

Fabrication and Optimization of 3D Printed Gelatin Methacryloyl Microneedle Arrays Based on Vat Photopolymerization

Dilruba Baykara^{a,b,1}, Tuba Bedir^{a,c,1}, Elif Ilhan^{a,d}, Mehmet Eren Mutlu^{a,e}, Oguzhan Gunduz^{a,c},
Roger Narayan^{f*}, Cem Bulent Ustundag^{b*}

^aCenter for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722, Istanbul, Turkey

^bDepartment of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210, Istanbul, Turkey

^cDepartment of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722, Istanbul, Turkey

^dDepartment of Bioengineering, Faculty of Engineering, Marmara University, 34722, Istanbul, Turkey

^cDepartment of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210, Istanbul, Turkey

^fJoint Department of Biomedical Engineering, University of North Carolina, 27599, Chapel Hill, USA

*Corresponding authors: cbustundag@gmail.com, rjnaraya@ad.unc.edu

29 **Abstract**

30 Microneedles (MNs) are micrometer-sized arrays that can penetrate the skin in a minimally
31 invasive manner; these devices offer tremendous potential for the transdermal delivery of
32 therapeutic molecules. Although there are many conventional techniques for manufacturing
33 MNs, most of them are complicated and can only fabricate MNs with specific geometries,
34 which restricts the ability to adjust the performance of the MNs. Herein, we present the
35 fabrication of gelatin methacryloyl (GelMA) MN arrays using the vat photopolymerization 3D
36 printing technique. This technique allows for the fabrication of high-resolution and smooth
37 surface MNs with desired geometries. The existence of methacryloyl groups bonded to the
38 GelMA was verified by ^1H NMR and FTIR analysis. To examine the effects of varying needle
39 heights (1000 μm , 750 μm , and 500 μm) and exposure times (30 s, 50 s, and 70 s) on GelMA
40 MNs, the height, tip radius, and angle of the needles were measured; their morphological and
41 mechanical properties were also characterized. It was observed that as the exposure time
42 increased, the height of the MNs increased; moreover, sharper tips were obtained and tip angles
43 decreased. In addition, GelMA MNs exhibited good mechanical performance with no breakage
44 up to 0.3 mm displacement. These results indicate that 3D printed GelMA MNs have great
45 potential for transdermal delivery of various therapeutics.

46 **Keywords:** Gelatin methacryloyl; Hydrogel; Microneedle; Vat photopolymerization 3D
47 printing

48

49

50

51

52

53

54 **Introduction**

55 Microneedles (MNs) are skin-penetrating painless transdermal drug delivery systems, which
56 consist of sub-millimeter-sized needles [1,2]. These devices are considered a minimally
57 invasive medical intervention due to their microscale size [3,4]. MN arrays can be designed
58 with different sizes and shapes; these devices can play an essential role in the delivery of several
59 therapeutic molecules such as small molecules, biomacromolecules, and nanoparticles for
60 treating various diseases [5,6]. This next generation drug delivery system has attracted attention
61 in recent years due to its advantages such as ease of administration, low cost, excellent
62 therapeutic efficacy, and relative safety [7,8].

63 Conventional MN fabrication techniques include molding-based techniques [9],
64 photolithography [10], micro-milling [11], and drawing lithography [12]. However, most of
65 these fabrication techniques can only produce MNs with specific geometries, which limits the
66 capacity to change MN properties such as shape, height, and needle spacing [13,14].
67 Furthermore, these techniques are complicated and often require long production processes,
68 manual processing steps, costly equipment, and intensive labor efforts [15,16]. Additive
69 manufacturing is a fabrication technique that overcomes many of the design and production
70 limitations associated with conventional MN processing methods [16]. 3D printing (more
71 formally referred to as additive manufacturing) approach in which MNs designed in a
72 computer-aided program are produced in a layer by layer manner. 3D printing is also associated
73 with advantages such as high resolution and good cost efficiency [17]. Digital light processing
74 (DLP) 3D printing technology, which is based on vat photopolymerization, enables the
75 formation of a structure by curing layers of an ultraviolet (UV) sensitive polymer [18]. The
76 projector (digital light micromirror) in the device converts an image signal of the cross-section
77 of the object into a digital signal; the photocuring process takes place using this digital signal
78 [19]. Using a projector allows for faster print times since it involves curing each full layer of

79 material in one step [20]. This technique allows only photo-curable materials to be utilized as
80 feedstock materials [21]. Moreover, MN production with high resolution on a micrometer scale
81 along with processing of surfaces with smooth features can be performed with this technique
82 [22]. For example, Shin et al. have demonstrated the fabrication of protein-based MNs using
83 the DLP-based 3D printing technique [23]. In addition, Erkus et al. prepared GelMA MNs
84 loaded with amoxicillin using DLP 3D printing [24].

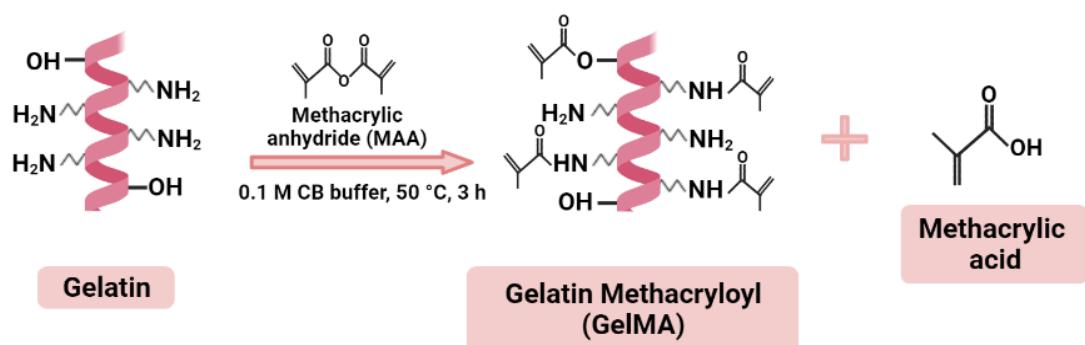
85 The first-generation materials used in MN fabrication include silicon, metals, ceramics, and
86 glasses [25]. These materials have drawbacks in MN manufacturing such as limited drug
87 loading capabilities and expensive production methods [26]. When compared to other materials,
88 polymeric forms of MNs (soluble and hydrogel-forming MNs) are remarkable due to their
89 unusual properties such as biodegradability, biocompatibility, and an absence of toxicity
90 [27,28]. Polymeric hydrogels used as drug delivery systems are defined as three-dimensional
91 network formulations of natural and synthetic polymers [29]. The network-like porous structure
92 of these structures enhances the loading and controlled release of drugs under proper conditions.
93 It is advantageous to be able to control the drug release profile and performance of hydrogel
94 MNs, which have different degradation profiles and swelling properties [30]. Gelatin
95 methacryloyl (GelMA), obtained by modifying natural gelatin, is a hydrogel that can be
96 crosslinked using UV light or visible light with exposure to a photoinitiator [31]. It is an ideal
97 material for the production of MNs due to its biocompatibility, tunable mechanical properties,
98 printability, low cost, and desirable drug delivery properties [32]. In addition, GelMA hydrogel
99 has powerful biological properties such as supporting functional cell growth [33]. During the
100 GelMA synthesis, many amino groups in the side chains of gelatin are replaced with
101 methacryloyl groups in the structure of methacrylate anhydride (MAA). After synthesis, the
102 methacryloyl groups of gelatin impart crosslinking properties [34]. The interaction of GelMA

103 with UV light in the presence of a photoinitiator results in the formation of a hydrogel with
104 excellent thermostability [35].

