
Infinity Stream: Portable and Programmer-Friendly
In-/Near-Memory Fusion

Zhengrong Wang
seanzw@cs.ucla.edu

UCLA, USA

Christopher Liu
chrisliu@cs.ucla.edu

UCLA, USA

Aman Arora
aman.kbm@utexas.edu

UT Austin, USA

Lizy John
ljohn@ece.utexas.edu

UT Austin, USA

Tony Nowatzki
tjn@cs.ucla.edu
UCLA, USA

ABSTRACT

In-memory computing with large last-level caches is promising

to dramatically alleviate data movement bottlenecks and expose

massive bitline-level parallelization opportunities. However, key

challenges from its unique execution model remain unsolved: auto-

mated parallelization, transparently orchestrating data transposi-

tion/alignment/broadcast for bit-serial logic, and mixing in-/near-

memory computing. Most importantly, the solution should be pro-

grammer friendly and portable across platforms.

Our key innovation is an execution model and intermediate rep-

resentation (IR) that enables hybrid CPU-core, in-memory, and near-

memory processing. Our IR is the tensor dataflow graph (tDFG),

which is a unified representation of in-memory and near-memory

computation. The tDFG exposes tensor-data structure information

so that the hardware and runtime can automatically orchestrate

data management for bit-serial execution, including runtime data

layout transformations. To enable microarchitecture portability, we

use a two-phase, JIT-based compilation approach to dynamically

lower the tDFG to in-memory commands.

Our design, infinity stream, is evaluated on a cycle-accurate

simulator. Across data-processing workloads with fp32, it achieves

2.6× speedup and 75% traffic reduction over a state-of-the-art near-

memory computing technique, with 2.4× energy efficiency.

CCS CONCEPTS

· Computer systems organization→ Parallel architectures.

KEYWORDS

Stream-Based ISAs, Programmer-Transparent Acceleration, In-

Memory Computing, Near-Memory Computing

ACM Reference Format:

Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and Tony

Nowatzki. 2023. Infinity Stream: Portable and Programmer-Friendly In-

/Near-Memory Fusion. In Proceedings of the 28th ACM International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, Volume 3 (ASPLOS ’23), March 25ś29, 2023, Vancouver, BC, Canada.

ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3582016.3582032

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582032

1 INTRODUCTION

As multicore systems scale, growing data movement bottlenecks

incentivize a memory-centric paradigm over the traditional core-

centric paradigm. One realization of this is near-memory computing,

where specialized hardware is added near memory banks to decou-

ple computation from core pipelines and reduce communication

demand. An alternative is in-memory computing, which augments

memory arrays with the ability to perform simple computations at

massive parallelism.

While in-memory computing has been applied at different hier-

archy levels and technologies, the trend of incorporating extremely-

large L3 caches has made the proposition of in-SRAM computation

quite attractive. For example, the latest AMD EPYCs have >100MB

of L3, which would translate to multiple millions of bitwise pro-

cessing elements. As prior work has shown, bit-serial SRAM [32]

has a computation density that is significantly higher than possible

on SIMD vector units, and the energy benefits are substantial [17].

But there are still barriers to broad adoption. An ideal in-memory

system would be as programmer-transparent as possible, be com-

patible with existing core-centric and near-data execution without

adding much overhead, and also preserve program compatibility

with future microarchitectures. No existing in-memory system has

achieved all three due to the challenges of the unique paradigm:

• Transparent Orchestration: Bit-serial logic requires transpos-

ing large arrays, managing on-chip space, and enforcing bitline

alignment. A suitable data layout, tiling, and explicit reuse are

critical to reducing data traffic. Also, distributing computation to

bitlines requires massive vector parallelism. Ideally, this orches-

tration would be done without any programmer involvement.

• Fused In-/Near-Memory Computing: Sometimes it is better

to split the work between in-/near-memory computing. E.g.

an in-memory reduction to produce partial results, which are

reduced to the final value by near-memory computing; or a

phase with both irregular and regular data structures, where

only the latter is suitable for in-memory. This requires a unified

execution model and low-overhead hardware implementation.

• Program Portability: High-performance implementations re-

quire exploiting both low-level microarchitecture details and

software parameters, but fixing them would prevent portability

and compatibility.

Existing in-memory works have not fully addressed these, as

they are either somewhat domain specific (e.g. [9, 15, 16]) or put a

significant burden on programmers (e.g. [1, 17, 30]).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

359

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

Way 17*
Way 16*
Way 15...

++ + +

++ + +

++ + +

++ + +

(a) In‐Core Computing

Offload Computation Near Mem.

(b) Near‐Mem Computing

Req./Resp. of A[i], B[i], C[i].

(c) In‐Mem Computing

❶ Configure L3 SRAM Arrays

Transposed A[i], B[i], C[i].

(d) One 8kB SRAM Array
Way 0

*
R
e
s
e
rv
e
d

❷ Parallel Compute across SRAM Arrays

2
5
6

 W
o
rd
li
n
e
s

A[i].LSB

A[i].MSB
B[i].LSB

B[i].MSB
C[i].LSB

C[i].MSBR
o
w

 D
e
co
d
e
r

256 PEs (A op B)

...

..
.

256 Bitlines
❶ Offload A[i] ‐> C[i]

❶ Req./Resp. B[0:N)

❸ C[i] = A[i] + B[i]

❶ Offload B[i] ‐> C[i] ❷ Resp. A[0:N)

❶ Offload C[i] = A[i] + B[i]

❷ Resp. B[0:N)

❷ Req./Resp. C[0:N)

C[i] += A[i] + B[i]
❶ Req./Resp. A[0:N)

Figure 1: Overview of In-Core/Near-Mem/In-Mem Computing Paradigms

One source of inspiration is prior work on transparent near-

memory called near-stream computing (NSC) [64], which augments

the ISAwith explicit abstractions formemory access patterns (called

streams) and associated computation. In NSC, streams are offloaded

to execute near-L3 when there is little locality in private caches.

However, streams do not convey enough information and semantics

for in-memory computing. They are inherently sequential, they

lack information about data size and reuse which are needed to

decide the best layout and tiling, and they also lack the necessary

information to guarantee bitline alignment between data structures.

To solve this problem, our insight is that the portions of work-

loads that can benefit from in-memory computation have very

simple parallelism and reuse patterns that can be analyzed per-

fectly: generally affine access to multidimensional tensors. This

information is sufficient to determine an optimized data layout

and tiling, as well as for generating array-level data-movement

commands to exploit reuse. Thus, our approach is to make parallel

tensor access and relative memory alignment to be first-class primi-

tives of program execution. The augmented program representation

is called a tensor dataflow graph (tDFG). To first order, each tensor

element is mapped to a bitline, and the dataflow instructions are

mapped to in-memory commands.

Further, the tDFG is a unified abstraction for near-data and in-

memory, as it defines the semantics when near-data streams have

dependencies on in-memory tensor operations, and vice versa. For

example, a load stream may broadcast the CNN weights to all

bitlines (stream to tensor), or a reduction stream can execute near L3

banks to collect partial results from each SRAM (tensor to stream).

Finally, to enable portable binaries, we adopt a two-phase com-

pilation approach. The tDFG serves as the compilers’ intermediate

representation (IR) and the program representation, and in-memory

commands for SRAMs are generated by dynamic compilation of

the tDFG. This enables the binary to be independent of microar-

chitecture, and for tensor programs to take advantage of runtime

constants (tensor size/shape). Any difficult analysis happens while

generating the optimized tDFG, thus lowering is fast.

Our overall approach is called infinity stream, which transpar-

ently and flexibly enables offloading to either in-/near-memory,

fusing these paradigms. We implement our framework using LLVM

and a custom dynamic compiler, and evaluate with gem5 [45]. For

data-parallel workloads with in-memory phases using fp32, using

a 64-core system with 128MB L3, infinity stream achieves 2.6×

speedup and 75% traffic reduction over near-memory only [64]

with 2.4× energy efficiency, and 5.1× (up to 8.9×) speedup over a

high-performance multicore. Specifically, our contributions are:

• Execution model for fused and general in-/near-memory com-

puting, with automated data-layout transformations.

• In-memory compiler from plain-C, with optimizations for par-

allelism and data movement, enabling a programmer-friendly

interface to efficient in-/near-memory execution.

• tDFG abstraction and ISA with 𝜇arch/runtime/JIT support for

enabling portable in-memory execution.

• Quantifying the benefits of in-memory vs near-memory for

bit-serial SRAM acceleration.

Paper Organization: ğ2 gives background on in-/near-memory

and overviews our approach, followed by the execution model and

tDFG IR in ğ3. ğ4 details the runtime and dynamic compilation, with

the 𝜇arch in ğ5 and limitations in ğ6. Methodology and evaluation

are in ğ7 and ğ8, and related work is in ğ9.

2 BACKGROUND AND OVERVIEW

Here we overview the three computing paradigms with a simple

vector addition example. This characterizes in-memory computing

and its challenges, which motivate this work.

2.1 Near-Memory Computing

Conventional systems adopt a core-centric view: all computation

is centralized in the core, with data fetched from the memory sub-

system. Fig 1(a) shows a tiled multi-core system. Each tile con-

tains a core with a private L1/L2 and a shared L3 cache bank,

and is connected by a mesh network-on-chip (NoC). To perform

C[i]=A[i]+B[i], the core issues multiple requests to fetch A[i]

and B[i], as well as writing back C[i]. Vectorization and multi-

threading can be used to exploit the massive data parallelism in

this example. One major overhead here is the unnecessary data

movement, as all three arrays A[], B[] and C[] have no reuse at all.

Techniques like prefetching and cache bypassing can only partially

help, as the data movement is inevitable and incurs a high energy

cost. Such overheads are only going to be more severe as the system

scales up and the data grows.

Near-Memory Computing: To fundamentally eliminate unneces-

sary data movement, near-memory computing moves computation

closer to the data, and has been applied in many contexts: e.g. near

on-chip SRAM [53, 64], within the NoC [28, 56], near memory

controller [3, 14, 44]. They also offload computation at different

granularities from coarse-grained kernel-level [5, 31, 33, 42, 68, 73]

to fine-grained short instruction sequences [3, 28, 56].

360

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

Near-Stream Computing: For the near-memory computing base-

line, we use near-stream computing [64], which offloads long-term

memory accesses (i.e. streams) with computations near the L3 cache.

In Fig 1(b), the memory accesses are decoupled into three streams

A[i], B[i], C[i], and offloaded to the shared L3 banks where the

data resides. Stream A[i] and B[i] directly forward their data to

stream C[i]. Stream C[i] coordinates with the remote CPU core to

perform SIMD ops on a spare thread, and then writes directly to L3.

This significantly reduces the data traffic and control overheads.

2.2 Bit-Serial In-Cache Computing

Near-L3 approaches still read the data out from the L3 SRAM ar-

rays, hence are still bound by the L3 cache’s bandwidth. To fully

unlock the massive potential data parallelism, in-memory comput-

ing moves the computation inside SRAM arrays. For this work, we

assume the same compute SRAM technology as Neural Cache [15].

In Fig 1(c), SRAM arrays are configured to add A[i] and B[i] in

parallel and directly write back to C[i], with no sequential reads

and writes at all. Fig 1(d) demonstrates how in-memory computing

works in one 8kB SRAM array with 256 wordlines (row) and 256

bitlines (column). Specifically, it requires the data being transposed

and bit-serial logic for computation.

Transposed Data Layout: In Fig 1(d), array elements (4 bits each)

are transposed from a horizontal layout across columns to a vertical

layout on the same column. E.g. the least significant bit (LSB) of

A[0] is stored in the cell indexed by wordline 0 and bitline 0, and

the most significant bit (MSB) of A[0] by wordline 3 and bitline 0.

Bit-Serial Compute: In-memory computing leverages bit-serial

logic to compute the result. This requires operands to be aligned

in the same column. In the example in Fig 1(d), A[i], B[i], and

C[i] are all placed in the same bitline. To start the computation,

we activate the wordlines of A[i].LSB and B[i].LSB at the same

time, and the 256 PEs perform the bit operation on the sensed bit

(e.g. AND for carry, XOR for addition). The PEs have cells holding

intermediate results (e.g. carry of addition). The result bit is then

written back to C[i].LSB by activating wordline 8 with the write

signal. This process repeats to compute the result one bit at a time

(hence łbit-serialž). It takes𝑂 (𝑛) cycles to perform integer addition

and𝑂 (𝑛2) for integer multiplication, where 𝑛 is the data type width.

However, this is amortized by the massive parallelism it provides.

Max System Speedup: Assuming a 64-core system with 16-way

2MB L3 banks (total 128MB) and 16 256×256 SRAM arrays/way, the

peak throughput of int32 addition is:

𝑇 = 𝑁𝑏𝑎𝑛𝑘 × 𝑁𝑤𝑎𝑦 × 𝑁𝑎𝑟𝑟𝑎𝑦/𝑤𝑎𝑦 × 𝑁𝑏𝑖𝑡𝑙𝑖𝑛𝑒/𝐿𝑎𝑡𝑒𝑛𝑐𝑦
1

= 64 × 16 × 16 × 256/32 = 131072 ops/cycle
(1)

Assuming each baseline core can issue one 512-bit vector op per

cycle (64 × 16 = 1024 ops/cycle), in-memory provides 128× peak

speedup. Fig 2 shows the speedup of two microbenchmarks with

various input sizes on the baseline (AVX-512 and 1 or 64 OpenMP

threads), near-L3, and in-L3 computing using bit-serial logic. We

assume data is cached in L3 and already transposed for in-memory

computing. in-L3 computing usually favors larger input sizes as

they amortize the overhead of bit-serial operation. Despite this,

1We adopt the integer addition from [17]. System params in ğ7. See In-/Near-Memory
Computing [18] for more details, and ğ9 for related works.

vec
_ad

d/16
k

vec
_ad

d/64
k

vec
_ad

d/25
6k

vec
_ad

d/1M

vec
_ad

d/4M

arra
y_su

m/1
6k

arra
y_su

m/6
4k

arra
y_su

m/2
56k

arra
y_su

m/1
M

arra
y_su

m/4
M
geo

mea
n.

