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Abstract

Computational hemodynamic modeling has been widely used in cardiovascular research and

healthcare. However, the reliability of model predictions is largely dependent on the uncer-

tainties of modeling parameters and boundary conditions, which should be carefully quanti-

fied and further reduced with available measurements. In this work, we focus on propagating

and reducing the uncertainty of vascular geometries within a Bayesian framework. A novel

deep learning (DL)-assisted parallel Markov chain Monte Carlo (MCMC) method is pre-

sented to enable e�cient Bayesian posterior sampling and geometric uncertainty reduction.

A DL model is built to approximate the geometry-to-hemodynamic map, which is trained ac-

tively using online data collected from parallel MCMC chains and utilized for early rejection

of unlikely proposals to facilitate convergence with less expensive full-order model evalua-

tions. Numerical studies on 2-D aortic flows are conducted to demonstrate the e↵ectiveness

and merit of the proposed method.

Keywords: Computational fluid dynamics, Cardiovascular modeling, Machine learning,

Uncertainty quantification, Model inference

1. Introduction1

Hemodynamics information, e.g., fractional flow reserve (FFR), wall shear stress, and2

blood flow pattern, is critical in cardiovascular research and personalized healthcare [1–3].3

To quantify the functional information of hemodynamics from medical images, e.g., com-4
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puted tomography (CT) and magnetic resonance imaging (MRI), image-based computational5

fluid dynamics (CFD) modeling has become a paradigm in cardiovascular study [1]. The6

standard workflow of constructing an image-based model includes (1) extraction of vascular7

anatomy from images as the geometric boundary, (2) numerical discretization and parame-8

ter specification, (3) solving discretized partial di↵erential equation (PDE) system, and (4)9

post-processing simulated results. In this whole process, uncertainties can be introduced10

from various sources, e.g., reconstructed geometries, inflow/outflow boundary conditions,11

and specified mechanical properties, which largely impact the reliability of the simulated so-12

lutions [4–6]. Quantifying and reducing these uncertainties in computational hemodynamics13

have begun to draw attention in recent years [7–15]. Most of the existing literature has fo-14

cused on forward uncertainty propagation, i.e., investigating the sensitivity of the simulated15

hemodynamics to the modeling inputs. For example, Sankaran and Marsden [14] developed16

an adaptive collocation polynomial chaos expansion (PCE) method with sparse grids to for-17

ward propagate input uncertainties on several cardiovascular modeling problems. Fleeter et18

al. [16] proposed a multi-fidelity stochastic framework to estimate propagated uncertainties19

for both global and local hemodynamic indicators. Guzzetti et al. [9] integrated a transverse20

enriched pipe element reduced order model into a PCE framework for e�cient uncertainty21

quantification in large-scale hemodynamics models.22

When observations of the system outcomes are available, which might be indirect, sparse,23

and noisy, the uncertainty of the modeling inputs and simulated states can be reduced within24

a Bayesian framework, known as inverse uncertainty quantification (UQ). The general idea25

is to describe the data under uncertainties in the form of likelihood functions and then26

compute the posterior distributions of unknown modeling inputs and simulated states of27

interest, given specified priors. Inverse UQ is more meaningful as it enables the assimila-28

tion of imperfect data in a probabilistic way for model inference and uncertainty reduction,29

which has attracted increasing attention in the cardiovascular hemodynamic community [17–30

20]. Although there are many di↵erent ways to solve Bayesian data assimilation problems,31

e.g., variational inference [21], sequential or iterative Kalman inversion [18, 19], ensemble32
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average approaches [22], etc, they can only approximate the posterior statistics to certain33

extents. In order to accurately quantify the posterior distribution, Markov Chain Monte34

Carlo (MCMC) sampling is still the gold standard for Bayesian computing and uncertainty35

quantification [23]. MCMC only requires point-wise evaluations of the posterior density up36

to its normalization constant, making the algorithm code non-intrusive and easy to imple-37

ment. However, an intrinsic limitation of the MCMC algorithm lies in its inherent sequential38

nature and the requirement of a huge sample size. This limitation makes it computationally39

infeasible for applications involving expensive computer models, e.g., computational hemo-40

dynamic simulations, since the MCMC typically requires hundreds of thousands (or more)41

samples to reach the convergence, each of which requires a CFD forward simulation that has42

to be done sequentially.43

To alleviate the computational burden, one way is to replace the expensive CFD model44

with an e�cient surrogate, which can be constructed based on, e.g., radial basis function [24],45

Gaussian process (or Kriging) [25], generalized polynomial chaos (PCE) [26], or multi-fidelity46

models [20]. However, traditional surrogate modeling techniques, e.g., Gaussian process47

(GP), can only handle problems with moderate dimensions, and thus the surrogate maps48

are often built for predictions of global quantities instead of local hemodynamics (e.g., ve-49

locity, pressure fields). In this work, we adopt deep learning (DL) for surrogate modeling50

of local hemodynamics as it has been demonstrated to be capable of approximating high-51

dimensional operators accurately [27, 28]. Although surrogate-based MCMC makes the52

Bayesian computing tractable, the approximation errors introduced by the surrogate may53

distort the computed posterior distribution. As an alternative, we leverage the DL-based54

surrogate modeling in a di↵erent way: instead of replacing the CFD with the surrogate55

emulator, we use the DL-based surrogate to accelerate the MCMC convergence by rejecting56

proposals at an early stage without running the expensive CFD simulations. The ideas of de-57

layed acceptance have been explored previously in other contexts either using unconverged58

solutions [29, 30] or GP-based emulators [31, 32], showing asymptotically exact sampling59

behavior at the cost of potential speedup by requiring full-order model evaluation for each60
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accepted sample. To further improve the e�ciency, making MCMC sampling in parallel is61

desirable. In the past decade, many di↵erent parallelizable MCMC algorithms have been62

proposed, which can be classified into three categories: (1) embarrassingly parallel MCMC63

