from these classes following the procedures

described in Section 4.

5.2 Configuring JAttack

For each template we created ourselves, we configure JAttack to

generate 1,000 concrete programs (N in Figure 6). While genera-

tion is fastest when we turn on all three generation optimizations

(Section 3.4), we also evaluate running generation without any op-

timization and with each optimization separately, measuring each

one’s effectiveness. For each of the generated programs, we exe-

cute it 100,000 times (MAX_NUM_ITERATIONS in Figure 6) on different

JIT compilers. The JIT compilers we evaluate on are Oracle JDK,

OpenJDK, and OpenJ9, all based on JDK 11.0.8.

For templates extracted from existing Java projects, we follow

the same approach, except we configure JAttack to generate only

10 concrete programs from each template program, because of the

large number of templates, and we test only on the latest Oracle

JDK, which was 16.0.2 at that time.

In our evaluation, we configure Oracle JDK to restrict the specific

tiers, L1 and L4, using the option -XX:TieredStopAtLevel, in order to

test C1 and C2 compilers [3], respectively. We treat each restricted

tier configuration for Oracle JDK as conceptually a new JIT compiler

for use in our JIT-testing procedure (Section 3.5).

We run all experiments on a 64-bit Ubuntu 18.04.1 desktop with

an Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 64GB RAM. For

all time measurements, we run the evaluation five times and report

the average of those times.

6 EVALUATION

We evaluate JAttack by asking:

RQ1: How efficient is JAttack at generating programs and execut-

ing those generated programs with different JIT compilers?

RQ2: How well can JAttack be used for automated compiler test-

ing via extracted templates from a large number of existing

Java programs, and how does it compare with state-of-the-art

automated JIT compiler testing?

RQ3: What critical bugs does JAttack detect in JIT compilers?

We address RQ1 as to better understand how efficient JAttack is

at generating programs from templates, as well as the impact of

our optimizations for generation, and to understand the efficiency

of JAttack’s testing procedure. We address RQ2 to understand

how well JAttack can be used for automated compiler testing and

compare the effectiveness with tools used in industry. We address

RQ3 to understand the bugs that we exposed. JAttack and all JIT-

bugs we detected, including associated templates and generated

programs, are available at https://github.com/EngineeringSoftware/

jattack.

6.1 Performance and Optimizations

Table 1 shows the time for JAttack to generate 1,000 programs for

each of our manually created 23 templates. The different columns

show the total time to generate all 1,000 programs when using

different generation optimizations (Section 3.4). Namely, łNon-opt.ž

means no optimizations, łEarly Stopž means using only early stop,

łHot Fillingž means using only hot filling, and łEager Pruningž

means using only eager pruning. The final column for łFull Opt.ž

is the time when using all optimizations. In addition to time, for

each optimization column, we also show the percentage of time

reduced relative to łNon-opt.ž time (the higher the reduction the

better). The final row shows the sum of generation time across all

templates and the overall reduction over this total time.

Without any optimizations, the total time for generation across

all templates (essentially 1,000 ∗ 23 = 23,000 programs total) is

over two days. We find that the overall time drops tremendously

after the optimizations are in place. When all optimizations are

enabled (łFull Opt.ž), the overall time to generate all programs for

all templates is around 20 minutes, which is a 99.50% reduction over

the time it takes to generate all programs without any optimization.

Breaking down the effectiveness of our optimizations even fur-

ther, we find that the hot filling optimization is in general the most

effective, with hot filling reducing the generation time by 99.34%

versus 46.34% for early stop and 20.79% for eager pruning. Further-

more, we also see that early stop and eager pruning have cases

where they result in taking more time to generate programs than

without any optimization (the negative percentages in the table),

which suggests the extra checks required by early stop and the time

to invoke Z3 to solve constraints end up introducing more overhead

than actually helping. (We did not set a timeout for Z3, because we

did not observe Z3 getting stuck; however, setting a timeout could

Compiler Testing using Template Java Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Time ((dd:)hh:mm:ss) and relative reduction to Non-

opt. (%) to generate 1,000 programs in various configurations.

Tmpl. is Templates; Rdct. is the relative reduction.

Tmpl.
Non-opt. Early Stop Hot Filling Eager Pruning Full Opt.

Time Time Rdct. Time Rdct. Time Rdct. Time Rdct.