105 When using photopolymers in 3D printing systems, the use of a photoinitiator is necessary to
106 facilitate the crosslinking process [36]. During photocrosslinking of photopolymers, the
107 photoinitiator absorbs UV light to generate free radicals; these free radicals polymerize the
108 photosensitive resin to form the polymer network [37]. Photoinitiators such as Irgacure 2959,
109 LAP, VA086, and Eosin-Y are commonly used owing to their cytocompatibility with living
110 cells [25]. In particular, LAP is a remarkable photoinitiator for biomedical applications due to
111 its water solubility, low toxicity, and absorbance of both 365 and 405 nm light [38].

112 Herein, GelMA MN arrays with the desired design at different exposure times were developed
113 using the DLP-based 3D printing technique. As far as is known, no previous studies have been
114 reported in the literature regarding DLP-based GelMA MN arrays fabricated at different heights
115 and exposure times. In the current study, after the GelMA was synthesized, the design, printing
116 conditions, and post-printing processes of MNs were optimized. Mechanically and
117 morphologically optimized GelMA MNs may represent an attractive component in new types
118 of transdermal drug delivery systems. The findings of this study can offer insight into design
119 applications aimed at optimizing 3D-printed MNs for adjustable and customizable drug
120 delivery.

121 **Materials and methods**


122 **Materials**

123 Gelatin Type A obtained from porcine skin, methacrylic anhydride (MAA), lithium phenyl-
124 2,4,6-trimethyl-benzoyl phosphinate (LAP), and dialysis membrane (with a cut-off value of
125 14 kDa and an average flat width of 43 mm) were purchased from Sigma–Aldrich (Darmstadt,
126 Germany). Sodium carbonate, sodium hydroxide, and hydrochloric acid fuming 37% were

127 obtained from Merck KGaA (Darmstadt, Germany). Sodium hydrogen carbonate (>99.7%) was
128 obtained from ISOLAB (Eschau, Germany). Phosphate-buffered saline (PBS, pH 7.4) was
129 purchased from ChemBio (Turkey).

130 **Synthesis of Gelatin Methacryloyl (GelMA)**

131 10% (w/v) solution of type A gelatin was prepared in 0.1 M carbonate bicarbonate buffer (0.1
132 M CB buffer containing 3.18 g sodium carbonate and 5.86 g sodium bicarbonate in 1 L of
133 distilled water, pH 9) at 60 °C. Then, 0.1 mL of methacrylic anhydride (MAA) per gram of
134 gelatin was added to the gelatin solution and allowed to react for 3 h at 50 °C under constant
135 stirring. The reaction was then terminated by adjusting the pH to 7.4 (Fig 1). The obtained
136 solution was dialyzed with a 14 kDa molecular-weight-cutoff (MWCO) membrane against
137 distilled water for 2 days at 40 °C. Dialysis of GelMA solution helped to remove unreacted
138 MAA and methacrylic acid byproducts. After the dialysis step, the solution was lyophilized for
139 three days and stored at +4 °C until use.

140

141 **Fig 1.** Synthesis route of GelMA.

142 **Determination of GelMA degree of substitution**

143 The degree of substitution (DS) of GelMA was investigated using ^1H NMR spectroscopy
144 (Bruker Avance III 600 MHz, Bremen, Germany). Both gelatin and GelMA were dissolved at
145 a 10 mg/mL concentration in D_2O ; ^1H NMR spectra were obtained at a frequency of 600 MHz

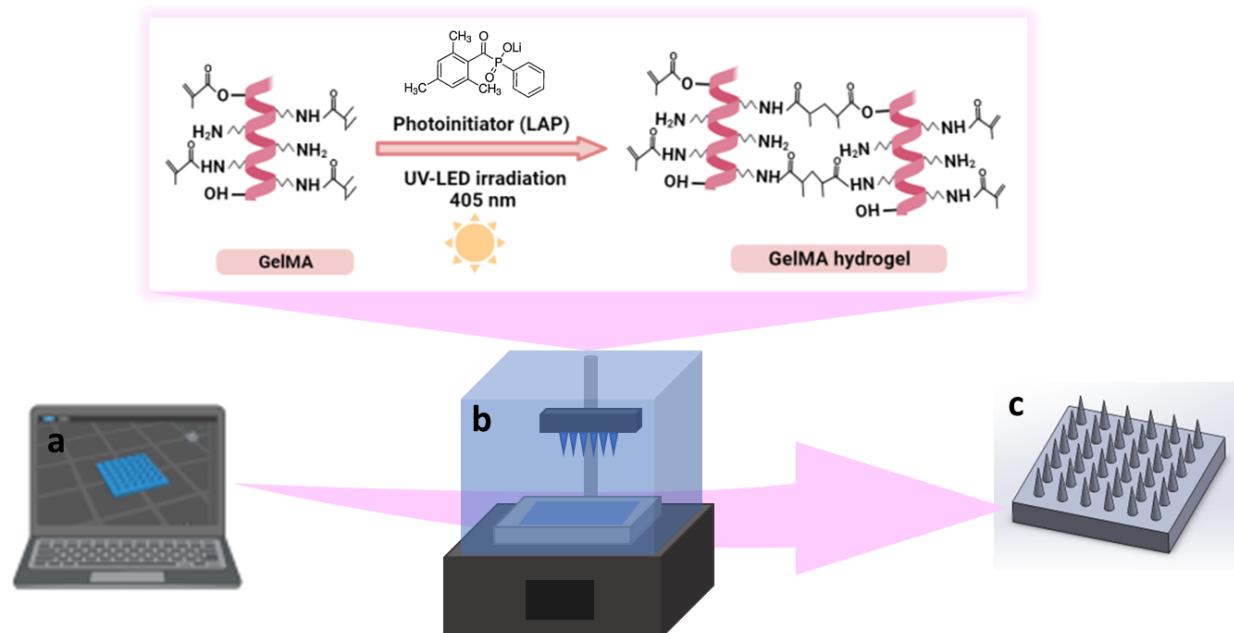
146 and at room temperature. The DS of GelMA was calculated according to the following
147 equation:

$$148 DS(\%) = \left(1 - \frac{\text{peak area of GelMA lysine methylene}}{\text{peak area of gelatin lysine methylene}} \right) \times 100 \quad \text{Eq(1)}$$

149 **Fourier Transform Infrared Spectroscopy (FTIR)**

150 The chemical structure of gelatin and GelMA were investigated using Fourier transform
151 infrared spectroscopy (FTIR, FT/IR-ATR 4700, Jasco, Easton, MD, USA) at room temperature.
152 Spectra were obtained between 450 and 4000 cm^{-1} range at a resolution of 4 cm^{-1} .

153 **Rheological characterization of GelMA**


154 The rheological behavior of GelMA hydrogel was analyzed using a digital rheometer
155 (Discovery HR2, TA Instruments, New Castle, DE, USA). The oscillation mode was selected
156 to determine the temperature dependence of the shear modulus of the GelMA hydrogel. The
157 temperature ramp test was performed over a range of 37-15 $^{\circ}\text{C}$ (heating rate 1 $^{\circ}\text{C}/\text{min}$) with a
158 frequency of 1 Hz and strain of 1%. The frequency sweep test was carried out at an angular
159 frequency of 0.01–100 rad/s with a constant frequency (1 Hz) and strain (1%). The viscosity of
160 GelMA hydrogel was measured by varying the shear rate from 1 to 100 1/s.