(EP-MCMC) that splits the dataset into multiple partitions and sample the corresponding64

sub-posteriors in parallel [33–35], (2) multiple-proposal MCMC (MP-MCMC) that proposes65

multiple samples simultaneously in every iteration while evaluates their densities in paral-66

lel [36–39], and (3) parallel-chain MCMC (PC-MCMC) that runs multiple MCMC chains67

in parallel [40–43]. In this work, we formulated a DL-assisted delayed acceptance scheme68

within the parallel-chain MCMC framework based on an active learning strategy for geo-69

metric uncertainty reduction in computational hemodynamics. In particular, a deep neural70

network (DNN)-based surrogate model capturing local hemodynamics given geometric in-71

puts is constructed and trained during MCMC sampling in an online manner. The trained72

DNN-surrogate will be used for the delayed acceptance to significantly improve the con-73

vergence. Moreover, multiple concurrent chains collaboratively provide su�cient training74

samples to actively improve the DNN surrogate during MCMC sampling, enabling a novel75

DL-assisted MCMC parallelism. The rest of the paper is organized as follows. The proposed76

DL-assisted parallel-chain MCMC algorithm is introduced in Section 2. Numerical results77

for geometric uncertainty reduction in aortic flows in 2-D irregular geometries are presented78

and discussed in Section 3 Section 4 Finally, Section 5 concludes the paper.79

2. Methodology80

2.1. Overview81

We present a novel Bayesian MCMC computing approach assisted by active deep learning82

(DL) to estimate and reduce input uncertainties in computational hemodynamic simulations83

based on noisy velocity measurements. Here, we restrict the discussion to the impact of84

the uncertainty of the input geometry, which is usually due to imaging segmentation errors85

and has been demonstrated as the most dominant uncertainty source in the computational86

hemodynamics [44, 45]. Specifically, the prior uncertainty is defined based on the parame-87

terization of the geometric variations and will be updated to the posterior by assimilating88
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noisy velocity data via Bayes rule using the MCMC sampling. We leverage a DL-based89

geometry-to-flow surrogate to facilitate the Metroplis-Hasting MCMC convergence by re-90

jecting the proposed samples early to avoid a large number of expensive CFD simulations91

for the likelihood evaluations. The DL surrogate is actively trained (i.e., iteratively im-92

proved) using newly generated CFD data, gradually collected from multiple parallel MCMC93

chains in an online manner. Note that the major focus of this work is algorithmic develop-94

ment of the method that reduces the uncertainty under a Bayesian framework given sparse,95

noisy measurments instead of clinical applications of aortic flows. Hence, we demonstrate96

the feasibility of the algorithm on simplified 2-D aorta geometry for proof-of-concept, which97

will be introduced in the following section.98

2.2. Parametric 2-D aorta model99

We use a 2-D aorta model to demonstrate the proposed inverse geometric UQ method.100

The parameterization of the aorta geometry is shown in Figure 1. To start with, a 3-101

D patient-specific aorta surface from [46] is reconstructed from medical images and pre-102

processed using the Vascular Modeling Toolkit (VMTK), a popular open-source module for103

3-D geometric reconstruction, analysis and mesh generation. For simplicity, the top branches104

such as subclavian and carotid arteries are trimmed o↵, leaving a single-channel vessel with105

its surface wall smoothed and outlet extended to facilitate convergence in CFD simulations.106

The centerline of the vessel is extracted (highlighted in red color) from the aorta surface, and107

both the aorta surface and its centerline are projected to a flat plane, the orientation of which108

is determined by optimization to mostly preserve the side shape characteristics of the aorta.109

In particular, we take the centerline of the 3D aorta geometry and project points {pppi}i=1,...,m110

(m denotes the total number of points on the centerline) of the centerline to the normal111

vector nnn of the projection plane. The projected coordinates can be expressed as {p0
i
} =112

{< nnn,ppp >i}, where < ., . > is regular Euclidean dot product. We minimize the variance of113

{p0
i
} to obtain the optimized normal vector nnnopt, which in this case, is [0.88, 0.43, 0.22]T . A114

sequence of eleven equally-spaced locations are picked on the centerline along the streamwise115

direction, including the inlet to the outlet, where normal vectors (perpendicular to the116
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tangent direction) are calculated. The geometric space is spanned by the centerline and radii117

at these locations. Hence, given a centerline C and a set of finite radius values {ri}i=1,2,...,11,118

one can easily obtain a new aorta geometry, where the surfaces are obtained based on the119

spline function with a specified resolution. To model the geometric uncertainty, we add a120

perturbation of the radius as a function of the centerline locations. We design a perturbation121

method that mimics the shape of an aorta with stenosis or aneurysm at the sixth location122

of the aorta. We set the degree of freedom (number of elements) of the perturbation vector123

as three, which is su�cient enough for this designing purpose and higher numbers are not124

considered because they reduces the e�ciency of the MCMC alogirthm. We assign one DOF125

to the sixth location to enable sharp curvature changes. Then we correlate the deformation126

of the upstream locations by perturbing them together in a sense of maintaining the topology127

of the whole upstream section during deformation, which can avoid creating unrealistic aorta128

shapes (e.g., extremely wavy vessel walls). Same for the downstream locations. Finally, we129

define a three-element perturbation vector ✓✓✓ = {✓1, ✓2, ✓3}, which are applied to the first five130

{rm
i
}i=1,2,...,5 (in blue), the sixth r

m

6 (in green), and the rest radii {rm
i
}i=7,8,9,10,11 (in purple),131

respectively. Each component of ✓✓✓ is drawn from a uniform distribution ✓i ⇠ U(��r,�r)132

as the prior, where �r = 2.57mm denotes the variation limit.

