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Abstract

Various manufacturing technologies are being developed to improve the manufacturing of composites owing to their low
weight and high performance. The mechanical properties of the composites depend on various variables and parameters of
the manufacturing process, which are challenging, if not impossible, to determine and optimize experimentally. Traditional
first-principle modeling approaches are not accessible due to the complex physics involved. A hybrid model that combines
incomplete physics knowledge with available measurement data within a differentiable programming framework opens up new
avenues to tackle the challenges. In this work, a physics-integrated neural differentiable (PiNDiff) model is developed, where
the partially known physics is integrated into the recurrent network architecture to enable effective learning and generalization.
The merit and potential of the proposed method have been demonstrated in modeling the curing process of thick thermoset
composite laminates, whose governing physics is partially given. The proposed PiNDiff model shows the capability to learn
unknown physics from the limited, indirect data and, meanwhile, can be used to infer unobserved variables and parameters.
The performance of the PiNDiff model has been compared with two state-of-the-art (SOTA) black-box deep learning models,
and its advantages over the purely data-driven models and first-principles physics-based models have been discussed in detail.
The demonstrated PiNDiff strategy may provide a general strategy to model phenomena where physics is only partially known
and sparse, indirect data are available.
©2023 Elsevier B.V. All rights reserved.
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1. Introduction

Composites are a class of materials actively considered for various applications in today’s aerospace, automotive,
and civil industries owing to their high strength and lightweight. The performance, quality, and repeatability
of the composite materials are greatly influenced by the manufacturing process. Great effort has been made in
optimizing the manufacturing processes to fabricate new composites with desired properties [1]. For example,
aerospace industries are actively improving manufacturing techniques to produce new carbon fiber-reinforced carbon
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(C/C) composites that can work in harsh operational environments with extremely high temperatures, stress, and
strong erosion [2]. However, optimizing composite manufacturing processes manually to meet certain specified
requirements is very challenging since most state-of-the-art (SOTA) processing techniques for composites are
sophisticated and involve many inter-dependent steps, which are usually very time-consuming [3—5]. For instance,
the manufacturing of C/C composites involves impregnation, carbonization (pyrolysis), and densification processes,
which are conducted iteratively and can take several months to reach the final state [6], making trial-and-error
improvements intractable.

Therefore, computer-based predictive modeling of composite manufacturing is essential for controlling the
process, shortening the production cycle, and optimizing material properties to meet the requirements of various
applications. Although computer models have been successfully used to predict various physical processes in
many applications (e.g., aerospace [7,8], structure [9], biomechanics [10,11], etc.), the physics-based computational
modeling for composite manufacturing is a less explored area, and there are only very few studies on modeling
the impregnation or pyrolysis processes in past decades [12—19]. This is because the manufacturing processes of
composites involve many coupled physics and complex mechanisms, both mechanically and chemically, which are
far from being fully understood, making traditional first-principles physics-based modeling infeasible.

Recent advances in machine learning (ML) and deep neural networks (DNN), combined with the ever-increasing
data availability, opened up new avenues for developing predictive modeling of composite manufacturing based on
massive amounts of data [20-22]. In the past few years, data-driven modeling has emerged as a practical approach
in additive manufacturing, allowing for the automatic discovery of patterns and trends in data, construction of
quantitative models of process-structure—property relationships over the parameter space, and prediction at unseen
points [20]. Moreover, ML techniques have been used to discover complex constitutive laws of composites from
data [21], and to build fast surrogate DNN models, facilitating multi-scale predictive modeling of composite
materials [23]. For example, Huang et al. [22] developed a data-driven model to predict the mechanical properties
of carbon nanotube (CNT)-reinforced cement composites, demonstrating better generalizability and predictability
than traditional response surface-based methods. Nguyen et al. [24] proposed a neural network-based constitutive
model to capture the evolution of the matrix mechanical properties as a function of temperature and degree of
cure in the composites manufacturing process, and Kopal et al. [25] utilized neural networks to predict the curing
characteristics of carbon black-filled rubber blends. Tao et al. [26] used experimental data to discover failure criteria
of composites within a sparse regression framework, which promotes sparsity to find the most parsimonious model
form. Baek et al. [27] employed DNN to establish a structure—property relationship of polymer nanocomposites.

Although showing great promise, purely data-based DNN models heavily rely on “big data” and often suffer
from the generalizability issue in out-of-training regimes, impeding their effective applications in modeling complex
composite manufacturing processes [21]. To tackle these challenges, physics prior knowledge may be leveraged
to inform the neural network design, training and inference, and this strategy is known as physics-informed
deep learning (PIDL), which has been explored and demonstrated promising in many fields, including solid
mechanics [28-30], turbulent flows [31-33], materials [34], heat transfer [35-38], and biomedical problems [39—41].
One of the important contributions of PIDL is the physics-informed neural network (PINN) [36,42—46], where the
loss function is constructed by the residual of governing equations, and thus the training process is constrained by
the governing physics, reducing the requirement of labeled data [47]. In particular, PINN has been successfully
applied to simulate the thermochemical evolution of composite materials based on the coupled PDEs that describe
heat conduction and resin cure kinetics [36]. In general, the physics utilized in PINNs is in the form of complete
governing equations and imposed as (soft) constraints during the training process. The nonlinearity introduced
into the loss function would pose significant challenges in optimization, making DNN training difficult [48].
Moreover, the complete analytical forms of the governing physics are assumed to be known in PINNs, and it
is not straightforward to leverage incomplete physics, where the governing equations are only partially known and
model forms are incomplete.

For composite manufacturing, the physics involved has not been fully understood due to the high complexity,
and available sensing data collected during the manufacturing process is often sparse and indirect to the quantity of
interest (Qol), making most existing purely physics-based, data-driven, or PIDL models inapplicable. Therefore, it is
imperative to develop a physics-informed, data-enabled deep learning framework that can leverage indirect sensing
data and available physics prior, which is incomplete or imperfect. To this end, we propose a novel physics-integrated
neural differentiable (PiNDiff) model, a physics-informed deep learning framework for composite manufacturing
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that integrates partially-known physics of the manufacturing process into the DNN architecture, preserving the
mathematical structure of incomplete governing equations using differentiable programming (dP) [49]. The general
idea is to represent the (partially)-known physics as a fully differentiable numerical model, integrated into the neural
networks as a joint deep learning (DL) architecture. The automatic differentiation technique enables the gradient
information to back-propagate throughout the entire computer program, and thus the hybrid neural model can be
trained in the same way as the classic DNNs. By integrating physics-based equations into DL models, the full
potential of each element can be well utilized, significantly enhancing learning capability from limited data. Very
recently, this idea has been explored and demonstrated effective in several different fields [49-52]. For example, Liu
et al. [53] developed a PDE-preserved neural network (PPNN) for surrogate modeling of spatiotemporal physics
by preserving partially known governing PDEs as multi-resolution convolutional residual network blocks. Huang
et al. [54] embedded a neural network into a finite element solver to learn a constitutive relation of nonlinear
materials from indirect data. These studies imply a great promise of integrating differentiable physics into DNN
architectures.