B1 05:00:36 00:14 99.92 01:31 99.50 02:55:07 41.74 00:56 99.69

B2 12:51:25 00:14 99.97 04:14 99.45 12:53:50 -0.31 01:03 99.86

B3 01:19 00:12 84.33 00:33 58.57 02:01 -53.59 00:13 84.08

B4 01:43 01:41 2.37 01:41 2.03 01:41 2.45 01:43 0.29

M1 11:32 00:10 98.60 00:42 93.96 10:17 10.82 00:33 95.22

M2 12:57 00:12 98.49 00:44 94.29 14:40 -13.22 00:34 95.59

M3 11:00 02:19 78.90 01:05 90.14 13:04 -18.88 00:56 91.49

M4 19:44 04:31 77.12 00:28 97.60 20:35 -4.26 00:31 97.39

M5 05:14:14 46:01 85.36 01:04 99.66 04:20:07 17.22 00:46 99.76

M6 03:05 00:09 95.08 00:45 75.79 04:21 -41.40 00:38 79.43

M7 05:24 05:31 -2.40 00:38 88.19 05:41 -5.39 00:49 84.74

M8 19:19 12:26 35.62 01:08 94.14 21:10 -9.62 01:16 93.43

M9 02:25 00:14 90.42 00:28 80.59 02:49 -16.18 00:20 85.98

M10 09:07 02:55 67.96 00:41 92.50 10:32 -15.63 00:39 92.90

M11 10:58 00:10 98.48 02:15 79.44 08:35 21.79 01:02 90.62

M12 04:23 04:40 -6.38 00:36 86.51 05:24 -22.88 00:43 83.64

M13 11:35:19 11:26:37 1.25 01:06 99.84 00:57 99.86 00:51 99.88

M14 11:40:46 05:43:54 50.93 01:38 99.77 11:58:25 -2.52 01:17 99.82

M15 03:55:35 00:09 99.94 00:45 99.68 02:49:16 28.15 00:14 99.90

M16 07:38:42 07:47:57 -2.02 01:02 99.77 07:57:36 -4.12 01:09 99.75

M17 10:38:24 11:28:05 -7.78 03:12 99.50 10:51:56 -2.12 03:32 99.45

M18 04:57 00:09 96.81 00:41 86.07 05:43 -15.45 00:32 89.08

M19 05:47 05:53 -1.82 01:01 82.34 03:51 33.41 01:02 82.16

Σ 2:22:38:42 1:13:54:24 46.34 27:59 99.34 2:07:57:38 20.79 21:20 99.50

impact the performance of the eager pruning optimization.) We see

just one case for hot filling (and ultimately for when all optimiza-

tions are on) where there is little reduction in time. However, this

one case (B4) takes very little time even without any optimizations,

and the difference in time is seemingly just noise. Ultimately, all

optimizations do help overall, with the reduction in time when

using all optimizations still higher than each individually.

We also measure the time to execute the generated programs

from each of the 23 manually created templates. The total time

across all generated programs is around two hours on L4 and around

two and a half hours on L1.

6.2 Template Extraction

We extract 5,419 templates from 16,309 methods in 15,325 classes,

resulting in 50,609 generated programs. Recall that we let JAttack

generate 10 programs from every template (Section 5), but not

every template includes sufficient number of holes from which 10

programs can be generated (JAttack only explores the reachable

holes), which is why the total number of generated programs is

less than 10 ∗ 5,419 = 54,190. We found 137 out of 50,609 generated

Table 2: Comparing results of JAttack and Java* Fuzzer.

#Generated #Timeout #Failures
Coverage(%)

C1 C2

JAttack 50609 1243 137 84.3 80.3

Java* Fuzzer 15931 2336 0 80.6 67.5

programs failed during our JIT-testing procedure. We inspected all

these 137 programs and discovered four unique bugs (Section 6.3).

In addition, we compare JAttack against an existing automated

compiler testing tool, Java* Fuzzer [27], which is a fuzzer tool Or-

acle has been using daily for years and has been successful at

detecting bugs in the Oracle JDK (JIT) compiler. Guided by gram-

mar rules and pre-defined heuristics on program structures, Java*

Fuzzer generates hundreds of thousands of small, random Java pro-

grams as tests, and it then performs differential testing between a

JVM under test and a reference JVM. In contrast, JAttack is pri-

marily developed for developers to embed their knowledge into

program generation by specifying holes in templates with auto-

mated template extraction from existing Java programs. Although

JAttack and Java* Fuzzer have similar intentions, they work quite

differently, which is why the comparison results should be taken

with a grain of salt. We run Java* Fuzzer using the same resources

(CPU/RAM) for the same amount of time (which matches the total

execution time for JAttack in Section 6.2). We perform differential

testing by comparing outputs from executions across different JIT

tiers, same as for JAttack. We also collect code coverage of both

the C1 (src/hotspot/share/c1/) and C2 (src/hotspot/share/opto/)

compilers from executing the programs generated by both tools sep-

arately. Table 2 compares the results of JAttack and Java* Fuzzer.