Figure 1: Illustration of the 2-D aorta model construction and shape parameterization

133
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To systematically generate a significant amount of CFD data for training and validation134

purposes, we build a python routine that fully automates the tedious simulation procedure,135

including shape construction (mentioned above), mesh generation, boundary settings, sim-136

ulation and post-processing. Specifically, we develop an in-house mesh generation software137

based on a constrained Delaunay triangulation algorithm [47]. The triangulated mesh will138

be automatically generated given the outline of the aorta shape, where the boundary mesh139

is obtained by extruding the internal ones along the normal direction with one unit length.140

The generated vtk mesh files are converted into the polyMesh format, which can be used141

for CFD simulations in OpenFOAM, an open-source CFD platform. The incompressible,142

steady Navier-Stokes equations are solved based on the Semi-Implicit Method for Pressure143

Linked Equations (SIMPLE) algorithm [48]. A parabolic velocity profile is prescribed at the144

inlet with a maximum velocity Um = 1m/s, constant pressure outflow boundary condition145

is imposed at the outlet, and non-slip wall boundary condition is applied to the aorta walls,146

assumed to be rigid. A python wrapper is developed to enable the automation of CFD147

simulations in parallel. During the post-processing step, the simulated hemodynamic field148

data are projected onto the surface or volumetric mesh grids, where the correspondences are149

established by uniformly sampling points between the centerline and the surface vertices.150

2.3. Fundamentals of MCMC Bayesian sampling151

Given some (sparse) flow observations ddd, we can infer a more accurate vessel shape and152

reduce the geometric uncertainty within a Bayesian framework,153

p(✓✓✓ | ddd) / L(✓✓✓ | ddd)p(✓✓✓), (1)

where ✓✓✓ is the parameterization of the geometric variation; p(✓✓✓) denotes the prior distribution154

of the geometry perturbation, which is often due to the image segmentation uncertainty and155

modeled as a uniform distribution in this work; L(✓✓✓ | ddd) is known as the likelihood function,156

which is often determined by the measurement uncertainty. In most cases, the posterior157

density p(✓✓✓ | ddd) can not be solved analytically and has to be obtained by Monte Carlo158

sampling. Markov Chain Monte Carlo (MCMC) sampling is the gold standard method for159
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Bayesian computing, whose general idea is to e�ciently sample the posterior using a Markov160

chain. In particular, it starts from an initial sample ✓✓✓0 2 ⌦⌦⌦ and explores the parameter space161

⌦⌦⌦ using a transition kernel T (✓✓✓i | ✓✓✓i+1). Typically, the transition kernel is computed by two162

steps: (i) propose a new sample ✓✓✓i+1 based on the current ✓✓✓i using a proposal distribution163

q(✓✓✓i+1 | ✓✓✓i) and (ii) determine whether or not accept the proposed sample based on the164

acceptance probability,165

A(✓✓✓i+1 | ✓✓✓i) = min

⇢
p(✓✓✓i+1 | ddd)q(✓✓✓i+1 | ✓✓✓i)
p(✓✓✓i | ddd)q(✓✓✓i | ✓✓✓i+1)

, 1

�
, (2)

which is known as the classic Metroplis-Hasting MCMC algorithm. To accurately recover166

the posterior distribution, the Markov chain is supposed to run for enough iterations until167

su�cient samples are collected and the posterior landscape is fully explored. In each itera-168

tion, we need to calculate the likelihood density, which involves the evaluation of the forward169

model F(·), as the measurement model is defined as,170

ddd = h(F(✓✓✓)) + �d, (3)

where h(·) represents the state-to-observable map, and �d denotes the observation uncer-171

tainty. The computational cost of each forward model evaluation (i.e., CFD simulation)172

is nontrivial and can be significantly large in many cases (e.g., 3-D hemodynamics with173

flexible walls). It is computationally infeasible to conduct enormous forward simulations174

for MCMC, especially considering the sequential nature of the classic Metropolis-Hasting175

algorithm, making the matter worse.176

2.4. Delayed-acceptance via DNN surrogate177

To tackle the challenge of applying MCMC to problems involving expensive simulation,178

a straightforward remedy is to replace the costly forward model with an e�cient surrogate179

emulator, which may risk distorting the posterior due to surrogate modeling errors. As an180

alternative, delayed-acceptance (DA) strategy can asymptotically reach the convergence by181

combining both the full-order and surrogate models for MCMC sampling. The general idea182

is to leverage the surrogate for screening of most unlikely proposals to avoid unnecessary full-183

order model (FOM) evaluations. Only for those proposals likely to be accepted will involve184
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expensive FOM evaluations. Let ⇡(✓✓✓) = p(✓✓✓ | ddd) represent the posterior density obtained by185

the FOM. The DA Metropolis-Hastings algorithm consists of two steps: (i) a pre-accept step186

is performed using the posterior density ⇡̃(✓✓✓) approximated based on the surrogate model,187

and the acceptance probability is188

Ã(✓✓✓i+1 | ✓✓✓i) := min

⇢
⇡̃(✓✓✓i+1)q(✓✓✓i | ✓✓✓i+1)

⇡̃(✓✓✓i)q(✓✓✓i+1 | ✓✓✓i)
, 1

�
. (4)

(ii) if the proposal is accepted by Ã, the final accept/reject decision will be made by the189

FOM based on the acceptance ratio A
⇤,190

A
⇤(✓✓✓i+1 | ✓✓✓i) := min

⇢
⇡(✓✓✓i+1)⇡̃(✓✓✓i)

⇡(✓✓✓i)⇡̃(✓✓✓i+1)
, 1

�
(5)

Note that the product of the probabilities of these two sequential steps equals to acceptance191

probability in the original Metroplis-Hasting algorithm (i.e., A = ÃA
⇤), implying that the192

detail balance is still satisfied and it will eventually converge to the target distribution.193

