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Abstract. Extracting the explicit governing equations of a dynamic system
from limited data has attracted increasing attention in the data-driven mod-
eling community. Compared to black-box learning approaches, the sparse-
regression-based learning method enables discovering an analytical model form
from data, which is more appealing due to its white-box nature. However, dis-
tilling explicit equations from real-world measurements with data uncertainty
is challenging, where many existing methods are less robust. Moreover, it is
unclear how to e�ciently learn a parametric system from multiple data sets
with di↵erent parameters. This paper presents a group sparse Bayesian learn-
ing approaches to uncover the explicit model forms of a parametric dynamical
system with estimated uncertainties. A deep neural network is constructed to
improve the calculation of derivatives from noisy measurements. Group spar-
sity is leveraged to enable synchronous learning from a group of parametric
datasets governed by the equations with the same functional form but di↵er-
ent parameter settings. The proposed approach has been studied over a few
linear/nonlinear ODE systems in explicit and implicit settings. In particu-
lar, a simplified parametric model of intracranial dynamics was identified from
multiple synthetic datasets with di↵erent patient-specific parameters. The nu-
merical results demonstrated the e↵ectiveness of the proposed approach and
the merit of synchronous learning from multiple datasets in a group sparsifying
Bayesian setting.

1. Introduction. Dynamical systems are ubiquitous in physical, mathematical,
and biological fields. In many cases, the underlying physics behind complex dy-
namics might not be fully understood, and thus principled models are not available.
Thanks to ever-increasing data availability, there is a growing trend in identifying
predictive models of a dynamical system from a massive amount of observations,
known as system identification (SI). Traditional SI methods often use polynomi-
als to construct models that describe the relationship between input and output
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signals, e.g., linear/nonlinear auto-regressive with exogenous variable (ARX) mod-
els [22, 26]. However, these models are usually less expressive and limited to low-
dimensional state space. Recent advances in deep learning have fueled the rapid
development of more capable SI models operating in high-dimensional space. Deep
neural networks (DNNs) with various sophisticated network architectures have been
designed to learn operators in steady [19, 32, 33, 11, 37] or dynamic [42, 17, 12]
scenarios of complex physical phenomena, showing great promise in representation
and prediction capabilities. Nonetheless, a major drawback of deep learning mod-
els is the lack of interpretability. The network prediction is usually expressed as a
prolonged nested function, which is black-box in nature.

Instead of identifying a black-box model, extracting analytical equation form-
s from data is preferable, which has better interpretability and good potential to
advance physics-based modeling. One impressive breakthrough along this route
is the sparse identification of nonlinear dynamic (SINDy) algorithm [2, 28], which
uses sparse linear regression to uncover parsimonious equation forms of dynamical
systems from a high-dimensional nonlinear function space (i.e., basis library) given
su�cient observation data. The sparsity was achieved by a sequential threshold
ridge regression (STRidge) algorithm [2, 28], which recursively determines the s-
parse solution subjected to hard thresholds. In the past a few years, the SINDy
framework has been further improved in various aspects, and many di↵erent vari-
ants of SINDy have been proposed for, e.g., dynamics with abrupt changes [27],
multi-scale features [20, 3], high-dimensional representation [4], model predictive
control [15], and library improvement [7], etc. Compared to deep learning (DL)-
based methods, the SINDy family has low training cost, better interpretability, and
theoretical convergence [41]. However, a critical bottleneck of the SINDy frame-
work lies in its strong dependence on both data quality and quantity, limiting its
applicability to scenarios with incomplete, scarce, and noisy data. This limitation is
mainly due to the requirement of derivative information from data, which are usual-
ly based on finite di↵erence (FD) methods in vanilla SINDy and its variants. Latest
studies show a good potential of combining deep learning techniques and SINDy to
handle data sparsity and noise [18, 16, 8, 5, 29]. In particular, DNNs can be used for
denoising and derivative computation by fitting the data in a decoupled [29, 38, 39]
or coupled manner [18, 16, 8, 5].

Despite the success of these remedies, uncertainties introduced from data/library
imperfection and their impacts on the model discovery process cannot be quantified
in these deterministic frameworks. As an alternative, people explored the formu-
lation of the equation discovery in a Bayesian setting, known as Sparse Bayesian
Learning (SBL). The general idea is to impose sparsity into classic Bayesian infer-
ence algorithms (e.g., Bayesian linear regression) by using either sparsity-promoting
priors or more ad hoc threshold-based methods. For example, Tipping and co-
workers proposed sparsity-promoting priors for various classification and regression
problems via marginal likelihood maximization methods [34, 35, 1, 9, 10]. Recently,
Zhang and Lin [43, 44] used this idea to extend the SINDy to a Bayesian formula-
tion, enabling equation discovery with error bars. Pan et al. [23, 24, 25] leveraged
sparsity-promoting priors for the development of a Bayesian system identification
algorithm using alternating direction method of multipliers (ADMM) algorithms.
Hirsh et al. [13] compared two sparsifying priors, spike-and-slab prior and regular-
ized horseshoe prior, for equation discovery using Bayesian linear regression. Yang
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et al. [40] developed a Bayesian di↵erentiable-programming-based SI method be-
yond Gaussian assumption using the Hamilton Monte Carlo (HMC) method, where
a horseshoe prior is adopted to promote the sparsity. In addition to sparsifying
priors, sequential threshold methods can be used to impose sparsity based on ad
hoc thresholds. For example, Zhang and Liu [45] developed a sequential-threshold
Bayesian linear regression method to discover parsimonious equation forms by se-
quentially pruning redundant terms based on user-specified thresholds.

While these works substantiate the potential of sparse learning in Bayesian set-
tings, significant methodology developments are still needed to deal with data s-
carcity, noise, and uncertainty propagation. This work presents a sparse Bayesian
learning approach, where sparsity is imposed based on a sparsifying prior and se-
quential thresholding. The contribution of the current work is shown as follows. To
improve learning e�ciency in data-scarce scenarios, we propose to simultaneously
use multiple datasets of the systems governed by the same equation form but with
varying parameters based on group sparsity. Moreover, we propose to incorporate
DL-based denoising techniques in a decoupled manner for data preprocessing. To
demonstrate the e↵ectiveness of the proposed techniques, we investigated several
dynamical systems with a variety of complexity. Note that the main contribution
lies in integrating several techniques in an innovative way for system identification.
The rest of the paper is organized as follows. Section 2 introduces the key compo-
nents of the proposed group-sparsity-based Bayesian learning approach, including
library-based Bayesian regression, group sparsity, DNN denoising techniques, and
uncertainty propagation. Section 3 presents numerical results for data-driven equa-
tion discovery of several dynamic systems governed by ordinary di↵erential equa-
tions (ODEs) with varying parameters. In particular, intracranial pressure (ICP)
dynamic systems are studied to demonstrate the merits of the proposed method.
Finally, Section 4 concludes the paper.

2. Methodology. Let’s consider a group of dynamical systems, which are gov-
erned by a parametric ODE system in the general form,

dx

dt
= F(x;�), (1)

where t is the time coordinate, x = [x1(t), x2(t), · · · , xd(t)]T 2 Rd represents the
state variable, and F : Rd ! Rd represents unknown nonlinear functions pa-
rameterized by �. The systems are observed at discrete times t = t1, t2, · · · , tn,
and the set of observed states x̂ at the parameter �k is denoted by X̂

(�k)
=

{x̂(t1), x̂(t2), · · · , x̂(tn);�k}T 2 Rn⇥d. Our goal here is to explicitly discover the
analytical forms of F(·) given a group of datasets of the systems at n� di↵erent
parameters �k, n

X̂
(�1)

, X̂
(�2)

, · · · , X̂
(�n�

)
o
. (2)

This scenario widely exists in many system identification applications. The in-
tracranial pressure (ICP) system is one of the examples. The ICP dynamics are
driven by complex interactions among cerebral blood flow (CBF), cerebrospinal flu-
id (CSF), and soft brain tissues. The underlying governing equations behind the
ICP dynamics are unknown, while clinically measured CBF, CSF, and ICP signals
of many di↵erent patients are available. Assuming the model form F(·) of governing
physics is the same for all patients, it is significant to recover the general model form
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F(·) based on a group of patient-specific datasets (i.e., measured dynamic signals
at di↵erent patient-specific parameters �).