Java* Fuzzer did not generate any program that would expose a

bug in the Oracle JDK JIT compiler in this time frame. The code

coverage achieved using both tools are close to each other, though

JAttack achieves slightly higher code coverage on both C1 and C2.

6.3 Detected JIT-Bugs

Bug m12gen611, from template M12, showed mismatching outputs

on different tiers because C2’s range-check elimination leads to in-

correct loop executions. The Oracle JDK developers labeled the bug

we reported as a CVE (Common Vulnerabilities and Exposures)2,

and they fixed the bug in a recent Oracle Critical Patch Update3.

The JDK developers also confirmed Bug m4gen1524, where a crash

occurred from C2, as a P35 bug; this bug was discovered in parallel

by others and was fixed in JDK 16. Our template that exposed this

bug is shown in Figure 1a.

Additionally, we discovered four bugs using extracted templates

from existing Java projects. Bug math1826 crashed on tiers L1 and

L4 because an array store in C1 compiled code writes to an arbitrary

location due to index overflow. The JDK developers labeled the bug

1https://bugs.openjdk.java.net/browse/JDK-8239244 (Login required)
2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14792
3https://www.oracle.com/security-alerts/cpuoct2020.html
4https://bugs.openjdk.java.net/browse/JDK-8258981
5P3: Major loss of function.
6https://bugs.openjdk.java.net/browse/JDK-8271130 (Login required)

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

as a CVE7, and they fixed the bug in another recent Oracle Critical

Patch Update8. Bug checkstyle1069 was confirmed as a crash bug,

with priority P210, related to wrong JVM state used for a receiver

null check, and it was fixed in JDK 17. Bug codec29211 missed

throwing some NegativeArraySizeException on tier L4 caused by

C2 optimizations; the JDK developers labeled it as a P2 bug and

fixed it in JDK 18. Bug compress20812 crashed due to incorrect C2

loop optimizations before calling Arrays.copyOf with a negative

parameter; this bug was confirmed with priority P3 and was also

discovered in parallel by others. The bug was fixed in JDK 18.

7 DISCUSSION

In this section, we contrast JAttack’s execution-based generation

to static generation, describe limitations of JAttack, and provide

directions for future work.

7.1 Execution-Based vs. Static Generation

Recall JAttack generates programs through an execution-based

model (Section 3.3) but we could have generated programs stati-

cally by processing an entire template and replacing all holes with

concrete expressions. Static generation would process the template

repeatedly, putting in different concrete expressions per hole to

output a new generated program, up to some maximum number.

Generating programs statically could be faster, because it would

not be executing the program at any point.

However, the execution-based generation provides a number

of advantages over static generation. Execution-based generation

(1) knows what exactly would be executed in a generated program

after being compiled, i.e., which parts are dead code or which parts

are executable (such information can be leveraged to guide the

exploration of holes instead of relying on randomness, which we

leave as futurework) and (2)makes it possible to use values available

at runtime to construct holes; consider:

int m(int[] a) {

return a[intVal(0, a.length).eval()];

}

where the hole would be a random integer between 0 and the length

of the array a, which depends on the value of a, known only when

actually executing the template. An execution-based model allows

for expressingmore complex programs that static generation cannot

generate, as it does not have such runtime information.

To compare execution-based and static generation, we create a

variant of JAttack that generates programs statically. This variant

relies on the same syntax and semantics, but it statically processes

the template once to replace all the holes with concrete expressions.

Similarly to execution-based generation, we construct eASTs for

all the holes. Each eAST per hole contains all the choices for the

hole, i.e., concrete expressions that can be filled in the hole. For

each hole written in the template, we randomly choose one of the

concrete expressions to replace the hole, resulting in a generated

program. The generated program has every hole filled, unlike for

7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21305
8https://www.oracle.com/security-alerts/cpujan2022.html
9https://bugs.openjdk.java.net/browse/JDK-8271276
10P2: Crashes, loss of data, severe memory leak.
11https://bugs.openjdk.java.net/browse/JDK-8271459
12https://bugs.openjdk.java.net/browse/JDK-8271926

execution-based generation where some holes may remain unfilled

if they are not reached during execution.

For this evaluation, we use the same configuration (1,000 pro-

grams for each template) for our static variant of JAttack as to

allow for proper comparison against the execution-based model.