161 **Design and fabrication of GelMA MNs**

162 Computer-aided design (CAD) files of conical MN arrays with three different needle heights
163 of 1000 μm , 750 μm , and 500 μm were prepared using SolidWorks 2020 (Dassault Systèmes
164 SE, Vélizy-Villacoublay, France). MNs were designed to be 600 μm wide at the base and were
165 attached to a solid 10 \times 10 \times 1 mm substrate consisting of a 6 \times 6 array. The MN designs were
166 converted to the .stl file format and sliced using Chitubox (Shenzhen Chuangbide Technology
167 Co., Ltd., Shenzhen City, China), the software for the 3D printer (Fig 2a). A commercially

168 accessible DLP-based 3D printer (Phrozen Shuffle 4K, Phrozen Tech Co Ltd., Hsinchu,
169 Taiwan) was utilized to manufacture the MNs. A 12 mW/cm² light intensity and 405 nm light
170 wavelength were used for printing the MNs. Subsequently, MNs with varying heights were
171 subjected to exposure times of 30 s, 50 s, and 70 s, respectively.

172 For the printing of MNs, a 10% (w/v) GelMA solution was prepared with PBS solution under
173 constant stirring at 40 °C for 30 min. The photoinitiator (LAP) at a 0.5 % concentration was
174 added to the GelMA solution and mixed for 10 min. Next, the mixture was brought to room
175 temperature (~25 °C) and transferred to the tank of the DLP printer (Figure 2b). MNs were
176 printed according to the parameters given above. The fabricated 3D-printed MNs were dried in
177 the dark at room temperature for 24 h and kept in a dehumidified container until the
178 characterization activities (Fig 2c).

179 **Fig 2. Schematic representation of the design and fabrication of GelMA MNs, (a)**
180 **designing of CAD model, (b) photocrosslinking of GelMA hydrogel during DLP printing,**
181 **(c) 3D printed GelMA MNs.**

183 **Morphological characterization of GelMA MNs**

184 The height, tip radius, angle, and surface characterization of each MN were evaluated using a
185 scanning electron microscope (SEM) (EVA MA 10, Zeiss, Jena, Germany). Prior to analysis,
186 the surfaces of the MNs were coated with gold using a spray coating machine (SC7620,
187 Quorum, Laughton, East Sussex, UK) for 120 seconds.

188 **Mechanical analysis for GelMA hydrogels and GelMA MNs**

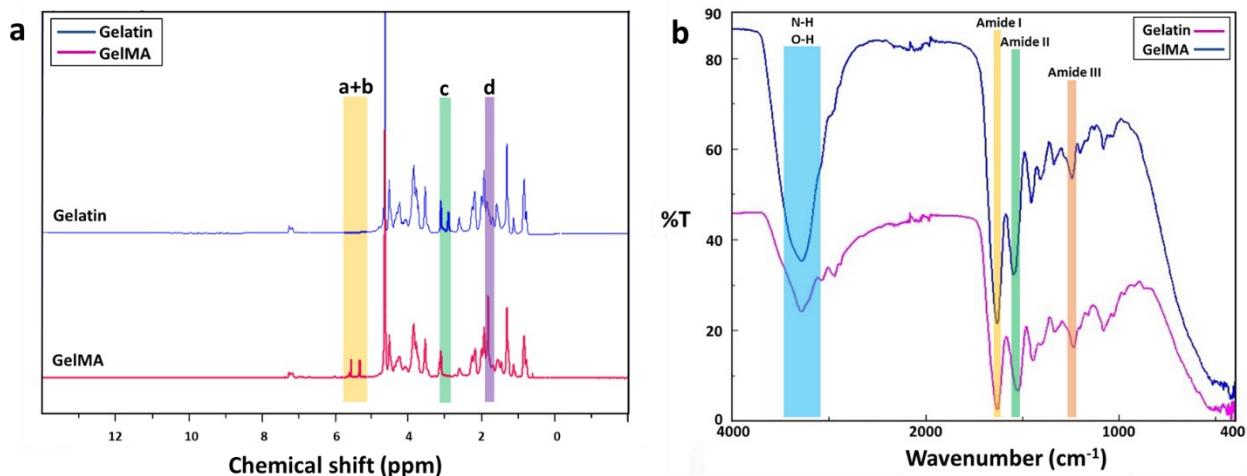
189 10% GelMA hydrogels prepared with different exposure times (30 s, 50 s, and 70 s) were
190 characterized in terms of their compression stiffness using a compression testing machine (EZ-
191 LX, Shimadzu, Kyoto, Japan). Cylindrical specimens of GelMA (8 mm in diameter and 6 mm
192 in height) were tested; a rate of 1 mm/min and a maximum strain of 60% were used in these
193 studies. Compressive modulus values were calculated from the initial linear region (0–20% of
194 strain) of the obtained stress-strain curves. Each measurement was performed in triplicate and
195 results are reported as mean \pm standard deviation values.

196 The mechanical strength of GelMA MNs was analyzed with a compression testing machine
197 (EZ-LX, Shimadzu, Kyoto, Japan). MNs were placed on a stainless steel plate at a distance of
198 2 mm; an axial force was applied at a constant rate of 0.1 mm/min perpendicular to the axis of
199 the MNs. The mechanical characteristics of MNs with different needle heights (1000 μ m, 750
200 μ m, and 500 μ m) and different exposure times (30 s, 50 s, and 70 s) were profiled. All tests
201 were performed in triplicate.

202 **Statistical analysis**

203 The experiments were carried out at least in triplicate, and data are expressed as mean \pm standard
204 deviation (SD). Post-hoc one-way ANOVA with a Tukey-Kramer pair-wise comparison were
205 employed for statistical analysis. A value of $p \leq 0.05$ is considered statistically significant, and
206 additional significance is indicated by ** for $p < 0.01$ and *** for $p < 0.001$.