2.1. Sparse system identification in deterministic settings. Given one dataset
X̂ at a fixed parameter �, the SI problem can be solved by sparse regression tech-
niques based on a predefined library �(x) of m basis functions,

�(x) = [�1(x),�2(x), · · · ,�m(x)] 2 Rm, (3)

where �i : Rd ! R, i 2 [1,m] denotes basis functions, which, for instance, can be
the polynomial basis and trigonometric functions of the state. Hence, the matrix
of library terms of observed states is defined as,

�(X̂) =


�
�
x̂(t1)

�T
,�

�
x̂(t2)

�T
, · · · ,�

�
x̂(tn)

�T
�T

2 Rn⇥m. (4)

After calculating the time derivatives ˙̂X of the data X̂, the equation discovery
problem can then be formulated as a linear regression problem,

˙̂X = �(X̂)W , (5)

where W 2 Rm⇥d denotes the matrix of linear coe�cients. Based on the principle
of Occam’s razor, identifying the most parsimonious model form is preferable in
practice, which requires the coe�cient matrix W to be as sparse as possible. Hence,
the eq. 5 can be solved by using regularized least square methods in a deterministic
manner,

W = argmin
W 0

||�(X̂)W 0 � ˙̂X||L2 + �||W 0||L↵ , (6)

where the sparsity can be promoted via the regularizing term defined by di↵erent
L↵ norms, e.g., L↵ = L1 corresponding to LASSO, L↵ = L2 corresponding to ridge
regression, or L↵ = L0 corresponding to sequential threshold methods. For example,
the sequential threshold least square regression has been proposed as the original
SINDy algorithm [2], which has been later improved in many di↵erent aspects.
In particular, the SINDy based sequential threshold ridge regression (STRidge)
algorithm [30] has been demonstrated to be e↵ective and is widely used, and we
referred to it as baseline SINDy in this work.

2.2. Sparse system identification in Bayesian formulations. As the data X̂
always contain measurement noises, Eq. 5 cannot be exactly satisfied and needs to
be reformulated as,

˙̂X = �(X̂)W + ✏, (7)

where ✏ represents the process uncertainty, representing errors in ˙̂X due to finite
di↵erence (FD) approximation and measurement noises. Although the state mea-
surements can be smoothed using a deep learning based denoising method [29],
wiggling still exists, which can be amplified in FD-based derivative reconstructions.
In this work, the overall process uncertainty is modeled as a zero-mean multivari-
ate Gaussian random variable ✏ ⇠ N (0,B�1I), where the covariance matrix is a
diagonal matrix with diagonal entries �k, k 2 [1, d].

For a dynamical system with d state variables, we will solve d Bayesian linear
regression problems separately to identity the weight matrixW . The data likelihood
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for a given coe�cient W k, k 2 [1, d] is written as:

p( ˙̂Xk|W k,�k) =
nY

i=1

(
�k

2⇡
) exp(��k

2
|| ˙̂X

(i)

k ��(X̂(i))W k||2). (8)

The prior of the weight function is assumed to be zero-mean Gaussian distribution
with only diagonal terms in the covariance matrix, as shown in Eq. 9:

p(W k|Ak) =
mY

j=1

N (W kj |0,↵�1
kj ), (9)

where Ak = [↵k1,↵k2, ...,↵km]T is the hyperprior. Each ↵kj cooresponds to a
single W kj . This kind of prior has been proved to be able to promote sparsity [34].
To complete the hierarchical Bayesian model, we assume that Ak and �k follow
the log-uniform distribution. Then, the posterior distribution for all the unknown
parameters can be decomposed as follows,

p(W k,Ak,�k| ˙̂Xk) / p(W k| ˙̂Xk,Ak,�k)p(Ak,�k| ˙̂Xk), (10)

Faul and Tipping [10] proved that given the log-uniform hyperpriors for Ak and �k,

p(Ak,�k| ˙̂Xk) can be approximated by Dirac delta function at (Âk, �̂k). Therefore,
the previous equation can be further simplified as Eq. 11:

p(W k,Ak,�k| ˙̂Xk) / p(W k| ˙̂Xk,Ak,�k)�(Âk�̂k), (11)

where Âk and �̂k can be estimated based on the fast marginal likelihood maximisa-
tion algorithm due to the fast convergence [35]. Specifically, Âk and �̂k are obtained
by maximizing the marginal likelihood as,

(Âk, �̂k) = argmax
Ak,�k

{p( ˙̂Xk|Ak,�k)}

= argmax
Ak,�k

⇢Z
p( ˙̂Xk|W k,�k)p(W k|Ak)dW k

�

= argmax
Ak,�k

⇢
(2⇡)�n/2|��1

k I+�Ãk
�1

�T |�1/2

exp
�
� 1

2
˙̂Xk

T

(��1
k I+�Ãk

�1
�T )�1 ˙̂Xk

 �
,

(12)

where Ãk is a diagonal matrix with [↵k1,↵k2, ...,↵km] as its main diagonal entries.
To optimize Eq. 12, we first define the loss function as the log form,

L(Ak) = �1

2

⇥
nlog2⇡ + |logCk|+ ˙̂Xk

T

Ck
�1 ˙̂Xk

⇤
(13)

where Ck = |��1
k I +�Ãk

�1
�T |. To consider the dependence of the loss function

with respect to a single ↵ki, Ck can be rewritten as:

Ck = ��1
k I+

X

m 6=i

↵�1
km�m�T

m + ↵�1
ki �i�

T
i

= Ck�i + ↵�1
ki �i�

T
i

(14)

where Ck�i is Ck calculated from the full basis vectors except the ith term. By
using the matrix determinant and inverse formulas, which is listed in detail in [35],
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the loss function can be rewritten as Eq. 15:

L(Ak) = �1

2

⇥
nlog(2⇡) + log|Ck�i|+

˙̂Xk

T

Ck
�1
�i

˙̂Xk

� log↵ki + log(↵ki + �T
i Ck

�1
�i�i)�

(�T
i Ck

�1
�i

˙̂Xk)2

↵ki + �T
i Ck

�1
�i�i

⇤

= L(Ak�i) +
1

2

⇥
log↵ki � log(↵ki + ski) +

q2ki
↵ki + ski

⇤
)

= L(Ak�i) + l(↵ki)

(15)

where ski and qki are sparsity factors and quality factors, respectively, and they are

defined as ski = �T
i Ck

�1
�i�i and qki = �T

i Ck
�1
�i

˙̂Xk. Ak�i contains all the terms
of Ak except the ith term. Based on the magnitude of qi and si, we can add,
re-estimate ,or delete ↵ki during the iteration , as well as re-estimate �k (details
see [34, 35]).

Given Âk, �̂k, the posterior distribution for the weight can be derived by marginal-
izing out the hyper-parameters Âk,�̂k as:

p(W k| ˙̂Xk) =

ZZ
p(W k,Ak,�k| ˙̂Xk)dAkd�k

⇡
ZZ

p(W k| ˙̂Xk,Ak,�k)�(Âk, �̂k)dAkd�k

= p(W k| ˙̂Xk, Âk, �̂k)

= N (W k|µ̂k, ⌃̂k),

(16)

where µ̂k = �̂k⌃̂k�T ˙̂Xk and ⌃̂k =
⇥
�̂k�T�+ Âk

⇤�1
.