A deep learning based-surrogate model is built in an encoding-decoding fashion to rapidly194

predict hemodynamics given aorta shapes. In particular, we encode the 2-D aorta shape195

into a 3-D parameter vector ✓✓✓ as described above. Meanwhile, the velocity fields computed196

from CFD simulations are also encoded into the latent space using primary component197

analysis (PCA). A total of 98% energy is preserved, resulting a decoding error less than 1%.198

The mapping from the encoded shape to the flow field is learned by a multilayer perceptron199

(MLP). The MLP uses Rectified Linear Unit (ReLU) as the activation function and is trained200

using Adam optimizer where the learning rate is adaptively changed based on the estimates201

of the moments. In order to achieve the best performance, we optimize the hyperparameters202

of the MLP, including the number of layers, number of neurons of each layer, batch size203

and initial learning rate based on the Bayesian optimization. The Asynchronous Successive204

Halving Algorithm (ASHA) is utilized to aggressively terminate non-ideal trials in advance205

to facilitate convergence. The network hyperparameter optimization process is implemented206

in RAY-tune [49], which is an open-source python package designed for scalable parameter207

tuning. The optimized parameters are summarized as: batch size = 8, number of layers =208

4, initial learning rate = 6.5⇥ 10�5, and the optimized MLP structure is given in Table A.3.209
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To evaluate the performance of the DL-based surrogate model, the relative mean square210

error (RMSE) is used to calculate the di↵erence between the surrogate prediction and CFD211

reference,212

RMSE =

P
N

i
(xi � yi)2P
N

i
yi

2
⇥ 100%, (6)

whereXXX = (x1, ..., xN) and YYY = (y1, ..., yN) are prediction and reference on N vertices/grids.213

2.5. Active learning with parallel MCMC chains214

The DA strategy may fail when there is a large discrepancy between the surrogate and215

FOM predictions due to a significant decrease in the acceptance ratio. On the other hand,216

the FOM will be evaluated anyway in the DA-MCMC process for the proposed samples217

accepted by the surrogate model. Therefore, the natural idea is to leverage these gradually218

accumulated FOM solutions as data to train the DL surrogate online, known as the active219

learning. Specifically, during each MCMC iteration, when a new proposal passes the first step220

of surrogate screening, one FOM propagation will be executed, producing one high-fidelity221

(HF) flow data. These newly generated HF CFD solutions will be collected to enrich existing222

training and testing sets. The current DL surrogate will be tested on the constantly-updated223

test set as long as a new group of Nnew data are collected. If the testing error exceeds the224

threshold of ✏⇤
test

, the newly collected data will be added into the existing training set, which225

will be used to refine the DL surrogate model actively. Note that the neural network does226

not need to be re-trained from scratch. Instead, a transfer learning strategy can be used227

to enable fast online model refinement. For example, the trained parameters of the current228

MLP are saved and can be reloaded as the initial condition or even frozen to a certain extent229

when the surrogate model needs to be further re-trained due to the addition of training data.230

In this way, the training cost of the online update is extensively reduced. The details of the231

proposed algorithm and pseudo code are given in Algorithm 1.232

Active online training brings two major merits: i) During initialization of the DL sur-233

rogate, data are collected uniformly over the entire parameter space, which may result in234

insu�ciency near high-density regions. However, online training data collected from MCMC235

iterations are more likely to locate in high-density regions, and thus the surrogate can be236
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refined in the area of interest. ii). When multiple MCMC chains run simultaneously (i.e.,237

parallel-chain MCMC), it brings no additional merits other than leveraging multiple CPU238

cores for classic Metropolis-Hastings or its DA variants. However, active learning-based DA239

Metropolis-Hastings algorithms can further leverage the parallel-chain setting, where a sin-240

gle surrogate can be updated over the new data collected across multiple chains, facilitating241

surrogate model update and convergence. Suppose the posterior distribution has more than242

one mode, and the parallel MCMC chains may move in di↵erent high-density regions si-243

multaneously. The surrogate model will quickly improve over multiple high-density regions,244

resulting in a vast improvement in the UQ performance.245

3. Numerical Results246

3.1. Surrogate CFD modeling of 2D aortic flows247

The variation range of each input shape parameter ✓i 2 ✓✓✓ is normalized to [�1, 1] and248

a uniform distribution is given as the prior (i.e., ✓i ⇠ U(�1, 1), 8i 2 {1, 2, 3}). In order to249

fully explore the input parameter space, we draw 10000 samples and create corresponding250

aorta meshes and solution fields using the developed python routine. Starting from the shape251

parameter ✓✓✓, each python process, including construction outline, meshing, simulation and252

post-processing, takes around 6 seconds on a single core on Intel(R) Xeon(R) Gold 6138253

CPU. The dataset is generated by conducting a batch of 40 cases in parallel at one time.254

After the generation of the dataset, the velocity field data is projected into latent space using255

PCA. The fitted PCA transfer function is saved and serves as a transformation tool between256

physical and the encoded velocity data. Utilizing RAY-tune tool, the training and MLP257

hyperparameters are fully optimized. Subsequently, the MLP is trained on training sets of258

di↵erent sizes and tested on a test set of 100 unseen samples to investigate the sensitivity of259

the surrogate testing error with respect to training size. Each training process is conducted260

on an Nvidia RTX A6000 GPU with a minimum of 1500 epochs to ensure convergence.261