100
101
102
103
104

Sp
ee

du
p

Base-Thread-1 Base-Thread-64 Near-L3 In-L3

Figure 2: Speedup of Different Paradigms (Fp32)

in-L3 achieves the best performance for vec_add across all input

sizes. With 4M elements, it achieves 21× over Near-L3, making it a

promising approach to exploit the available data parallelism.

2.3 Infinity Stream Approach Overview

We overview our approach by revisiting each of our driving require-

ments from the introduction.

Automated Orchestration: The data layout and movement or-

chestration ś i.e. allocation, alignment, transposition, and tiling ś

are critical to the performance and applicability of in-memory com-

puting. Thus, the system must automate this management and ease

integration with conventional code. The key challenge is expressing

sufficient information to the hardware and software runtime.

Our approach: We develop a program representation called the

tensor dataflow graph (tDFG). The tDFG operates over tensors with

explicit data-parallel semantics, and represents inter-data structure

alignment with the concept of a global lattice space. Reuse can be

determined precisely, and the tDFG can be annotated with hints

about optimal tiling patterns. The tDFG is embedded as an extension

to a traditional ISA, and gives the runtime sufficient information to

make good decisions.

Fused In-/Near-Memory Computing: As suggested by Fig 2,

in-memory struggles with small input sizes. Also, many code pat-

terns like irregular control and memory (e.g. A[B[i]]) are only

potentially suitable for near-memory. This motivates both a run-

time selection between in-/near-memory computing, and a fused

in-/near-memory paradigm.

Our approach: The tDFG can express both in-memory and near-

memory opportunities in a unified representation. This generalizes

the near-data approach from near-stream computing [64]. At run-

time, the system decides the offload target (in-/near-memory) based

on data size and access behavior. One key hardware feature is to

integrate the transposed data layout with the coherence protocol

to allow data communication between the two paradigms.

Portability: High-performance in-memory code requires exploit-

ing both low-level hardware details (e.g. # of bitlines/array, SRAM-

level instructions) and runtime values, e.g. array dimensions, com-

pute constants. Thus, it is difficult for a single low-level binary to

be compatible with all software parameters and future microarchi-

tectures without sacrificing performance.

Our approach: We take a just-in-time (JIT) approach, with the

tDFG playing a similar role to PTX virtual assembly for CUDA

GPUs. A JIT runtime is in charge of quickly lowering the tDFG

łvirtualž ISA into in-memory computing commands and managing

the transposed data layout. This requires carefully splitting the job

between the compiler and the runtime to maintain compatibility

while keeping JIT overheads reasonable.

361

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

Application

(Plain C Code)

Host Code

+ Inf-S Runtime

tDFG

Config.

Initial

tDFG

Initial

tDFG

Optimal

tDFG

Optimal

tDFG

+

(1) Extract (2) Optimize

(3) Schedule &

Reg. Alloc.

for SRAM sizes.

(1) Transform
Infinity Stream (Fat) Binary

Static

Compiler

Dynamic

Runtime

(When Configured)

Bit-Serial

Commands

(5) JIT Compile

Transposed

Data Layout

To Infinity Stream μArch

(4) Spatial Tiling

Figure 3: Infinity StreamWorkflow Overview

Programmability: Ideally, the system should be easy to program,

without programmers writing multiple code versions, worrying

about data orchestration, and switching between paradigms. This

requires a unified compiler and ISA abstraction, as well as a flexible

runtime library and microarchitecture support.

Our approach: The tDFG is constructed purely by the compiler

using plain C code. The algorithm and program transformations

(e.g. inner vs. outer product) can of course affect the performance,

so we discuss programming implications in ğ3.5. Overall, infinity

stream requires only minimal programmer intervention.

Infinity StreamWorkflow Overview: Fig 3 summarizes the over-

all workflow: our static compiler first extracts an initial tDFG from

plain C code and optimizes it for compute reuse and less data traffic.

The optimal tDFG is scheduled for common SRAM sizes (we use

256 × 256 and 512 × 512). This generates a fat binary with multiple

tDFG configurations, which reduces the complexity of JIT compila-

tion. At runtime, when an infinity stream region is configured, the

runtime dynamically decides the transposed data layout with tiling

based on the data size and hardware parameters. The matched ver-

sion of tDFG is JIT lowered into bit-serial commands. The infinity

stream 𝜇arch transposes the data and executes the commands to

perform in-memory computing.

3 INFINITY STREAM ABSTRACTION

This section shows how the proposed abstraction captures the

unique properties of in-memory computing to enable helpful opti-

mizations while simplifying programming complexity.

3.1 Stream Dataflow Graph

We first extract the stream dataflow graph (sDFG) from the program,

which embeds memory access patterns as streams with associated

near-stream computations. We leverage the sDFG as the foundation

and later extend it to support in-memory computing.

Stream: The compiler decouples access patterns into streams. E.g.

Fig 4(a) contains three load streams A[i-1], A[i], A[i+1], and

one store stream B[i], with linear access patterns. Streams may

be extracted from outer loops if the access pattern is supported.

Irregular access patterns (e.g. A[B[i]] and p=p->next) are also

streams but are inefficient for pure in-memory computing.

Near-Stream Computation: Computation can also be associated

with streams. E.g. in Fig 4(b) the reduction is associated with stream

A[i]. Although the operation is applied to all elements, streams still

 Legend: Value Dependence Mem. Stream Const. Value Compute Op.

 Tensor from Unrolling Stream Move/Broadcast Node to Align Tensors

Stream DFG (sDFG)Original Pseudo Code

for i in [1, N-1)

 B[i] = A[i-1]

 + A[i+1]

 + A[i];

(a) 1D Filter

❶ Fully unroll
streams into tensors.

+

+

B

A0 A1 A2 A0

mv

A1 A2

+

+

B

dim=0
dist=1

dim=0
dist=-1mv

❷ Explicit mv
nodes to align
tensors.

Tensor DFG (tDFG)

Optimize/
Schedule.

for i in [0, N)

 v += A[i];

(b) Vector Sum

+

A A

+ reduce
:dim=0

v

for k in [0, N-1)

 akk = A[k][k];

 bk = B[k];

 for i in [k+1, N)

 m = A[i][k]/akk;

 B[i] -= m * bk;

 for j in [k+1, N)

 A[i][j] -=

 A[k][j] * m;

(c) Gaussian Elim

/

Aik Akj

bcBk

Akk

Bi

Bi

Akj

Aij

Aij

Reuse
by N-k-1

m

bc

Aij

Aij

❶ In-memory reduce
to partial results.❷ Near-memory stream

to reduce to final result.

Mix in-/near-memory computing.

❶ Partial unrolling
on Akj, Aij.

❷ Broadcast m, Akj.

/

AikAkk

m

Aijm

Akj

...

Results from
Stream

A0=

A1=

A2=

B =

A0=

A1=

A2=

B =

Tensor

Pat.

A0=

A1=

A2=

B =

Tensor

Pat.

A0=

A1=

A2=

B =

A0=

A1=

A2=

B =

Strm.

Pat.

A0=

A1=

A2=

B =

Strm.

Pat.

Figure 4: Examples of Infinity Stream Abstractions

S

C

f

mv

tDFG Node SemanticLattice Space Representation

count=4

dim=1

dist=0

Ao=∩Ai

An infinite tensor C with

compile-/run-time constant c

at all lattice cells.

Sequentially accesses the array

using the access pattern.

@ret: normal values v | a tensor A

Apply an element-wise f(A0,…) to

the intersection of input tensors.

Assume no inter-elem. order.

@ret: a tensor Ao

Move the input tensor A

by dist in dimension dim.

@ret: a tensor Ao

Broadcast tensor A count times in

dimension dim with offset dist.

@ret: a tensor Ao

dim=0

dist=1

A

A = tensor(
 ptrdata,
 p0, q0, …
 pN-1, qN-1)

Value c broadcasted

to all lattice cells.

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

A N dimension hyperrectangle

set of data elements in

lattice space.

[p0,q0)x…x[pN-1,qN-1)
E.g., A=[0,4)x[0,4)

fA0 AM
...

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

1 2 3 4

5 6 7 8

9 101112

12141516

mv
A

bc

A 1 2 3 41 2 3 41 2 3 4

bc

c c c c

c c c c

c c c c

c c c c

c

c

c

c

c c c c

c c c c

c c c c

c c c c

c

c

c

c

c c c c

c c c c

c c c c

c c c c

c

c

c

c

Access Pattern:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Ao = cmp(
 f,
 A0, … AM)

Ao = mv(
 A,
 dim, dist)

Ao = bc(
 A, count,
 dim, dist)

v|A = strm(
 acc_pat)

C = const(
c)

𝑖𝑖�0N𝑖𝑖�𝑗𝑗�0N�𝑗𝑗𝑘𝑘��0N�𝑘𝑘
any order

0s𝑤𝑤 ize𝐵𝐵[𝐴𝐴[𝑖𝑖][𝑗𝑗][𝑘𝑘] + 𝑤𝑤]

Figure 5: tDFG Node Semantics

implicitly define the access order and preserve sequential semantics.

In hardware, each stream (and associated computation) can be

independently moved near the L3 if more locality there.

Stream Dataflow Graph: Streams and near-stream computations

form the stream DFG. Streams can have dependences: data from

the outer loop can be reused by the inner loop, e.g. in Fig 4(c) where

the value m is reused (N-k-1) times.

3.2 Tensor Dataflow Graph

Intuition: In-memory computing requires unrolling computation

across all bitlines. Inspired by this observation, if the domain of

the stream is a hyperrectangle (i.e. 𝑁 -dimensional rectangle) of

the data structure, we can fully unroll the stream into a tensor. We

can then reformulate the computation as a dataflow graph where

362

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

the operands are tensors; we call this the tensor DFG (tDFG). Fig 4

shows three example tDFGs, and Fig 5 summarizes all types of tDFG

nodes. We now define the key concepts and semantics of the tDFG.

Global Lattice Space: A key feature of the tDFG is the ability to

reason about the relative location of different tensors in memory,

so that data can be aligned at the bitline level. To enable abstract

reasoning about relative locality, we introduce a global lattice space

to the tDFG. All tDFG tensors are positioned on an 𝑁 -dimension

global lattice space (its dimensionality is that of the data structure

with the highest dimension), shown as the dashed grid in Fig 5.

Each lattice cell can hold an arbitrary number of data elements. At

runtime, cells are mapped to physical locations, e.g. SRAM bitlines.

More importantly, the lattice space serves as a homogeneous coor-

dinate system to abstract away the complex underlying hardware

hierarchy, including bitlines, SRAM arrays, banks, NoC, etc. This

helps keep the tDFG abstraction portable across platforms.

Tensor: As in Fig 5, a tDFG tensor is a hyperrectangle set of data

in the lattice space, denoted by [𝑝0, 𝑞0) × ... × [𝑝𝑁−1, 𝑞𝑁−1) where

𝑝𝑖 and 𝑞𝑖 are the start and end coordinate in dimension 𝑖 . Each data

element of a tensor resides in its own lattice cell. An 𝑁 dimensional

array is by itself a tensor with 𝑝𝑖 = 0, 𝑞𝑖 = 𝑆𝑖 where 𝑆𝑖 is the array

size on dimension 𝑖 . Unlike streams, tensors do not imply a temporal

sequential order but are fully expanded in the lattice space.

Compute with Tensors: A compute node takes one or more input

tensors, applies the computation to a domain which is the intersect-

ing hyperrectangle (see Fig 5), and produces an output tensor. The

tDFG uses a static single-assignment form (SSA), i.e. nodes always

produce a new tensor without overwriting existing ones. There are

two key characteristics of tensor computation:

• Data Parallelism: Since tensors are fully unrolled, the tDFG

does not assume an elementwise order within one tensor com-

putation, exposing massive data parallelism.

• Data Alignment: Tensor computation requires operand ele-

ments from different tensors to be exactly aligned within the

same lattice cell. This captures the data alignment requirement

for in-memory computing.

Explicit Tensor Alignment:We introduce two types of node in

the tDFG to facilitate explicit tensor alignment, which is crucial to

optimize and compile data movement for in-memory computing:

• Move: A move node (mv) in Fig 5 shifts a tensor along a dimen-

sion by a certain distance. E.g. in Fig 4(a), tensor A[0,N-2) is

moved to the right by 1 to align with A[1,N-1).

• Broadcast: To capture reuse spatially, a broadcast node (bc) in

Fig 5 broadcasts a small reused tensor along the reuse dimension

to align with the larger tensor. In Fig 4(c) A[k,k+1)x[k+1,N) is

broadcast downwards to align with A[k+1,N)x[k+1,N).

Global Bounding Hyperrectangle: Due to the finite hardware

resources, not every lattice cell has a valid physical location. we

define the global bounding hyperrectangle as the minimal one that

contains all involved data structures. semantically, data elements

outside the bounding hyperrectangle have undefined values, so data

moved or broadcasted outside is discarded. For now, we implicitly

assume all data structures are aligned to the origin, but this can be

relaxed to placing the array anywhere in the lattice.