2.3. Group sparsity-based threshold pruning. The previous sections intro-
duce a general sparse Bayesian regression approach for identifying systems with
“parsimonious” equation forms. However, in practice, we found that the identified
W is not always “parsimonious”. This is especially true when the data noise is
considerable, where redundant terms can be identified, though usually with small
magnitudes. To remedy this drawback, additional threshold pruning steps can be
employed after the sparse Bayesian inference to promote sparsity [43] further. In
this work, we propose a group sparsity-based threshold pruning scheme combined
with sparse Bayesian regression to handle multiple datasets governed by the same
equation with di↵erent parameters. The general idea is to iteratively trim o↵ un-
likely (small) library terms after every Bayesian inference step in a group-sparsity
regression setting [30]. Suppose we have n� groups of data corresponding to n�

parameter sets, the group Bayesian regression can be formulated as,
2

66664

˙̂X
1

˙̂X
2

...
˙̂X
n�

3

77775
=

2

664

� 0 ... 0
0 � ... 0
... ... ... ...
0 0 ... �

3

775

2

664

W 1

W 2

...
W n�

3

775+

2

664

✏1

✏2

...
✏n�

3

775 (17)

where [W 1
T ,W T

2 , ...,W n�

T ]T and [✏1, ✏2, ..., ✏n� ]T are weight vectors and additive
process noises for the group of datasets, respectively; � represents the library and
should be the same for every dataset. We can perform the group sparse regression
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for all the datasets simultaneously by solving Eq. 17. In order to find the most par-
simonious equation form that is the same for all datasets, we conduct the threshold
pruning in a group setting. Specifically, the mean vectors of the weights for di↵er-
ent datasets are stacked into a matrix ⌦m⇥n� = [µ̂1, µ̂2, .., µ̂n� ], where each row
corresponds to a di↵erent basis function in the library and each column corresponds
to one dataset in the dataset group G. We will eliminate the rows with coe�cients
small in magnitudes,

⌦(i, :) = 0, if ||⌦(i, :)||L2  GT 2, (18)

where T is the user-specified threshold value. After applying the group sparsity,
the library � will be updated by dropping out the unlikely basis, where the cor-
responding row is 0 in ⌦. The identified results can be improved compared to
the sparse Bayesian inference only by iterating the sparse Bayesian inference and
group-sparsity threshold pruning.

2.4. Deep learning denoising method. We adopt a Runge-Kutta-based neural
network (NN) denoising approach [29] to reconstruct the dynamics from noisy mea-
surements and also to estimate data uncertainty, which will be used as the input
for the sparse Bayesian regression. The general idea is to decompose the noisy mea-
surements into two parts: signal and noise, which can be estimated by minimizing
the reconstruction error. As an unsupervised learning approach, the reconstruction
loss over the entire trajectory can be defined as

L(✓, ✏̂, X̂) =
m�qX

j=q+1

i=qX

i=�q

���X̂
(j+i)

�
⇣
Fi

✓(X̂
(j)

� ✏̂(j)) + ✏̂(j+i)
⌘��� (19)

where F represents the Runge-Kutta based NN approximation with trainable pa-
rameters ✓ of the underlying dynamics, X̂ represents noisy measurements, and ✏̂
represents the noise estimation; the superscript i represents indices of local neigh-
borhood steps of the current step j, ranging from �q to q. More details can be
found in ref [29].

2.5. Sequential threshold group sparse Bayesian learning algorithm. The
overall schematics of the Bayesian SI framework are shown in Fig 1. The algorithmic
details are given in Algorithm 1 and Algorithm 2, which is extended from the
algorithm in [35].

3. Numerical results. The proposed sequential threshold sparse Bayesian learn-
ing algorithm is demonstrated by discovering several parametric ODE systems based
on groups of multiple datasets. It is worth mentioning that an implicit Ursino-Lodi
model governing complex intracranial dynamics is identified from a group of synthet-
ic patient-specific data. Here “synthetic patient-specific” means that the datasets
are obtained from the same Ursino-Lodi model forms but with di↵erent sets of
parameters, which mimic the inter-patient variation. We use “patient-specific” to
di↵er from “population-based” data, which is from the model with a set of aver-
aged parameters. Both the identified coe�cients and propagated uncertainty are
presented.

To demonstrate the merits of sparsity regularization term and group sparsity
pruning, which are two important components in the proposed SI method, we com-
pared the model performance with or without them and demonstrated the e↵ective-
ness of learning from multiple parametric datasets simultaneously. In particular, we
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Algorithm 1: Sequential threshold group sparse Bayesian learning: step 1
parameter estimating.

Result: Mean (µ̂g) and covaraince (⌃̂
g
) for the relevant coe�cients, estimated data noise Bg for

the current state, for g 2 [1, G]
Parameter Estimating Step;
Set group number G and the threshold value T .
for each subset g = 1 : G do

Estimate the data noise Bg from the deep learning pre-processing result, initialize a single

basis vector �i based on the largest projection with targets argmax(|�T ˙̂X|) and the
corresponding Ag

i , other columns in Ag ’s are set to infinity. ;

Compute µ̂g and ⌃̂
g
, and the initial values of sg and qg for all basis;

while not converged do
1. Select a basis vector �i from the whole library � based on the maximum change in
the likelihood function �L as define in Eq. 15;

2. Compute the relevance variable ✓g
i = (qgi )

2 � sgi ;
if ✓g

i > 0 and Ag
i < 1 then

re-estimate Ag
i as (Ag

i )new;
else if ✓g

i > 0 and Ag
i = 1 then

add �i to the model with updated (Ag
i )new;

else
delete �i from the model and set (Ag

i )new = 1;

3. Recompute and update µ̂g and ⌃̂
g
;

if re-estimate then
 = (⌃ii + ((Ag

i )new � Ag
i )

�1)�1;

(µ̂g)new = µ̂g � µg
i ⌃̂

g
i ;

(⌃̂g)new = ⌃̂g � ⌃̂g
i (⌃̂

g
i )

T
;

else if add then

(µ̂g)new =


µ̂g � µ̂g

i (B
g)2⌃̂g�T�i

µ̂g
i

�
;

(⌃̂
g
)new =


⌃̂

g
+ (Bg)2⌃̂g

ii⌃̂
g�T�i�

T
i �⌃̂g �(Bg)2⌃̂g

ii⌃̂
g�T�i

�(Bg)2⌃̂g
ii(⌃̂

g�T�i)
T ⌃̂g

ii

�

else if delete then

(µ̂g)new = µ̂g � µ̂
g
i

⌃̂
g
ii

⌃̂g
i ;

(⌃̂
g
)new = ⌃̂

g � 1
⌃̂
g
ii

⌃̂g
i (⌃̂

g
i )

T
;

4. If converged |log(Ag
i )new � log(Ag

i )| is less than a threshold value, break the loop.
end

end

Algorithm 2: Sequential threshold group sparse Bayesian learning: step 2
parameter pruning
Parameter Pruning Step;
Collect the grouped posterior mean value ⌦ = [µ̂1, µ̂2, ..., µ̂G];
Initialize k = 1, pq = m, and Flag is True;
while Flag is True do

for j = 1 : pq do
if ||⌦(j, :)||L2  GT 2 then

⌦(j, :) = 0

end
Find the nonzeros rows in ⌦, record the index as Iq ;
Update � = �(:, Iq) and pk+1 = number of elements in Iq , G = pk+1;
if pk+1 = pk then

Change Flag to False
else

Go back to the Parameter Estimating Step
k = k + 1;

end
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Figure 1. Schematics of the Bayesian group-sparsifying equation
discovery framework with (a) neural network pre-processing black:
noisy signal. blue: denoised signal. red: estimated noises.; (b)
SINDy-type library construction; (c) group sparse Bayesian learn-
ing; (d) and example for identified sparse structure and posterior.

consider the following variants: (1) model with group sparsity includes both sparsity
regularization terms and group-sparsity pruning steps as shown in Algorithms 2.1
and 2.2; (2) model without group sparsity only includes the estimation steps using
sparsity regularization as shown in Algorithms 2.1; (3) non-parsimonious model ex-
cludes both regularization terms and group-sparsity pruning. The e↵ectiveness of
the group sparsity can be learned by comparing models (1) and (2), while the merits
of sparsity regularization can be demonstrated by comparing models (2) and (3).