The model testing results are shown in Figure 2, where ✏V and ✏VM represent the RMSE262

error of the velocity vector field and the velocity magnitude field. As expected, the results263
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Figure 2: DNN prediction errors (averaged MSE) versus di↵erent training sizes. Testing errors of the interior

velocity vector field ✏V and velocity magnitude ✏VM

show a decrease for both errors as the dataset size grows. The error of the predicted velocity264

vector is slightly higher than that of the velocity magnitude prediction. The DL model265

trained on the entire CFD dataset (N = 10000) has a test error of 5.1⇥ 10�5. In percentage,266

the error equals 0.005% in terms of ARMSE of the velocity magnitude, which is very small,267

indicating a great consistency between the surrogate model and the CFD model. The velocity268

contours are shown in Figure 3, where we randomly select five test aorta geometries, and269

the hemodynamic fields predicted by the DL model are compared with the CFD reference270

(referred to as ground truth). From comparison one can find out that the predicted velocity271

contours agree well with the CFD ground truth across all selected samples.272

12

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Biomechanical Engineering. Received March 31, 2022; 
Accepted manuscript posted September 27, 2022. doi:10.1115/1.4055809 
Copyright (c) 2022 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/b

io
m

e
c
h
a
n
ic

a
l/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
1
5
/1

.4
0
5
5
8
0
9
/6

9
2
0
8
2
5
/b

io
-2

2
-1

1
0
4
.p

d
f b

y
 U

n
iv

e
rs

ity
 O

f N
o

tre
 D

a
m

e
, J

ia
n
-X

u
n
 W

a
n
g
 o

n
 2

7
 S

e
p

te
m

b
e
r 2

0
2
2



Figure 3: Comparison of the DNN-based surrogate model predictions and the CFD ground truth. (a) velocity

magnitude contours: prediction (top row), CFD ground truth (bottom row). (b) velocity profiles on all 11

locations along the centerline: e.g., “S1 NN” and “S1 CFD” denote the surrogate and the ground truth for

the first sample (first column in (a)) respectively.

Quantitively, we also compare the velocity profiles over cross-sections at all 11 locations273

between the predictions and the ground truth in Figure 3. As expected, the predicted velocity274

profiles agree well to the ground truth for all five samples at 11 locations. Small discrepancies275

can be found at the 6-8th locations, where the sharp curvature of the aorta shape induces276

large gradient flows. The boundary layer at location id 8 is less accurate, which may a↵ects277

wall shear stress calculations. This can be improved by adding finer boundary layer meshes278

which will be addressed in the more realistic CFD models in future work. We also calculated279

the velocity magnitude ARMSE for all the five examples as shown in table 1. The result280

shows maximum discrepancy near the sixth location as expected. Note that the error at281
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the inlet is zero because the inlet velocity is already prescribed. Although each FOM CFD282

simulation is relatively cheap, it still poses a great computational challenge to systematical283

analysis of MCMC algorithms in di↵erent settings. Since the DL model fully trained on the284

entire CFD dataset (N = 10000) yields close results to the CFD ground truth, we will use it285

as the synthetic “CFD model” (i.e., FOM) for subsequent MCMC experiments.286

Locations(No.)Locations(No.)Locations(No.) 1(Inlet) 2 3 4 5 6 7 8 9 10 11(Outlet)

ARMSE 0% 0.015% 0.011% 0.017% 0.032% 0.15% 0.052% 0.024% 0.020% 0.025% 0.090%

Table 1: Quantitative comparison of ARMSE of the velocity magnitude on 11 locations along the centerline

between prediction (surrogate) and ground truth (CFD)

3.2. Geometric uncertainty propagation and reduction287

Each MCMC simulation is performed with more than 10000 samples accepted to ensure288

a low sampling error. The proposal distribution for every MCMC trial is a multivariate nor-289

mal distribution over three shape parameters with no correlation structures imposed. The290

proposal variance is set as 0.1 for all three dimensions such that good mixing is observed.291

The velocity magnitude information on 50 uniformly sampled locations is “observed” inde-292

pendently with 5% Gaussian noises. The observation data are synthesized from the CFD293

simulation with a specified “true” shape ✓✓✓ = [�0.1, 0.3,�0.2]T , assumed unknown in the294

MCMC inference process. The likelihood function is computed by taking the product of295

the conditional density of all observations given ✓✓✓. The classic Metropolis-Hasting algo-296

rithm coupled with synthetic FOM is used to generate converged MCMC chains, which297

is used as the reference (ground truth) results for all MCMC experiments. The proposed298

method, delayed acceptance Metropolis-Hasting MCMC with online training (DA OLT ),299

is run with the same settings and will be compared against the reference results. In the300

proposed method, the initial surrogate model is trained on the set with the size of 10, which301

has a large prediction error (Figure 2). Two chains are run in parallel on two di↵erent CPU302

cores and the online update interval dt is 10 steps. The testing error threshold is set to be303

✏
⇤
test

= 1⇥ 10�5. Note that every online refinement of the DL surrogate is performed on the304
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GPU in parallel to the main sampling process. Also, benefiting from the continuous trans-305

fer learning setup, each update is set to run only for 100 epochs, much less than the 1500306

epochs for the initial training from scratch. Finally, the online update stopped at the 80th307

refinement step, where the test error falls below the threshold ✏
⇤
test

. More detailed statistics308

of the proposed DA OLT Metropolis-Hastings MCMC algorithm is plotted in Figure C.9 in309

the Appendix C. The posterior sampling results obtained by the proposed DA OLT method310

are compared against the ground truth in Figure 4. To show how the geometric uncertainty

Figure 4: Comparison of prior (top row) and posterior (bottom row) of the DA OLT and GT MCMC

algorithms: density for the shape ✓✓✓ (1st,2nd and 3rd column), shape ensemble (4th column)