Optimizing tDFG:We leverage equality graphs (e-graphs) [47, 48]

C1 C2

+

dim=1
dist=1

3x3 2D Conv
for i in [0, M‐2)
 for j in [0, N‐2)
 v0 = C0*A[i][j]
 + C1*A[i][j+1]
 + C0*A[i][j+2];
 v1 = C1*A[i+1][j]
 + C2*A[i+1][j+1]
 + C1*A[i+1][j+2];
 v2 = C0*A[i+2][j]
 + C1*A[i+2][j+1]
 + C0*A[i+2][j+2];
 B[i][j] = v0+v1+v2;
 j++;
 i++;

Original Tensor Dataflow Graph (tDFG)

A0

A0=A[0,M‐2)x[0,N‐2)
A1 A2

+

+

A3 A4 A5

+

+

A6

mv

A7 A8

mv

+

+

dim=1
dist=‐1

+

mv
dim=1
dist=1

+

Optimized tDFG

C0 C1 C0

mv mv

C1 C2 C1 C0 C1 C0

v0 v1 v2

A

+

mv

+

+

C0

v0 v1v2

mv

+

dim=0
dist=1mv

Tensor expansion/
common expr reuse/...

mv

A=A[0,M)x[0,N)

C1

dim=0
dist=1

dist=‐1
dim=1

dim=0
dist=‐1mv mvmv

Figure 6: Example of Optimized tDFG

to search for an optimized tDFG. E-graphs are a representation of

all possible re-writes to a graph in a compact form, which leverages

equality relationships between different re-writes. To construct an

e-graph for our case, we start from the initial tDFG, then repeatedly

grow the e-graph by applying re-writes and maintaining equiva-

lence points between them. The final tDFG selection is based on

architecture-informed cost metrics (e.g. estimated latency of move

vs. compute node), and can be exhaustive or terminated early to

reduce compile time. Fig 6 shows the initial and optimized tDFG for

Fig 4(c). Besides the basic associative, commutative, and distributive

rules, two transformations are widely applicable (see the Appendix

for a full list of transformation rules):

• Tensor Expansion: We can merge two mvs with same dis-

tance and dimension but on slightly different patterns. In

Fig 6, A0:[0,M-2)x[0,N-2) and A3:[1,M-1)x[0,N-2) are

both shifted to the right by 1, and can be merged into one mv

on the expanded tensor [0,M-1)x[0,N-2).

• Reuse Common Comp.: We can also reuse common computa-

tions. In Fig 6, instead of multiplying by 𝐶0 four times, we can

reuse the result by shifting it to where it is needed in the lattice.

3.3 Hybrid In-/Near- Memory

tDFG is also general and flexible to support hybrid in/near memory

execution by embedding streams.

Embedding Streams in tDFG: Some streams/ops in the tDFG are

not unrolled into tensors, e.g. alias, non-hyperrectangle accesses,

etc. Keeping streams in the tDFG enables data to be read or written

in a strided affine pattern or an indirect pattern, providing a better

setup for tensor computation (e.g. a stream performs an indirect

access and lays out the data in a tensor format). We allow up to

three dimensions for affine access and dependent one-level indirect

access (see the access pattern in Fig 5). A stream node can produce:

• Normal Values: Load and reduce streams generate normal

values (non-tensor) consumed by the core or other streams.

E.g. the reduction in Fig 4(b) is split into two nodes: a tensor

compute node to perform partial in-memory reduction, and

a stream node to perform the final reduction, as in-memory

computing is inefficient for the final rounds.

• Tensor Values: Store streams produce a new tensor with the

bounding hyperrectangle of all touched lattice cells. Semanti-

cally, this can be as large as the entire accessed array, e.g. an

indirect stream updates a subset of the elements. However, in

implementation, this is just updating an existing tensor and does

not allocate a new one. In Fig 4(c), stream Bi is not unrolled due

to low parallelism, and stream m writes the division result into

a tensor m, which is later consumed by in-memory computing.

363

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

Data moves along
some dim 0/1.

/akk

// Init arrays.

inf_array(A, 4, N, N);

...

// Computation.

for k in [0, N-1)

 akk = A[k][k];

 bk = B[k];

 inf_cfg(0x404,akk,...);

 inf_end();

(c) Gaussian Elim

Bi

Akj

Aij

Runtime
params.

Reuse
by N-k-1

-=m*bk -=m*sAkj

/akkAik

Bi m

Write to
m

-=m*bk

Eliminate the
whole loop.

tDFG Config.

Hints: N > f(…)

In-Mem Cfg.

Near-Mem Cfg.

Trigger tDFG when done.

Choose in-/near-mem at runtime.

Near-stream
computation.

Declare an array: vaddr,
elem_size, array_size.

Near-Mem Configuration

Akj

bc

m

bc

...

In-Mem Configuration

Data Moves:

A: dim0 broadcast

A: dim1 broadcast Aik

Figure 7: Example of Compiled Infinity Stream Program

Supporting Irregularity: Hybrid in-/near-memory execution

enables infinity stream to handle some forms of irregularity, i.e.

streams in tDFG can have irregular access patterns (e.g. A[B[i]]).

For example, in kmeans, in-memory computes the closest centroid

for each point using tensor operations, while near-memory per-

forms the indirect update to recalculate centroids’ coordinates. For

future work, the tDFG can also be extended with control flow and

predication to handle control irregularity.

3.4 ISA Interface

Both the sDFG and tDFG for each relevant program region are

encoded in the binary, to enable a dynamic choice between near-

memory and in-memory respectively. Fig 7 shows the compiled

Fig 4(c) with both DFGs and data layout hints.

Infinity Stream Configuration: The inf_cfg instruction marks

the beginning of infinity stream regions, and passes in the runtime

parameters (e.g. constant values). This triggers the runtime library

to read in the configuration and configure the microarchitecture

(details in ğ4 and ğ5). As in prior work [64], near-stream computa-

tions are compiled into conventional functions in the native ISA. A

pointer to this function is stored in the sDFG.

Layout Hints for Tiling: We add layout hints into the configura-

tion to help the runtime quickly make good decisions about tiling:

e.g. which dimensions the array would be shifted along (favoring

tiling along those dimensions), as well as which arrays are used for

the same computation (and should be bitline-aligned). The compiler

generates the layout hints by analyzing the tDFG’s data movement

patterns. The runtime also requires the array sizes, which are passed

in using the inf_array API. Fig 7 demonstrates using inf_array

to declare a 2D array A[N][N], where the infinity stream config-

uration defines that array A is broadcast in both dimensions. The

runtime combines this information and picks a suitable data lay-

out to reduce the traffic (see ğ4.1). Currently, we manually insert

inf_array calls in the initialization phase.

tDFG Backend Compilation: To generate a tDFG configuration,

the backend compiler serializes the tDFG and allocates values to

wordlines (once for each SRAM array size in the fat binary). In this

work we use a straightforward approach of scheduling instructions

in topological order, and using a local register allocation scheme

[4]. Though there are few effective registers (e.g. 8 32-bit registers

in a 256-wordline SRAM array), no register spilling was observed

in the studied workloads. Fusing multiple physical SRAM arrays

into a larger virtual array with more registers is possible, but left

for future work.

Outer Prod. (Inf‐S)Tiled Inner Prod. (Base)

for mm in [0,T,M)
 for nn in [0,T,N)
 for kk in [0,T,K)
 for m in [0,1,T)
 for n in [0,1,T)
 s = 0;
 for k in [0,1,T)
 s += A[mm+m][kk+k]
 * Bt[nn+n][kk+k];
 C[mm+m][nn+n] += s;

(a) Matrix Mul
Amk

bc

C

Bkn

+

C

dim=0 dim=1

bc

Tensor DFG (tDFG)
for k in [0,1,K)
 for m in [0,1,M)
 for n in [0,1,N)
 C[m][n] += A[m][k]
 * B[k][n];
 ❶ Broadcast Amk, Bkn

to the entire C.

CAmk

Bkn

❷ Acc. in C.

Figure 8: Programming GEMM for Infinity Stream

A13

dim=0
dist=1

A[0,4)x[0,3)

A00 A01 A02 A03

A10 A11 A12

A20 A21 A22 A23

A30 A31 A32 A33

00 01 10 11 02 03 12 13 20 21 30 31 22 23 32 33

00 10 01 02 11 12 20 30 21 22 31 32

Reserved

Way 0 Way 0Bank 0 Bank 1

tA0

mv

 CMD Bitlines Tiles

0 sh 0:2:2 0:2:2 +1 / 0

1 sh 1:2:2 0:2:2 -1 / 1

2 sh 0:2:2 1:2:2 +1 / 0

Lowering

BL./Tile

Distance

Pattern: start[:stride:count]+ Moved

Elements

Way 1

Tile 0

Tile 2

x2 x2

x2 x2

x2 x2

Right shift column [0,4) by 1.

Tile 1

Tile 3

tA0

Figure 9: Moving a Tensor in Tiled Layout (View in Color)

3.5 Programming Infinity Stream

Due to its special execution model, programmers face different

trade-offs when programming an in-memory system, with tiling

and dataflow being the two major design choices.

Tiling: Since in-L3 computing flattens the memory hierarchy, it

becomes unnecessary to tile for L1/L2 caches at the programming

interface. The runtime will handle the tiling across SRAM arrays

using microarchitecture support. E.g., Fig 8 shows the baseline 2-

level tiled code for matrix multiplication mm, while infinity stream’s

implementation has no tiling with only 3 loop levels.

Inner vs. Outer Product: Another critical design choice is the

dataflow. In-core computing usually favors inner product as it ac-

cumulates the result in the register (see Fig 8). However, as in Fig 2,

in-memory computing does not handle reduction well as the data

parallelism is halved after each round of reduction, and prefers

outer product to convert the reduction to element-wise operations.

In Fig 8, during each round of k, one column of A[] and one row of

B[] is broadcast to the entire C[], followed by multiplication and

accumulation. We evaluate both dataflow choices in ğ8.

Best Practice: Programmers should choose outer product or a

similar dataflow that exposes more parallelism for inner loops and

move reduction to outer loops. Also, there is no need to tile for

private caches as in-memory computing is performed at L3. As in

standard practice, programmers should still tile for L3 to provide a

suitable working set for in-memory computing.

4 RUNTIME SUPPORT

The tDFG is neutral to hardware details and input sizes to maintain

compatibility. Instead, a runtime library manages the transposed

data layout, lowers the tDFG into in-memory commands, and de-

cides between in-/near-memory computing, described as follows.

4.1 Transposed Data Layout

The transposed data layout is left to runtime as it requires infor-

mation that is usually unavailable at compile time, e.g. input sizes,

SRAM array sizes, NoC bandwidth, etc.

364

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

A trivial data layout would treat the data structure as a 1D ar-

ray and map elements to contiguous bitlines. However, tensors

are often shifted/broadcast along higher dimensions. Therefore, to

reduce data traffic across SRAM arrays, the data layout within an

SRAM is modified through tiling. Here, a tile is defined by the data

dimensions mapped to one SRAM array. In Fig 9 we consider a

4-bit-wide SRAM array, where a 4x4 2D software array is split into

4 2x2 tiles, and mapped to SRAM arrays (some SRAMs belong to

ways reserved for conventional cache). We only transform the data

layout through tiling at the SRAM array level, as it captures most

of the traffic reduction benefits, and keeps the mapping between

physical address and bitlines simple. Applying further data-layout

tiling at a coarser level could further reduce data traffic.

Tiling Constraints: Assume an N-dimensional 𝑆0 × ... × 𝑆𝑁−1
array with 𝐿 elements per cache line, 𝐵 bitlines per SRAM array

and𝑊 SRAM arrays per L3 bank used for in-memory computing.

The tile size 𝑇0 × ... ×𝑇𝑁−1 must ensure that:

(1)
∏𝑁−1
𝑖=0 𝑇𝑖 = 𝐵: Each tile occupies all bitlines in one SRAM

array. This simplifies the logic for intra-tile data movement.

(2) 𝑇0 ×𝑊 mod 𝐿 = 0: For dimension 0 (continuous in address

space), tiled elements at each L3 bank (𝑇0 ×𝑊) aligns with

elements per cache line (𝐿). This ensures that each line is

mapped to only one L3 bank.

The runtime gets the array’s element size and shape from the

inf_array API, and searches for a valid tile size meeting the con-

straints. If none is found, the array is not transposed and in-memory

computing is disabled. Notice that the array size is not required to

align to tile size; boundary tiles with unused bitlines require special

handling (see ğ4.2 and ğ5). In addition, it checks that the array’s

innermost dimension aligns to the cache line (𝑆0 mod 𝐿 = 0). Along

with constraint 2, this guarantees a transposed cache line is not

split across L3 banks, and is still accessible by normal requests (with

longer latency to transpose back, see ğ5). This rarely fails for large

arrays, as they are often padded for cache line alignment.

When multiple arrays are used by the same computation, e.g.

the input and output array of 2D convolution, the runtime picks

one primary array (the output or the reduced array) and uses its

tile size for others. Using the same tile sizes eases the complexity

to align tensors at runtime.

Tiling Heuristics: The runtime picks one valid tile size using hints

in the configuration. Shifts favor a close-to-square tile size, as it

keeps most traffic within the same tile. For reduction, a larger tile

size on the reduced dimension allows more rounds of in-memory

reduction. Broadcast reads favors a smaller innermost tile size if it

can spread one row to more L3 banks to avoid the hotspot. When

tensors are used for multiple kinds of data movement, we prioritize

by the order of reduction, shift, and broadcast, as reduction is usu-

ally more expensive due to low compute intensity, while broadcast

is inexpensive, as it can reuse the read data. The runtime can pick

the best data layout for each program phase. Our heuristic is within

2% of an oracle configuration (see ğ8).