3.1. Parametric linear dynamical system. We first study a linear ODE system
parameterized by � = [�1,�2,�3,�4],

d

dt


x
y

�
=


�1 �2

�3 �4

� 
x
y

�
. (20)

The library is constructed by the set of polynomials {xpyq}, where 0  p + q  5.
In the data generating process, we set �4 = �1 and �3 = ��2 and nine di↵erent sets
of parameters are specified (�1 2 {�0.05,�0.10,�0.15},�2 2 {1.50, 2.00, 2.50}).
Note that no dependency among di↵erent �i is assumed a priori in the discovering
process. The governing equation is simulated with initial conditions x = 2 and
y = 0. And the numerical method is the six-stage, fifth-order, Runge-Kutta method
used in ode45 in Matlab. The simulated time is 25s. All the datasets are perturbed
with 2%, 5% and 10% white noises to test the e↵ect of noise. The underlying linear
ODE model form can be identified from nine datasets with di↵erent parameters
using the proposed algorithms. The SI results from the data with 5% noise are
summarized in Table 1, where the actual values are marked in blue and redundant
terms are marked in red. Note that we present the coe�cients as follows: the
�i denotes the parsimonious coe�cients for the equation, while the coe�cients of
redundant terms are marked by C(⇤), where ⇤ denotes the redundant library terms.
The model form of this linear system can be precisely discovered; meanwhile, all
di↵erent sets of parameters are accurately recovered with quantified uncertainties
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(standard deviation �(�)) for all nine cases. The results without group sparsity are
also presented for comparison to demonstrate the merit of using multiple datasets
simultaneously based on group sparsity pruning. It is clear that, without group
sparsity, redundant constant terms will be identified, making the final result less
parsimonious. The results of the data with a larger (10%) noise are presented by
Table 12 in the Appendix.Three evaluation metrics, root mean square error (rmse),
precision MP and recall MR, are presented in Table. 2, which is defined as follows,

rmse =
||CDiscovery �CTrue||2

||CTrue||2

MP =
||CDiscovery �CTrue||0

||CDiscovery||0

MR =
||CDiscovery �CTrue||0

||CTrue||0

(21)

where CDiscovery are the non-zero mean prediction from the posterior distribution
and CTrue are the true coe�cients of the governing equations. The � represents
the element-wise product of vectors, and the l0 norm is the non-zero terms in a
vector. We calculated these metrics for three di↵erent settings, with group sparsity,
without group sparsity, and with a non-parsimonious model. It can be seen that
using group sparsity can give better results compared to other settings. To quantify
the propagated uncertainty in the state dynamics, we draw 100 Monte Carlo samples
from the posterior distribution of the coe�cient and forward solve the dynamical
system from the initial condition. The propagated dynamics of two selected cases
with di↵erent parameter sets are shown in Fig. 2, where the uncertainty (3-� range)
is presented as the blue shaded region. And we only show the UQ result for the
group sparsity approach. First of all, it can be seen that the dynamics can be very
di↵erent from each other as the parameters vary. The prediction mean value agrees
with the true trajectory very well, and the uncertainty range covers the ground
truth but is very tight in this case due to the simplicity of the linear dynamics (see
a zoomed-in view in the 2nd row). Only the state variable x is presented here, and
the results for y are omitted due to the similarity.

3.2. Parametric cubic dynamical system. Following the same convention in
Sec. 3.1, we study a parametric cubic dynamical system, which is also parameterized
by � = [�1,�2,�3,�4] as given by

d

dt


x
y

�
=


�1 �2

�3 �4

� 
x3

y3

�
. (22)

The parametric datasets are generated by nine di↵erent � sets with the same range
as the linear case. The governing equation is simulated with initial conditions x = 2
and y = 0. The numerical method is the six-stage, fifth-order, Runge-Kutta method
used in ode45 in Matlab. The simulated period is 25 s. The library of candidate
functions remains the same (i.e., polynomials up to order 5). The identified systems
for nine cases from data with 5% noise are summarized in Table 4, where the
results with and without group sparsity are listed and compared. The proposed
approach can accurately discover the system, which has the exact model forms as
the ground truth and the corresponding coe�cients are also accurate. In contrast,
the results obtained from individual dataset without group sparsity include several
redundant terms, e.g., y2, x2, x2y, x2y2, and xy3, making the identified system less
parsimonious. This situation deteriorates when data uncertainty increases. When
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Figure 2. Identified systems of two di↵erent set of parameters
with 5% noise: (1st column) � = [�0.05, 1.5,�1.5,�0.05] and (2nd
column) � = [�0.15, 2,�2,�0.15]. Only the trajectory of the state
variable x is shown and the propagated uncertainty is given by the
3-� region. The 2nd row is the zoomed-in view.

data noise is 10%, there are 11 redundant terms identified without group sparsity,
and this can be significantly improved by simultaneously using multiple parametric
datasets with group sparsity (see Table 13). Table. 3 shows the evaluation metrics
for parametric cubic system cases. Group sparsity approach provides the best results
in terms of the rmse, MR and MP . Fig. 3 shows the propagated dynamics of two
selected cases with di↵erent parameters, and the uncertainty range is also plotted for
state variable x. And we only show the UQ result for the group sparsity approach.
It can be seen that the dynamics are visually di↵erent, and the predicted mean
values are close to the true trajectories. Moreover, the predicted uncertainty (3-�)
range covers the ground truth. The multiple peaks of the uncertainty range is due
to the uncertainty in the phase di↵erence of the ensemble of forward propagated
dynamics. The zoomed-in plot in the second row gives a clearer visualization of the
uncertainty range. Again, the dynamics for y are similar and therefore omitted.

3.3. Parametric Michaelis-Menton Kinetics. In this section, we will investi-
gate a well-known dynamical system in biochemistry fields, the Michaelis-Menton
model, which is a simple yet e↵ective model for enzyme kinetics [21]. It is governed
by a single state variable system and can be expressed as Eq. 23,

dx

dt
= jx � Vmaxx

Km + x
(23)

where jx is flux source, Vmax is the maximum reaction rate, andKm is the concentra-
tion of half-maximal reaction rate. Though it appears simple, the Michaelis-Menton
system is an implicit system, which means it is not possible to obtain an explicit
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Identified systems with group sparsity

Case 1 2 3 4 5 6 7 8 9
�1 -0.0493 -0.0494 -0.0495 -0.1004 -0.1007 -0.0999 -0.1499 -0.1490 -0.1504
�(�1) 0.0019 0.0019 0.0019 0.0017 0.0016 0.0016 0.0015 0.0015 0.0015
�2 1.5010 2.0001 2.5008 1.5026 2.0018 2.5009 1.5015 2.0022 2.4996
�(�2) 0.0019 0.0019 0.0019 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015
�3 -1.4997 -2.0004 -2.4985 -1.4992 -1.9986 -2.4994 -1.5012 -2.0000 -2.5017
�(�3) 0.0019 0.0019 0.0019 0.0017 0.0016 0.0016 0.0015 0.0015 0.0015
�4 -0.0515 -0.0510 -0.0503 -0.1017 -0.1009 -0.1011 -0.1530 -0.1532 -0.1513
�(�4) 0.0019 0.0019 0.0019 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015

Identified systems without group sparsity

�1 -0.0493 -0.0494 -0.0495 -0.1004 -0.1007 -0.0999 -0.1499 -0.1491 -0.1505
�(�1) 0.0019 0.0019 0.0019 0.0017 0.0016 0.0016 0.0015 0.0015 0.0015
�2 1.5002 1.9997 2.5007 1.5008 2.0004 2.4998 1.4991 2.0000 2.4978
�(�2) 0.0019 0.0019 0.0019 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015
C(const1)) 0 -0.0424 -0.0524 0 0 -0.0370 0 0 0
�(C(const1)) 0 0.0017 0.0017 0 0 0.0013 0 0 0
�3 -1.4997 -2.0004 -2.4986 -1.4992 -1.9987 -2.4994 -1.5012 -1.9999 -2.5016
�(�3) 0.0019 0.0019 0.0019 0.0017 0.0016 0.0016 0.0015 0.0015 0.0015
�4 -0.0507 -0.0506 -0.0502 -0.0996 -0.0993 -0.0999 -0.1499 -0.1507 -0.1493
�(�4) 0.0019 0.0019 0.0019 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015
C(const2)) 0 0.0440 0.0551 0 0 0.0411 0 0 0
�(C(const2))) 0 0.0017 0.0017 0 0 0.0013 0 0 0

True systems

�1 -0.05 -0.05 -0.05 -0.1 -0.1 -0.1 -0.15 -0.15 -0.15
�2 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5
�3 -1.5 -2.0 -2.5 -1.5 -2.0 -2.5 -1.5 -2.0 -2.5
�4 -0.05 -0.05 -0.05 -0.1 -0.1 -0.1 -0.15 -0.15 -0.15

Table 1. System identification results for the parametric linear
systems, dx

dt = �1x + �2y, state
dy
dt = �3x + �4y. (5% data noise),

where �i denotes the relevant coe�cient, C(const1) denotes the
redundant constant coe�cient and �(C(const1)) denotes the stan-
dard deviation for equation dx

dt = �1x + �2y, while C(const2) and

�(C(const2)) are corresponding values for equation dy
dt = �3x+�4y.