In this work, we introduce the proposed PiNDiff model and demonstrate its merit by comparing it with two SOTA
pure data-driven DL models. As an important step in many composites (e.g., polymer matrix and C/C composites),
the curing process will be studied to showcase the proposed method, where the thermochemical evolution physics of
the composite can be rapidly predicted given different boundary conditions(BC). The performance of the proposed
model is investigated and compared with existing SOTA DL models in terms of predictive accuracy, generalizability,
robustness, and sample efficiency. The demonstrated PiNDiff model can generally be applicable to other problems
where physics is only partially known, and data are limited. The rest of the paper is organized as follows: the overall
methodology of the proposed PiNDiff model and curing process physics are introduced in Section 2. Results of
numerical experiments of PiNDiff and its comparison with SOTA DL models are presented in Section 3. Several
features of the proposed method are discussed in Section 4. Finally, Section 5 concludes the paper.

2. Methodology

2.1. Problem formulation

Manufacturing polymer matrix composites or C/C composites usually involves a combination of different
processes such as impregnation of resin into the fiber preform, carbonization of polymers, chemical vapor infiltration
of carbon using gaseous hydrocarbon precursors, and graphitization of the composite materials. These processes
involve fluid flows, gas diffusion, heat transfer, polymerization, and deposition reactions, which can be described
by a system of coupled partial differential equations (PDEs) (Eq. (1a)) with boundary condition (Eq. (1b)),

ou(x)
ot

= K(u(x), Vu, V2u..., Ag, Ay) + UU(x), Vu, V..., kg, Ay) X, 1 € 2, (1a)
B(t,u(x), Vu,Ag,Ay) =0 in X, € 342,,, (1b)

where X, ¢ are space and time coordinates, respectively; 2, = £2,x[0, T,] with {2, representing the physical domain

and 7, as the time range; K and U respectively represent the known and unknown portions of the nonlinear function
of the state vector u(x, #) € R” and its derivatives (Vu, V?u...), defined on the physical domain {2,. Both the known
K(-) and unknown U(-) functions depend on physical parameters, whose values are also sometimes unknown. Here,
we use Ax and Ay to represent the known and unknown physical parameters, respectively. The boundary conditions
such as heat convection enforced on boundary 32, can be generically represented by a differential operator B as
shown in Eq. (1b), which is also parameter-dependent. In most cases, the functional form B(-) of the boundary
condition is given, and thus this study assumes that there are certain parameters boundary Ay might be unknown.
However, the proposed framework is also able to handle boundary conditions with unknown model forms. The
goal of this work is to develop a computational framework for predictive modeling of this kind of system, where
the physics knowledge is only partially known, and a small amount of indirect observation data can be obtained
sparsely.
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Fig. 1. (a) The overview of the auto-regressive learning architecture of PiNDiff model and (b) Zoom-in view of the PiNDiff module for
one time-step prediction (fu: function).

2.2. Physics-integrated neural differentiable (PiNDiff) modeling

The missing physics poses significant challenges in direct physics-based modeling, while the available sensing
data is often sparse and indirect to Qols, making purely data-driven modeling infeasible. To address these challenges,
this work presents a novel data-driven framework, PiNDiff, which integrates the partially-known physics into deep
learning architecture to effectively model the system with limited, indirect data, enabling fast surrogate prediction
and real-time decision-making in the composites manufacturing process. The overview of the proposed PiNDiff
framework is shown in Fig. 1(a), where the overall learning architecture is based on recurrent neural networks
consisting of a series of physics-integrated convolutional residual connection networks, known as PiNDiff modules
(Fig. 1(b)), which are connected in an auto-regressive manner. The sequential convolutional network structure is
capable of capturing the spatio-temporal evolution of the physics, where the state variables at each time step are
predicted by the PiNDiff module, given the information from previous time steps. The information propagation
across the PiNDiff modules is modeled by the NeuralODE [55], which is in contrast to discrete recurrent neural
networks with a finite number of hidden layers; the residual connections with infinite depth are described by the
continuous ODEs obtained from the governing PDEs using the method of lines. Classic numerical time integration
schemes, e.g., Euler or Runge—Kutta methods, can be used for the forward stepping of the neuralODEs, and
automatic differentiation (AD) techniques will make these schemes fully differentiable.

Unlike traditional DNN models that are purely black-box, the PiNDiff module is designed to preserve the
mathematical structures of the known physics, as shown in Fig. 1(b). Specifically, a PiINDiff module contains several
trainable and non-trainable neural networks to represent the partially-known governing PDEs. As both the known
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K(-) and unknown U(-) portions of the nonlinear functional in Eq. (1a) are composed of spatial derivatives of the
solutions, multiple non-trainable neural operations such as convolutional operation [53] (for structured grid) and
graph message passing (for the unstructured grid) can be applied to the input state variables to approximate a
group of spatial differential terms, e.g., V(u), V2(u), ..., which will be used to construct the known and unknown
functions. These neural operations are defined based on classic numerical schemes, e.g., finite difference stencils,
which are kept non-trainable to reduce the network complexity and, thus, largely lower the required labeled data
for training. The known portion is directly constructed based on the governing PDEs, while the unknown portion
is built by a series of DNNs with trainable parameters #. Namely, the derivative features are given as inputs to
the known functions /C(-) and neural networks functions U, (-). The outputs of the known and unknown neural
functions are then combined for time stepping to predict the future states. Unknown physical parameters Ay in the
governing equations and boundary conditions are also trainable to enable model inference.

In order to train the PiNDiff model as a whole, the entire framework should be fully differentiable. Namely,
the gradient information is able to backpropagate throughout the entire framework to enable the use of stochastic
gradient descent for the PiNDiff training. This is the general idea of differentiable programming (dP) [49], the
generalization of deep learning. In this work, the automatic differentiation engine in PyTorch [56] is leveraged
to power the training of the dP model. The trainable parameters 6,,, of the PiNDiff model include both neural
networks parameters # and unknown physical parameters Ay, i.e., 6;,; = {0, Ay }. Labeled data is required to train
the PiNDiff model. In contrast to the classic deep learning model, labels d € R™ can be indirect to the state u € R”.
This feature can have important practical implications; for example, in a curing process, one can more easily monitor
the temperature of the composite as a function of time than its degree of cure, which represents the state of the
material. The state-to-observable map F : u — d is either given or modeled as another neural network, which can
be embedded into the 9P architecture.