The total generation time with static generation is around three

minutes, which is shorter than execution-based generation (around

20 minutes), but they both generate a large number of programs,

and executing all generated programs for both approaches still

takes almost four and a half hours. As such, generation time is prac-

tically negligible compared against the differential testing part of

JAttack. Furthermore, since static generation fills every hole in the

template, some generated programs could be syntactically different

from each other, but their differences are only for expressions in the

unreachable holes, so essentially the same code would be executed.

Execution-based generation would skip unreachable holes, ensur-

ing every generated program is not only syntactically different

but also executed differently. We collected reachability of the filled

holes when executing the generated programs. 78.44% of filled holes

are reached during execution of generated programs from static

generation while execution-based generation guarantees 100.00%

reachability. In terms of detected bugs, compared against execution-

based generation, statically generated programs detected only Bug

m12gen61 and missed detecting Bug m4gen152.

7.2 Limitations & Future Work

There are two main reasons why a relatively small number (5,419)

of templates are extracted from a relatively large number (15,325) of

classes in existing projects. First, JAttack currently supports only

static Java methods as template entry methods. We leave support of

instance methods as template entry methods for future work, e.g.,

using EvoSuite [33] to create receiver objects and inputs for instance

methods. Second, we use a different name for the extracted template

class from the original class, which sometimes made the template

not pass Java type-checking due to circular dependencies between

the template class and other classes. We will explore editing the

original class in place instead of creating a renamed template class

as future work.

JAttack requires re-executing programs many times just to trig-

ger JIT optimizations for testing. We considered other options such

as -XX:CompileThreshold that controls the number of interpreted

method invocations before optimization. We also considered the

option -XX:Tier4InvocationThreshold that controls the minimum

number of method invocations before transitioning to L4. However,

we found these other options also have a big effect on when JIT op-

timizations occur, so just using these options would not truly reflect

actual JIT usage, similar to just enabling C2 from the beginning [40].

Not all bugs we detected are reproducible each time due to the

non-deterministic nature of executions and JIT profiling (which is

different from non-determinism within programs under execution,

discussed in Section 3.5). For example, in one of the generated

programs for M4, we could not always observe failure (crashing

the JVM) when run on the same JIT compiler multiple times. We

plan to investigate such flakiness in the future.

Although we designed and implemented JAttack for Java and

JIT compilers, the simple imperative language and extensions, as

Compiler Testing using Template Java Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

shown in Section 3.1, represent the foundations for supporting tem-

plates for general imperative languages. Thus the ideas of template-

based testing and execution-based generation, can be also applied to

other languages and compilers, e.g., Scala, C#, etc., or even software

systems in general. We leave this as future work.

8 RELATED WORK

Compiler testing. There is a large body of work on compiler

testing, systematically reviewed in recent surveys [19, 88]. For

example, Csmith [80, 94] is a well-known tool for testing C com-

pilers by randomly generating C programs. It found bugs in main-

stream compilers [95, 96] and led to significant attention for com-

piler testing [2, 20, 42, 64, 67]. Mutation-based fuzzing [62, 65, 75ś

77, 92, 99] is another approach to testing compilers by mutating

existing programs, with several techniques and tools specifically

for Java [11, 17, 22, 23, 51, 58, 73, 74, 91, 101]. Concerning JIT com-

pilers, Yoshikawa et al. [98] presented a generation approach that

produces random Java bytecode . Java* Fuzzer [27, 47, 49] generates

random Java programs to test Java JIT compilers. There is also

work on testing the C# JIT compilers [70, 71] and Smalltalk JIT

compilers [78]. Unlike all these techniques, JAttack was primar-

ily developed to complement manually-written tests. Developers

can embed their knowledge into program generation by specifying

holes for exploration, enabling better testing of JIT compilers that

require complex structures and execution to reveal bugs. We do

compare against Java* Fuzzer as part of our evaluation.

While JAttack relies on differential testing [66] to determine

whether a test fails, other means to construct a test oracle include

metamorphic testing [21] and specification-based testing [81, 97].

Equivalence Modulo Inputs (EMI) [25, 31, 59ś61, 63, 69, 87] is a

representative of metamorphic testing technique. EMI produces

equivalent but different test programs and compares behaviors

across these programs on a single compiler. Chen et al. [18] com-

pared differential testing and EMI techniques.