Identified systems with group sparsity

Case 1 2 3 4 5 6 7 8 9
rmse 0.90 0.44 0.51 1.50 0.91 0.44 1.66 1.41 0.62
MR 1 1 1 1 1 1 1 1 1
MP 1 1 1 1 1 1 1 1 1

Identified systems without group sparsity

rmse 0.50 21.59 21.51 0.58 0.58 15.62 0.70 0.41 0.81
MR 1 0.67 0.67 1 1 0.67 1 1 1
MP 1 1 1 1 1 1 1 1 1

Identified systems with non-parsimonious model

rmse 1414.37 1417.92 1425.69 1415.33 1412.46 1417.82 1422.44 1419.52 1411.64
MR 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
MP 1 1 1 1 1 1 1 1 1

Table 2. Di↵erent metrics for the parametric linear systems, dx
dt =

�1x+ �2y,
dy
dt = �3x+ �4y. (5% data noise)

form like Eq. 1 and construct a library explicitly. To address this issue, we adopted
the same idea proposed in the SINDy-PI paper [14] to deal with the rational-form
implicit dynamical systems. To be specific, we define the type of dynamical system
with the form g(x, dx

dt ) = f(x, dx
dt ) and build two libraries for left- and right- hand

side terms, respectively. We can perform a classical explicit discovery for every
single term in the left-hand side library. After looping all the possible terms in
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Identified systems with group sparsity

Case 1 2 3 4 5 6 7 8 9
rmse 5.32 2.05 2.86 8.03 6.38 3.97 11.62 8.64 6.14
MR 1 1 1 1 1 1 1 1 1
MP 1 1 1 1 1 1 1 1 1

Identified systems without group sparsity

rmse 61.16 61.25 60.07 48.28 50.58 46.30 40.66 46.12 45.36
MR 0.67 0.67 0.67 0.67 0.67 0.57 0.67 0.5 0.57
MP 1 1 1 1 1 1 1 1 1

Identified systems with non-parsimonious model

rmse 64.10 72.08 70.49 56.96 51.59 55.12 50.09 52.25 46.78
MR 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095
MP 1 1 1 1 1 1 1 1 1

Table 3. Di↵erent metrics for the parametric cubic systems dx
dt =

�1x3 + �2y3,
dy
dt = �3x3 + �4y3 (5% data noise)

Identified systems with group sparsity

Case 1 2 3 4 5 6 7 8 9

�1 -0.0458 -0.0471 -0.0468 -0.0956 -0.0951 -0.0953 -0.1456 -0.1428 -0.1448
�(�1) 0.0111 0.0144 0.0177 0.0073 0.0101 0.0114 0.0054 0.0085 0.0097
�2 1.5028 2.0037 2.4908 1.5093 2.0034 2.4931 1.5167 2.0100 2.5086
�(�2) 0.0106 0.0141 0.0177 0.0066 0.0096 0.0112 0.0047 0.0078 0.0094
�3 -1.5086 -2.0034 -2.5001 -1.5132 -2.0170 -2.5113 -1.5167 -2.0209 -2.5190
�(�3) 0.0106 0.0139 0.0173 0.0070 0.0104 0.0117 0.0054 0.0074 0.0092
�4 -0.0553 -0.0496 -0.0470 -0.1032 -0.1014 -0.0989 -0.1560 -0.1536 -0.1467
�(�4) 0.0101 0.0136 0.0172 0.0064 0.0099 0.0115 0.0046 0.0068 0.0089

Identified systems without group sparsity

�1 -0.0474 -0.0493 -0.0486 -0.0982 -0.1007 -0.1007 -0.1488 -0.1496 -0.1450
�(�1) 0.0021 0.0033 0.0050 0.0016 0.0027 0.0034 0.0012 0.0029 0.0031
�2 1.4991 2.0037 2.5034 1.5019 1.9898 2.4886 1.5034 2.0037 2.5127
�(�2) 0.0024 0.0043 0.0068 0.0020 0.0034 0.0045 0.0015 0.0034 0.0038
C(y2) -0.0921 -0.1260 -0.1530 -0.0737 -0.0966 -0.1098 -0.0603 -0.0849 -0.1174
�(C(y2)) 0.0029 0.0050 0.0078 0.0022 0.0038 0.0045 0.0017 0.0037 0.0042
C(x2y) 0 0 0 0 0 0.0405 0 0.415 0
�(C(x2y)) 0 0 0 0 0 0.0086 0 0.0068 0
C(x2y2) 0 0 0 0 0 0 0 0 0.0416
�(C(x2y2)) 0 0 0 0 0 0 0 0 0.0051
C(x2y3) 0 0 0 0 0 0 0 -0.0381 0
�(C(x2y3)) 0 0 0 0 0 0 0 0.0068 0
�3 -1.5033 -1.9984 -2.4967 -1.5000 -2.0028 -2.4993 -1.4975 -2.0010 -2.5003
�(�3) 0.0026 0.0041 0.0054 0.0018 0.0028 0.0044 0.0015 0.0027 0.0030
�4 -0.0547 -0.0509 -0.0490 -0.1008 -0.1017 -0.1001 -0.1517 -0.1531 -0.1475
�(�4) 0.0022 0.0035 0.0046 0.0014 0.0023 0.0038 0.0011 0.0022 0.0026
C(x2) 0.0912 0.1189 0.1471 0.0714 0.1052 0.1137 0.0621 0.0819 0.1005
�(C(x2)) 0.0026 0.0041 0.0054 0.0018 0.0028 0.0044 0.0015 0.0027 0.0030

True systems

�1 -0.05 -0.05 -0.05 -0.1 -0.1 -0.1 -0.15 -0.15 -0.15
�2 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5
�3 -1.5 -2.0 -2.5 -1.5 -2.0 -2.5 -1.5 -2.0 -2.5
�4 -0.05 -0.05 -0.05 -0.1 -0.1 -0.1 -0.15 -0.15 -0.15

Table 4. System identification results for the parametric cubic
systems dx

dt = �1x3+�2y3, state
dy
dt = �3x3+�4y3 (5% data noise),

where �i denotes relevant coe�cients, C(⇤) denotes the coe�cient
of redundant terms ⇤.

the left-hand side dictionaries, the best one can be identified by minimizing the
prediction error. It is noted that during each single iteration, we need to make
sure a single term can not exist in both left and right libraries simultaneously to
avoid trivial solutions (e.g., xdx

dt = xdx
dt ). More details of this process are discussed
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Figure 3. Identified systems of two di↵erent sets of parameters
with 5% noise: (1st column) � = [�0.05, 1.5,�1.5,�0.05] and (2nd
column) � = [�0.15, 2,�2,�0.15]. Only the trajectory of the state
variable x is shown and the propagated uncertainty is given by the
3-� region. The 2nd row is the zoomed-in view.

in the SINDy-PI paper [14]. As for the dataset generation, we follow the classical
setting in the biochemistry field to vary the initial conditions of x and try to dis-
cover the true system from multiple datasets. The initial conditions is chosen as
random numbers, and the governing equation is solved by the six-stage, fifth-order,
Runge-Kutta method used in ode45 in Matlab. The simulated time span is 10 s.