The loss function £ is formulated as

th th—1
LO ) =Y 1F (O Ap)) —dill, + Bill0llL, + B2 ) w1 (0, Ay) — w(8, AL, )
t=0 t=0
where the first term is the L2 norm of the discrepancy between the observable data and the predicted state projected
to the observation across all time steps; || - ||z, represents the L2 norm; the second and third terms are regularization
terms — the former is to promote sparsity, while the latter is to enforce the smoothness of the trajectory; 8; and B,
are weighting parameters of regularization terms, which should be small values. The PiNDiff training is conducted
by solving the following optimization problem,
6%, A}, = argmin £(0, Ay). 3)
0.1y
Due to the scale and magnitude difference of neural network parameters € and unknown physical parameters Ay,
different initial learning rates, optimizers, and schedulers can be assigned separately. For example, the training will
be more efficient by using different learning rates scaled by the orders of magnitude of the parameters to be inferred.
If the orders of magnitude r of the parameters are known a priori, which is usually the case, this prior information
can be imposed by re-parameterizing the parameter Ay as v, where Ay = v x 10", and then a unified learning rate
can be used for the optimization of all parameters.

2.3. Curing process modeling as a showcase

Curing is a common step in the production of polymer matrix composites and C/C composites, as it is the crucial
in transforming a loose mass of fibers and resin into engineering composite materials. The process of curing polymer
composite laminates involves the impregnation of fibers with a resin and polymerization by applying heat. The curing
polymerization is commonly characterized by the dynamic evolution of two physical states in time: the degree of
cure o and temperature 7. This process involves the coupled physics of heat transfer and thermochemical reactions,
which can be described by general conservation laws, but not all the details are fully known. Particularly, the cure
kinetics is very complex in real-world scenarios, and exact model forms are not known and have to be approximated
rely on many assumptions and rigorous experimental calibration [57]. On the other hand, sparse temperature data
can be obtained by placing sensors at certain locations during the process, while other states, such as degree of
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cure, are usually not observable on the fly. These features make the curing process modeling an ideal example to
showcase the proposed method. Therefore, the PiNDiff method is built for modeling the manufacturing process to
cure thick thermoset composite laminates, and the performance is compared against other SOTA black-box deep
learning models. To better evaluate and assess the methodology, synthetic data is used in this study, generated from
a complete curing model as the ground truth, detailed as follows.

2.3.1. Ground truth model forms

Anandan et al. [58] developed a computational model to describe the cure behavior of a carbon/epoxy prepreg
system (IM7/Cycom 5320-1), and the cure kinetic parameters of exothermic reactions are obtained by Differential
Scanning Calorimetry. We use this model as the ground truth model form for verification and evaluation of the
proposed method. The model involves two fully-coupled differential equations for the cure kinetics and heat transfer
inside the composite laminate [57]. The cure kinetics equation accounts for kinetics- and diffusion-controlled
reaction mechanisms, which is given as,

Z Ko™ (1 —a)" + Z Ko "1 — )t @
— s i ,
i=13 4 1 +exp(D; (o« = (acoj +acr,;T)))

where « is the degree of cure, accounting for an exothermic reaction, defined as the ratio of heat AH, at time ¢
to the total heat of reaction AHy, i.e., « = AH,/AHy, T is the temperature, and K, is Arrhenius temperature
dependent term, defined as,

—Ea,
Kn:AﬂeXp<R—;)Sn:i7j’ (5)

where A, is the Arrhenius constant, £, , is the activation energy, R is the universal gas constant, D; is the diffusion
constant, m; and n; are reaction order-based fitting constants, a. is the critical degree of cure at absolute zero, and
a.r accounts for the increase in the critical degree of cure with temperature.

The energy balance in the laminate portion is described by the heat transfer equation,

2 v ovr 1,2 ©
ce o TV T Re =Vror iy ——,
P Prituss
and the heat supplied by the autoclave to the laminate is modeled by a convective heat transfer equation,
Q = h(Toven(t) - Tbc) = kCVT N (7)

where p, is the density of composite, C, is the specific heat capacity of composite, k. is the thermal conductivity of
composite, v, is the resin volume fraction, p, is the resin density, H, is the ultimate heat of reaction of the system,
h is the convective heat transfer coefficient, n indicates the normal vector at the boundary surface, Ty, and Tj.
represent the autoclave temperature and the temperature at the boundary surface of the laminate, respectively. The
laminate has two thermal energy sources, heat supplied by autoclave and heat generated by exothermic chemical
reaction. The term v,, 0,, H, % ~on the right-hand side accounts for heat generated by exothermic chemical reaction.
To mimic the fiber-reinforced composites where fibers are aligned in a certain direction, thermal conductivity is
assumed to be anisotropic. The thermal conductivity along the fiber direction k,, and along the thickness direction
k., is calculated as [58],

kix = vk, + Ufkf, (8a)
: 1 — (B?vy/m)
UF; 1 4 _1 f
1—2/—>+— T - [tan —————, (8b)
( 4 B 1—(Bzvf/rr) L+ B,/ vy/m

k,
—2(E _ 1) (8)

where k, and k; are thermal conductivity values for matrix and fiber reinforcement, respectively; v, and v, are the
resin and fiber volume fractions, respectively. The specific heat capacity and thermal conductivity are assumed to be
constant during the curing process. A complete set of values of these parameters are given in the reference of [57,58].
Anandan et al. [58] implemented this thermochemical model in Comsol Multiphysics software to simulate the curing
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Fig. 2. Multi-physics finite-difference solver for the curing process: (a) schematics of the multi-physics thermochemical solver, and (b)
validation of the solver with experimental data given the autoclave temperature profile as a boundary condition (BC). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

process. They modeled the tool and caul plate separately. Other consumable materials, such as vacuum bag, breather,
and release film, were modeled as a single layer, assuming as a pure conductor with equivalent properties derived
using the rule of mixtures.

2.3.2. Numerical curing model for synthetic data generation

The model equations described in Section 2.3.1 are solved numerically based on finite difference methods,
and the numerical solver is implemented in PyTorch to generate synthetic data for training and validation. In the
current study, only the laminate is modeled, and the manufacturing layups, such as tools, caul plate, and other
consumable materials, are modeled as a single thin layer. Fig. 2(a) shows the schematics of this “ground truth”
multi-physics finite-difference solver for the curing process, consisting of a coupled «-solver and T-solver solving
the coupled dynamics of the cure kinetics and heat transfer based on forward Euler time stepping. Specifically, the
cure kinetics equations (Eq. (4)) and energy equations (Eq. (6)) are solved iteratively to obtain the degree of cure o
and temperature 7 inside the composite with the evolution of time. The spatial derivatives on the right-hand side of
PDEs are discretized using the 2nd-order central differences. In order to validate the numerical solver, we conduct
the simulation with the same setting provided in [58], where the experimental data is available. In particular, the
laminate size of 304.8 mm x 25 mm is discretized using a mesh of 150 x 20 grid, and the numerical time-step
At is set as 1 s. The validation results of the multi-physics finite-difference solver are shown in Fig. 2(b). Given
the same autoclave temperature profile (black line), the simulated temperature (red line) is in good agreement with
the experimental data (blue triangles), demonstrating the validity of the numerical solver.