4.2 JIT Lowering tDFG

The runtime also lowers the tDFG into in-memory commands. In

Fig 9, an example mv node (right shift columns [0, 3) by 1) is lowered

through the following steps.

Algorithm 1: Decompose Tensor

Input: A 𝑁 -dim tensor𝐴 = [𝑝0, 𝑞0) × ... × [𝑝𝑁 −1, 𝑞𝑁 −1) where 𝑝𝑖 < 𝑞𝑖
Input: A list of tile size of each dim 𝑡𝑠 = [𝑡0, ..., 𝑡𝑁 −1]
Result: A list of decomposed tensors 𝑟𝑒𝑡 initialized as []

1 if N > 0 then // Decompose dimension 0

2

//

0 𝑎 𝑝0 𝑏 𝑐 𝑞0 𝑑

.
head middle tail

3 𝑎 ← ⌊
𝑝0
𝑡0
⌋ × 𝑡0 , 𝑏 ← ⌊

𝑝0+𝑡0−1

𝑡0
⌋ × 𝑡0 // Align 𝑝0 to tile boundary

4 𝑐 ← ⌊
𝑞0
𝑡0
⌋ × 𝑡0 , 𝑑 ← ⌊

𝑞0+𝑡0−1

𝑡0
⌋ × 𝑡0 // Align 𝑞0 to tile boundary

5 // Recursively decompose remaining dimensions

6 𝑟𝑠 ← Decompose([𝑝1, 𝑞1) × ... × [𝑝𝑁 −1, 𝑞𝑁 −1), [𝑡1, ..., 𝑡𝑁 −1])

7 forall𝐴′ ← 𝑟𝑠 do // Construct final decomposed tensors
8 if b <= c then // 𝑎 ≤ 𝑝0 < 𝑏 ≤ 𝑐 ≤ 𝑞0 < 𝑑
9 if 𝑎 < 𝑝0 then
10 𝑟𝑒𝑡 += [𝑝0, 𝑏) × 𝐴

′ // Head interval

11 if 𝑏 < 𝑐 then
12 𝑟𝑒𝑡 += [𝑏, 𝑐) × 𝐴′ // Possible middle interval

13 else
14 𝑟𝑒𝑡 += [𝑎, 𝑐) × 𝐴′ // 𝑝0 aligns with 𝑎

15 if 𝑐 < 𝑞0 then
16 𝑟𝑒𝑡 += [𝑐, 𝑞0) × 𝐴

′ // Add possible tail interval

17 else // 𝑎 = 𝑐 ≤ 𝑝0 < 𝑞0 < 𝑏 = 𝑑
18 𝑟𝑒𝑡 += [𝑝0, 𝑞0) × 𝐴

′ // Same tile, no decomposition

19 else // No more dimension to decompose
20 𝑟𝑒𝑡 += 𝐴

1. Tensor Decomposition: As tensors may not align to the tile

boundary (e.g. moving a subregion of the array), they are decom-

posed into smaller ones to separately handle those tiles at the bound-

ary. Alg 1 recursively decomposes an 𝑁 -D tensor along the tile

boundary at each dimension. For the start and end position 𝑝0, 𝑞0 of

dimension 0, it identifies their respective tile boundaries [𝑎, 𝑏), [𝑐, 𝑑)

such that 𝑝0 ∈ [𝑎, 𝑏), 𝑞0 ∈ [𝑐, 𝑑), {𝑎, 𝑏, 𝑐, 𝑑} mod 𝑡0 ≡ 0 (line 3-4).

Depending on the relative positions of 𝑝0 and 𝑞0, it decomposes the

1D tensor [𝑝0, 𝑞0) into one to three new ones: additional subtensors

for the head and/or tail if 𝑝0 and/or 𝑞0 do not align with the tile

boundary. For multiple dimensions, we take the cross product of all

decomposed tensors (line 8-18). When the tensor aligns with the

tile boundary in every dimension, no decomposition is needed.

For example in Fig 9, A[0,4)x[0,3) is decomposed into

two subtensors AL[0,4)x[0,2) made of full tile 0 and 2, and

AR[0,4)x[2,3) made of partial tile 1 and 3. Since dimension 0

is perfectly aligned, the original range [𝑝0 = 0, 𝑞0 = 4) is kept

(line 13). For dimension 1, the range [𝑝1 = 0, 𝑞1 = 3) means the tail

is not aligned (𝑡1 = 2 =⇒ 𝑞1 mod 𝑡1 . 0). Therefore dimension 1

is decomposed into [𝑝1 = 0, 2) and [2, 𝑞1 = 3). The cross product

between decomposed dimensions 0 and 1 yields two subtensors

[0, 4) × [0, 2) and [0, 4) × [2, 3).

2. Intra-/Inter-Tile Shifts: Alg 2 lowers a decomposed mv node

into intra-/inter-tile shift commands. Each shift command takes

five arguments: 1) a tensor 𝐴, 2) a shift dimension 𝑘 , 3) a shift mask

that selects the bitlines to shift, and 4,5) the inter-/intra-tile shift

distances that indicate the direction and number of tiles/bitlines

to shift (intra-tile shifts always have 0 inter-tile shift distance). De-

pending on whether the shift distance aligns with the tile boundary

(𝑑𝑖𝑛𝑡𝑟𝑎 == 0), we may generate an inter-array shift command and

optionally an extra intra-array shift command (line 5-12). Notice

that not all shift commands will necessarily generate traffic, as the

intersection of the shift mask and the tensor may be the empty set.

Such shift commands are filtered out later (ommitted in Alg 2).

365

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

Algorithm 2: Compile mv to Shift Commands

Input: A 𝑁 -dim tensor𝐴 = [𝑝0, 𝑞0) × ... × [𝑝𝑁 −1, 𝑞𝑁 −1) where 𝑝𝑖 < 𝑞𝑖
Input: Tile size 𝑡𝑘 of move dimension 𝑘 and move distance 𝑑
Result: A list of shift commands 𝑟𝑒𝑡 initialized as []

1 𝑑𝑖𝑛𝑡𝑒𝑟 ← ⌊
abs(𝑑)
𝑡𝑘
⌋ // Inter-tile shift distance

2 𝑑𝑖𝑛𝑡𝑟𝑎 ← abs(𝑑) mod 𝑡𝑘 // Intra-tile shift distance

3 𝑑𝑖𝑛𝑡𝑟𝑎 ← 𝑡𝑘 − 𝑑𝑖𝑛𝑡𝑟𝑎 // Complement of 𝑑𝑖𝑛𝑡𝑟𝑎
4 // Shift(tensor, dim, mask, inter_tile_dist, intra_tile_dist)

5 if 𝑑 > 0 then // Shift forward

6 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [0, 𝑑𝑖𝑛𝑡𝑟𝑎), 𝑑𝑖𝑛𝑡𝑒𝑟 , 𝑑𝑖𝑛𝑡𝑟𝑎)

7 if 𝑑𝑖𝑛𝑡𝑟𝑎 > 0 then

8 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [𝑑𝑖𝑛𝑡𝑟𝑎, 𝑡𝐾), 𝑑𝑖𝑛𝑡𝑒𝑟 + 1, −𝑑𝑖𝑛𝑡𝑟𝑎)

9 else if 𝑑 < 0 then // Shift backward
10 if 𝑑𝑖𝑛𝑡𝑟𝑎 > 0 then

11 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [0, 𝑑𝑖𝑛𝑡𝑟𝑎), −(𝑑𝑖𝑛𝑡𝑒𝑟 + 1), 𝑑𝑖𝑛𝑡𝑟𝑎)

12 𝑟𝑒𝑡 += Shift(𝐴,𝑘, [𝑑𝑖𝑛𝑡𝑟𝑎, 𝑡𝐾), −𝑑𝑖𝑛𝑡𝑒𝑟 , −𝑑𝑖𝑛𝑡𝑟𝑎)

As an example, in Fig 9, shifting AL[0,4)x[0,2) to the right

by one requires one intra-tile shift to move the column 0 (CMD 0,

Alg 2 line 6), and one inter-tile shift to move the column 1 across

the tile boundary (CMD 1, Alg 2 line 8). Each command has the

bitline/tile pattern generated by intersecting the tensor with the

shift mask. These patterns are applied to bitlines/tiles, specified

using the start[:stride:count]+ format. E.g. CMD 1 has bitline

pattern 1:2:2 and tile pattern 0:2:2, therefore shifts bitline 1, 3

of tile 0, 2 (red arrow). These patterns are expanded into masks by

the hardware when executed (see ğ5). Activated wordlines are also

encoded, but are omitted in Fig 9 for simplicity. Shift commands also

have the bitline/tile distance to determine the destination bitline/tile.

Similarly, AR[0,4)x[2,3) is shifted to the right by one intra-tile

shift (CMD 2, Alg 2 line 6), but requires no inter-tile shift (skipped

Alg 2 line 8). The runtime ensures data is not shifted beyond the

array boundary by checking the tensor size and the shift distance.

3. Map to L3 Banks: Some commands, e.g. those for boundary

tiles, may be skipped by some banks. The runtime intersects the

commands’ tile pattern and the tiles mapped to each L3 bank. If the

intersection is empty, the command can be skipped at that L3 bank.

In Fig 9, since CMD 0 operates on tile 0 (mapped to L3 bank 0) and

tile 1 (mapped to L3 bank 1), it is mapped to both L3 banks.

Other tDFG Nodes: Element-wise compute nodes do not move the

data and can skip step 2, but still needs step 1 and 3 to handle the

boundary tiles and to be mapped to L3 banks. The compute com-

mands also encode the opcode and the wordlines of the operands

and result. Reduction nodes are lowered into a sequence of interleav-

ing compute and intra-tile shift commands to fully reduce each tile

on the reduced dimension. Broadcast nodes are handled similarly

to move nodes, with the broadcast destination encoded.

Synchronization: All commands are synchronous at L3 banks (i.e.

do not issue until the previous one finished) except inter-tile shifts,

which are considered finished when all data movement within

the L3 bank and the inter-bank packets are injected into the NoC

(but may before they arrive at the destination L3 bank). Therefore,

the runtime inserts a sync command between an inter-tile shift

command and the consuming command, which serves as a global

memory barrier, ensuring that data movements before the sync

command are visible to commands after the sync command. (i.e.

arrived at the destination bitline). A sequence of pure intra-tile shift

and compute commands require no synchronization.

Reducing JIT Overheads: Being on the critical path of offloading,

JIT lowering can incur significant overheads. Thus, we co-design

the software and hardware for JIT performance:

• Division of labor: The static compiler handles register alloca-

tion and scheduling (see ğ3.4), so the JIT compiler only needs to

map the scheduled tDFG according to the tiled data layout and

lower into bit-serial commands. This is possible by scheduling

for common SRAM array sizes (256x256 and 512x512), forming

a fat binary similar to CUDA. Note that our fat binary does not

expose any microarchitecture beyond the SRAM array sizes, and

we believe there will only be a small handful that are useful over

many generations of hardware.

• Memoization: We reuse JIT results when the same tDFG is

re-executed with the same parameters by adding a small hard-

ware cache (see ğ5) for intermediate reuses and software memo-

rization for longer-term reuses. This is particularly useful for

iterative algorithms (e.g. stencils).

• Array dimension specialization: While our JIT compiler can

handle higher dimensional arrays, we specialize for common

1-3D arrays by leveraging C++ templates. This enables the com-

piler to unroll the loop and eliminate expensive recursion (e.g.

Alg 1 recursively decomposes the tensor according to the tile

boundary).

With these optimizations, we reduced JIT lowering time by more

than 1000×, and it takes 12% of overall runtime (see ğ8). We believe

additional optimizations could further reduce the overhead, e.g.:

• Phase overlapping: We can overlap JIT compiling with the

data preparing phase (to fetch and transpose data, see ğ5), or

lowering for future regions as the core is waiting for the current

region to finish.

• Hardware implementation: We can broadcast commands

after step 2 to all L3 banks and let the hardware skip those

not applied to its local tiles, eliminating step 3 (the most time-

consuming one as it is 𝑂 (𝑁𝑏𝑎𝑛𝑘 × 𝑁𝑐𝑚𝑑)) in software.

4.3 In-/Near-Memory Decision

The runtime also decides between in-/near-memory computing by

evaluating the following condition:

𝑁𝑒𝑙𝑒𝑚 × 𝑁𝑜𝑝

𝑇𝑃𝑐𝑜𝑟𝑒
> Σ𝑖𝐿𝑎𝑡𝑜𝑝𝑖 + 𝑁𝑛𝑜𝑑𝑒 × 𝐿𝑎𝑡 𝐽 𝐼𝑇 (2)

The LHS models the latency of a core at peak throughput, and

the RHS captures the in-memory computing delay (first term, no

𝑁𝑒𝑙𝑒𝑚 , as computation is fully parallelized) and the JIT time (second

term). The compiler generates aggregate information as hints in

the configuration, e.g. # of each op, so that the runtime can make a

quick decision without analyzing the tDFG. Other platform-specific

parameters can be obtained by querying the hardware or profiling

offline. This is just a basic and conservative heuristic (assuming

peak core performance), but is sufficient for the studied workloads.

5 MICROARCHITECTURE EXTENSIONS

Fig 10 overviews infinity stream’s microarchitecture, with stream

engines (SEcore/SEL3) handling offloaded near-memory streams,

layout override tables (LOT) recording transposed data layout, and

tensor controllers (TCcore/TCL3) executing in-memory commands

and synchronizing with the core.

366

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

SEcore
TCcore

L1 $

SEL3 TCL3

Core
L2 $

T
a
g
s

L
O
T

LOT

Layout
Override
Table

Bit‐Serial
Cmd.

...

...

...

...

❶ In‐memory reduce ‐>
partial results in SRAMs.