Ten di↵erent parameter pairs of (jx, Vmax,Km) are chosen to generate parametric
datasets, which are perturbed with 2% noises. For the implicit system, the iterative
SI process proposed in SINDy-PI is less robust for large data noise, which has been
reported in the original SINDy-PI work. In the implicit systems, the largest data
noise that can be handled is two percent [14]. The system is identified using the
proposed group Bayesian approach with the same iterative process to handle the
implicit formulation, and the results are summarized in Table 6. In general, the
Michaelis-Menton model forms can be discovered, and coe�cients for ten di↵erent
cases are accurately identified. From the study on explicit systems, we found that
the merit brought by the group sparsity is less notable when data noise is low.
Therefore, there is not much performance di↵erence between the procedures with
or without group sparsity pruning. Table. 5 shows the three metrics results. Lastly,
the visualization of the propagated parametric system due to the estimated uncer-
tainties is shown in Fig 4. And we only show the UQ result for the group sparsity
approach. We can see that the decaying rates vary for di↵erent parametric datasets,
which can be accurately captured by the predicted mean, and the corresponding
uncertainty range reasonably cover the ground truth.
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Identified systems with group sparsity

Case 1 2 3 4 5 6 7 8 9 10
rmse 42.74 9.53 32.39 30.08 12.99 13.40 17.58 12.23 33.10 35.94
MR 1 1 1 1 1 1 1 1 1 1
MP 1 1 1 1 1 1 1 1 1 1

Identified systems with non-parsimonious model

rmse 776.67 704.91 728.43 716.23 625.28 606.92 603.25 748.48 708.18 754.67
MR 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
MP 1 1 1 1 1 1 1 1 1 1

Table 5. Di↵erent metrics for parametric MichaelisMenten model
(2% data noise)

!htp]
Identified systems with group sparsity

Term Coe↵ 1 2 3 4 5 6 7 8 9 10

dx/dt �1 -0.1608 -0.1926 -0.2607 -0.3621 -0.2077 -0.2870 -0.3776 -0.1872 -0.2591 -0.3541
�(�1) 0.0288 0.0203 0.226 0.0253 0.0166 0.163 0.0198 0.0199 0.0256 0.0263

x �2 -0.8985 -1.2028 -1.1931 -1.1984 -1.5070 -1.5002 -1.4989 -1.2025 -1.1962 -1.1962
�(�2) 0.0097 0.0088 0.0096 0.0105 0.0087 0.0085 0.0098 0.0088 0.0107 0.0110

constant �3 0.0645 0.0516 0.0851 0.1154 0.0433 0.0741 0.1043 0.1127 0.1754 0.2354
�(�3) 0.0154 0.0116 0.0121 0.0127 0.0098 0.0090 0.0105 0.0109 0.0131 0.0127

True systems

dx/dt �1 -0.2 -0.2 -0.3 -0.4 -0.2 -0.3 -0.4 -0.2 -0.3 -0.4
x �2 -0.9 -1.2 -1.2 -1.2 -1.5 -1.5 -1.5 -1.2 -1.2 -1.2
constant �3 0.06 0.06 0.09 0.12 0.06 0.09 0.12 0.12 0.18 0.24

Table 6. Identification results for parametric MichaelisMenten
model (2% data noise), where �i denotes the coe�cient and �(�i)
denotes standard deviation for the parsimonious library terms.

Figure 4. Identified systems of two di↵erent set of parameters
with 2% noise: (1st column) [jx, Vmax,Km] = [0.3, 1.2, 0.2] and
(2nd column) [jx, Vmax,Km] = [0.3, 1.8, 0.4]. The trajectory of the
state variable x is shown and the propagated uncertainty is given
by the 3-� region. The 2nd row is the zoomed-in view.
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3.4. ICP model discovery. Lastly, we consider a more challenging case, identify-
ing an idealized intracranial pressure (ICP) dynamics model from multiple synthetic
patient-specific datasets. ICP is the pressure inside the skull, and ICP monitoring
is essential to manage many cerebral diseases, such as brain injury, hemorrhage,
and hydrocephalus. The elevated ICP will lower the perfusion pressure and thus
decrease the total cerebral blood flow, which can damage the brain tissue even cause
death. The current clinical practice of ICP monitoring is highly-invasive and can
cause infection or brain tissue damage. It is preferable to estimate the ICP based
on other non-invasively measurable signals related to ICPs. It is known that the
ICP dynamics are driven by the interactions of blood flows, cerebrospinal flows,
and brain tissues. Clinically, arterial blood pressure (ABP) and cerebral blood flow
velocity (CBF) can be monitored in a non-invasive way. If a model that describes
the interacting dynamics of intracranial systems is available, we can monitor the
ABP and CBF signals to estimate the ICP non-invasively. However, due to the
high complexity of intracranial systems, there is no closed-form first-principle mod-
el that faithfully describes the ICP dynamics. There is a hope to identify explicit
model forms from massive ICP, CBF, and ABP data of a cohort of patients. Under
this motivation, we will discover a classical ICP model form, Ursino-Lodi mod-
el [36], which simplifies the ICP system as a resistor-capacitor circuit. Note that
in current research, we try to identify the classical model based on synthetic data
instead of directly identifying dynamical models from real-world data. We acknowl-
edge that directly identifying complex dynamical systems from real-world data is a
more important and also more challenging in system identification. In terms of the
Ursino-Lodi model, it has two state variables, capacity Ca and ICP (Pic), and two
forcing variables, ABP (Pa) and CBF (q). The governing equation of ICP dynamics
is given as,

dPic

dt
=

kEPic

1 + CakEPic

⇥
Ca

dPa

dt
+

dCa

dt
(Pa � Pic) +

Pc � Pic

Rf
� Pic � Pvs

Ro

⇤
,

dCa

dt
=

1

⌧
[�Ca + �(G · xa)]

xa =
q � qn
qn

.

(24)

where kE is the intracranial elastance coe�cient, Rf is cerebrospinal fluid resistance
and Ro is outflow resistance. ⌧ is the constant of regulation, � is a sigmoid static
function and G is the maximum autoregulation gain. The qn is the CBF constant
of tissue metabolism and xa is the normalized CBF changes. To simplify the model
forms, we combined the following physiological parameters,

Pc =
PaRpv + PicRa

Ra +Rpv
,

Ra =
kRC2

an

V 2
a

,

Va = Ca(Pa � Pic),

q =
Pa � Pc

Ra
.

(25)

where Rpv and Ra are proximal venous resistance and regulated resistance respec-
tively, kR is resistance coe�cient, Can is the basal arterial compliance, and Pc is
the capillary pressure. Then the compliance Ca and resistance Ra can be expressed
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as functions of state/forcing variables Pa, Pic and q,

Ca =


kRC2

anq

(Pa � Pic)2[(Pa � Pic)�Rpvq]

�0.5
,

Ra =
kRC2

an

C2
a(Pa � Pic)2

.

(26)

Finally, the governing equations of ICP dynamics can be rearranged as,

dCa

dt
=

kRC2
an

2Ca

1

[(Pa � Pic)2(Pa � Pic �Rpvq)]2
(
dq

dt
(Pa � Pic)

2(Pa � Pic �Rpvq)

� q[(2(Pa � Pic)(
dP a

dt
� dP ic

dt
))(Pa � Pic �Rpvq)

+ (Pa � Pic)
2(
dP a

dt
� dP ic

dt
�Rpv

dq

dt
)]).

(27)

As a result, the ICP system is simplified as a first-order ODE system. The variables
ABP (Pa) and CBF (q) are taken as forcing inputs to the system, which can be
measured in a non-intrusive manner. Their time derivatives can be calculated either
from the finite di↵erence (for clean data) or the denoising neural networks (for noisy
measurements). Substituting Eq. 27 into Eq. 24 leads to the final closed equation
for ICP dynamics, which is a very complicated implicit ODE system. To deal with
the implicit system, the iterative process from the SINDy-PI has to be adopted here,
where the left-hand side library is given by Eq 28, with the correct form marked in
bold font. The right-hand side library terms, the correct coe�cient, and identified
terms and coe�cients can be found in Table 8.