207 **Results and discussion**

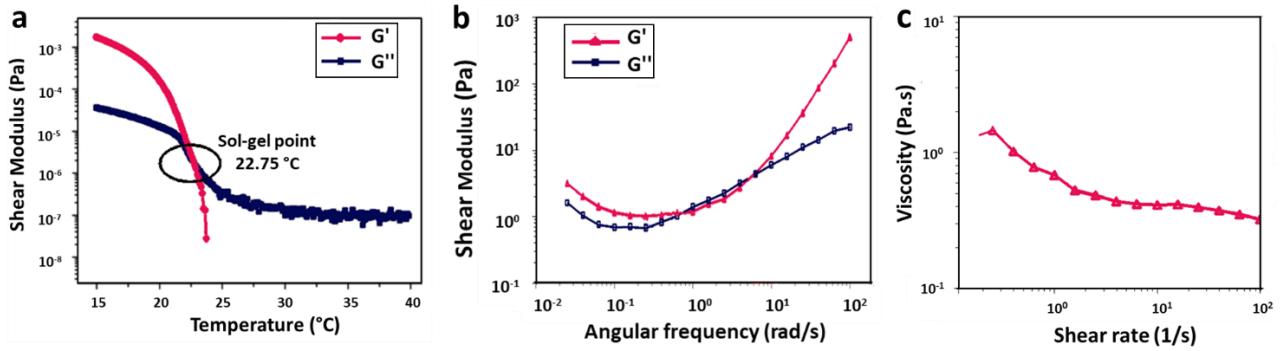

208 **Determination of GelMA degree of substitution**

209 ¹H NMR analysis was performed to verify the successful substitution of gelatin with
210 methacryloyl groups (Fig 3a). Compared with the ¹H NMR spectra of gelatin, the GelMA
211 displayed new signals corresponding to the methacryloyl groups, labelled as orange (a+b),
212 green (c) and purple (d). The signals at around chemical shifts of 5.3 and 5.6 ppm (a+b) were
213 attributed to the acrylic protons (2H) of methacryloyl group grafted to lysine and hydroxylysine
214 residues of the gelatin backbone. This result indicates the existence of C=C bonding in the
215 anhydride structure, which is related to presence of the vinyl groups of methacrylate anhydride
216 [39]. The signal at approximately 1.8 ppm (d) in the GelMA spectrum was assigned to the
217 methyl protons (3H) of the grafted methacryloyl group. In addition, a decrease in the intensity
218 of the signal at around 2.9 ppm (c), which was associated with the lysine methylene (2H) was
219 observed in GelMA compared to gelatin [40,41]. As lysine is the reaction site, this finding was
220 used to quantify the DS, which was estimated to be 75.4%.

221 **Fourier Transform Infrared Spectroscopy (FTIR)**

222 The substitution of methacrylate groups to the gelatin chain in the structure of GelMA was
223 further confirmed by FTIR analysis. The FTIR spectra of pure gelatin and GelMA are presented
224 in Fig 3b. The FTIR spectrum of GelMA exhibits a sharp peak at 1630 cm⁻¹, corresponding to
225 C=O stretching groups of amide I bond (labelled as yellow) [39]. The peak at 1546 cm⁻¹ is
226 attributed to the N–H bending groups of the amide II bond (labelled as green); the peak at 1244
227 cm⁻¹ is related to the C–N stretching and N–H bending of the amide III bond (labelled as pink)
228 [39,42]. Furthermore, the peak located in the range of 3200–3400 cm⁻¹ (labelled as blue)
229 detected in GelMA is associated with the existence of peptide bonds (N–H stretching) and -OH

230 functional groups [43]. The shifts and changes identified in the GelMA peaks compared to pure
231 gelatin indicated that the lysine groups of gelatin were successfully substituted by the
232 methacrylate groups [44].



233

234 **Fig 3. ^1H NMR spectra of gelatin and GelMA (a), FTIR spectra of gelatin and GelMA
235 (b).**

236 **Rheological characterization of GelMA**

237 To determine the viscoelastic properties of 10% (w/v) GelMA hydrogel, its shear moduli and
238 viscosity were evaluated by rheological testing (Fig 4). The hydrogel demonstrated
239 temperature-dependent gelation behavior (Fig 4a). The crossing of the storage modulus (G')
240 and loss modulus (G'') curves is the gelation temperature of the hydrogel. Below about 22 °C,
241 the GelMA hydrogel exhibited solid characteristics ($G' > G''$). When the temperature was
242 increased, the sol-gel transition occurred in the range of 22 °C ($G' = G''$); at higher temperatures,
243 the hydrogel displayed liquid-like behavior ($G'' > G'$). According to the results of the oscillation
244 frequency sweep of the GelMA hydrogel tested in the angular frequency range of 0.01 rad/s to
245 100 rad/s, an increase was observed in both G' and G'' with increasing frequency (Fig 4b). In
246 Fig 4c, the viscosity decreased with increasing shear rate, supporting the shear-thinning
247 behavior of the GelMA hydrogel [45].

248

249 **Fig 4. Rheological analysis of 10% (w/v) GelMA hydrogel, (a) temperature ramp test, (b)**
 250 **frequency sweep test, and (c) rotational shear rate-viscosity measurement.**

251 **Morphological characterization of GelMA MNs**

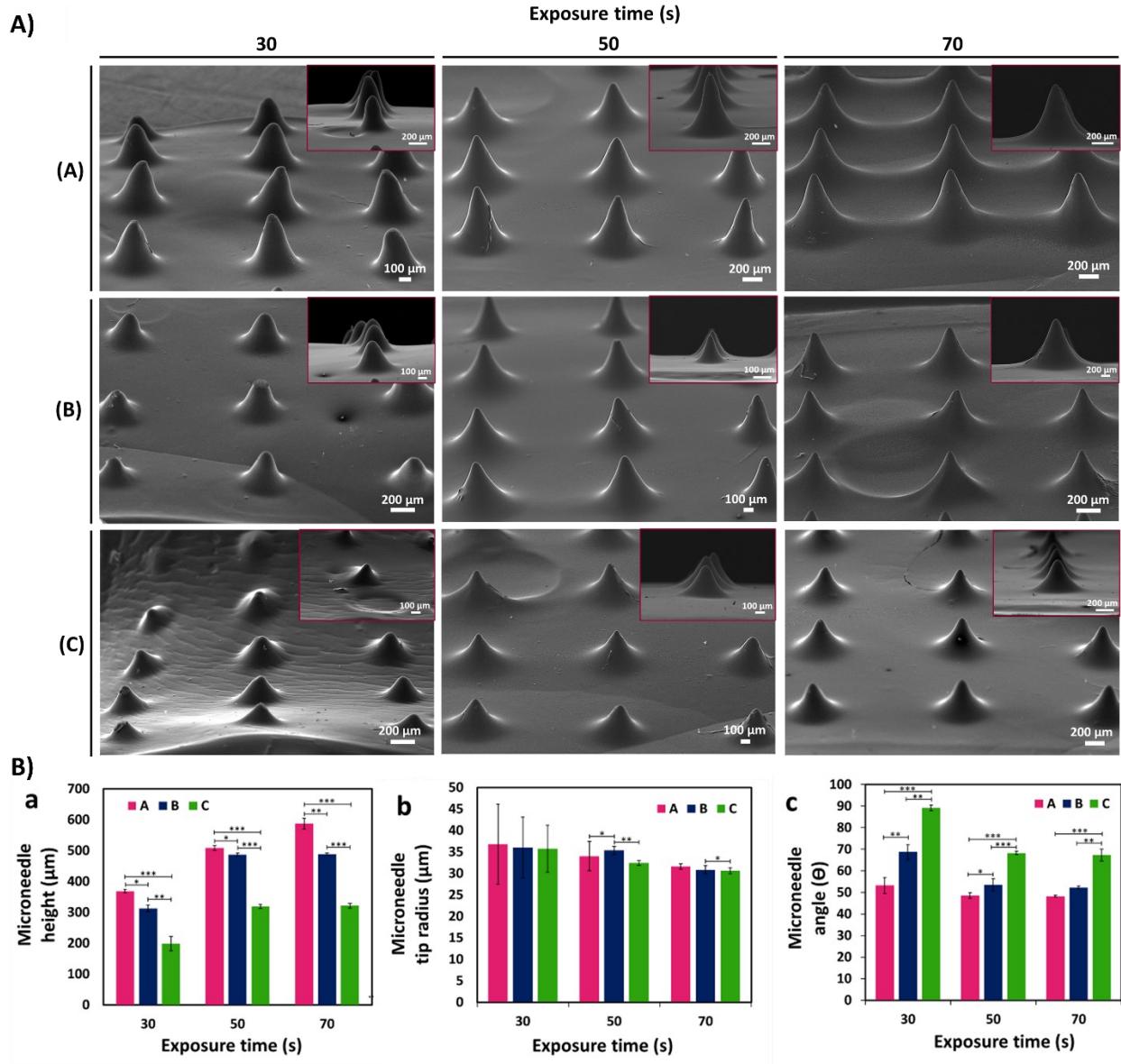
252 GelMA MNs designed with three different needle heights (h:1000 μ m, 750 μ m, and 500 μ m)
 253 were fabricated with a DLP printer by utilizing three different exposure times (30 s, 50 s, and
 254 70 s); SEM images of the obtained hydrogel MNs are shown in Fig 5. The effect of varying
 255 needle sizes and exposure times on GelMA MNs was investigated. As can be seen in Fig 5A,
 256 MNs with an exposure time of 30 s could not be fully printed as the light intensity may drop
 257 below the threshold as the sliced images approached the tip [46], preventing the processing of
 258 the conical structure. Incomplete MNs resulting from a short exposure time are not hard enough
 259 to penetrate the skin [47]. On the other hand, MNs exposed for 50 s were well-printed conical
 260 structures that exhibited a uniform and regular morphology. When the exposure time was
 261 increased to 70 s, the distance between the MNs decreased due to overexposure. In addition,
 262 the hardness of the MNs may increase as a result of the long exposure time [48].