❷ Near‐memory streams reduce
partial results ‐> final value

v0

v1

v2

v3
Tensor
Transpose
Unit

L3

Tags

TTU

...

L3 Way i

...

Figure 10: Infinity Stream Microarchitecture

5.1 Near-Memory Computing

We adopt near-memory computing 𝜇arch support from NSC [64] to

execute streams at the L3 stream engine (SEL3). Streams read/write

data directly from L3 banks and forward operands to consuming

streams without going back to the core for computing. Streams

automatically migrate to the L3 bank where the next data is mapped,

with coarse-grained flow control messages (i.e. sync every N cache

lines between SEcore and SEL3) to reduce coordination.

5.2 In-Memory Computing

During in-memory computing mode, the microarchitecture needs

to manage the transposed data layout (LOT and TCcore), execute

the in-memory commands (TCL3), and synchronize with the core

(TCcore and TCL3). We assume the SRAM arrays are enhanced to

support bit-serial logic and shifts, as well as a buffered H tree to

enable efficient broadcast, similar to [15, 17].

Transposed Data Layout: The layout override table (LOT, Table 1)

tracks the transposed arrays initialized by the runtime (up to 3D, so

higher-dim arrays should have some dimensions fused). It tracks the

physical address, as the L2 and L3 caches are indexed by physical

addresses. This requires the array to be contiguous in physical

address space (with huge pages or special malloc functions). Directly

mapping virtual addresses to bitlines is possible by extending the

page table and TLB for transposed pages, but is beyond this work.

Map Physical Address⇔ Bitlines: The LOT essentially overrides

how physical addresses are mapped to SRAM arrays. For transposed

data structures, the physical address is subtracted by base and

divided by size to get the element index, which is used to find

the containing tile and coordinates within that tile. Since tiles are

mapped contiguously to SRAM arrays, it is straightforward to locate

the actual bitline and wordlines. Reverse mapping from bitlines to

physical addresses is similar.

Prepare Transposed Data: Before in-memory computing, TCcore

prepares the data in transposed format by first issuing flush requests

to the L3 cache controller to reserve the cache ways used for in-

memory computing (we use 16 ways).

The trans field in LOT (initialized to 0) indicates whether the

data is currently cached in transposed layout. If trans=0, TCcore

offloads a load stream to fetch the data into transposed format,

and sets trans=2 when finished. During this process, TCcore sets

trans=1, and any core requests to that physical range is blocked.

These load streams are executed in SEL3 to avoid the traffic over-

heads between L2 and L3. Our design uses a tensor transpose unit

Table 1: Layout Override Table (LOT)

Field Bits Description Field Bits Description

base 48 Base phys. addr. end 48 End phys. addr.

size 8 Element size. dim 2 Array dim (max 3).

Si 32 Array size (3×). Ti 32 Tile size (3×).

wl 10 Start wordline. trans 2 Transpose state.

(TTU) to convert between transposed and normal format, similar

to prior works [15, 17].

Execute Commands: After the data is prepared, TCcore sends out

commands in a small command cache (2kB) to TCL3 at mapped

L3 banks. Commands are generated by the runtime (see ğ4.2) or

reused if the same region is executed multiple times. TCL3 is a

microcontroller to convert the command’s bitline and tile pattern

to masks for its local tiles and broadcast commands to SRAM arrays.

For inter-tile shifts, it generates the control signals to configure

the H tree to shift or broadcast the data, and packs the bits into

NoC packets if the destination tile is mapped to another L3 bank.

For compute commands, it first broadcasts constant operands (if

any) to bitlines, and configures the SRAM arrays to perform the bit-

serial computation (using algorithms from prior work [17]). Since

commands are long latency (𝑛2+5𝑛 for n-bit integer multiply), TCL3

can preprocess the next command to hide the processing latency.

Synchronization: For sync commands, TCL3 reports to the other

TCL3 the # of packets sent there since the last sync, and the total sent

packets to TCcore. Therefore, the receiving TCL3 knows how many

packets to expect and can report back to TCcore when all packets

arrived. After hearing back from all TCL3s, TCcore checks that # of

sent/received packets matches before broadcasting a message to

clear the barrier.

Delayed Release of Transposed Data: To release the transposed

data, TCcore offloads a special store stream to evict data to the mem-

ory, which releases the reserved cache ways. To capture the reuse

across program regions, e.g. iterative algorithms, TCcore delays

releasing the data until any of the following conditions:

• Following an in-memory phase, the number of normal requests

to the transposed data exceeds a threshold (we use 100k), sug-

gesting that it is now used for in-core/near-mem computing.

• The L3 miss rate exceeds a threshold, suggesting releasing the

reserved ways to reduce the pressure on the L3.

• A timer expires (we use 100k cycles).

5.3 Fused In-/Near-Memory Computing

One key advantage of infinity stream is to enable normal core/stream

accesses to the transposed data, which allows cores/streams to be

unaware of the data layout, providing flexibility across paradigms.

Coherence: Tiling constraints in ğ4.1 guarantees that transposed

cache lines are still mapped to a single (but maybe different) L3 bank.

Therefore, the coherence state can be tracked in the newly mapped

L3 bank, enabling accesses to transposed data structures using

normal requests when in-memory computing is not used. Before in-

memory computing starts, TCcore evicts any dirty copies in private

caches to ensure the data in L3 is up-to-date. During in-memory

computing, cores are disabled from accessing the data structure by

blocking the requests from private caches (setting trans in LOT

to 1). However, streams at SEL3 can still read and write transposed

367

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

Table 2: System and 𝜇arch Parameters (cy.: cycle)

System 2.0GHz, 8x8 Cores

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB
(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 8 Int ALU/SIMD (1 cy.)
4 Int Mult/Div (3/12 cy.)
4 FP ALU/SIMD (4 cy.)
4 FP Div (12 cy.)

L1 D/I TLB 64-entry, 8-way
L2/SEL3 TLB 2k/1k-entry, 16-way, 8 cy.

L1 I/D $ 32KB, 8-way, 2 cy.
Priv. L2 $ 256KB, 16-way, 16 cy.

Replacement Bimodal RRIP, 𝑝 = 0.03
L1 Bingo Pf. 8kB PHT, 2kB region
L2 Stride Pf. 16 streams, 16 pf./stream

NoC 32B 1 cy. link, 8x8 Mesh
5-stage router, multicast
X-Y routing, 16 mem. ctrls

Shared 20 cycles, MESI
L3 $ Static NUCA, 1kB interleave

256x256 SRAM array (8kB)
5-level H tree, 64B total BW.
16 arrays per way, 18 ways
64 banks, total 144MB

DRAM 3200MHz DDR4 25.6 GB/s

SEcore 2kB FIFO, 12 streams

SEL3 768 streams, 64kB buf.
4 cy. compute init. lat.

LOT 16 regions

Table 3: Workloads (BC: Broadcast)

Benchmark Move Cmp. Parameters

stencil1d Shift Elem 4M-entry, 10-iter
stencil2d Shift Elem 2k×2k, 10-iter
stencil3d Shift Elem 512×512×16\

10-iter
dwt2d Shift Elem 2k×2k

gauss_elim BC Elem 2k×2k
conv2d Shift Elem 2k×2k
conv3d BC Elem H/W=256,K=\

3×3, I/O=64
mm/in BC Reduce M/N/K=2k
mm/out BC Elem Same

kmeans/in BC Reduce 32k-point,dim=128\
kmeans/out BC Elem 128-center

gather_mlp/in BC Reduce M=32k,\
gather_mlp/out BC Elem N/K=128

Table 4: PointNet++

Krnl. 𝐾 , 𝑁 , 𝑟 , [𝑑𝑖𝑚𝑠]

SA1 512, 32, 0.2, [64, 64, 128]
SA2 128, 64, 0.4, [128, 128, 256]
SA3 1, 128, Inf , [256, 512, 1024]
SA4 512, 16, 0.1, [32, 32, 64]
SA5 512, 32, 0.2, [64, 64, 128]
SA6 512, 128, 0.4, [64, 96, 128]
SA7 128, 16, 0.2, [64, 64, 128]
SA8 128, 32, 0.4, [128, 128, 256]
SA9 128, 128, 0.8, [128, 128, 256]
FCx3 1, 1, /, [512, 256, 10]

SSG SA1→ SA2→ SA3→ FCx3

MSG [SA4, SA5, SA6]→
[SA7, SA8, SA9]→
SA3→ FCx3

data, as the dependence between stream and tensor operations is

guaranteed through the dataflow graph and synchronization. E.g.

the final reduce stream is not offloaded until the partial in-memory

reduce is synchronized at TCcore. Similarly, if a tensor is generated

by a store stream, the dependent in-memory computation will not

start until that stream completes.

Context Switch:As in [64], context switches in near-memory com-

puting are delayed until all streams reach a synchronization point

(every few cache lines). Similarly, during in-memory computing,

context switches are delayed until TCcore completes a sync com-

mand so that all computation and data movement is committed. The

progress of streams (including iteration number) and in-memory

computing progress (commands), as well as the LOT, are saved as

part of architectural state. The OS may flush transposed data so

that LLC space can be reclaimed.

6 IMPLEMENTATION LIMITATIONS

Our implementation of infinity stream has some limitations that

can be relaxed in future works: 1. While it is possible to share the L3

to enable in-memory computing in a multi-program scenario, we

allow only one thread to reserve the L3 for in-memory computing

at a time by locking the LOT. 2. We assume the input data is already

tiled to fit in the L3. Otherwise, in-memory computing is disabled.

A future work could support automatically tiling at runtime. 3.

We currently do not support register spilling because all studied

kernels can fit in the available registers. Register spilling can be

implemented by a streamwriting back and loading from the DRAM.

7 METHODOLOGY

Compiler and Runtime: We extend the open sourced LLVM-

based near-stream computing compiler [64] to unroll sDFGs into

tDFGs as described in ğ3. For tDFG optimization, we define the

tDFG rewrite rules in the egg library [67] to explore the e-graph (see

Appendix for details). Optimized tDFGs are serialized back to the

x86 backend in LLVM (extended with infinity stream instructions).

The compiler inserts calls to a C++ runtime library to JIT compile

tDFGs and manage the data layout.

Simulator: We use gem5-20 [45] for execution-driven, cycle-level

simulation, extended with partial AVX-512 support. The L3 cache

is extended to model the transposed data layout and in-memory

bit-serial computation.

sten
cil1

d
sten

cil2
d
sten

cil3
d
dwt

2d

gau
ss_e

lim
con

v2d
con

v3d mm
kme

ans

gath
er_m

lp

geo
mea

n.
0
2
4
6
8

10

Sp
ee

du
p 16.410.9

Base Near-L3 In-L3 Inf-S Inf-Sno JIT

Figure 11: Overall Speedup

Parameters and Configurations: Table 2 lists system parameters.

In total, it has 4M bitlines and provides massive parallelism for

in-memory computing. The Base OOO cores use advanced L1 and

L2 prefetchers [6]. For near-memory computing, Near-L3 offloads

streams and the associated computation to SEL3. For infinity stream,

we evaluate three configurations:

• In-L3 invokes a runtime JIT library to manage the data layout

and lower tDFG into bit-serial commands to compute with L3

SRAMs, but no near-memory computing support.

• Inf-S adds near-memory computing to In-L3 by offloading

sDFG to the SEL3.

• Inf-Sno JIT assumes that input and hardware parameters are

known, so tDFG is precompiled (no runtime lowering).

Benchmarks:We evaluate 13 dense fp32 OpenMP workloads, com-

piled with -O3 and vectorized by AVX-512 for Base and Near-L3.

For infinity stream, a single-thread scalar version is sufficient, as

streams are spatially unrolled to all bitlines. Table 2 summarizes

the input data sizes and the major data movement (tensor shift

vs. tensor broadcast) and computation patterns (element-wise vs.

reduction) for each benchmark.

Some benchmarks have different implementations, e.g. inner

product vs. outer product for mm. We pick the best implementa-

tion for each configuration when comparing the performance and

energy efficiency, and provide a detailed sensitivity study of the

preferences of different paradigms in ğ8.

We also perform an end-to-end study on PointNet++ [55], a

popular hierarchical neural network for point cloud classification

and segmentation, in ğ8.

8 EVALUATION

Overall Performance: Fig 11 shows the overall speedup overBase,

and Fig 12 shows the NoC utilization and traffic breakdown. The

NoC traffic is categorized as the traffic of the coherence control

messages (control), the traffic of moving data around (data), and

368

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

stencil1
d
stencil2

d
stencil3

d
dwt2d

gauss_e
lim

conv2d
conv3d mm

kmeans

gather_m
lp avg.

0.0
0.2
0.4
0.6
0.8
1.0

No
C

Ho
ps

 &
 U

til
.

1.383.55

Base Near-L3 Inf-S

NoC Util.
Offload
Data
Control

Figure 12: NoC Traffic Breakdown (Bar) and Util. (Dot)

stencil1
d

stencil2
d

stencil3
d
dwt2d

gauss_e
lim

conv2d
conv3d

mm/in
mm/out

kmeans/in

kmeans/out

gather_m
lp/in

gather_m
lp/out

avg.
0.0
0.2
0.4
0.6
0.8
1.0

By
te

s x
 H

op
s In-L3-Intra-Tile

In-L3-Inter-Tile
NoC-Inter-Tile
NoC-Offload
NoC-Data
NoC-Control

Figure 13: Inf-S Traffic Breakdown

stencil1
d

stencil2
d

stencil3
d
dwt2d

gauss_e
lim
conv2d

conv3d
mm/in

mm/out

kmeans/in

kmeans/out

gather_m
lp/in

gather_m
lp/out

avg.
0.0
0.2
0.4
0.6
0.8
1.0

Cy
cle

/O
p.