2

4

�� �� �� �� ��
Ra

dPic

dt
dPic
dt CaRaPic CaPic

dPic
dt Ca

dPic
dt�� �� �� �� ��

3

5 (28)

Synthetic ICP databases are generated by numerically solving the governing ODE
systems as described in the original paper [36] with di↵erent parameter settings. To
be specific, the ODE system uses the 4th order Runge-Kutta method to marching
in time, and the simulated time span is 150s. The initial conditions are given as
Pic = 9.5 and Ca = 0.15. The simulation results are then corrupted by adding 1%
noise to the simulated signals Pa, Pic, q and 0.2% noise to their derivatives, serving
as the process noise. As described above, the Ursino-Lodi model is a complicated
algebraic-di↵erential system and has many control parameters. Here we chose to pa-
rametrize three di↵erent parameters and generate five di↵erent databases, as shown
in Table. 7. The three variable parameters are basal arterial compliance (Can), the
intracranial elastance coe�cient (kE), and cerebrospinal fluid resistance (Rf ). In

Parameter Can Rf kE

1 0.15 2.38⇥ 103 0.231
2 0.125 2.38⇥ 103 0.231
3 0.15 2.5⇥ 103 0.231
4 0.15 2.38⇥ 103 0.2
5 0.15 2.38⇥ 103 0.175

Table 7. Control variables for parametric system identification
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this problem, the coe�cient magnitude of di↵erent candidate function terms could
vary by several orders, posing significant challenges on sequential threshold pruning
since small but important coe�cients can be mistakenly pruned out. As a remedy,
we rewrote the discovery problem as,

ˆ̇X =

2

4

�� �� �� �� ��
⇧1 ⇧2 ⇧3 ... ⇧m�� �� �� �� ��

3

5

2

66664

!1

!2

!3

...
!m

3

77775
(29)

where ⇧⇤ = X⇤/�(X⇤) and !⇤ = W⇤ ⇤ �(X⇤). The transformed equation weights
!⇤ will be scaled to the proper range. Finally, we can easily get the true mean values
using the reverse transform E(W⇤) = E(!⇤)/�(X⇤) and V(W⇤) = V(!⇤)/�(X⇤)2,
and then �(W⇤) = �(!⇤)/�(X⇤)

The true model forms and the discovered model forms are listed in Table 8 and
Table 10, respectively. It can be seen that the analytical expression of the Ursino-
Lodi model can be accurately discovered, and the mean values of the identified
coe�cients are also close to the ground truth for all five di↵erent parameter sets.
The summarized results for metrics comparison (rmse, MP and MR) are shown
in Table. 9. By forward propagating the predicted uncertainties in the identified
coe�cients, the propagated uncertainties in the ICP dynamics can be estimated, as
shown in Fig. 5. And we only show the UQ result for the group sparsity approach.
Consistent with the results in previous cases, the predicted ICP mean coincides well
with the true value, and the uncertainty range covers the prediction well. In this
case, the sti↵ness of the ICP dynamics is large, which means a small perturbation
of the coe�cient can generate a significant variance in the predicted ICP dynamics.
Some combination of coe�cients can even lead to diverged solutions, which has also
been reported in [13]. The diverged samples are eliminated here for the uncertainty
propagation.

Figure 5. Identified systems of two di↵erent set of parameter-
s with 1% noise: (1st column) [Can, Rf , kE ] = [0.125, 2.38 ⇥
103, 0.231] and (2nd column) [Can, Rf , kE ] = [0.15, 2.38 ⇥
103, 0.175]. The trajectory of the ICP is shown and the propagated
uncertainty is given by the 3-� region.
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True systems

Term Coe↵ 1 2 3 4 5

PicPaRa
dCa
dt �1 0.231 0.231 0.231 0.2 0.175

P 2
icRa

dCa
dt �2 -0.231 -0.231 -0.231 -0.2 -0.175

PaPic �3 1.2035⇥ 10�4 1.2035⇥ 10�4 1.1458⇥ 10�4 1.0420⇥ 10�4 9.118⇥ 10�5

P 2
ic �4 �1.6571⇥ 10�4 �1.6571⇥ 10�4 �1.5993⇥ 10�4 �1.4347⇥ 10�4 �1.2554⇥ 10�4

P 2
icRa �5 �3.6576⇥ 10�5 �3.6576⇥ 10�5 �3.6576⇥ 10�5 �3.1668⇥ 10�5 �2.7709⇥ 10�5

PicRa �6 2.1946⇥ 10�4 2.1946⇥ 10�4 2.1946⇥ 10�4 1.9001⇥ 10�4 1.6625⇥ 10�4

Pic �7 2.7213⇥ 10�4 2.7213⇥ 10�4 2.7213⇥ 10�4 2.3561⇥ 10�4 2.0616⇥ 10�4

dPic
dt �8 �1.24 �1.24 �1.24 �1.24 �1.24

CaPicRa
dPic
dt �9 �0.231 �0.231 �0.231 �0.2 �0.175

CaPic
dPic
dt �10 �0.2864 �0.2864 �0.2864 �0.248 �0.217

PaPic
dCa
dt �11 �0.2864 �0.2864 �0.2864 �0.248 �0.217

P 2
ic

dCa
dt �12 �0.2864 �0.2864 �0.2864 �0.248 �0.217

Table 8. Right hand-side library and true parametric coe�cient

Identified systems with group sparsity

Case 1 2 3 4 5
rmse 406.25 407.79 407.79 359.38 351.82
MR 1 1 1 1 1
MP 1 1 1 1 0.92

Identified systems with non-parsimonious model

rmse 957.18 956.50 957.26 966.70 973.60
MR 0.79 0.77 0.79 0.77 0.77
MP 0.92 0.83 0.92 0.83 0.83

Table 9. Di↵erent metrics for parametric ICP model

4. Conclusion. This work presents a sequential threshold sparse Bayesian learn-
ing approach with group sparsity to identify the parsimonious equation forms for a
parametric dynamic system using multiple datasets simultaneously. A vital feature
of the proposed approach is the group-sparsifying Bayesian learning from multiple
datasets governed by the same model form but with di↵erent parameters, which
is beneficial to identify the most parsimonious model forms. Moreover, to better
deal with noisy measurement data and improve derivative computation, a DNN-
based denoising method is used for data prepossessing. Several linear/nonlinear
ODE systems in both explicit and implicit settings are studied to demonstrate the
e↵ectiveness of the proposed method. The numerical results show that the recov-
ered mean is close to the true values. Moreover, the posterior uncertainty for the
identified coe�cients can be reasonably estimated. The parameter uncertainty can
be propagated via the identified dynamical model using the Monte-Carlo method,
which can provide uncertainty estimation of the state predictions. Although we have
demonstrated the merit of synchronous learning with multiple parametric datasets,
the current approach has several limitations, which can be improved in the future.
For example, the current method is still less robust for discovering implicit systems
when it comes to large data noise. To make further improvement, one potential di-
rection is to couple physics-informed neural networks (PINN) with sparse Bayesian
learning techniques, as some recent study of combining PINN and SINDy shows the
great capability to deal with high-level data scarcity and large data noise [31, 6].
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Identified systems with group sparsity

Term Coe↵ 1 2 3 4 5

PicPaRa
dCa
dt

�1 0.231 0.231 0.231 0.2 0.175
�(�1) 2.3745⇥ 10�4 5.9450⇥ 10�4 2.7723⇥ 10�4 3.4780⇥ 10�4 3.9709⇥ 10�4

P 2
icRa

dCa
dt

�2 -0.231 -0.2307 -0.231 -0.2 -0.1748
�(�2) 5.9808⇥ 10�4 2.02⇥ 10�2 8.626⇥ 10�4 3⇥ 10�3 7.6⇥ 10�3