Template-based program synthesis. There has been work on

synthesizing programs given initial templates. These techniques

can either synthesize programs using SAT/SMT solvers [32, 39,

52, 53, 83, 85, 86], using combinatorial techniques focusing on just

variables [100], or define holes using domain-specific languages [15,

84]. Ching and Katz [24] proposed to generate tests for APL-to-C

compiler COMPC through a template that denotes functions and

data types, which leverages the dynamic nature of APL to execute

programs as soon as holes get filled. CodeHint [34] synthesizes

sequences of API method invocations by running code with holes

to be filled. EdSketch [44] synthesizes implementations for holes

through test executions, aiming to pass the tests it runs on, focusing

on exploring field references. In contrast to all of these, JAttack

generates concrete programs for testing a JIT compiler by executing

templates and allows richer expressions to be generated in holes.

Test input generation. Randoop [72] and EvoSuite [33] automat-

ically generate JUnit tests by incrementally extending sequences of

method invocations. Neither is able to effectively explore inside a

method, e.g., at the expression level, as JAttack. ASTGen [28] and

UDITA [35] bounded-exhaustively generate complex test inputs,

including programs, but both require developers to manually write

extra predicates or generators to encode their intuition of guiding

exploration. Similarly, QuickCheck [26, 43], as a property-based

testing tool, is also capable of randomly generating test inputs but

requires developers to provide generators for complex data types. In

contrast to all of these, JAttack provides a different way for devel-

opers to write templates. Developers simply write programs with

holes to make templates or even automatically extract templates

from existing code. Templates are written in the host language the

developers are already using.

Other research on JIT and JVM. There has been work on formal

verification of JIT compilers [8, 14, 38, 41, 68, 82, 90, 93], JIT-induced

side-channel detection [12, 13], and on identifying hard-to-optimize

code [36] and unspecified JNI behaviors of a JVM [46].

9 CONCLUSION

We presented JAttack, a framework that enables template-based

testing for compilers. Using JAttack, compiler developers can write

templates in the same language as the compiler they are testing

(Java), enabling them to leverage their domain knowledge to set

up a code structure likely to lead to compiler optimizations while

leaving holes representing expressions they want explored. JAt-

tack executes templates, exploring possible expressions for holes

and filling them in, generating programs to later be run on com-

pilers. To speed up the generation process, we introduced three

optimizations that reduced overall generation time by 99.50% in

our experiments. Using 23 templates created on our own and 5,419

templates extracted from existing Java projects, JAttack found

six critical (P3 or higher) bugs in Oracle JDK, all of which were

confirmed and fixed by Oracle developers. Four of them were pre-

viously unknown, including two unknown CVEs. JAttack blends

the power of developers insights, who are providing templates, and

random testing to detect critical bugs.

ACKNOWLEDGMENTS

We thankNader Al Awar, Kush Jain, Sandeep Konchady, Owolabi Le-

gunsen, Yu Liu, Pengyu Nie, Aditya Thimmaiah, Jiyang Zhang, and

the anonymous reviewers for their comments and feedback. This

work is partially supported by a Google Faculty Research Award,

Army Futures Command, and the US National Science Foundation

under Grant Nos. CCF-1652517, CCF-2107291, and CCF-2217696.

REFERENCES
[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. 2007. Compilers:

Principles, Techniques, and Tools. Addison-Wesley.
[2] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi.

2016. Generating Focused Random Tests Using Directed Swarm Testing. In
International Symposium on Software Testing and Analysis. ACM, 70ś81.

[3] Oracle Corporation and/or its affiliates. 2021. The Java HotSpot Performance
Engine Architecture. https://www.oracle.com/java/technologies/whitepaper.
html.

[4] Oracle Corporation and/or its affiliates. 2021. [JDK-8251535] Partial peeling
at unsigned test adds incorrect loop exit check - Java Bug System. https://bugs.
openjdk.java.net/browse/JDK-8251535.

[5] Oracle Corporation and/or its affiliates. 2021. Regression Test Harness for the
JDK: jtreg. https://openjdk.java.net/jtreg.

[6] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin.
2006. Using Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria. IEEE Transactions on Software Engineering 32, 8 (2006), 608ś624.

[7] John Aycock. 2003. A Brief History of Just-in-Time. Comput. Surveys 35, 2
(2003), 97ś113.

[8] Auréle Barriére, Sandrine Blazy, and David Pichardie. 2020. Towards Formally
Verified Just-in-Time compilation. In International Workshop on Coq for Pro-
gramming Languages.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi

[9] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In
International Conference on Software Engineering. ACM, 550ś561.