In this study, we will use this validated multi-physics finite-difference model to simulate a virtual experimental
environment and generate synthetic data for algorithm development, verification, and evaluation purposes. The
composite laminate thickness (~ 25 mm) considered in [58] was small, and thus the spatial variation of temperature
and degree of cure was insignificant, making it trivial for the data-driven modeling. To increase the complexity and
make the problem more challenging, a thicker laminate (25 cm x 25 cm) is considered in this study. Specifically, the
spatio-temporal data of the temperature and degree of cure for a composite laminate are generated by the numerical
model, where the domain is discretized by a 30 x 30 mesh grid. The values of parameters used to generate synthetic
data for training are given in Tables | and 2.

2.3.3. PiNDiff model for curing process

As mentioned above, composites manufacturing is a very complex process, and some of the physics might be
missing. To imitate this situation, a showcase study will be conducted, where the analytical form of the cure kinetics
(Eq. (4)) is assumed to be unknown, and some of the physical parameters, such as heat of reaction H,, heat transfer
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Table 1
Cure kinetic parameters for Cycom 5230-1 prepreg system [57,58].
Para value Para value Para value Para value
Ay (s7h 1.48 x 107 Az (s7h) 6.39 x 10’ Ay (s7h) 8.3 x 10* Ay (s7h) 9.8 x 10*
Eal (k) 1.02 x 10* £ (k) 8.94 x 103 o (k) 8.54 x 103 Las (k) 7.1 x 10°
mi 0.17 m3 1.65 my 0.7 my 1.66
ni 19.3 ns 16.6 ny 0.87 ny 3.9
D, 97.4 Dy 63.3 Qc0,2 —1.6 Q0,4 —0.6
ot (K 5.7 x 1073 acrq (K7 3.0 x 1073
Table 2
Material parameters for Cycom IM7/5320-1 prepreg.
Para value Para value Para value
o (kg/m?) 1591.6 or (kg/m?) 1310 pr (kg/m?) 1780
vy 40.09% vy 59.91% h (W/m?K) 40
k- (W/mK) 0.167 ks (W/mK) 5.4 H, (kJ/kg) 420
kxx (W/mK) 3.3021 kyy = k;z; (W/mK) 0.5067 Cc 1260
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Fig. 3. Schematics of the PiNDiff module for the curing process.

coefficient &, thermal conductivity along fiber direction k., and along thickness direction k., are considered missing
as well. Therefore, only the energy conservation law is assumed to be known a priori, which will be integrated into
the neural network to construct the PiNDiff model.! The schematics of the PINDiff module designed for the curing
process are shown in Fig. 3 where the known energy equation is encoded via non-trainable convolutions based on
differentiable finite difference. A residual network component is designed to describe the cure kinetics, combined
with the known PDE portions, to construct the hybrid neural solver. The pseudo-code for training the PiNDiff curing
process model is given in Algorithm 1, which is similar to a generic neural network training procedure. Algorithm
2 shows the implementation of the PiNDiff neural solver for the curing process. Here, N Nijnerics represents the
neural network that approximates the unknown cure kinetics function /(-). The detailed network architecture for
the cure kinetics is given in Appendix (see Fig. C.23). The PiNDiff model can be trained with sparse and/or indirect
data, e.g., only using the temperature labels at sparse spatial locations without any labels of the degree of cure.
Moreover, the neural solver is also parametric. Once it is trained offline, the PiNDiff model can be used to make
fast online surrogate predictions for new autoclave temperature boundary conditions, which are not seen during
training, as discussed in Section 3. Normalization is critical in deep learning for better training efficiency and
learning performance. For example, the outputs of the neural networks should be standardized to O (1) to facilitate

1 Code will become available after publication at: https://github.com/Jianxun-Wang/PiNDiff-manufacturing.
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convergence and increase the training speed. In this work, the residual network for the cure kinetics is normalized
by the ratio of |«|/|t|, where | - | represents either the data standard deviation if the data is available or the order of
magnitude of the variable, which is assumed to be known a priori.

Algorithm 1 An algorithm for training PiNDiff curing process model.

Data: Read experimental label data

Initialize: Initialize neural network (N Niinerics) and physical parameters (Ay)
epoch <0
while epoch < 300 do

a(x, 1), T(x,t) < Cure_Solver(Qjnisial, Tinitial> Thoundary(t), Ay, 0)
Pred < Map_to_Observable(a(x,t), T(x,t)) > Exp observables
L < ||Pred — Label||, > Loss function
6 «—0—AVLy > Update NN parameters
if Ay need to be inferred then
| Ay <Ay —AVLy, > Update Ay parameters
end

end

Algorithm 2 An algorithm for PiNDiff curing solver.

Function Cure_Solver(«ay, Ty, Tp(t), Ay, 0):

t <0

while 1 < 400min do
V - k.(Ay)VT, < Laplace_Convolution(T;; Ly) > Construct gradients
&; < N Nyineries(ctr, Tp; 0) > Predict cure kinetics using NN
T, < V - ko(A)VT, + v, p, Hy(Ay)d > Integrated Known Physics /C(+)
a1, Ty < o + Atay, T, + AtT, > Time stepping, (can use RK4)
T,+1 < Boundary_Condition(T 11, Tp(t); Ay)

end

return o, T <« stack(o;, Ty) > Predicted time series

3. Results

3.1. PiNDiff model: training with sparse and indirect data

Considering the fact that experimental data are often obtained at specific locations and may not be complete,
we first evaluated the proposed PiNDiff model for scenarios where the training data is sparse and indirect. In [58],
only the temperature at the center of the laminate was measured in their experiment. We followed the same setting
and assessed the PiNDiff model, which was trained with the temperature time series at the center location based
on the following loss function,

-1 tn—1

L= T =T+ Billol+ B D ITE+ D)= TOl+ B2 Y Nt + 1) — a(®)ll2

=0 t=0 =0

where T, and f"c are predicted and measured temperatures at the center of the laminate.