311

is reduced, we present the prior distributions of all three shape parameters in the first row,312

whereas the posterior distributions are plotted in the second row. Note that all sampled313

distributions are fitted by a Gaussian mixture density via sklearn GaussianMixture mod-314

ule with the same hyperparameter setting. Moreover, 1000 randomly selected aorta shape315

samples are plotted at the rightmost column in Figure 4, where the black line is the mean316

shape. The non-informative uniform prior distributions over the three parameters are up-317

dated to the posterior ones, which agree well with the ground truth solutions. Compared to318

the prior shape ensemble, the uncertainty range of the posterior ensemble is very small and319
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concentrated to the synthetic truth, showing that the true aorta shape can be inferred with a320

significant reduction of uncertainty. The good agreement between the posterior distributions321

obtained by the proposed DA OLT and ground truth (GT) demonstrates the e↵ectiveness322

of the proposed method. However, slight discrepancies can be seen in the distributions of the323

second parameter ✓2, which corresponds to the perturbation of the sixth radius. This might324

be because the curvature is rapidly changed near the location of the sixth radius, posing325

challenges in surrogate modeling.326

In addition to the input shape uncertainty, we also investigate the posterior distributions327

of the maximum and mean velocity magnitudes (Vmax and Vmean) by propagating the ge-328

ometric uncertainty forward to flow via the FOM simulations. The propagated prior and329

posterior distributions of Vmax and Vmean are shown in Figure 5. We observed that the

Figure 5: Comparison of prior and posterior of the DA OLT and GT MCMC algorithms: density for

maximum velocity Vmax (left) and maximum velocity (right)

330

non-informative prior is more spread out for both maximum and mean velocity magnitudes,331

while their posteriors are significantly concentrated to 1.2 m/s and 0.96 m/s, respectively,332

indicating a notable uncertainty reduction. The density contraction is very obvious for the333

maximum velocity, implying the fact that a large proportion of the CFD samples has the334

maximum velocity near 1.2 m/s. Again, the posterior distributions obtained by the proposed335

DA OLT perfectly agree with reference using FOM. A collection of five randomly selected336

aorta shapes from prior and posterior distributions are shown in Figure 6, where the velocity337

magnitude contours are also plotted.338
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Figure 6: Comparison of the prior and posterior ensemble. (a) velocity magnitude field: Prior ensemble

(top row), posterior ensemble (bottom row). (b) velocity profile at all 11 locations, e.g., “S1” denotes

the first sample (first column in (a)) and the ground truth denotes the CFD results at parameter ✓ =

[�0.1, 0.3,�0.2]
T
.

The top row shows five instances from the prior ensemble, while the collection of the339

posterior samples from DA OLT is listed at the bottom. The variation of the velocity340

field is significantly diminished compared to the prior instances. In addition, we added the341

velocity profile comparisons between the prior and posterior ensemble and the ground truth342

(✓✓✓ = [�0.1, 0.3,�0.2]T ) in Figure 6. The results show a large variance of velocity profiles343

for the prior ensemble, whereas the posterior profiles are much more consistent and closer344

to the ground truth, indicating significant uncertainty reduction by the inverse UQ process.345

We also compare the ARMSE of the velocity magnitude on 11 locations along the centerline346

between the ensembles (prior and posterior) to the ground truth. The result shows that the347

average di↵erences between the prior ensemble and the ground truth are larger than that348
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between the posterior ensemble and the ground truth. In other words, the prior samples349

have very large uncertainties at 11 locations whereas the posterior samples have much less350

uncertainty and high similarities to the ground truth. In general, the inverse UQ process can351

increase the reliability of the velocity field prediction and hence facilitate CFD-supported352

clinical diagnosis of cardiovascular diseases.353

Locations(No.)Locations(No.)Locations(No.) 1(Inlet) 2 3 4 5 6 7 8 9 10 11(Outlet)

prior ARMSE 0% 0.064% 0.18% 0.32% 6.1% 9.7% 8.2% 7.7% 7.8% 8.1% 8.2%

posterior ARMSE 0% 0.0076% 0.0067% 0.0079% 0.010% 0.030% 0.035% 0.023% 0.016% 0.023% 0.030%

Table 2: Quantitative comparison of ARMSE of the velocity magnitude on 11 locations along the centerline

between (prior and posterior) ensemble and ground truth (CFD)

4. Discussion354

4.1. Performance comparison of di↵erent MCMC methods355

This section will mainly compare and discuss the performance of DL-assisted Metropolis-356

Hastings MCMCwith di↵erent settings. Besides the reference MCMC (GT) and theDA OLT357

method, two other MCMC algorithms are added to the comparison: one is the classic358

Metropolis-Hasting with a low-fidelity surrogate model trained by 10 samples (LF MCMC),359

and the other is a DA Metropolis-Hastings with the same LF surrogate model without an360

online update (DA). Figure 7 shows the posterior distributions for the shape parameter ✓✓✓ and361

the maximum velocity Vmax obtained by di↵erent MCMC methods. In terms of the posterior362

mean, a straightforward observation is that the LF MCMC mean deviates from the ground363

truth to a large extent, especially for the shape parameters, whereas the Metropolis-Hastings364

algorithms featuring Delayed Acceptance (DA) always accurately capture the posterior mean.365

Note that the detailed balance is not satisfied for the LF MCMC method, which results in366

an erroneous posterior distribution approximation. In contrast, the MCMC method featur-367

ing Delayed Acceptance satisfies the detailed balance, accounting for a much more accurate368

prediction of the mean. Viewing from the posterior shape, the proposed method stands out369

among all the methods. The DA MCMC method tends to heavily over-predict the posterior370
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Figure 7: Comparison of posterior among di↵erent MCMC algorithms (GT:ground truth/high-fidelity

MCMC, DA OLT : delayed acceptance online training MCMC, DA: delayed acceptance MCMC, LF: low

fidelity MCMC): density for the shape ✓✓✓ (upper left, upper right and lower left), maximum velocity Vmax