 R
at

io In-Mem Op
Near-Mem
Mix
Final Reduce
Compute
Move
JIT Lower
DRAM

Figure 14: Inf-S Cycle Breakdown

the traffic of all the control messages to manage the offloaded

computation, e.g. flow control for streams and synchronization

for in-memory computing. For benchmarks with multiple dataflow

designs (mm, kmeans, gather_mlp), we pick the best implementation

for each configuration (see below for a detailed comparison between

dataflow choices). Overall,Near-L3 achieves 2.0× speedup and 29%

traffic reduction by offloading streams near L3 banks, but may hurt

the performance as it is unable to capture the reuse; e.g. for kmeans

Near-L3 introduces 2.6× extra NoC traffic.

By leveraging massive parallelism in bitlines, In-L3 achieves

2.1× speedup over Near-L3. However, without near-memory com-

puting support, In-L3 failed to realize the full potential of near-data

computing, e.g. in kmeans, both aggregation and centroid recom-

putation are executed by the core and not offloaded. On the other

hand, by enabling hybrid in-/near- memory computing, Inf-S yields

another 24% speedup over In-L3 (2.6× overNear-L3), and 90% NoC

Traffic reduction over Base. To understand the benefit of traffic

reduction, Fig 13 shows the detailed traffic breakdown for Inf-S,

adding the intra-/inter-tile shift traffic. Notice that some inter-tile

shift traffic goes through the NoC if the destination tile is not

mapped to the same L3 bank, and is shown separately from NoC-

Data as NoC-Inter-Tile. By choosing a reasonable tile size, Inf-S

converts most of the data movement into intra-tile shifts, leveraging

the massive parallelism to shift bitlines within each SRAM array.

Cycle Breakdown: Fig 14 breaks down the cycles of Inf-S into

transferring and transposing data from/toDRAM (DRAM), lowering

tDFG to commands (JIT Lower), moving tensors (Move), bit-serial

in-memory computing (Compute), final reduction of the in-memory

mm kmeans gather_mlp geomean.
0

1

2

Sp
ee

du
p 4.44.63.16.0

Base-In-Opt Base-Out Near-L3-In Near-L3-Out Inf-S-In Inf-S-Out
Figure 15: Inner vs. Outer Product Dataflow

stencil2d
dwt2d

gauss_elimconv2d
mm/in

mm/out
kmeans/in

kmeans/out

gather_mlp/in

gather_mlp/out avg.
0
1
2
3
4
5
6
7

Ra
tio

-- 9.0 -- 11.2
-- 9.1 -- 11.2

16x16 16x16

64x4 16x16 4x64 64x4 2x128 4x64 2x128 4x64

16x16 32x8
128x2 16x16 2x128 64x4 2x128 4x64 2x128 8x32

1x256 2x128 ... 128x2 256x1 Inf-S Best

Near-Mem
Mix
Final Reduce
Compute
Move
JIT Lower
DRAM

Figure 16: Cycle Breakdown vs. 2D Tile Size

partial results (Final Reduce), hybrid in-/near-memory computing

(Mix), as well as pure near-memory computing (Near-Mem). Overall,

in-memory computing takes 88% of total cycles, with 26%, 32%,

and 19% spent on DRAM transfer, computing, and tensor moving

respectively. 4.9% of cycles are spent waiting for the final reduction

from near-memory streams, e.g. mm_inner. Transposing is cheap

when there is high reuse, e.g. gauss_elim and mm. Dots in Fig 14

indicates the percentage of ops offloaded to bitlines ś nearly all

computation (99%) are performed in-memory.

JIT Overheads: As shown in Fig 14, JIT lowering contributes 11%

of the total runtime, and can be more than 50% when we cannot

reuse the lowered commands (51% for gauss_elim), or when a

high-dimensional tensor is not aligned to the tile size and requires

more commands to handle boundary tiles (50% for stencil3d). If

all input sizes and hardware parameters are known at compile time,

the compiler could precompile the tDFG into commands without

invoking the JIT runtime. Inf-Sno JIT in Fig 11 represents such

a configuration and yields another 19% speedup over Inf-S. The

average JIT time is 220us (𝜎 449us), with gauss_elim as the out-

lier (1616us) as the tensor is shrinking every time. We believe by

overlapping JIT lowering with DRAM fetching and command exe-

cution, as well as applying more advanced software optimizations,

the overheads would be further reduced.

Dataflow Choices: Fig 15 shows the speedup of inner and outer

product versions of mm, kmeans, and gather_mlp on different

paradigms, normalized to a tiled inner product version for Base.

As expected, Base favors the inner product implementation, as it

could accumulate the result in the register file. Near-L3 generally

suffers as it cannot explore the data reuse when offloaded to L3,

and favors the outer product version, as the dataflow allows the

stream engine to partially recognize the broadcast pattern and save

some data traffic (similar to [63]). For Inf-S, the outer product is a

clear win, as it exposes the maximal data parallelism in the inner

loops, and avoids the inefficient in-memory reduction. Overall, it

achieves 4.4× speedup over Base. Therefore we implement tiled

inner product for Base and outer product for Near-L3 and Inf-S.

Data Layout: Fig 16 shows the cycle breakdown of all 2D bench-

marks with various tiling sizes, annotated with the best and default

tile size chosen by the runtime. Similarly, Fig 17 shows the speedup

369

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

256
128 64 32 16 8 4 2 1

X Tile Size

1
2
4
8

16
32
64

128
256

Y
Ti

le
 S

ize

1.01.71.81.41.3
1.01.71.91.51.3

1.01.71.81.51.6
1.01.71.81.61.3

1.01.71.71.21.2
1.01.61.21.3

1.01.01.1
0.81.1

0.7
Z = 256 / X / Y

stencil3d

256
128 64 32 16 8 4 2 1

X Tile Size

1.01.11.72.31.91.51.1
1.01.11.82.52.11.61.1

1.01.21.92.62.11.61.0
1.01.22.02.72.01.4

1.01.22.02.51.7
1.11.21.82.1

1.01.11.6
1.01.0

0.9
Z = 256 / X / Y

conv3d
Figure 17: Inf-S Speedup vs. 3D Tile Size (Default as Bold)

stencil1d
stencil2d

stencil3d
dwt2d

gauss_elimconv2d
conv3d mm

kmeans
gather_mlp

geomean.
2−1
20
21
22
23
24

En
er

gy
 E

ff.

Base Near-L3 In-L3 Inf-S Inf-Sno JIT

Figure 18: Overall Energy Efficiency

vs. 3D tiling sizes. For benchmarks with shift data movement, e.g.

stencils and dwt2d, picking a balanced tile size (16 × 16 for 2D

arrays) usually yields close to optimal performance. When tensors

are broadcast, e.g. gauss_elim and mm, having a smaller innermost

tile size helps avoid the hotspot of reading the source row from

a single L3 bank. When reduction is needed, a larger tile size at

the reduced dimension increases the computation density for in-

memory computing and improves the performance. For example,

for kmeans/in and gather_mlp/in, since the size of the reduced

dimension is 128, tiling by 128 allows pure in-memory reduction

to produce the final results in each SRAM array (hence no Final

Reduce bar). Overall, our heuristic achieves within 2% of an ora-

cle, and yields 34% speedup over no tiling (laying the innermost

dimension continuously) across all 2D/3D benchmarks.

Energy andArea: The energy breakdown for the SRAM arrays and

H tree were obtained from CACTI [7] (22nm) where compute only

involves the SRAM arrays while tDFG mv node uses both. Fig 18

shows the energy efficiency over Base. Inf-S yields better energy

efficiency for workloads with less reuse by converting NoC traffic

into intra-tile shifts. Overall, In-L3 and Inf-S achieve 1.5× and

2.4× energy efficiency over Near-L3 respectively.

Most of the area overhead comes enhancing existing SRAM

caches for compute: additional sense amps and write drivers so

every bitline can compute, an extra decoder to read two wordlines

simultaneously, and the compute logic. Our area model consists

of the overall CPU area reported by McPAT [37] (22nm), the in-

memory compute overhead from Neural Cache’s [15] die analysis 2,

and near-memory support logic [64]. After adding additional logic

for in-memory compute (66.75mm2) and near-memory support

(28.16mm2), the whole chip area overhead is 6.52%.

Case Study of PointNet++: To better understand the benefit of

infinity stream on real applications, we perform an end-to-end study

on PointNet++ [55], a widely applied hierarchical neural network

2We determine the subcircuit area with COFFE [70].

Inf-S
In-L3

Near-L3
Base

(a
)

SS
G

SA1 SA2 SA3 FCx3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inf-S
In-L3

Near-L3
Base

(b
)

M
SG

MSG1.SA4
MSG1.SA5

MSG1.SA6

MSG2.SA7
MSG2.SA8

MSG2.SA9
SA3

FCx3

Furthest Sample Ball Query Gather MLP Layer Aggregate

In Core Near L3 In L3

Figure 19: Timeline of PointNet++ SSG/MSG Classifier

for point cloud applications. The basic component of PointNet++ is

set abstraction (SA), which consists of the following stages:

• Furthest Sample: Iteratively picks 𝐾 centroids (points) from

the input point cloud. For iteration 𝑘 + 1, the new centroid is

the furthest point from the 𝑘 prior centroids, with the first one

randomly selected.

• Ball Query: Searches for 𝑁 neighbor points within radius 𝑟

of each centroid. If less than 𝑁 neighbors are found, the first

neighbor is duplicated to fill the remaining spots.

• Gather: Performs an indirect gather to collect neighbors’ feature

vectors. Generates a matrix of (𝐾 × 𝑁) × 𝐷𝑖𝑛 where 𝐷𝑖𝑛 is the

dimension of the input feature vector.

• MLP: Feeds the gathered matrix into a 3-layer MLP. All layers

use ReLU as the activation function. The output matrix is (𝐾 ×

𝑁) × 𝐷𝑜𝑢𝑡 where 𝐷𝑜𝑢𝑡 is the dimension of the last MLP layer.

• Aggregate: Reduces the neighbors’ feature vectors by taking

the max value of each dimension. Outputs a matrix of 𝐾 ×𝐷𝑜𝑢𝑡 .

To perform point cloud classification or segmentation, the au-

thors proposed two network architectures:

• Single Scale Grouping (SSG):Multiple SAs are chained with

previous output centroids being sampled and grouped by the

next SA. This is usually followed by a few fully-connected (FC)

layers to produce the final scores for classification.

• Multiple Scale Grouping (MSG): To better adapt to various

sampling densities, multiple SAs with different radii are applied

simultaneously to the input, with their output feature vectors

concatenated as the final output. Similar to SSG, this can be

chained and followed by more SA/FC layers.

We evaluate both SSG and MSG for classification inference. Ta-

ble 4 lists the detailed parameters of all SAs and the network struc-

ture of SSG/MSG, taken from [55]. The input point cloud contains

4k randomly generated points, normalized to [0, 1).

Fig 19(a) shows the normalized timeline of PointNet++ SSG,

broken into different stages with the texture indicating where the

computation is executed (in-core, near-L3 cache, or in-L3 SRAM).

For SSG, the MLP layers are relatively small with high reuse in the

private cache, and with AVX-512 and OpenMP, it only takes 48%

of the total runtime in Base. This also limits the potential for in-

memory computing, e.g. for the first MLP layer in SA1, the amount

of data parallelism can only fill 1/4 of the available bitlines, falling

short to amortize the long compute latency of bit-serial operation.

Therefore, In-L3 only yields a 10% speedup over Base.

On the other hand, furthest sampling takes 46% of the total run-

time. This is because it is an iterative algorithm without sufficient

370

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

work in each iteration to amortize the synchronization overhead of

OpenMP. Also, the working set cannot fit in the private L1 cache,

yielding a high miss rate and hurting the performance. These char-

acteristics make it a good candidate for near-memory computing,

which achieves 3.1× speedup for sampling, and 31% performance

improvement for Near-L3 over Base.

Fig 19(b) shows a similar normalized timeline for PointNet++

MSG. In MSG, sampling is less of a bottleneck as the sampled

centroids are shared between SAs within the same MSG. Also, MSG

uses larger MLP layers, increasing the amount of data parallelism.

This makes in-memory computing more favorable, and In-L3 and

Near-L3 achieve 37% and 12% speedup over Base respectively.

Finally, by leveraging the fused compiler/ISA/runtime abstrac-

tion, Inf-S can flexibly execute the kernel in the core, near the L3

cache, or in the L3 SRAM. The runtime can avoid offloading small

MLP layers to in-memory computing as it hurts the performance,

e.g. SA3 and FC layers. Overall, it achieves the highest performance

(1.69× and 1.93× over Base for SSG and MSG respectively).

Key Takeaway: Inf-S fuses the benefits of in-/near-memory com-

puting, unlocking the full potential of near-data processing.

9 RELATED WORK

In-memory Computing for CPU Caches: Prior works also

augment CPUs for computing in on-chip SRAM caches. Com-

pute cache [1] enables in-memory computation for CPU cache

SRAMs, but only supports the less general bit-parallel layout,

single-dimension bit-level vector ops (as opposed to multi-dim

tensor level). GenPIM adds NVM-based in-memory computing to a

general purpose core [30]. Inhale and Sealer enable in-memory en-

cryption at L1 [71, 72]. Neither of the above implements a high-level

compiler. Duality cache proposes a bit-serial in-memory approach

for CPUs codesigned for CUDA programming [17]. None of these

enables portable/transparent support for in-cache computing.

Improving Near-Data Programmability: Various near-data ap-

proaches have developed techniques to improve programmability.