The training was conducted on three different boundary conditions, i.e., autoclave temperature profiles. In
particular, the autoclave temperatures of the three training cases are linearly increased with time, from 65 F (291
K) to three different values — case 1: 255 F (397.04 K), case 2: 265 F (402.59 K), case 3: 275 F (408.15 K), in
70 min, and then the oven temperature was held constant for 260 min (i.e., 70 min to 330 min) and finally dropped
linearly back to 65 F (291 K) in 70 min. Namely, the training set consisted of three autoclave temperature profiles,
varying linearly as [65, 255, 255, 65], [65, 265, 265, 65], and [65, 275, 275, 65] in F at the timestamps of [0,
70, 330, 400] in min, (as seen in Fig. A.19 in Appendix). Fig. 4 shows the PiNDiff prediction results given the
autoclave temperature profile of case 2, where the model is trained for 900 epochs. The solid black line represents
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Fig. 4. PiNDiff predictions after training for 900 epochs on the temperature data collected at the center of the laminate. autoclave
temperature (BC), prediction at center location, prediction at corner location, - - - ground truth at center location, - - - ground

truth at corner location. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

the time variation of the autoclave temperature, which is the input boundary condition to the model. The red and
blue lines represent the temperatures at the center and corner locations of the laminate, respectively. It can be seen
that the prediction of center temperature (solid red) perfectly matches with the ground truth (dashed red) since the
corresponding labels were provided, demonstrating the great data fitting capability of the PiNDiff model. Although
only the temperature history at the center of the laminate was provided as training labels, the trained PiNDiff model
is also able to accurately infer the temperatures at other locations and even recover the whole field of the degree
of cure, which is not observed experimentally (see Fig. 4(b)).

As a parametric neural solver, the trained PiNDiff model is also able to generalize to other different autoclave
temperature inputs, which are not seen during training. Here, we tested the trained PiNDiff model on multiple
out-of-training cases, where the autoclave profiles were randomly generated for testing purposes. Three of these
test cases are shown in Fig. 5, where the autoclave temperature is varied linearly in piecewise as (Test case 1) [65,
140, 140, 265, 265, 265, 265, 148], (Test case 2) [65, 200, 200, 300, 300, 150, 150, 65], and (Test case 3) [65, 140,
140, 250, 250, 300, 300, 148] in F at the timestamps of [0, 30, 90, 130, 375, 400] in min. The prediction results
are compared against the ground truth in Fig. 5.

It can be seen that the testing autoclave temperature profiles are significantly different from those used in training.
However, both the predicted temperature and degree of cure are in reasonably good agreement with the ground truth.
Even though the PiNDiff model is trained on very sparse data with a small batch size (i.e., only three different
boundary conditions with a simple variation pattern), it shows excellent predictive capability and generalizability
in the out-of-sample regimes. This example demonstrates the strong capability of the PiNDiff model in learning
incomplete physics, inferring unobservable states, and predictive modeling of the curing systems with scarce, indirect
measurements.

10



D. Akhare, T. Luo and J.-X. Wang Computer Methods in Applied Mechanics and Engineering 406 (2023) 115902

Test case 1 Test case 2 Test case 3

500 1

450 1

Y
o
o

w
w
o

Temperature (K)

w
o
o

© o 9o &
> o ® o

Degree of cure

o
[N]

o
o

0 100 200 300 4000 100 200 300 4000 100 200 300 400
Time (mins) Time (mins) Time (mins)
Fig. 5. PiNDiff model predictions for unseen testing autoclave temperature profiles, trained with temperature data only at the center.

autoclave temperature, prediction at center location, prediction at corner location, - - - ground truth at center location, - - -
ground truth at corner location.

3.2. Comparison with other SOTA deep learning models

To better evaluate the performance of the proposed PiNDiff model, we compare it with two existing SOTA
purely black-box deep learning models based on either discrete recurrent neural networks or continuous neuralODE
structures. Specifically, an Auto-Encoding Convolutional LSTM model (AE-ConvLSTM) [59-61] and NeuralPDE
model [62] are also developed for the curing process modeling. The AE-ConvLSTM network contains two encoding
ConvLSTM blocks and two decoding ConvLSTM blocks with 5 x 5 trainable kernels, and all the hidden connections
are based on convolution operations. As for the NeuralPDE model, two separate neural networks are constructed:
a fully-connected residual network for cure kinetics and a convolutional neural network for heat transfer modeling.
The AE-ConvLSTM and NeuralPDE model have 510k and 447k trainable parameters, respectively, which are much
higher than the 67k parameters of the PiNDiff model. The detailed architectures and hyperparameters of the two
baseline networks are provided in Appendices B and C.

As shown in Section 3.1, the PiNDiff model can deal with incomplete and sparse data thanks to the integrated
partially-known physics. That is, even though only a few temperature labels were used for training, the PiNDiff
model could infer not only the full-field temperature but also the degree of cure, which is not observable. However,
for most classic deep learning models, a large number of training labels are required for all the Qols to be inferred
during testing. The attempt to train these SOTA baseline models (i.e., AE-ConvLSTM and NeuralPDEs) with only
the center temperature data will not work. Therefore, a complete dataset of temperature and degree of cure across
the entire laminate plate (900 data points) were used to train the PiNDiff, AE-ConvLSTM, and NeuralPDE models
in this comparison study. These training data were generated from the simulations with three different autoclave
temperature profiles, the same as above, and the generalizability in testing scenarios will be compared.

3.2.1. Generalizability in input parameter space

We first compare the model’s generalizability in the input parameter space once all three models are sufficiently
trained with the entire dataset (900 training points). The models were tested on out-of-training input parameters,
i.e., newly generated autoclave temperature profiles not seen in training. Fig. 6 shows the comparison results of
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two representative test cases, where the autoclave temperatures are varied linearly in piecewise as (test case 1)
[65, 140, 140, 265, 265, 265, 265, 148] and (test case 2) as [65, 200, 200, 300, 300, 150, 150, 65] in F with the
timestamps of [0, 30, 90, 130, 375, 400] in min. The PiNDiff model accurately predicts the temperature and degree
of cure for both cases, significantly outperforming the other two black-box SOTA deep learning models. For test
case 1, where the BC temperature profile is close to those in the training scenario, AE-ConvLSTM prediction is
slightly better than that of the NeuralPDE, whereas AE-ConvLSTM completely failed in test case 2, where the
BC temperature profile is significantly different from training. This indicates that AE-ConvLSTM tends to overfit
the training data. The NeuralPDE model performs better than AE-ConvLLSTM as it can roughly capture the overall
trends of the curing states, though with a much lower accuracy compared to the proposed PiNDiff model, owing
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to its continuous residual connection formulation. In summary, the PiNDiff model has demonstrated a substantial
generalizability advantage over the other two black-box neural networks, and thus it is well suited as a surrogate
for parametric and optimization studies in out-of-sample regimes.

3.2.2. Generalizability with varying inference time intervals

To learn spatio-temporal physics, the model is usually trained on the snapshot data collected at a certain sampling
frequency, i.e., fixed time interval At,,,;, of the training snapshots. Most data-driven deep learning models, once
trained on the time series data with a particular time interval At,,;,, can only make predictions with the same
sampling frequency during the offline inference/testing, i.e., At;os; = Atyryin, Where Aty is the timestep used
for testing. However, the training data could be temporally sparse in most real-world applications, and predictions
with different time intervals from training (e.g., smaller timestep or higher sampling frequency) are often desired.
Therefore, it is interesting to evaluate the model generalizability in terms of varying inference timestep sizes.