[10] Jonathan Bell and Luís Pina. 2018. CROCHET: Checkpoint and Rollback via
Lightweight Heap Traversal on Stock JVMs. In Proceedings of the 2018 European
Conference on Object-Oriented Programming. Dagstuhl, 17:1ś17:31.

[11] William Blair, Andrea Mambretti, Sajjad Arshad, Michael Weissbacher, William
Robertson, Engin Kirda, and Manuel Egele. 2020. HotFuzz: Discovering Algorith-
mic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing. In The
Symposium on Network and Distributed System Security. The Internet Society.

[12] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT Leaks: Inducing
Timing Side Channels through Just-In-Time Compilation. In Symposium on
Security and Privacy. IEEE, 1207ś1222.

[13] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. 2020. JVM Fuzzing for
JIT-Induced Side-Channel Detection. In International Conference on Software
Engineering. ACM, 1011ś1023.

[14] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav Shacham, and
Deian Stefan. 2020. Towards a Verified Range Analysis for JavaScript JITs. In
Programming Language Design and Implementation. ACM, 135ś150.

[15] Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators. In
International Conference on Very Large Data Bases. VLDB Endowment, 1097ś
1107.

[16] Stefan Brunthaler. 2010. Efficient Interpretation Using Quickening. In Sympo-
sium on Dynamic Languages. ACM, 1ś14.

[17] Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur Gervais,
Benjamin Livshits, and Dimitris Mitropoulos. 2022. Finding Typing Compiler
Bugs. In Programming Language Design and Implementation. ACM, 183ś198.

[18] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An Empirical Comparison of Compiler Testing Techniques.
In International Conference on Software Engineering. ACM, 180ś190.

[19] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53, 1
(2020), 4:1ś4:36.

[20] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and
Lu Zhang. 2019. History-Guided Configuration Diversification for Compiler
Test-Program Generation. In International Conference on Software Engineering.
IEEE, 305ś316.

[21] TY Chen, SC Cheung, and SM Yiu. 1998. Metamorphic testing: a new approach
for generating next test cases. Technical Report.

[22] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of
JVM Implementations. In International Conference on Software Engineering. IEEE,
1257ś1268.

[23] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-Directed Differential Testing of JVM Implementations. In Program-
ming Language Design and Implementation. ACM, 85ś99.

[24] Wai-Mee Ching and Alex Katz. 1993. The Testing of an APL Compiler. In
International Conference on APL. ACM, 55ś62.

[25] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink. In International Conference on
Software Engineering. ACM, 335ś346.

[26] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In International Conference on Functional
Programming. ACM, 268ś279.

[27] Intel Corporation. 2016. android-art-intel/Fuzzer: Java* Fuzzer for Android*.
https://github.com/android-art-intel/Fuzzer.

[28] Brett Daniel, Danny Dig, Kely Garcia, and DarkoMarinov. 2007. Automated Test-
ing of Refactoring Engines. In Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering. ACM,
185ś194.

[29] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337ś340.

[30] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (1978), 34ś41.

[31] Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, An-
dré Perez Maselco, and Antoni Karpiński. 2021. Test-Case Reduction and
Deduplication Almost for Free with Transformation-Based Compiler Testing.
In Programming Language Design and Implementation. ACM, 1017ś1032.

[32] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Struc-
ture Transformations from Input-Output Examples. In Programming Language
Design and Implementation. ACM, 229ś239.

[33] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite gener-
ation for object-oriented software. In Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software Engi-
neering (Szeged, Hungary). ACM, 416ś419.

[34] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets. In
International Conference on Software Engineering. ACM, 653ś663.

[35] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kun-
cak, and DarkoMarinov. 2010. Test Generation through Programming in UDITA.
In International Conference on Software Engineering. ACM, 225ś234.

[36] Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
Unfriendly JavaScript Code. In Joint Meeting of the European Software Engineer-
ing Conference and the Symposium on the Foundations of Software Engineering.
ACM, 357ś368.

[37] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.
Swarm Testing. In International Symposium on Software Testing and Analysis.
ACM, 78ś88.

[38] Shu-yu Guo and Jens Palsberg. 2011. The Essence of Compiling with Traces. In
Symposium on Principles of Programming Languages. ACM, 563ś574.

[39] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. 2011. Interactive Synthesis
of Code Snippets. In Computer Aided Verification. Springer, 418ś423.

[40] Andrew Haley. 2015. How to change compilation policy to trigger C2 compilation
ASAP? https://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-
May/018010.html.

[41] Chris Hawblitzel, Shuvendu K. Lahiri, Kshama Pawar, Hammad Hashmi, Sedar
Gokbulut, Lakshan Fernando, Dave Detlefs, and ScottWadsworth. 2013. Will You
Still Compile Me Tomorrow? Static Cross-Version Compiler Validation. In Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering. ACM, 191ś201.