263 In order to better observe the influences of changing needle sizes and exposure times on the
 264 printability of MNs, three parameters (e.g., height, tip radius, and angle) of the printed MNs
 265 were measured and presented in Fig 5B. The printability of MNs at different heights is
 266 important for adjusting the depth of penetration in the skin and changing the volume available

267 for the delivery of therapeutics [49]. It is seen that the experimental heights of MNs, which are
268 designed with theoretical needle heights of 1000 μm (A), 750 μm (B), and 500 μm (C),
269 respectively, are less than those of the corresponding designs (Fig 5B(a)). This finding may be
270 due to the minimum UV dose necessary for photopolymerization as well as the manner in which
271 a layer is produced [50]. The light that projects off each micromirror usually spreads to nearby
272 pixels. Thus, the amount of light per unit area for large pieces (where light from surrounding
273 pixels converge) is greater than those for small pieces. Therefore, the curing of small pieces is
274 often not achieved [16]. Accordingly, since a vertically aligned needle exhibits a continuously
275 decreasing cross-sectional slice in the x-y plane, the print may result in round-shaped tips before
276 the full theoretical needle height is reached [50]. Similar results were noted by Johnson et al. in
277 a study that involved the CLIP (Continuous Liquid Interface Production) printing system [51].
278 In addition, the heights of the MNs increased as the exposure time increased (from 30 s to 70
279 s) for all three needle sizes as confirmed by SEM images: (A) MNs increased from about 368.4
280 \pm 5.6 μm to 586.9 \pm 17.9 μm , (B) MNs increased from 312.2 \pm 10.8 μm to 488.1 \pm 2.9 μm , and
281 (C) MNs increased from 197.8 \pm 23.5 μm to 321.1 \pm 7.4 μm .

282 Another important parameter that is necessary to ensure penetration of the MNs into the skin is
283 the tip radius. The tip radius determines the sharpness of the MN [16]. Fig 5B(b) demonstrates
284 that the tip radii of the printed MNs were in the range from \sim 30 μm to 36 μm . There appeared
285 to be a tendency to decrease in tip radius with decreasing needle height (from 1000 μm to 500
286 μm) at the same exposure time. When measurement precision and error are taken into
287 consideration, the difference is not substantial. Needle tips are particularly subject to needle-to-
288 needle variability as a result of a lack of precision in printing [50]. Moreover, as expected,
289 sharper tips were obtained as the exposure time increased for all three needle sizes. (C) MNs
290 exhibited the sharpest needle tip with a tip radius of 30.6 \pm 0.7 μm at 70 s. Since tip radii of 20-

291 40 μm are known to be of sufficient sharpness for skin penetration [52], the obtained tip radii
292 can be said to be among the sharpest hydrogel needles printed using a DLP printing system.

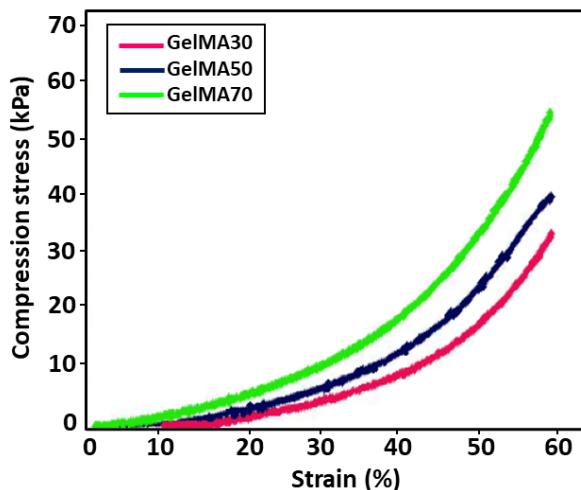

293 The θ angle was the last design parameter measured. Regardless of the tip radius, this value
294 measures the angle between needle sides. According to Fig 5B(c), the needle angle increased
295 as needle height decreased for the same exposure time. As exposure time increased, the needle
296 angle decreased for (A) MNs from 53.2 ± 3.7 to 48.2 ± 0.4 , (B) MNs from 68.7 ± 3.5 to $52.2 \pm$
297 0.6, and (C) MNs 89.1 ± 1.2 to 67.3 ± 2.6 , respectively. These results support the successful
298 fabrication of GelMA MNs with different needle heights and exposure times using a DLP
299 printer.

300

301

302

303



304

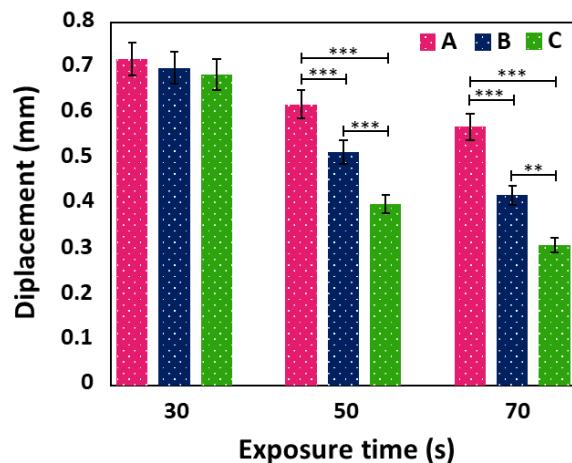
305 **Fig 5. A)** SEM images of GelMA MNs designed in three different needle heights according
306 to varying exposure times: (A) 1000 μm height, (B) 750 μm height, and (C) 500 μm height.
307 **B)** Variation of (a) height (b) tip radius and (c) angle of GelMA MNs according to
308 exposure times. Statistical difference is indicated with $*p \leq 0.05$, $**p < 0.01$, and
309 $***p < 0.001$. Error bars represent the standard deviations (SDs) of measurements performed
310 on at least three samples.