Figs. 7 and 8 show the comparison of model prediction results with sampling frequencies different from that
of the training data. In particular, the timestep size Aty ,;, of the training time series is 10 s, while the trained
model is evaluated with smaller time intervals, e.g., At,.;; = 5 s or 1 s. Fig. 7 shows the predictions with a training
autoclave temperature profile, while Fig. 8 presents the results under an unseen testing autoclave temperature profile.
It is clear that once the sampling frequency is changed, the AE-ConvLSTM model completely fails to capture
the spatio-temporal fields, even for the training scenario. In contrast, both the NeuralPDE and PiNDiff models
perform well when the testing time interval is reduced from 10 s to 5 s or even 1 s. This is due to the fact that
the AE-ConvLSTM is a sequential net with a discrete recurrent network structure, and the time interval is fixed by
construction, whereas both the NeuralPDE and PiNDiff models are based on the NeuralODE formulation, which
is a continuous sequential residual network structure by solving the ODEs numerically, allowing time-integration
with any timestep size. This advantage has been leveraged in dealing with corrupted and incomplete time series
data [63]. Although both NeuralPDE and PiNDiff have better generalizability for inference time intervals, the
proposed PiNDiff model has a higher prediction accuracy, especially in testing scenarios, as shown in Fig. 8, where
a notable error of the NeuralPDE can still be seen, while the PiNDiff predicted curing states are almost identical
to the ground truth due to the encoded physics.

3.2.3. Generalizability with spatial grids and geometries

Another aspect of the generalizability is how well the model can extrapolate to other shapes and mesh grids
of the spatial domain. It would be ideal if the model trained on data from one geometry could be generalized to
other spatial domains with different shapes. However, the two baseline SOTA networks involving convolutional
operations are grid-dependent, and inference can only be made on the same mesh grids used in training since
the input “image resolution” is fixed. Although these models can technically be evaluated on a new domain with a
different aspect ratio if the grid topology remains the same, the predictions become nonphysical, as shown in Fig. 9,
where all the models trained on a 25 cm x 25 cm laminate were tested on a 50 cm x 25 cm laminate. Both the
NeuralPDE and AE-ConvLSTM failed due to the non-generalizable grid stretching of the spatial convolutions. In
contrast, the proposed PiNDiff model can be well generalized to new domain shapes with high accuracy since the
spatial convolution operations are based on known physics, which are not trainable, directly depending on the input
geometries.

More testing results of the PiNDiff model on new laminate shapes with different aspect ratios and mesh grids
are shown in Fig. 10. The training is conducted on a laminate with the shape of 25 cm x 25 cm, while the trained
model is tested on the laminate shape of 10 cm x 50 cm, 5 cm x 75 cm, and 2.5 cm x 30.4 cm, with the grids of
10 x 60, 6 x 75, and 6 x 72, respectively. Moreover, the autoclave temperature profiles are not seen in training,
making the model prediction more challenging. For all these cases, the PiNDiff predictions are in good agreement
with the ground truth, showing excellent predictability and generalizability.

Figs. 11 and 12 show the contours of PiNDiff-predicted temperature and degree of cure fields on a laminate
of size of 10 cm x 50 cm, compared with the ground truth. Both fields predicted by PiNDiff agree well with the
ground truth. Although a high relative error is observed for the degree of cure predictions at initial steps, which
is due to the small values in the first 150 min, the error drops steeply to be less than 1% after 200 min as the
« value increases significantly. Therefore, the PiNDiff model can be trained with a laminate shape convenient for
experimental settings, and then the trained model can be used for predictions of different shapes with reasonably
good accuracy.
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Fig. 7. Comparison of all three models on an autoclave temperature profile used for training, where the models are evaluated with varying

timesteps Aty different from that used for training (Atyqin = 10 sec). autoclave temperature, predictions at center location,
predictions at corner location, - - - ground truth at center location, - - - ground truth at corner location.

3.2.4. Computational cost

The prediction performance and computational costs of these models are listed in Table 3. Overall, the PiNDiff
model has the lowest prediction error in both the degree of cure and temperature. The training cost for the PiNDiff
model is nearly 3 h (epochs = 300), whereas the Neural-PDE and AE-Conv-LSTM require 8.5 h (epochs = 900)
and over 20 h (epochs = 3000), respectively, to be sufficiently trained. As our PiNDiff (67K trainable parameters)
is much lighter than NeuralPDE (447K trainable parameters) and AE-ConvLSTM (510K trainable parameters), the
inference cost is only 18 s, which is lower than those of NeuralPDE and AE-ConvLSTM, which are 22 s and 30 s,
respectively. Therefore, the proposed PiNDiff model is efficient in terms of training and inference, outperforming
the two baseline SOTA deep learning models.
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PiNDiff as a fast surrogate model: in current problem formulation, the focus is to demonstrate the learning
capability considering scenarios that the underlying physics is only partially known and thus to construct a classic
finite-difference solver is not feasible. When the curing physics is completely known, the inference time of the
PiNDiff model presented above is similar to that of the ground truth finite-difference solver, i.e., 18 s, which is due
to the fact that the computational costs for computing cure kinetics using true analytical formulation (if the physics
is fully known) and neural networks are similar. However, the PiNDiff framework can be formulated to result
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Fig. 11. Comparison of PiNDiff model temperature prediction and ground truth contours on laminate size of 50 cm x 10 cm (trained on
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Fig. 12. Comparison of PiNDiff model degree of cure prediction and ground truth contours on laminate size of 50 cm x 10 cm (trained
on laminate size of 25 cm x 25 cm).

in a fast surrogate model by replacing a time-consuming part (e.g., an elliptic solver) or releasing the numerical
constraints (e.g., stability constraints) using deep neural networks. In order to demonstrate the speedup capability of
the PiNDiff method, a different formulation is studied where both the heat diffusion term V - k.VT (that constrains
the solver) and cure kinetics are modeled by neural networks. In particular, the heat diffusion term is approximated
by a convolutional residual network, and this modification allows the model to work on a larger timestep A¢. The
PiNDiff model is trained with 900 label data points of the degree of cure and temperature with a timestep size
Atyrain of 10 s The trained model is then tested using a timestep At of 60 s, and the prediction results are
presented in Fig. 13, showing a good agreement with the ground truth. The model inference time is recorded as 7 s,
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Table 3
Prediction performance and computational costs of different deep learning models (MSE represents
mean square error).