PEI enables programming through instruction intrinsics [3]. Snac-

kNoC [56], Active Routing [28] and Dist-DA [8] specify computa-

tion offloads with dataflow graphs. Tesseract uses remote function

calls [2]. Livia uses single-cache-line accessing functions [44]. Our

work relies on stream abstractions, i.e. long-term memory access

patterns, which have been applied both in general purpose proces-

sors [49, 61ś64] and accelerators architectures [11, 12, 21, 43, 65, 66].

Other near-data programming models are nearly transparent

to the programmer. Several are limited to thread-level near-data

decisions, programmed with CUDA or OpenMP [27, 46, 52, 59].

Other works enable transparent near-data at a finer grain, but have

other limitations, like OmniCompute [53] (only for short RMW

instruction chains), EMC [26] (only for address gen.), and Near-

stream computing [64]. These cannot be naively applied to enable

programmability for PIM, because they do not manage data trans-

position or guarantee bitline-level alignment.

In-Memory Foundations: Prior works have explored bit-parallel

in-memory computing, primarily for bulk bitwise ops [1, 39, 50,

57]. We adopt the bit-serial approach for this work, which enables

broader support for more operations, including floating point.

DRAM devices have been the target of both in-memory [19,

20, 24, 38, 54, 57, 69] and near-memory processing [34, 36, 51].

In-DRAM computing provides more parallelism, while in-SRAM

computing limits modifications to the CPU.We choose SRAM as the

first step due to the trend towards large LLCs and the fact that many

algorithms are already tiled for the LLC. However, infinity stream

can be applied to both cases, as the abstraction (tDFG) is neutral to

the hardware, and the JIT runtime can be extended for in-DRAM

computing (e.g. triple-row activation). The memory controller also

needs to be extended to support streams. Similar to DMA, coherence

could be maintained by evicting cache lines from SRAM.

This work relies heavily on prior efforts to develop the paradigm

and circuits of in-SRAM computing devices, including for bit-serial

integer [32] and floating point ops [17, 29, 60]. Our contribution is

about architecture support for these existing technologies.

Recentworks have also proposed offloading tomultiple hierarchy

levels, leveraging properties like data density (SISA [9]), cache

presence (Livia [44]), or offline analysis (MLILP [16]). None of them

enable portable targeting of in-memory computing from a general

purpose language.

Domain-Specialization: A variety of prior in-memory acceler-

ators are domain-specialized. Many focus on ML [10, 15, 23, 38,

40, 58], while others target graph processing, mining, and physics

simulation [2, 9, 13, 25]. Many broader workloads are prime candi-

dates for in-memory computation with infinity stream. For example,

several key data center workloads have been adapted to bitvector

parallelism. BitWeaving’s [41] database column scan produces a

comparison bitmask by organizing data to facilitate bit-serial digital

comparison. BitFunnel [22] filters documents with a bloom filter, in-

dependently computed by determining the hash indices in memory

and constructing the bitvector near memory.

10 CONCLUSION

Infinity stream is a new approach that makes in-memory com-

puting programmer-friendly: We proposed an execution model

that fuses in-/near-memory, using an IR called the tensor dataflow

graph (tDFG) to capture parallelism, reuse, and layout optimiza-

tions; we built an optimizing compiler and JIT-approach to enable

long-term portability without sacrificing performance, with a mi-

croarchitecture that transparently orchestrates data management

and performs data-layout transforms at runtime. Our optimizations

provide integer-factor improvement for data processing for only

a modest area overhead. More broadly, we believe that rethinking

how to compute throughout the memory hierarchy will be critical

for enabling extreme system scaling.

ACKNOWLEDGMENTS

This work was supported by funding from NSF grants CCF-1751400

and CCF-2200831. We sincerely thank our shepherds and the anony-

mous reviewers for their insights and suggestions.

A tDFG OPTIMIZATION

Here we discuss the rewrite rules and equality-graph approach to

optimizing the tDFG.

Intuition: A unique aspect of optimizing the tDFG is the need

371

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

to reason about the tensor domains (i.e. the hyperrectangle in lat-

tice space). For example, two same element-wise computations on

tensor A[1, n) and A[0, n-1) can be merged into a single com-

putation on A[0, n), provided that the tensor size information is

correctly tracked after we slightly expanded the computed tensor.

This cuts the computation by half. More generally, there is a large

transformation space with many equivalent tDFGs producing the

same result, and the compiler needs to efficiently search for the

optimal tDFG with less data traffic and computation. We first intro-

duce the tDFG equivalence rules used to rewrite the tDFG, followed

by an optimized example and details in our implementation.

tDFG Equivalence Rules: We define two tDFG nodes to be equiv-

alent if they represent the same result and share the same domain

in the lattice space. To transform the tDFG, we now formalize the

tDFG equivalence rules, with these notations:

• T,C,M,B: Tensor, compute, move, and broadcast node respec-

tively, with their definition and semantics in Fig 5 (page 4). Note

that all these nodes produce a tensor, while T constructs the

input tensor from the input array.

• 𝐴, 𝐵,𝐶 : Arbitrary tensors in the tDFG, e.g. compute, move, broad-

cast node.

• 𝑖, 𝑗 : Operated dimension, e.g. move, broadcast.

• 𝑝𝑖 , 𝑞𝑖 : Range of the 𝑖
𝑡ℎ dimension [𝑝𝑖 , 𝑞𝑖).

• 𝑓 : Computation applied to input tensors.

As a simple example, Eq. 3a defines the associative rule for

compute node, when the operation 𝑓 is associative by itself, i.e.

𝑓 (𝑓 (𝑎, 𝑏), 𝑐) ⇔ 𝑓 (𝑎, 𝑓 (𝑏, 𝑐)). Similarly, Eq. 3b defines the commu-

tative rule for compute node when the operation 𝑓 is commutative,

e.g. addition, multiplication. We can also define the distributive rule

similar to 𝑎 × (𝑥 + 𝑦) ⇔ 𝑎 × 𝑥 + 𝑏 × 𝑦 (Eq. 3c).

C(𝑓 ,C(𝑓 , 𝐴, 𝐵),𝐶) ⇔ C(𝑓 , 𝐴,C(𝑓 , 𝐵,𝐶)) (3a)

C(𝑓 , 𝐴, 𝐵) ⇔ C(𝑓 , 𝐵,𝐴) (3b)

C(𝑓 ,C(𝑔,𝐴),C(𝑔, 𝐵)) ⇔ C(𝑔,C(𝑓 , 𝐴, 𝐵)) (3c)

Exchanging Compute and Move/Broadcast: Eq. 4a defines the

commutative rule to exchange a unary compute node and a move

node. Recall that a move node shifts the tensor along a certain

dimension by some distance in the lattice space. Therefore, the

move operation can happen before or after the computation, i.e. it

is commutative with compute nodes. Similarly, when the compute

node takes multiple operands, a move node is applied to every input

tensor. Also, Eq. 4b shows the commutative rule for a compute node

and a broadcast node.

C(𝑓 ,M(𝐴, 𝑖, 𝑑𝑖𝑠𝑡)) ⇔M(C(𝑓 , 𝐴), 𝑖, 𝑑𝑖𝑠𝑡) (4a)

C(𝑓 ,B(𝐴, 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡)) ⇔ B(C(𝑓 , 𝐴), 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡) (4b)

Expanding and Shrinking Tensor: To reuse common computa-

tion results, it may be necessary to expand a tensor. For example,

C(𝑓 ,T(1, 𝑁)) and C(𝑓 ,T(0, 𝑁)) share common results on the do-

main [1, 𝑁). However, they are not equivalent as the first compu-

tation is applied to a slightly smaller tensor. If we can expand the

first tensor to T(0, 𝑁), we can reduce the operations from 2𝑁 − 1

to 𝑁 .

To maintain equivalence, an expanded tensor must be later

shrunk to the original domain. Therefore, we introduce a shrink

node, S, which resizes the tensor along dimension 𝑖 to have a new

domain [𝑝𝑖 , 𝑞𝑖).

Putting these together, Eq. 5 shows the rule to expand a smaller

tensor of size [𝑝𝑖 , 𝑞𝑖) in the 𝑖
𝑡ℎ dimension into a larger tensor of size

[𝑝′𝑖 , 𝑞
′
𝑖), where 𝑝

′
𝑖 <= 𝑝𝑖 and 𝑞

′
𝑖 >= 𝑞𝑖 . The shrink node returns the

output tensor to the original domain, hence it is equivalent to the

original tensor. Shrink nodes are only for tracking the tensor size

information, and are lowered to a nop by the JIT compiler (similar

to how the 𝜙 nodes are not lowered to instructions in SSA IR [35]).

We omit shrink nodes in the paper for simplicity, as they are only

needed during optimization.

T(..., 𝑝𝑖 , 𝑞𝑖 , ...) ⇔ S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,T(..., 𝑝
′
𝑖 , 𝑞
′
𝑖 , ...))

where 𝑝′𝑖 <= 𝑝𝑖 , 𝑞
′
𝑖 >= 𝑞𝑖

(5)

Exchanging Shrink and Other Nodes: A shrink node by itself is

not sufficient to unlock the optimization opportunities in the tDFG.

We need to define how it interacts with other tDFG nodes. Eq. 6a is a

straightforward rule that two shrink nodes on different dimensions

are commutable. When they operate on the same dimension, we can

combine them into a single shrink node by taking the intersection,

as in Eq. 6b.

S(𝑖, 𝑝𝑖 , 𝑞𝑖 , S(𝑗, 𝑝 𝑗 , 𝑞 𝑗 , 𝐴)) ⇔ S(𝑗, 𝑝 𝑗 , 𝑞 𝑗 , S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴))

when 𝑖 ≠ 𝑗 (6a)

S(𝑖, 𝑝𝑖 , 𝑞𝑖 , S(𝑖, 𝑝
′
𝑖 , 𝑞
′
𝑖 , 𝐴)) ⇔ S(𝑖,max(𝑝𝑖 , 𝑝

′
𝑖),min(𝑞𝑖 , 𝑞

′
𝑖), 𝐴) (6b)

Similarly, shrink node and move node on different dimensions

are commutable (Eq. 7a). If they are on the same dimension, we

can also apply a shrink node on the moved tensor with the shifted

domain [𝑝𝑖 + 𝑑𝑖𝑠𝑡, 𝑞𝑖 + 𝑑𝑖𝑠𝑡).

M(S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴), 𝑗, 𝑑𝑖𝑠𝑡) ⇔ S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,M(𝐴, 𝑗, 𝑑𝑖𝑠𝑡))

when 𝑖 ≠ 𝑗 (7a)

M(S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴), 𝑖, 𝑑𝑖𝑠𝑡) ⇔ S(𝑖, 𝑝𝑖 + 𝑑𝑖𝑠𝑡, 𝑞𝑖 + 𝑑𝑖𝑠𝑡,M(𝐴, 𝑖, 𝑑𝑖𝑠𝑡))

(7b)

This also applies to broadcast node and shrink node: they are

commutable if on different dimension (Eq. 8a). When they are on

the same dimension, we can combine them by directly broadcasting

to the shrunken region.

B(S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴), 𝑗, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡) ⇔ S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,B(𝐴, 𝑗, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡))

when 𝑖 ≠ 𝑗 (8a)

S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,B(𝐴, 𝑖, 𝑑𝑖𝑠𝑡, 𝑐𝑛𝑡)) ⇔ B(𝐴, 𝑖, 𝑝𝑖 , 𝑞𝑖 − 𝑝𝑖) (8b)

Finally, a shrink node is also commutable with the compute node

(Eq. 9).

S(𝑖, 𝑝𝑖 , 𝑞𝑖 ,C(𝑓 , 𝐴)) ⇔ C(𝑓 , S(𝑖, 𝑝𝑖 , 𝑞𝑖 , 𝐴)) (9)

Optimization Example: Fig 20 shows an example of applying our

rewrite rules to discover opportunities for reuse. The original tDFG

first moves the input tensor A left and right by one before applying

a constant element-wise multiply to both tensors. Since in-memory

372

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

A0 A1

+

dim=0

dist=1
mv mv

dim=0

dist=-1

A0 A1

+

dim=0

dist=1
mv mv

dim=0

dist=-1

mvmv

A0 A1

+

dim=0

dist=1

dim=0

dist=-1
mvmv

A0 A1

+

dim=0

dist=1

dim=0

dist=-1

mvmv

A

+

dim=0

dist=1

dim=0

dist=-1

VV

s s

mvmv

A

+

dim=0

dist=1

dim=0

dist=-1

V

s s

mvmv

+

dim=0

dist=1

dim=0

dist=-1

s s

A

mvmv

+

dim=0

dist=1

dim=0

dist=-1

s s

A

VV

VVVVVV

VVVV

Apply Eq. 4a Apply Eq. 5 Apply Eq. 9

Figure 20: Example of Applying Rewrites

processing applies element-wise functions to all elements, we can

save a redundant compute by first performing the computation on

the entirety of tensor A before realigning the result.

We begin with the original tDFG. By rule 4a, we can commute

the move and compute nodes.

C(+,C(×𝑉 ,M(T(0, 𝑛 − 2), 0, 1)),

C(×𝑉 ,M(T(2, 𝑛), 0,−1)))

Eq. 4𝑎
−−−−−→ C(+,M(C(×𝑉 ,T(0, 𝑛 − 2)), 0, 1),

M(C(×𝑉 ,T(2, 𝑛)), 0,−1))

We can expand the two tensor Ts to the entire domain of array A

with rule 5. By commuting the shrink S nodes and computeC nodes

with rule 9, we can discover a common subexpression, indicating

there is an opportunity for compute reuse.