(lower right)
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peak for shape parameters. Obviously, the presence of the LF filtering step alters the trace371

of the states and consequently results in improper sample coverage over the high-density372

region. For the velocity density plots, however, both the DA and DA OLT methods are373

very close to the reference (GT).374

4.2. E�ciency of active-learning delayed-acceptance MCMC375

Another vital topic to discuss is the improvement of e�ciency over the classic FOM-376

based Metropolis-Hasting method (GT) for all methods. Since the computational cost of377

the LF forward model is trivial compared to the FOM simulation, we care about how many378

realizations of FOM are needed in order to obtain the desired number of MC samples. Hence379

we create a new criterion called “e↵ective acceptance ratio (EAR)”, simply defined as,380

EAR =
number of accepted samples

number of realizations of the HF model
(7)

Apparently, for the GT and the LF MCMC methods, EAR = A (defined in Eq. 2). Whereas381

EAR = A
⇤ (defined in Eq. 5) the DA and DA OLT MCMC methods. The E↵ective ac-382

ceptance ratios are plotted in Figure 8 (left). As expected, the LF MCMC method has the383

same level of EAR compared to the ground truth. However, the DA MCMC method has384

a surprisingly low acceptance ratio when a LF surrogate is used, which means the required385

FOM queries is extensively higher than that of the classic Metropolis MCMC. In fact, the386

intention of the delayed acceptance technique is to improve the e↵ective acceptance ratio387

(second stage) by introducing a surrogate screening step (first stage). However, the addition388

of the screening step may backfire when the surrogate model’s prediction error is significant.389

Active learning can come into play to timely improve the LF surrogate by leveraging gradu-390

ally collected FOM solutions to address this issue. As shown in Figure 8 (left), the proposed391

DA OLT method raises the EAR to 45.6%, which is about five times higher than the refer-392

ence MCMC. Note that the EAR will increase if the accuracy of the surrogate model grows393

and will asymptotically reach 100% if the surrogate has the same accuracy as the FOM.394

We further evaluate the extent of e�ciency improvement of the proposed method at dif-395

ferent ratios RHF/LF of cost between the FOM and surrogate forward models. A normalized396
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Figure 8: Comparison of e↵ective acceptance ratio EAR of posterior among di↵erent MCMC algorithms

(left), Relationship of normalized cost C
⇤
MCMC

and HF-to-LF ratio R(HF/LF ) for DA OLT and GT

cost C⇤
MCMC

is defined which represents the total cost of the MCMC simulation normalized397

by the cost of executing FOM queries for the accepted samples. The relationship of those398

two variables are demonstrated in the right panel of Figure 8. The result indicates the ef-399

ficiency of the proposed DA OLT MCMC method will be significantly improved over the400

reference as the FOM becomes more and more expensive. On the other hand, the cost of the401

DA OLT MCMC method can be higher than the reference MCMC method when the surro-402

gate model’s cost is close to the FOM due to two-stage acceptance/rejection determination.403

The intersection of two curves is located at R⇤
HF/LF

= 2.35. Usually, for DL-based surrogate404

models for complex computational hemodynamics, the RHF/LF value is much higher than405

the critical value R
⇤
HF/LF

= 2.35 due to the extremely fast inference speed of the neural406

network and high cost of 3-D CFD simulations. For example, the surrogate model and the407

CFD forward model cost about 0.006 and 6 seconds in the current pipeline, resulting in a408

high to low fidelity model ratio of RHF/LF = 6/0.006 = 1000. Suppose the MCMC has409

to collect 10000 samples to be reliable, then a standard MCMC with CFD forward model410

requires 221.6 hours, whereas the MCMC OLT method costs about 37 hours, resulting in a411

reduction in time of 83.3% Note that in this work, we adopted the high fidelity (HF) model412

as the neural network with 10000 training data, so the HF model costs 0.006 as well and the413

actual time costs in this work are 13.3 minutes and 27.4 minutes for classic MCMC and the414
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propose DA OLT respectively. Assuming in a more realistic application where the forward415

model costs 6 minutes and the surrogate model’s cost stays the same, the computational costs416

for classic MCMC and proposed DA OLT method are 13295 and 2193 hours respectively,417

bringing an e�ciency boost of 83.5%. In conclusion, our proposed method will bring a sig-418

nificant e�ciency boost compared to the conventional Metropolis-Hastings MCMC method419

for forward and inverse UQ problems.420

4.3. Limitations for patient-specific applications421

In the previous results, we demonstrate the feasibility of the algorithm using synthetic422

data on simplified 2-D aorta geometries as an example for proof of concept. However, it423

is noteworthy to discuss whether the method can be extended to patient-specific hemody-424

namic applications. Admittedly, the CFD simulation in the present work is a simplified425

numerical example and has not considered many realistic aspects for real patient-specific426

cases, e.g., 3D patient-specific geometry, measured pulsatile inflow boundary conditions,427

fluid-structure interactions (FSI), etc. Hence, extending the proposed algorithm to patient-428

specific settings requires several improvements: 1). The CFD forward model can be updated429

to patient-specific settings. E.g., setting the CFD simulation to be 3-D and transient, as-430

signing measure pulsatile inlet flow boundary conditions based on clinical measurements,431

adding Windkessel boundary conditions at the outlet, enabling FSI, etc. 2). Use a more432

sophisticated parameterization method to describe complex 3-D geometries (e.g., 3-D aorta433

with branches). 3). Use a more sophisticated neural network (e.g., Graph neural network434

(GNN) ) to learn the mapping between 3-D input geometry and field outputs. In future435

work, we expect to address those issues to apply the proposed algorithm to clinical usage.436

In addition, in the context of patient-specific hemodynamics simulation, information such as437

flow rate data obtained from 2D PC MRI at certain cross-sections or 3D/4D flow MRI data438

can be assimilated using the proposed method to reduce the uncertainty of the geometries439

of interest and enhance the model predictive accuracy. One can also evaluate the similarity440

between the predicted aorta geometry shape and the flow field to direct image data (e.g.,441