PiNDiff Neural-PDE AE-Conv-LSTM
Degree of cure MSE 0.09 x 1073 0.67 x 1073 1.19 x 1073
Temperature MSE 0.50 14.12 17.92
# of epochs 300 900 3000
# of parameters 67k 447k 510k
Training time 3h 85h >20h
Inference time 18 s 22's 30 s
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Fig. 13. PiNDiff model predictions during (a) training (At;,4in = 10 s) and (b) testing (Aty = 60 s) for fast surrogate study. ——
autoclave temperature, prediction at center location, prediction at corner location, - - - ground truth at center location, - - -
ground truth at corner location.

which is much less than that of the ground truth finite difference solver as 18 s It is noted that the classic solver
cannot work with such a large timestep (At = 60 s). As the problem complexity increases, the speedup potential
of the PiNDiff model becomes more significant.

3.2.5. Influence of training data size

Lastly, we would like to study the influence of the size of the training dataset. By varying the total amount of
measured spatial points of the laminate, we compared the predictive performance of all three models under different
data sparsity levels. In particular, the measured data points are randomly sampled across the entire laminate domain,
from 900 points (complete set) to one point (minimal case), and the comparison results are plotted in Fig. 14 for
(a) training and (b) testing scenarios.

The mean square errors (MSE) are computed based on testing cases with 50 randomly generated autoclave
temperature profiles, which were not seen during training. These BC temperature profiles are generated by randomly
sampling six temperature nodes (7;,i = 1---6) from a uniform distribution with the interval of [250 F, 300 FJ.
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The profiles are formed by linear interpolation between these nodes such that the temperature profiles vary as [65,
T\, T», Tz, Ty, Ts, Tg, 148] in F with timestamps of [0, 70, 122, 174, 226, 278, 330, 400] in min. The relative
mean square error (MSE) for both training and testing cases decreases with the increase in training data points for
both NeuralPDE and AE-ConvLSTM models. However, the MSE of the PiNDiff predictions remains low for all
the sparsity levels even though only one data is used for training. As shown in the zoom-in view of the PiNDiff
error curve (Fig. 15), only two training data points are sufficient for the PiINDIff model to reach a good predictive
accuracy, attributed to the prior known physics assimilated into the network architecture. Whereas, the NeuralPDE
and AE-ConvLSTM models will require much more data points to compete with the PINDIff model. All the models
work well when sufficient data is available for training, while the MSE of the PiNDiff model is still slightly lower
than the other two (see Table 3). However, in sparse data regimes, it is clearly evident that the PiNDIff model
significantly outperforms the other SOTA baselines.
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Fig. 16. PiNDiff prediction results with simultaneous physical parameter inference: (a) curing state prediction and (b) physical parameter
convergence history. Solid lines represent model predictions, while dashed lines are ground truth. fig a: ( autoclave temperature,
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4. Discussion

4.1. Simultaneous inference of unknown physical parameters

As mentioned in Section 2, even though the model form is known, some associated physical parameters Ay might
not be available or cannot be directly experimentally measured. The hybrid neural-physics structure of PiNDiff
enables simultaneous inference of these unknown physical parameters during the training process. To investigate
this capability, we conducted a numerical study in which four physical curing process parameters, i.e., the heat of
reaction H,, heat transfer coefficient %, and thermal conductivity along fiber direction k., and thickness direction
k.., are assumed unknown and need to be inferred. The ground truth values of these physical parameters were set
as,

Ay = [Hy, b, ko, k2] = [4.2 x 10°,4.0 x 10", 3.302 x 10°, 0.5067 x 10°]7,

which were not disclosed to the model training. Synthetic training data were generated from the multi-physics
simulation given these true parameters. The PiNDiff model was initialized as X% = [1.0 x 10°, 1.0 x 10", 1.0 x
10°, 1.0 x 10°] and trained using the following loss function,

Iy th—1 tn
L= lu—dll+Bil0la+ B Y Il —wlla+ Y [ max(e, 1.1) = 1.1]12, ©)
=0 =0 =0
where the last term constrains the degree of cure o to be less than 1 by penalizing the violation. As for
simultaneously inferring unknown parameters, the training becomes more ill-posed, and these additional constraints
prevent the model from diverging at an early stage. Fig. 16 shows the state-parameter prediction results of the
PiNDiff model trained with curing data from only nine uniformly distributed locations. The model was not only
able to capture the curing states, i.e., temperature and degree of cure (Fig. 16(a)) but also inferred all four parameters
accurately (Fig. 16(b)). After 1000 training epochs, all four parameters converge to the ground truth values (dashed
lines). This study indicates that the PiNDiff model can simultaneously learn the physical functions/operators and
infer unknown physical parameters with limited labels.
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Fig. 17. PiNDiff training loss histories when (case 0) no cure kinetics physics are provided, (case 1) simple kinetics, i.e., first term on the
RHS, is provided, and (case 2) more complex cure/temperature coupling, i.e., second term on the RHS, is provided.

Table 4
Mean square error of the three models with different levels of physics, trained with
900 labeled data.

Mean square error Case 0 Case 1 Case 2
Degree of Cure 0.89 x 1073 0.73 x 1073 0.09 x 1073
Temperature 5.54 4.25 1.36

4.2. Importance of integrated prior physics

To illustrate the importance of prior physics integrated into the learning architecture, a study is conducted
where different levels of known physics are provided. As discussed in Section 2.3, the cure kinetics described
by Eq. (4) is treated as the complete “true” physics. As the cure kinetics equation involves complex chemical
reaction mechanisms, which are usually unknown and was captured by neural networks, as shown above. Here, we
are interested in situations where the cure kinetic physics is partially known. Therefore, three cases are considered
where the cure kinetics equation is partially known.

case 0: no RHS terms provided (‘;—‘;‘ = DNN(e, T)
case 1: st RHS term is provided =3 swiKia"(l—a) +DNN(, T)
. . . do _ ' Kjo"i(1—a)"i
case 2: 2nd RHS term is provided - = DNN(e, T) + Zj=2,4 w; e (D, (a(aco, racr 7))

The training loss histories for all three cases are plotted in Fig. 17. It is clear that without integrating any prior
physics of cure kinetics, the training cost is the highest among the three cases. By leveraging partially known cure
kinetics, the cost was reduced, and training was accelerated. As the first term on the right-hand side (RHS) of Eq. (4)
is a simple function, whereas the second term is a more complex function of the degree of cure and temperature
coupling, the training speedup of Case 2 is more significant than that of Case 1. Adding additional prior to the
PiNDiff model further reduces the load on the neural network training as it only needs to learn less complicated
functions.

Similarly, the prediction errors are computed by averaging the test cases with 50 randomly generated autoclave
temperature profiles. Table 4 shows the comparison of the MSE for temperature and degree of cure predictions. It can
be seen that lower prediction errors are expected as more physics is integrated, indicating increased generalizability.
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Fig. 18. PiNDiff model prediction with cure kinetics modeled as linear regression, quadratic regression, and neural network. autoclave
temperature, prediction at center location, prediction at corner location, - - - ground truth at center location, - - - ground truth

at corner location.