311 **Mechanical analysis for GelMA hydrogels and GelMA MNs**

312 Fig 6 shows the compressive stress-strain curves of GelMA hydrogels at different UV exposure
 313 times (30 s, 50 s, and 70 s). From the stress-strain curves, it was observed that the compressive
 314 strength increased by increasing the exposure time from 30 s to 70 s. As can be seen in Table
 315 1, the GelMA hydrogel exposed to 70 s exhibits a higher modulus of compression than those
 316 exposed to 30 s and 50 s. Since polymerization is a kinetic process, longer exposure times
 317 enable greater completion of the polymerization reaction. Thus, longer polymerization times up
 318 to a certain threshold lead to a greater number of functional crosslinks, resulting in higher
 319 modulus of elasticity values [53]. Similar results for the GelMA hydrogel have been reported
 320 by Chansoria et al. [54]

321
 322 **Fig 6. Stress-strain curves for GelMA hydrogels at different UV exposure times (30 s, 50
 323 s, and 70 s).**

324 **Table 1. Compressive modulus of elasticity from stress-strain curves for GelMA hydrogels
 325 at different UV exposure times.**


Sample	Compressive modulus (kPa)		
	30 s	50 s	70s
10% (w/v) GelMA	1.97 ± 0.12	3.72 ± 0.10	6.51 ± 0.10

326

327 The mechanical properties of MNs are critical for successful skin penetration [55]. The
328 mechanical properties of GelMA MNs was investigated using a compression test. As shown in
329 Fig 7, no discontinuity or breakage was observed in the displacement curves of the GelMA
330 MNs up to the displacement value of 0.3 mm. In addition, there was no broken MN up to the
331 value above. Makvandi et al. noted that transdermal MN patches should puncture the human
332 stratum corneum (~10 to 20 μ m) without tearing or bending during penetration [56]. This result
333 implies that the produced MNs exhibit appropriate toughness for skin penetration [24].
334 Moreover, an increase in mechanical strength with an increase of exposure time (from 30 s to
335 70 s) for the same needle size groups was one of the findings supported by previous studies [46,
336 57]. The amount of force required to induce the same level of compression in materials with
337 increased crosslinking density was higher, indicating that increasing the crosslinking time
338 improved the mechanical strength of MNs significantly. Therefore, the quantity of crosslinking
339 in the GelMA MNs is a key factor in determining the mechanical qualities of MNs [48]. By
340 profiling the applied compressive force and the displacement of the MNs, Zhou et al. found that
341 longer crosslinking times resulted in higher crosslinked network densities, which required
342 greater force to achieve similar displacement values [58]. In another study, when the difference
343 in the mechanical properties of the produced GelMA MNs was examined without any UV
344 crosslinking and after 15 s of crosslinking, it was demonstrated that the mechanical strength of
345 the 15 s light-cured GelMA MNs increased significantly [59].

346 Moreover, Fig 7 demonstrates the displacement of MNs at different heights exposed to UV
347 against an applied force. It was determined that the longest MNs in each group, among the MNs
348 produced in three different sizes, tended to move the most. It can be observed that the
349 displacement values of (A) MNs were high among their groups in those exposed to 30 s of UV,
350 (A) in those exposed to 50 s of UV, and (A) in those exposed to 70 s. It should be noted the
351 MNs produced by Xenikakis et al. with a maximum length of 930 μ m at applied forces over 60

352 N were severely bent and deteriorated compared to short needles [60]. In a different study, MNs
353 produced with the same base diameter of 750 μm and 500 μm had their displacements measured
354 as 0.0255 and 0.127 mm, respectively, when 0.1 N force was applied. This result proves that
355 higher MNs exhibited more displacement under the same force [61].

356
357 **Fig 7. Displacement curve of GelMA MNs with different needle heights according to**
358 **varying exposure times.** Statistical difference is indicated with $*p \leq 0.05$, $**p < 0.01$, and
359 $***p < 0.001$. Error bars represent the standard deviations (SDs) of measurements performed
360 on at least three samples.

361 **Conclusions**

362 In this study, GelMA MNs were successfully fabricated with desired geometries at high
363 resolution using the DLP-based 3D printing technique. Smooth surface MNs with different
364 heights (1000 μm , 750 μm and 500 μm) and different UV exposure times (30 s, 50 s, and 70 s)
365 were obtained. ^1H NMR analysis proved the existence of methacryloyl groups attached to
366 GelMA; these results were also supported by FTIR analysis. According to the morphological
367 analysis, it was observed that MNs had higher needle heights and sharper tips as the exposure
368 time increased; the tip angles decreased accordingly. Furthermore, the compression test results
369 showed that increasing the exposure time decreased the amount of displacement. Therefore, it

370 can be said that GelMA MNs at lower heights showed less displacement when equal force was
371 applied. In addition, GelMA MNs demonstrated good mechanical performance without any
372 breakage up to 0.3 mm displacement. These findings indicate that the 3D-printed GelMA MNs
373 have the potential for use in a variety of transdermal drug delivery systems.

374 **Acknowledgements**

375 The authors wish to thank the Biomedical Imaging and Diagnostic Systems Development
376 Laboratory at Marmara University, Istanbul.

377 **Competing Interests**

378 The authors have declared that no competing interests exist.

379 **Financial Disclosure**

380 The funders had no role in study design, data collection and analysis, decision to publish, or
381 preparation of the manuscript.

382 **Data Availability**

383 The datasets generated during and/or analyzed during the current study are available from the
384 corresponding author on reasonable request.

385 **References**

- 386 1. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. *Adv
387 Drug Deliv Rev.* 2012;64: 1547–1568. doi:10.1016/j.addr.2012.04.005
- 388 2. Mutlu ME, Ulag S, Sengor M, Daglilar S, Narayan R, Gunduz O. Electrosprayed
389 Collagen/Gentamicin nanoparticles coated microneedle patches for skin treatment.

390 Mater Lett. 2021;305: 130844. doi:<https://doi.org/10.1016/j.matlet.2021.130844>

391 3. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O'Cearbhaill ED. Simple
392 and customizable method for fabrication of high-aspect ratio microneedle molds using
393 low-cost 3D printing. *Microsystems Nanoeng* 2019;5: 1–14.
394 doi:[10.1038/s41378-019-0088-8](https://doi.org/10.1038/s41378-019-0088-8)

395 4. Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical
396 administration of microneedles: skin puncture, pain and sensation. *Biomed
397 Microdevices*. 2009;11: 35–47. doi:[10.1007/s10544-008-9208-1](https://doi.org/10.1007/s10544-008-9208-1)

398 5. Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J,
399 Rebhi Hilles A, Azmana M, et al. Current trends in polymer microneedle for transdermal
400 drug delivery. *Int J Pharm*. 2020;587: 119673. doi:[10.1016/J.IJPHARM.2020.119673](https://doi.org/10.1016/J.IJPHARM.2020.119673)

401 6. Larrañeta E, McCrudden M, Courtenay A, Donnelly R. Microneedles: A New Frontier
402 in Nanomedicine Delivery. *Pharm Res*. 2016;33: 1–19. doi:[10.1007/s11095-016-1885-5](https://doi.org/10.1007/s11095-016-1885-5)

403 7. Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical
404 applications: drug delivery and beyond. *Acta Pharm Sin B*. 2019;9: 469–483.
405 doi:[10.1016/J.APSB.2019.03.007](https://doi.org/10.1016/J.APSB.2019.03.007)

406 8. Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal
407 protein delivery. *Adv Drug Deliv Rev*. 2018;127: 106–118.
408 doi:<https://doi.org/10.1016/j.addr.2018.01.015>