PaPic
�3 1.1972⇥ 10�4 1.1905⇥ 10�4 1.1421⇥ 10�4 1.0319⇥ 10�4 8.886⇥ 10�5

�(�3) 2.62⇥ 10�5 5.881⇥ 10�5 3.841⇥ 10�5 6.221⇥ 10�5 1.6⇥ 10�5

P 2
ic

�4 �1.6358⇥ 10�4 �1.6118⇥ 10�4 �1.5867⇥ 10�4 �1.4143⇥ 10�4 �1.1745⇥ 10�4

�(�4) 6.862⇥ 10�5 1.4322⇥ 10�4 1.0414⇥ 10�4 1.3692⇥ 10�4 2.907⇥ 10�5

P 2
icRa

�5 �3.6628⇥ 10�5 �3.6622⇥ 10�5 �3.6604⇥ 10�4 �3.1036⇥ 10�5 �2.7871⇥ 10�5

�(�5) 2.364⇥ 10�6 1.1038⇥ 10�5 2.988⇥ 10�6 4.857⇥ 10�5 6.661⇥ 10�6

PicRa
�6 2.2857⇥ 10�4 2.3723⇥ 10�4 2.2446⇥ 10�4 2.0615⇥ 10�4 1.9794⇥ 10�4

�(�6) 4.2186⇥ 10�4 8.3757⇥ 10�4 5.9635⇥ 10�4 1.1⇥ 10�3 1.8554⇥ 10�4

Pic
�7 2.1870⇥ 10�4 1.5004⇥ 10�4 2.4190⇥ 10�4 1.3637⇥ 10�4 0
�(�7) 2⇥ 10�3 4.7⇥ 10�3 3.1⇥ 10�3 5.6⇥ 10�3 0

dPic
dt

�8 �1.2071 �1.1633 �1.2195 �1.1759 �1.0668
�(�8) 0.9734 1.8386 1.5444 2.4216 0.4493

CaPicRa
dPic
dt

�9 �0.231 �0.2312 �0.231 �0.2 �0.1751
�(�9) 5.1⇥ 10�4 1.19⇥ 10�2 7.4645⇥ 10�4 2.4⇥ 10�3 5.4⇥ 10�3

CaPic
dPic
dt

�10 �0.2789 �0.2678 �0.2817 �0.2351 �0.1859
�(�10) 0.2246 0.4533 0.3567 0.4868 8.89⇥ 10�2

PaPic
dCa
dt

�11 �0.2789 �0.2687 �0.2817 �0.2352 �0.1867
�(�11) 0.2246 0.4246 0.3562 0.4843 7.77⇥ 10�2

P 2
ic

dCa
dt

�12 �0.2788 �0.2703 �0.2817 �0.2352 �0.1877
�(�12) 0.2249 0.3936 0.3562 0.4819 7.36⇥ 10�2

Table 10. Right hand-side library and inferred parametric coe�-
cient, where �i denotes the coe�cient and �(�i) denotes standard
deviation for the parsimonious library terms.
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Appendix.

rmse Linear Cubic MichaelisMenten ICP
Parsimonious 5s 13s 4882s 1148s
Non-parsimonious 0.67s 0.2s 1251s 1134s

Table 11. Training cost comparison
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Identified systems with group sparsity

Case 1 2 3 4 5 6 7 8 9

y2 -0.1749 -0.2424 -0.2813 -0.1295 -0.1940 -0.2175 -0.1045 -0.1744 -0.2075
�(y2) 0.0044 0.0061 0.0088 0.0027 0.0041 0.0050 0.0026 0.0035 0.0051
�1 -0.0485 -0.0458 -0.0503 -0.1007 -0.0978 -0.1025 -0.1498 -0.1536 -0.1525
�(�1) 0.0039 0.0053 0.0075 0.0025 0.0038 0.0045 0.0025 0.0033 0.0047
�2 1.5013 1.9995 2.4978 1.4994 2.0097 2.4998 1.4909 2.0109 2.5204
�(�2) 0.0037 0.0052 0.0075 0.0023 0.0036 0.0044 0.0022 0.0031 0.0045
x2 0.1797 0.2177 0.3016 0.1434 0.1922 0.2480 0.1273 0.1710 0.2083
�(x2) 0.0047 0.0060 0.0084 0.0032 0.0049 0.0061 0.0030 0.0037 0.0060
�3 -1.5033 -2.0000 -2.5049 -1.5059 -1.9995 -2.5155 -1.5117 -2.0026 -2.5049
�(�3) 0.0041 0.0051 0.0072 0.0029 0.0043 0.0054 0.0028 0.0034 0.0055
�4 -0.0508 -0.0541 -0.0514 -0.0998 -0.1056 -0.0950 -0.1473 -0.1528 -0.1485
�(�4) 0.0039 0.0050 0.0072 0.0026 0.0041 0.0053 0.0023 0.0030 0.0053

Identified systems without group sparsity

C(y2) �0.1772 �0.2423 �0.2791 �0.1377 �0.2122 �0.2376 �0.1153 �0.1898 �0.1975
�(C(y2)) 0.0056 0.0055 0.0082 0.0034 0.0042 0.0056 0.0030 0.0039 0.0062
�1 -0.0489 -0.0468 -0.0514 -0.0990 -0.0931 -0.1005 -0.1476 -0.1493 -0.1548
�(�1) 0.0037 0.0047 0.0055 0.0024 0.0030 0.0038 0.0022 0.0030 0.0045
C(x2y) 0 0 0 0 0 0 0 0 �0.0558
�(C(x2y)) 0 0 0 0 0 0 0 0 0.0189
�2 1.5068 1.9985 2.5174 1.4950 2.0084 2.5035 1.4918 2.0150 2.5325
�(�2) 0.0051 0.0069 0.0083 0.0034 0.0041 0.0050 0.0022 0.0039 0.0062
C(x2y2) 0 0 0 0 0.0361 0.0378 0 0.0365 0
�(C(x2y2)) 0 0 0 0 0.0049 0.0062 0 0.0051 0
C(x4y) 0 0 0.0513 0 0 0 0 0 0
�(C(x4y)) 0 0 0.0137 0 0 0 0 0 0
C(x2y3) 0 0 -0.0589 0 0 0 0 0 0
�(C(x2y3)) 0 0 0.0125 0 0 0 0 0 0
C(x2) 0.1798 0.2060 0.2977 0.1418 0.1946 0.2289 0.1264 0.1610 0.2011
�(C(x2)) 0.0050 0.0072 0.0092 0.0039 0.0042 0.0058 0.0023 0.0032 0.0059
�3 -1.4942 -1.9919 -2.4866 -1.5093 -2.0194 -2.5208 -1.5049 -2.0173 -2.5176
�(�3) 0.0050 0.0063 0.0084 0.0037 0.0039 0.0052 0.0022 0.0031 0.0056
C(xy2) 0 0 0 0 0 0 0 �0.0386 0
�(C(xy2)) 0 0 0 0 0 0 0 0.0057 0
�4 -0.0511 -0.0548 -0.0502 -0.0994 -0.1089 -0.0977 -0.1472 -0.1549 -0.1487
�(�4) 0.0035 0.0045 0.0062 0.0025 0.0027 0.0039 0.0016 0.0020 0.0042
C(x3y) 0 0 0 0 0 0.0482 0 0 �0.0603
�(C(x3y)) 0 0 0 0 0 0.0064 0 0 0.0068
C(x2y2) 0 0 0 0 0 0 0 0.0368 0
�(C(x2y2)) 0 0 0 0 0 0 0 0.0044 0
C(xy3) 0 0 0 0 0 0 0 0 0.0420
�(C(xy3)) 0 0 0 0 0 0 0 0 0.0071
C(x3y2) 0 0 0 0 0.0501 0 0 0.0637 0
�(C(x3y2)) 0 0 0 0 0.0073 0 0 0.0065 0

True systems

�1 -0.05 -0.05 -0.05 -0.1 -0.1 -0.1 -0.15 -0.15 -0.15
�2 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5
�3 -1.5 -2.0 -2.5 -1.5 -2.0 -2.5 -1.5 -2.0 -2.5
�4 -0.05 -0.05 -0.05 -0.1 -0.1 -0.1 -0.15 -0.15 -0.15

Table 13. System identification results for the parametric cubic
systems dx

dt = �1x3 + �2y3, state
dy
dt = �3x3 + �4y3 with 10% data

noise.
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