4D flow MRI).442
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5. Conclusion443

This work presents a Bayesian framework for geometric uncertainty reduction using DL-444

assisted MCMC sampling. First, shape parameterization is performed on the aorta geome-445

tries based on a patient-specific 3-D aorta sample, from which multiple aorta geometries are446

created by perturbation of radii at di↵erent sections. An automatic python routine is estab-447

lished to encapsulate all necessary simulation procedures to simulate flow information from448

a given aorta shape ✓✓✓. The geometry-to-flow surrogate model is built upon the CFD dataset449

to learn the non-linear relationship between the input shape to the flow solution fields. The450

trained surrogate model exhibits an increase of accuracy as the size of the training set grows.451

We propose a Metropolis-Hastings algorithm featuring delayed acceptance and active learn-452

ing (DA OLT ), enabling the inference of the aorta shape and uncertainty reduction based453

on observed velocity information at sparse locations. The results show a significant uncer-454

tainty reduction given a non-informative prior. A good consistency is observed between455

the proposed method and the reference Metropolis-Hasting MCMC (GT MCMC) in terms456

of the posterior approximation. The proposed method is compared with Delayed Accep-457

tance Metropolis-Hastings MCMC (DA MCMC) and standard Metropolis-Hastings MCMC458

algorithms equipped with the same surrogate model without an active learning component459

(LF MCMC). Regarding accuracy, the proposed method stands out among those methods,460

while the LF MCMC method completely fails due to high bias of the surrogate. As for461

the e�ciency, again, the proposed method brings a huge e�ciency improvement, whereas462

the standard DA Metropolis-Hastings MCMC method failed in this specific setting due to463

the large discrepancy between the surrogate and FOM solutions. The cost of the proposed464

method is further analyzed by inspecting the normalized cost change as a function of the465

HF-to-LF model cost ratio. It appears that the e�ciency boost is more conspicuous when466

the FOM is more expensive. Typically when a DNN-bases surrogate model is embedded467

into the proposed DA scheme with active learning, a considerable promotion of e�ciency is468

guaranteed.469

In general, this work focuses on the algorithmic development of a method to reduce the470
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uncertainty of reconstructed geometry via assimilating sparse, noisy flow measurement data471

using a Bayesian framework. The major highlight of the algorithm is that it improves the472

UQ process, where only one version of the forward model (either full-order or reduced-order)473

is repetitively evaluated, and enables combining models with di↵erent levels of complexity474

into one UQ algorithm. In addition, the active-learning feature further reduces the cost of475

training data generation via selectively collecting the data in an online manner and gains476

an extra e�ciency boost in parallel MCMC settings. Achieving patient-specific settings for477

the CFD forward model is out of the scope of this paper. The current pipeline is subjected478

to multiple limitations for its application in clinical situations, where the forward model479

is usually patient-specific. As a result, certain improvements have to be made for clinical480

applications (e.g., using patient-specific settings for the forward model, updating the pa-481

rameterization for complex 3-D geometry and improving the neural network architecture to482

learn more complicated mappings between 3-D geometry and the field outputs), which will483

be addressed in future work.484
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Appendix A. Optimized deep neural network architecture493

NN TypeNN TypeNN Type LayersLayersLayers CharacteristicsCharacteristicsCharacteristics

Linear Layer Input feature = 3 input feature = 8

Relu -

Linear Layer Input feature = 8 input feature = 256

MLP Relu -

Linear Layer Input feature = 256 input feature = 128

Relu -

Linear Layer Input feature = 128 input feature = 20

Table A.3: The optimized MLP structure based on Bayesian tuning
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Appendix B. Proposed DL-assisted parallel-chain MCMC algorithm494

Algorithm 1 Active Learning Delayed Acceptance Metropolis-Hastings MCMC
Data: Staring point ✓✓✓ = ✓✓✓0 2 ⌦⌦⌦, test error threshold ✏

⇤
test

, online update period dt; online dataset OLTOLTOLT = [],

initial accepted samples set ASASAS = [ ]

Result: Accepted sample set ASASAS

for each MCMC iteration i =1,2,... do

Draw next state ✓✓✓i+1; Calculate surrogate model posterior ⇡̃(✓✓✓i+1) and acceptance ratio Ã(✓✓✓i | ✓✓✓i+1);

Generate a random number a1 ⇠ U(0, 1);

if Ã(✓✓✓i | ✓✓✓i+1) > a1 then
Calculate high-fidelity model posterior ⇡(✓✓✓i+1) and acceptance ratio A⇤

(✓✓✓i | ✓✓✓i+1);

Generate a random number a2 ⇠ U(0, 1);

Append sample ✓✓✓i+1 and its solution F(✓✓✓i+1) to online dataset OLTOLTOLT ;

if A⇤
(✓✓✓i | ✓✓✓i+1) > a2 then

Accept the new sample ✓✓✓i = ✓✓✓i+1;

Append sample ✓✓✓i+1 to Accepted sample set ASASAS;

else
Reject sample ✓✓✓i+1

end

else
Reject sample ✓✓✓i+1

end

if len(OLTOLTOLT )%dt = 0 then

test the surrogate model F̃(✓✓✓i+1) on the dataset OLTOLTOLT ; if test error > ✏
⇤
test

then
add new data to dataset OLTOLTOLT , train surrogate model

else
stop the training update

end

end

if training is finished then

update surrogate model F̃ = F̃ 0

end

end
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Appendix C. DA OLT alogirthm statistics495

Figure C.9: Statistics for DA OLT MCMC algorithm: trace of state (left column, first 3 rows), posterior

sample distribution of state (right column, first 3 rows), training error history (left, 4th row), online test

error ✏
⇤
test

and threshold ✏
⇤
V
(right, 4th row)
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