409 9. Turner JG, White LR, Estrela P, Leese HS. Hydrogel-Forming Microneedles: Current
410 Advancements and Future Trends. *Macromol Biosci*. 2021;21: 2000307.
411 doi:<https://doi.org/10.1002/mabi.202000307>

412 10. Dardano P, Caliò A, Di Palma V, Bevilacqua MF, Di Matteo A, De Stefano L. A

413 Photolithographic Approach to Polymeric Microneedles Array Fabrication. Mater
414 (Basel, Switzerland). 2015;8: 8661–8673. doi:10.3390/ma8125484

415 11. Wang J, Gong Y, Abba G, Chen K, Shi J, Cai G. Surface Generation Analysis in Micro
416 End-Milling Considering the Influences of Grain. *Microsyst Technol.* 2008;14: 937–942.
417 doi:10.1007/s00542-007-0478-y

418 12. Lee K, Jung H. Drawing lithography for microneedles: a review of fundamentals and
419 biomedical applications. *Biomaterials.* 2012;33: 7309–7326.
420 doi:10.1016/j.biomaterials.2012.06.065

421 13. Donnelly RF, Garland MJ, Morrow DJ, Migalska K, Singh TRR, Majithiya R, et al.
422 Optical coherence tomography is a valuable tool in the study of the effects of
423 microneedle geometry on skin penetration characteristics and in-skin dissolution. *J
424 Control release Off J Control Release Soc.* 2010;147: 333–341.
425 doi:10.1016/j.jconrel.2010.08.008

426 14. Donnelly RF, Majithiya R, Singh TRR, Morrow DJ, Garland MJ, Demir YK, et al.
427 Design, optimization and characterisation of polymeric microneedle arrays prepared by
428 a novel laser-based micromoulding technique. *Pharm Res.* 2011;28: 41–57.
429 doi:10.1007/s11095-010-0169-8

430 15. Wilke N, Mulcahy A, Ye S-R, Morrissey A. Process optimization and characterization
431 of silicon microneedles fabricated by wet etch technology. *Microelectronics J.* 2005;36:
432 650–656. doi:<https://doi.org/10.1016/j.mejo.2005.04.044>

433 16. Johnson AR, Procopio AT. Low cost additive manufacturing of microneedle masters.
434 *3D Print Med.* 2019;5. doi:10.1186/s41205-019-0039-x

435 17. Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed

436 microneedles in biomedical applications. *iScience.* 2021;24: 102012.
437 doi:10.1016/J.ISCI.2020.102012

438 18. Kowsari K, Zhang B, Panjwani S, Chen Z, Hingorani H, Akbari S, et al. Photopolymer
439 formulation to minimize feature size, surface roughness, and stair-stepping in digital
440 light processing-based three-dimensional printing. *Addit Manuf.* 2018;24: 627–638.
441 doi:10.1016/j.addma.2018.10.037

442 19. Sun A, He X, Ji X, Hu D, Pan M, Zhang L, et al. Current research progress of
443 photopolymerized hydrogels in tissue engineering. *Chinese Chem Lett.* 2021;32: 2117–
444 2126. doi:10.1016/j.cclet.2021.01.048

445 20. Santra L, Kundu A, Rajaraman S. A Flexible, Digital Light Processing (DLP) 3D Printed
446 and Coated Microneedle Array (C μ NA) for Precision Delivery of Novel
447 Nanotherapeutics to Plant Tissue. *Proceedings of the IEEE International Conference on*
448 *Micro Electro Mechanical Systems (MEMS).* 2021. pp. 630–633.
449 doi:10.1109/MEMS51782.2021.9375404

450 21. Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, et al. 3D
451 Printing—a “Touch-Button” Approach To Manufacture Microneedles for Transdermal
452 Drug Delivery. *Pharmaceutics.* 2021;13: 924. doi:10.3390/pharmaceutics13070924

453 22. Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, et al. Recent progress of 3D-printed
454 microneedles for transdermal drug delivery. *Int J Pharm.* 2021;593: 120106.
455 doi:10.1016/J.IJPHARM.2020.120106

456 23. Shin D, Hyun J. Silk fibroin microneedles fabricated by digital light processing 3D
457 printing. *J Ind Eng Chem.* 2021;95: 126–133. doi:10.1016/j.jiec.2020.12.011

458 24. Erkus H, Bedir T, Kaya E, Tinaz GB, Gunduz O, Chifiriuc M-C, et al. Innovative

459 transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl
460 microneedles obtained by 3D printing. *Materialia.* 2023;27: 101700.
461 doi:<https://doi.org/10.1016/j.mtla.2023.101700>

462 25. Fabrication of Microneedle Molds and Polymer Based Biodegradable Microneedle
463 Patches: A Novel Method.

464 26. Meng F, Hasan A, Mahdi Nejadi Babadaei M, Hashemi Kani P, Jouya Talaei A, Sharifi
465 M, et al. Polymeric-based microneedle arrays as potential platforms in the development
466 of drugs delivery systems. *J Adv Res.* 2020;26: 137–147. doi:[10.1016/j.jare.2020.07.017](https://doi.org/10.1016/j.jare.2020.07.017)

467 27. Doppalapudi S, Jain A, Khan W, Domb AJ. Biodegradable polymers-an overview.
468 *Polym Adv Technol.* 2014;25: 427–435. doi:[10.1002/pat.3305](https://doi.org/10.1002/pat.3305)

469 28. Azizi Macheckposhti S, Nguyen AK, Vanderwal L, Stafslien S, Narayan RJ.
470 Micromolding of Amphotericin-B-Loaded Methoxyethylene–Maleic Anhydride
471 Copolymer Microneedles. *Pharmaceutics.* 2022. doi:[10.3390/pharmaceutics14081551](https://doi.org/10.3390/pharmaceutics14081551)

472 29. Liu T, Luo G, Xing M. Biomedical Applications of Polymeric Microneedles for
473 Transdermal Therapeutic Delivery and Diagnosis: Current Status and Future
474 Perspectives. *Adv Ther.* 2020;3: 1900140. doi:[10.1002/ADTP.201900140](https://doi.org/10.1002/ADTP.201900140)

475 30. Swain S, Pratap Singh A, Yadav RK. A review on polymer hydrogel and polymer
476 microneedle based transdermal drug delivery system. *Mater Today Proc.* 2021.
477 doi:[10.1016/J.MATPR.2021.10.320](https://doi.org/10.1016/J.MATPR.2021.10.320)

478 31. Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, et al. Photocrosslinkable
479 Gelatin Hydrogel for Epidermal Tissue Engineering. *Adv Healthc Mater.* 2016;5: 108–
480 118. doi:[10.1002/adhm.201500005](https://doi.org/10.1002/adhm.201500005)

481 32. Luo Z, Sun W, Fang J, Lee K, Li S, Gu Z, et al. Biodegradable Gelatin Methacryloyl

482 Microneedles for Transdermal Drug Delivery. *Adv Healthc Mater.* 2019;8: e1801054.
483 doi:10.1002/adhm.201801054

484 33. Luo Z, Sun W, Fang J, Lee K, Li S, Gu Z, et al. Biodegradable Gelatin Methacryloyl
485 Microneedles for Transdermal Drug Delivery. 2018;1801054: 1–9.
486 doi:10.1002/adhm.201801054

487 34. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA)
488 hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell
489 culture and extrusion bioprinting. *Bioengineering.* 2018;5.
490 doi:10.3390/BIOENGINEERING5030055