[42] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In USENIX Security Symposium. USENIX, 38.

[43] Paul Holser. 2020. junit-quickcheck ś junit-quickcheck: Property-based testing,
JUnit-style. https://pholser.github.io/junit-quickcheck/index.html.

[44] Jinru Hua and Sarfraz Khurshid. 2017. EdSketch: Execution-Driven Sketching
for Java. In International SPIN Symposium on Model Checking of Software. ACM,
162ś171.

[45] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and
Thomas Würthinger. 2014. A Domain-Specific Language for Building Self-
Optimizing AST Interpreters. In International Conference on Generative Program-
ming: Concepts and Experiences. ACM, 123ś132.

[46] Sungjae Hwang, Sungho Lee, Jihoon Kim, and Sukyoung Ryu. 2021. JUSTGen:
Effective Test Generation for Unspecified JNI Behaviors on JVMs. In International
Conference on Software Engineering. IEEE, 1708ś1718.

[47] Azul Systems, Inc. 2018. AzulSystems/JavaFuzzer: Java* Fuzzer for Android*.
https://github.com/AzulSystems/JavaFuzzer.

[48] Free Software Foundation, Inc. 2021. Testsuites (GNU Compiler Collection (GCC)
Internals). https://gcc.gnu.org/onlinedocs/gccint/Testsuites.html.

[49] Red Hat, Inc. 2018. shipilev/JavaFuzzer: Java* Fuzzer for JVM. https://github.
com/shipilev/JavaFuzzer.

[50] Radu Iosif. 2002. Symmetry Reduction Criteria for Software Model Checking. In
International SPIN Symposium on Model Checking of Software. Springer, 22ś41.

[51] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. 2009.
jFuzz: A Concolic Whitebox Fuzzer for Java. In NASA Formal Methods Sympo-
sium.

[52] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. 2015.
JSketch: Sketching for Java. In Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering. ACM,
934ś937.

[53] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
Guided Component-Based Program Synthesis. In International Conference on
Software Engineering. ACM, 215ś224.

[54] Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher
Order Mutation Testing. In IEEE International Working Conference on Source
Code Analysis and Manipulation. IEEE, 249ś258.

[55] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011),
649ś678.

[56] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation
and Automatic Program Generation. Prentice Hall.

[57] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in
Software Testing?. In International Symposium on the Foundations of Software
Engineering. 654ś665.

[58] Rody Kersten, Kasper Luckow, and Corina S. Păsăreanu. 2017. POSTER: AFL-
based Fuzzing for Java with Kelinci. In Conference on Computer and Communi-
cations Security. ACM, 2511ś2513.

[59] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-
alence modulo Inputs. In Programming Language Design and Implementation.
ACM, 216ś226.

[60] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs
via Guided Stochastic Program Mutation. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, 386ś399.

[61] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-Testing
of Link-Time Optimizers. In International Symposium on Software Testing and
Analysis. ACM, 327ś337.

Compiler Testing using Template Java Programs ASE ’22, October 10–14, 2022, Rochester, MI, USA

[62] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided
Directed Greybox Fuzzing. In USENIX Security Symposium. USENIX, 3559ś3576.

[63] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-Core Compiler Fuzzing. In Programming Language Design and
Implementation. ACM, 65ś76.

[64] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Test-
ing for C and C++ Compilers with YARPGen. In International Conference on
Object-Oriented Programming, Systems, Languages, andApplications. ACM, 196:1ś
196:25.

[65] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
47, 11 (2021), 2312ś2331.

[66] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100ś107.

[67] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
Testing via a Theory of Sound Optimisations in the C11/C++11 Memory Model.
In Programming Language Design and Implementation. ACM, 187ś196.

[68] Magnus O. Myreen. 2010. Verified Just-in-Time Compiler on X86. In Symposium
on Principles of Programming Languages. ACM, 107ś118.

[69] Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random testing of C compilers
based on test program generation by equivalence transformation. In Asia Pacific
Conference on Circuits and Systems. IEEE, 676ś679.

[70] Jakob Botsch Nielsen. 2018. Fuzzing the .NET JIT Compiler. https://mattwarren.
org/2018/08/28/Fuzzing-the-.NET-JIT-Compiler/.

[71] Jakob Botsch Nielsen. 2020. jakobbotsch/Fuzzlyn: Fuzzer for the .NET toolchains,
developed as a project for the 2018 Language-Based Security course at Aarhus
University. https://github.com/jakobbotsch/Fuzzlyn.