4.3. Neural network expressibility

The unknown U(-) portions in the PINDiff framework can be modeled as any machine learning regression model,
such as linear or quadratic regression, as long as the entire program is fully differentiable. In this work, deep neural
networks have been employed in the PINDiff model to learn unknown /() functions due to their strong expressibility
and learning capability. To illustrate the importance of DNNSs to learn unknown /() functions, a study is conducted
where the cure kinetics is approximated by other simple ML models (e.g., linear and quadratic regression) in place
of DNNs within the same PiNDiff framework. In particular, the following regression models are used to learn the
cure kinetics,

case 0: linear regression
case 1: quadratic regression

d—‘;‘ = wo+ wia + wr T
z—‘;‘ = wo + wie? + wyT?
The comparison of the prediction performances of all model variants with 900 training data for 1000 epochs is
shown in Fig. 18. It is clear that these simple regression models (linear and quadratic regression) fail to learn the
cure kinetics physics due to a lack of expressibility, whereas the DNN can well capture the complex physics even
only with one labeled data as demonstrated in Section 3.1.

4.4. Limitations

Although the PiNDiff has shown great promise, there are still some limitations in its current form.

e Code intrusive: due to the nature of hybrid neural solvers, the PiNDiff model is highly code intrusive and
the entire computer program should be fully differentiable, making the development and implementation
challenging for complex physics described by nontrivial PDEs.

e Training stability: embedding physics in the PiNdiff network might result in training instability. In general,
the physics module requires its inputs to be in its physically valid range to produce finite output, otherwise
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resulting in the failure of the training process. The issue can be resolved by employing some constraints on
the intermediate physical parameters inside the solver or limiting the temporal horizon for training.

e Geometry complexity: the current model uses a convolution operator for gradient calculation, limiting it to
simple geometry and a structured grid. Replacing the convolution operator with a graph neural operator or
using numerical methods for unstructured mesh gradient calculation will remove the limitation, and the model
will work for complex geometry with unstructured grids.

5. Conclusion

In this work, a physics-integrated neural differentiable (PiNDiff) model was developed for simulating composite
manufacturing processes where the underlying physics is partially known and available measurement data is limited
and indirect. The key idea is to encode known physics in the form of discretized differential equations into DNN
architectures within a differentiable programming framework. The hybrid neural solver has the capability to deal
with data sparsity and better generalizability. The merit and effectiveness of the proposed PiNDiff model have been
demonstrated in modeling the process of curing composite laminates, where partially-known physics, such as energy
transport equations, are successfully integrated into a differentiable DNN architecture based on classic numerical
techniques, e.g., finite difference and numerical time stepping, thereby requiring fewer trainable parameters and
training labels. Compared with two existing SOTA black-box deep learning models, the PiNDiff model can work
with “small data”, and it shows significant superiority in terms of learning speed, generalizability, and robustness
even when trained on massive amounts of data. Thanks to its fully differentiable structure, the PiNDiff model is able
to infer the experimentally unobservable states and parameters during training. More broadly, the proposed PiNDiff
framework can be used to effectively model a wide range of physical processes where the underlying physics is
partially known, and sparse measurements are available.
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Appendix A. Detailed numerical setting for PiNDiff model

In PiNDiff model, the following learning setting is used for the neural network trainable parameters,

e Initial learning rate = 1072
e Optimizer = Adam
e Scheduler = ReducelLROnPlateau (factor = 0.7, patience = 20),

and for unknown physical parameter Ay inference, the learning setting is listed as below

e Initial learning rate = 1
e Optimizer = Stochastic gradient descent (SGD)
e Scheduler = ReduceLROnPlateau (factor = 0.7, patience = 20).
The weighting parameters of the regularization terms f; and B, in £ (Eq. (2)) are set as 1073 and 107>, respectively.
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Fig. A.19. Autoclave temperature profiles (BC) of the training cases.

Appendix B. AE-ConvLSTM for curing modeling

The Encoder-Decoder ConvLSTM network architecture [60,61] is shown in Fig. B.20. The ConvLSTM network
module is originally developed in [59] and the key equations used for calculating gate outputs are given as,

=0 Wy s X+ Wy xHio1 + We0Cioy + b)),
fi=o (fo * X 4+ Whpx Hiog + Wep 0 Gy +bf) ,
Ci= fioCi_i +i;otanh (Wy. % X; + Wy % Hy_1 + be), (B.1)
0r =0 (Wyo Xy + Wio xHiy + Wep 0 Cr + by)
H, = o0, o tanh (C,) ,

where * denotes the convolution operator, and o denotes the Hadamard product. The convolution and de-convolution
operations are applied to encode and decode spatial features, and ConvLSTM modules help to capture the temporal
features, where all connections are based on convolution operations. By stacking these blocks in an auto-regressive
manner with a ConvLSTM bridge, an AE-ConvLSTM is constructed. The hidden states produced by the ConvLSTM
encoder are passed to the corresponding ConvLSTM decoder and next-step ConvLSTM encode, as shown in
Fig. B.20 by gray arrows. The AE-Conv-LSTM network has the capability to learn spatio-temporal physics at
various scales and make predictions of further states. The boundary condition can be enforced at the output layer of
the network. The AE-ConvLSTM network predicts spatio-temporal fields in an auto-regressive sequence-to-sequence
manner. In particular, the degree of cure and temperature fields are given as input and are predicted as output at
each time step. For the current study, a two-block Encoder—Decoder ConvLSTM network is created with a 5 x 5
2D convolution kernel. The hidden channel size for the outer (i.e., first and last) ConvLSTM layers is 32, and for
the inner (i.e., second and third) ConvLSTM layers, it is set to be 16.

Appendix C. Neural-PDE for curing modeling

Neural-PDE [62] network used in this paper is shown in Fig. C.21. The detailed neural network architecture used
for heat transfer (T-ResCNN-net) and cure kinetics (¢-ResANN-net) is shown in Figs. C.22 and C.23, respectively.
The network architecture for cure kinetics is the same as the one used in the PiNDiff model. Note that o-ResANN-
net is a Neural-ODE network since no spatial convolution is involved, as shown in Fig. C.23. The boundary condition
is enforced at the output layer of the heat-transfer network. As shown in Fig. C.21, the «-ResANN-net takes the
degree of cure and temperature as input to predict the degree of cure at the next time step and its derivative.
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Fig. C.23. «-ResANN-net for PiNDiff and Neural-PDE model.

T-ResCNN-net takes the temperature and time derivative of the degree of cure to predict the temperature at the next
time step. Therefore, the two sub-networks are fully coupled. Similar to PiNDiff and AE-ConvLSTM models, the
NeuralPDE also predicts spatio-temporal fields auto-regressively. Each hidden layer of the o-ResANN-net (Linear
in Fig. C.23) has 128 neurons and each hidden layer of T-ResCNN-net has 64 channels with a 3 x 3 trainable
convolutional kernel.
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