491 35. Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and properties of gelatin
492 methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue.
493 *Polymers (Basel).* 2018;10. doi:10.3390/POLYM10111290

494 36. Zhang J, Xiao P. 3D printing of photopolymers. *Polym Chem.* 2018;9: 1530–1540.
495 doi:10.1039/c8py00157j

496 37. Zhou J, Allonas X, Ibrahim A, Liu X. Progress in the development of polymeric and
497 multifunctional photoinitiators. *Prog Polym Sci.* 2019;99: 101165.
498 doi:<https://doi.org/10.1016/j.progpolymsci.2019.101165>

499 38. Mau R, Nazir J, Seitz H. Dimensional accuracy of 3D printing of PEGDA parts using
500 Digital Light Processing technology. *Trans Addit Manuf Meets Med.* 2019;1: 2–3.
501 doi:10.18416/AMMM.2019.1909S03P11

502 39. Farasatkia A, Kharaziha M, Ashrafizadeh F, Salehi S. Transparent silk/gelatin
503 methacrylate (GelMA) fibrillar film for corneal regeneration. *Mater Sci Eng C.*
504 2021;120: 111744. doi:10.1016/j.msec.2020.111744

505 40. Raveendran N, Meinert C, Ipe D, Ivanovski S. Optimization of 3D bioprinting of
506 periodontal ligament cells. *Dent Mater.* 2019;35. doi:10.1016/j.dental.2019.08.114

507 41. Zu G, Meijer M, Mergel O, Zhang H, Rijn P. 3D-Printable Hierarchical Nanogel-GelMA
508 Composite Hydrogel System. *Polymers (Basel).* 2021;13: 2508.
509 doi:10.3390/polym13152508

510 42. Xiang Y, Wang W, Gao Y, Zhang J, Zhang J, Bai Z, et al. Production and
511 Characterization of an Integrated Multi-Layer 3D Printed PLGA/GelMA Scaffold
512 Aimed for Bile Duct Restoration and Detection. *Front Bioeng Biotechnol.* 2020;8: 1–14.
513 doi:10.3389/fbioe.2020.00971

514 43. Sreekumaran S, Radhakrishnan A, Rauf AA, Kurup GM. Nanohydroxyapatite
515 incorporated photocrosslinked gelatin methacryloyl/poly(ethylene glycol)diacrylate
516 hydrogel for bone tissue engineering. *Prog Biomater.* 2021;10: 43–51.
517 doi:10.1007/s40204-021-00150-x

518 44. Rahali K, Ben Messaoud G, Kahn CJF, Sanchez-Gonzalez L, Kaci M, Cleymand F, et
519 al. Synthesis and Characterization of Nanofunctionalized Gelatin Methacrylate
520 Hydrogels. *Int J Mol Sci.* 2017;18: 2675. doi:10.3390/ijms18122675

521 45. Luo C, Xie R, Zhang J, Liu Y, Li Z, Zhang Y, et al. Low-Temperature Three-
522 Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide.
523 *Tissue Eng - Part C Methods.* 2020;26: 306–316. doi:10.1089/ten.tec.2020.0053

524 46. Yao W, Li D, Zhao Y, Zhan Z, Jin G, Liang H, et al. 3D Printed multi-functional
525 hydrogel microneedles based on high-precision digital light processing. *Micromachines.*
526 2020;11: 17. doi:10.3390/mi11010017

527 47. Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, et al. PEGDA/PVP Microneedles with

528 Tailorable Matrix Constitutions for Controllable Transdermal Drug Delivery. *Macromol*
529 *Mater Eng.* 2018;303. doi:10.1002/mame.201800233

530 48. Luo Z, Sun W, Fang J, Lee KJ, Li S, Gu Z, et al. Biodegradable Gelatin Methacryloyl
531 Microneedles for Transdermal Drug Delivery. *Adv Healthc Mater.* 2019;8: 1–9.
532 doi:10.1002/adhm.201801054

533 49. Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density
534 of microneedle arrays in the pretreatment of skin for transdermal drug delivery. *Int J*
535 *Pharm.* 2010;391: 7–12. doi:10.1016/j.ijpharm.2010.02.007

536 50. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple
537 and customizable method for fabrication of high-aspect ratio microneedle molds using
538 low-cost 3D printing. *Microsystems Nanoeng.* 2019;5. doi:10.1038/s41378-019-0088-8

539 51. Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, et
540 al. Single-step fabrication of computationally designed microneedles by continuous
541 liquid interface production. *PLoS One.* 2016;11: 1–17.
542 doi:10.1371/journal.pone.0162518

543 52. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery.
544 *Biomaterials.* 2008;29: 2113–2124. doi:10.1016/j.biomaterials.2007.12.048

545 53. Sheth S, Jain E, Karadaghy A, Syed S, Stevenson H, Zustiak SP. UV Dose Governs UV-
546 Polymerized Polyacrylamide Hydrogel Modulus. *Int J Polym Sci.* 2017;2017: 1–9.

547 54. Chansoria P, Asif S, Polkoff K, Chung J, Piedrahita JA, Shirwaiker RA. Characterizing
548 the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on
549 the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels.
550 *ACS Biomater Sci Eng.* 2021;7: 5175–5188. doi:10.1021/acsbiomaterials.1c00635

551 55. Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable
552 microneedle patch for the sustained release of a contraceptive. *Nat Biomed Eng.* 2019;3:
553 220–229. doi:10.1038/s41551-018-0337-4

554 56. Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdi Z, et al.
555 Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and
556 Factors Affecting Needle Insertion. *Nano-Micro Lett.* 2021;13: 93. doi:10.1007/s40820-
557 021-00611-9

558 57. Economidou SN, Pissinato Pere CP, Okereke M, Douroumis D. Optimisation of Design
559 and Manufacturing Parameters of 3D Printed Solid Microneedles for Improved Strength,
560 Sharpness, and Drug Delivery. *Micromachines.* 2021;12. doi:10.3390/mi12020117

561 58. Zhou X, Luo Z, Baidya A, Kim H, Wang C, Jiang X, et al. Biodegradable β -Cyclodextrin
562 Conjugated Gelatin Methacryloyl Microneedle for Delivery of Water-Insoluble Drug.
563 *Adv Healthc Mater.* 2020;9: 2000527. doi:<https://doi.org/10.1002/adhm.202000527>

564 59. Zhao ZQ, Zhang BL, Chu HQ, Liang L, Chen BZ, Zheng H, et al. A high-dosage
565 microneedle for programmable lidocaine delivery and enhanced local long-lasting
566 analgesia. *Mater Sci Eng C.* 2021; 112620.
567 doi:<https://doi.org/10.1016/j.msec.2021.112620>

568 60. Xenikakis I, Tzimtzimis M, Tsongas K, Andreadis D, Demiri E, Tzetzis D, et al.
569 Fabrication and finite element analysis of stereolithographic 3D printed microneedles for
570 transdermal delivery of model dyes across human skin in vitro. *Eur J Pharm Sci.*
571 2019;137: 104976. doi:<https://doi.org/10.1016/j.ejps.2019.104976>

572 61. Gittard SD, Chen B, Xu H, Ovsianikov A, Chichkov BN, Monteiro-Riviere NA, et al.
573 The effects of geometry on skin penetration and failure of polymer microneedles. *J
574 Adhes Sci Technol.* 2013;27: 227–243. doi:10.1080/01694243.2012.705101