[72] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In International Conference on
Software Engineering. IEEE, 75ś84.

[73] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-Guided
Property-Based Testing in Java. In International Symposium on Software Testing
and Analysis. ACM, 398ś401.

[74] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In International Symposium on
Software Testing and Analysis. ACM, 329ś340.

[75] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints. In
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 174:1ś174:29.

[76] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In Symposium on Security
and Privacy. IEEE, 1629ś1642.

[77] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by
Program Transformation. In Symposium on Security and Privacy. IEEE, 697ś710.

[78] Guillermo Polito, Stéphane Ducasse, and Pablo Tesone. 2022. Interpreter-guided
Differential JIT Compiler Unit Testing. In Programming Language Design and
Implementation. ACM, 981ś992.

[79] LLVM Project. 2021. LLVM Testing Infrastructure Guide. https://llvm.org/docs/
TestingGuide.html.

[80] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-Case Reduction for C Compiler Bugs. In Programming Language
Design and Implementation. ACM, 335ś346.

[81] Richard Schumi and Jun Sun. 2021. SpecTest: Specification-Based Compiler
Testing. In Fundamental Approaches to Software Engineering. Springer, 269ś291.

[82] Boris Shingarov. 2019. Formal Verification of JIT by Symbolic Execution. In
International Workshop on Virtual Machines and Intermediate Languages.

[83] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure
Manipulations from Storyboards. In Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software Engi-
neering. ACM, 289ś299.

[84] Emin Gün Sirer and Brian N. Bershad. 2000. Using Production Grammars in
Software Testing. In Conference on Domain-Specific Languages. ACM, 1ś13.

[85] Armando Solar-Lezama. 2013. Program Sketching. International Journal on
Software Tools for Technology Transfer 15, 5ś6 (2013), 475ś495.

[86] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 404ś415.

[87] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live
Code Mutation. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 849ś863.

[88] Yixuan Tang, Zhilei Ren, Weiqiang Kong, and He Jiang. 2020. Compiler testing:
a systematic literature analysis. Frontiers of Computer Science 14, 1 (2020), 1:20.

[89] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized Unit Tests. In Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering. ACM, 253ś262.

[90] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak. 2020.
Synthesizing JIT Compilers for In-Kernel DSLs. In Computer Aided Verification.
Springer, 564ś586.

[91] Vasudev Vikram, Rohan Padhye, and Koushik Sen. 2021. Growing A Test Corpus
with Bonsai Fuzzing. In International Conference on Software Engineering. ACM,
723ś735.

[92] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection.
In Symposium on Security and Privacy. IEEE, 497ś512.

[93] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock.
2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastructure. In Symposium
on Operating Systems Design and Implementation. USENIX, 33ś47.

[94] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Programming Language Design and Implemen-
tation. ACM, 283ś294.

[95] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2021. GCC Bug List Found
by Random Testing (Total 79). https://embed.cs.utah.edu/csmith/gcc-bugs.html.

[96] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2021. LLVM Bug List
Found by Random Testing (Total 203). https://embed.cs.utah.edu/csmith/llvm-
bugs.html.

[97] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang,
Xiaoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
Conformance Testing for JavaScript Engines via Deep Compiler Fuzzing. In
Programming Language Design and Implementation. ACM, 435ś450.

[98] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003. Random Pro-
gram Generator for Java JIT Compiler Test System. In International Conference
on Quality Software. IEEE, 20ś23.

[99] Wei You, XueqiangWang, ShiqingMa, JianjunHuang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In Symposium on Security and Privacy. IEEE,
769ś786.

[100] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-
meration for Rigorous Compiler Testing. In Programming Language Design and
Implementation. ACM, 347ś361.

[101] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis
for JVM Testing. In International Conference on Software Engineering. ACM,
1133ś1144.

	Abstract
	1 Introduction
	2 Example
	3 JAttack Framework
	3.1 Programming and Execution Models
	3.2 JAttack Implementation for Java
	3.3 Generation Procedure
	3.4 Optimizations for Generation
	3.5 JIT-Testing Procedure

	4 Extracting Templates
	5 Experimental Setup
	5.1 Evaluation Subjects
	5.2 Configuring JAttack

	6 Evaluation
	6.1 Performance and Optimizations
	6.2 Template Extraction
	6.3 Detected JIT-Bugs

	7 Discussion
	7.1 Execution-Based vs. Static Generation
	7.2 Limitations & Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