Eq. 5
−−−−→ C(+,M(C(×𝑉 , S(0, 0, 𝑛 − 2,T(0, 𝑛))), 0, 1),

M(C(×𝑉 , S(0, 2, 𝑛,T(0, 𝑛))), 0,−1))

Eq. 9
−−−−→ C(+,M(S(0, 0, 𝑛 − 2,C(×𝑉 ,T(0, 𝑛))), 0, 1),

M(S(0, 2, 𝑛,C(×𝑉 ,T(0, 𝑛))), 0,−1))

Fig 6 (page 5) shows a more complicated example of optimized

tDFG. To see how the equivalence rules rewrite the program, first

expand all the tensors to the full array, and exchange the shift nodes

to the final output of the tDFG (ommitted in Fig 6). Use Eq. 3b and

Eq. 3a to add v0 and v2 together. Since we are multiplying by a

constant𝐶0 and𝐶1, we can use distributive rule to swap the addition

and multiplication. The optimized tDFG reuses the computated

results and avoids unnecessary data movements.

Equality Graphs:We leverage equality graphs (e-graphs) to effi-

ciently search the optimal tDFG in the design space. Equality graphs

represent all possible rewrites of an expression tree. Given a rewrite

rule 𝑒1 → 𝑒2 for two expressions 𝑒1, 𝑒2, an e-graph will apply it to

all matches in its underlying expression tree. These nondestructive

updates are performed by marking 𝑒1 and 𝑒2 as equivalent. Given a

set of rewrite rules, all possible permutations of the original expres-

sion tree are discovered by continuously applying them. The final

tDFG selection is based on architecture-informed cost metrics com-

bining the estimated latency of move vs. compute node, the amount

of moved/broadcast data, as well as the number of computations.

REFERENCES
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David

Blaauw, and Reetuparna Das. Compute caches. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA).

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
scalable processing-in-memory accelerator for parallel graph processing. In 2015
ACM/IEEE Annual International Symposium on Computer Architecture (ISCA).

[3] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled
instructions: a low-overhead, locality-aware processing-in-memory architecture.
In 2015 ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA).

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA, 2006.

[5] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and
Hyesoon Kim. Fafnir: Accelerating sparse gathering by using efficient near-
memory intelligent reduction. In 2021 IEEE International Symposium on High
Performance Computer Architecture (HPCA).

[6] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad. Bingo
spatial data prefetcher. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[7] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. Cacti 7: New tools for interconnect exploration in innova-
tive off-chip memories. ACM Transactions on Architecture and Code Optimization
(TACO), 14(2):14, 2017.

[8] Saambhavi Baskaran, Mahmut Taylan Kandemir, and Jack Sampson. An ar-
chitecture interface and offload model for low-overhead, near-data, distributed
accelerators. In 2022 IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[9] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata
Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda,
Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez Luna, Jakub
Golinowski, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils
Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler. Sisa: Set-centric
instruction set architecture for graph mining on processing-in-memory systems.
In 2021 IEEE/ACM International Symposium on Microarchitecture (MICRO).

[10] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. Prime: a novel processing-in-memory architecture for
neural network computation in reram-based main memory. In 2016 ACM/IEEE
Annual International Symposium on Computer Architecture (ISCA).

[11] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. Polygraph: Exposing the value of
flexibility for graph processing accelerators. In 2021 ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture (ISCA).

[12] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general
purpose acceleration by exploiting common data-dependence forms. In 2019
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[13] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan
Liu, Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A processing-in-memory
architecture for large-scale graph processing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(4):640ś653, 2018.

[14] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot,
and D. Pnevmatikatos. The mondrian data engine. In 2017 ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA).

[15] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi
Iyer, Dennis Sylvester, David Blaaauw, and Reetuparna Das. Neural cache: Bit-
serial in-cache acceleration of deep neural networks. In 2018 ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA).

[16] Daichi Fujiki, Alireza Khadem, Scott Mahlke, and Reetuparna Das. Multi-layer
in-memory processing. In 2022 IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[17] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality cache for data parallel
acceleration. In 2019 ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA).

[18] Daichi Fujiki, Xiaowei Wang, Arun Subramaniyan, and Reetuparna Das. In-/near-
memory computing. Synthesis Lectures on Computer Architecture, 16:1ś140, 08
2021.

373

ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, Tony Nowatzki

[19] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Computedram: In-memory
compute using off-the-shelf drams. In 2019 IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[20] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Fracdram: Fractional
values in off-the-shelf dram. In 2022 IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[21] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki,
Nathan Beckmann, and Brandon Lucia. A programmable, energy-minimal
dataflow compiler and architecture. In 2022 55th IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 546ś564. IEEE, 2022.

[22] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei,
Sameh Elnikety, and Yuxiong He. Bitfunnel: Revisiting signatures for search.
In 2017 International ACM SIGIR Conference on Research and Development in
Information Retrieval (SGIR).

[23] Saransh Gupta, Mohsen Imani, Harveen Kaur, and Tajana Simunic Rosing. Nnpim:
A processing in-memory architecture for neural network acceleration. IEEE
Transactions on Computers, 68(9):1325ś1337, 2019.

[24] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gómez-Luna, and OnurMutlu. Simdram: A framework for bit-serial simd process-
ing using dram. In 2021 ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[25] Bagus Hanindhito, Ruihao Li, Dimitrios Gourounas, Arash Fathi, Karan Govil,
Dimitar Trenev, Andreas Gerstlauer, and Lizy John. Wave-pim: Accelerating
wave simulation using processing-in-memory. In 2011 International Conference
on Parallel Processing (ICPP).

[26] Milad Hashemi, Eiman Ebrahimi, Onur Mutlu, Yale N Patt, et al. Accelerating
dependent cache misses with an enhanced memory controller. In 2016 ACM/IEEE
Annual International Symposium on Computer Architecture (ISCA).

[27] Kevin Hsieh, Eiman Ebrahim, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W Keckler. Transpar-
ent offloading and mapping (tom): Enabling programmer-transparent near-data
processing in gpu systems. In 2016 ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA).

[28] Jiayi Huang, Ramprakash Reddy Puli, Pritam Majumder, Sungkeun Kim, Rahul
Boyapati, Ki Hwan Yum, and Eun Jung Kim. Active-routing: Compute on the
way for near-data processing. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA).

[29] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Floatpim: In-
memory acceleration of deep neural network training with high precision. In
2019 ACM/IEEE Annual International Symposium on Computer Architecture (ISCA).

[30] Mohsen Imani, Saransh Gupta, and Tajana Rosing. Genpim: Generalized pro-
cessing in-memory to accelerate data intensive applications. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE).

[31] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim,
and Tajana Rosing. Dual: Acceleration of clustering algorithms using digital-
based processing in-memory. In 2020 IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[32] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David Blaauw.
A 28 nm configurable memory (tcam/bcam/sram) using push-rule 6t bit cell
enabling logic-in-memory. IEEE Journal of Solid-State Circuits, 2016.

[33] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. Neurocube: A programmable digital neuromorphic architecture
with high-density 3d memory. In 2016 ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA).

[34] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones,
D. Patterson, and K. Yelick. Vector IRAM: A Media-oriented Vector Processor
with Embedded DRAM. In 12th Hot Chips Conference, August 2000.

[35] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In 2004 International Symposium on Code
Generation and Optimization (CGO).

[36] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, Seongil O, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim.
Hardware architecture and software stack for pim based on commercial dram
technology. In 2021 ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA).

[37] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. Mcpat: an integrated power, area, and timing model-
ing framework for multicore and manycore architectures. In 2009 IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[38] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan,
and Yuan Xie. Drisa: A dram-based reconfigurable in-situ accelerator. In 2017
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[39] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In 2016 ACM/EDAC/IEEE Design Automation

Conference (DAC).
[40] Weitao Li, Pengfei Xu, Yang Zhao, Haitong Li, Yuan Xie, and Yingyan Lin. Timely:

Pushing data movements and interfaces in pim accelerators towards local and in
time domain. In 2020 ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA).

[41] Yinan Li and Jignesh M. Patel. Bitweaving: Fast scans for main memory data
processing. In 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD).

[42] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao. Processing-in-memory for
energy-efficient neural network training: A heterogeneous approach. In 2018
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[43] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang,
Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang, Jason
Cong, and Tony Nowatzki. Overgen: Improving fpga usability through domain-
specific overlay generation. In 2022 IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[44] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru
Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. Livia: Data-
centric computing throughout the memory hierarchy. In 2020 International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[45] Jason Lowe-Power and et al. The gem5 simulator: Version 20.0+. arXiv:2007.03152,
2020.

[46] R. Nair and et. al. Active memory cube: A processing-in-memory architecture
for exascale systems. IBM Journal of Research and Development, 59(2/3), 2015.

[47] Charles Gregory Nelson. Techniques for ProgramVerification. PhD thesis, Stanford,
CA, USA, 1980. AAI8011683.

[48] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure.
In 2005 International Conference on Term Rewriting and Applications (RTA).

[49] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. Stream-dataflow acceleration. In 2017 ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA).

[50] Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati,
Rakesh Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu.
Flash-cosmos: In-flash bulk bitwise operations using inherent computation ca-
pability of nand flash memory. In 2022 IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[51] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A case for intelligent ram. IEEE Micro, 17(2):34ś44,
1997.

[52] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das. Scheduling techniques for gpu architectures with processing-in-
memory capabilities. In 2016 International Conference on Parallel Architecture and
Compilation Techniques (PACT).

[53] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mah-
mut T Kandemir, Anand Sivasubramaniam, and Chita R Das. Opportunistic
computing in gpu architectures. In 2019 ACM/IEEE Annual International Sympo-
sium on Computer Architecture (ISCA).

[54] Xiangjun Peng, Yaohua Wang, and Ming-Chang Yang. Chopper: A compiler
infrastructure for programmable bit-serial simd processing using memory in
dram. In 2023 IEEE International Symposium on High Performance Computer
Architecture (HPCA).

[55] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In 2017 International Conference
on Neural Information Processing Systems (NIPS).

[56] Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin, and Mark Hemp-
stead. Snacknoc: Processing in the communication layer. In 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).

[57] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry. Ambit: In-memory accelerator for bulk bitwise operations
using commodity dram technology. In 2017 IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[58] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac:
A convolutional neural network accelerator with in-situ analog arithmetic in
crossbars. In 2016 ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA).

[59] Po-An Tsai, Changping Chen, and Daniel Sanchez. Adaptive scheduling for
systems with asymmetric memory hierarchies. In 2018 IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[60] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetu-
parna Das, David Blaauw, and Dennis Sylvester. A 28-nm compute sram with
bit-serial logic/arithmetic operations for programmable in-memory vector com-
puting. IEEE Journal of Solid-State Circuits, 55(1):76ś86, 2020.

[61] ZhengrongWang, Christopher Liu, and Tony Nowatzki. Infinity stream: Enabling
transparent and automated in-memory computing. IEEE Computer Architecture
Letter (CAL), 2022.

374

Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory Fusion ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

[62] Zhengrong Wang and Tony Nowatzki. Stream-based memory access special-
ization for general purpose processors. In 2019 ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA).

[63] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and Tony
Nowatzki. Stream floating: Enabling proactive and decentralized cache opti-
mizations. In 2021 IEEE International Symposium on High Performance Computer
Architecture (HPCA).

[64] Zhengrong Wang, Jian Weng, Liu Sihao, and Tony Nowatzki. Near-stream
computing: General and transparent near-cache acceleration. In 2022 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA).

[65] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki. Dsagen: Synthesizing
programmable spatial accelerators. In 2020 ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA).

[66] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki. A hybrid systolic-dataflow ar-
chitecture for inductive matrix algorithms. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA).

[67] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. Egg: Fast and extensible equality saturation. In Proceedings
of the ACM on Programming Languages (POPL), 2021.

[68] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing

Hu, and Yuan Xie. Spacea: Sparse matrix vector multiplication on processing-in-
memory accelerator. In 2021 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[69] Xin Xin, Youtao Zhang, and Jun Yang. Roc: Dram-based processing with reduced
operation cycles. In 2019 ACM/IEEE Design Automation Conference (DAC).

[70] Sadegh Yazdanshenas, Kosuke Tatsumura, and Vaughn Betz. Don’t forget the
memory: Automatic block ram modelling, optimization, and architecture explo-
ration. In 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA).

[71] Jingyao Zhang, Hoda Naghibijouybari, and Elaheh Sadredini. Sealer: In-sram aes
for high-performance and low-overhead memory encryption. In 2022 ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED).

[72] Jingyao Zhang and Elaheh Sadredini. Inhale: Enabling high-performance and
energy-efficient in-sram cryptographic hash for iot. In 2022 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD).

[73] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi
Wang, and Xuehai Qian. Graphq: Scalable pim-based graph processing. In 2019
IEEE/ACM International Symposium on Microarchitecture (MICRO).

Received 2022-10-20; accepted 2023-01-19

375

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Near-Memory Computing
	2.2 Bit-Serial In-Cache Computing
	2.3 Infinity Stream Approach Overview

	3 Infinity Stream Abstraction
	3.1 Stream Dataflow Graph
	3.2 Tensor Dataflow Graph
	3.3 Hybrid In-/Near- Memory
	3.4 ISA Interface
	3.5 Programming Infinity Stream

	4 Runtime Support
	4.1 Transposed Data Layout
	4.2 JIT Lowering tDFG
	4.3 In-/Near-Memory Decision

	5 Microarchitecture Extensions
	5.1 Near-Memory Computing
	5.2 In-Memory Computing
	5.3 Fused In-/Near-Memory Computing

	6 Implementation Limitations
	7 Methodology
	8 Evaluation
	9 Related Work
	10 Conclusion
	A tDFG Optimization
	References

