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Abstract

Computational hemodynamic modeling has been widely used in cardiovascular research and
healthcare. However, the reliability of model predictions is largely dependent on the uncer-
tainties of modeling parameters and boundary conditions, which should be carefully quanti-
fied and further reduced with available measurements. In this work, we focus on propagating
and reducing the uncertainty of vascular geometries within a Bayesian framework. A novel
deep learning (DL)-assisted parallel Markov chain Monte Carlo (MCMC) method is pre-
sented to enable efficient Bayesian posterior sampling and geometric uncertainty reduction.
A DL model is built to approximate the geometry-to-hemodynamic map, which is trained ac-
tively using online data collected from parallel MCMC chains and utilized for early rejection
of unlikely proposals to facilitate convergence with less expensive full-order model evalua-
tions. Numerical studies on 2-D aortic flows are conducted to demonstrate the effectiveness
and merit of the proposed method.

Keywords: Computational fluid dynamics, Cardiovascular modeling, Machine learning,

Uncertainty quantification, Model inference

1. Introduction

Hemodynamics information, e.g., fractional flow reserve (FFR), wall shear stress, and
blood flow pattern, is critical in cardiovascular research and personalized healthcare [1-3].

To quantify the functional information of hemodynamics from medical images, e.g., com-
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puted tomography (CT) and magnetic resonance imaging (MRI), image-based computational
fluid dynamics (CFD) modeling has become a paradigm in cardiovascular study [1]. The
standard workflow of constructing an image-based model includes (1) extraction of vascular
anatomy from images as the geometric boundary, (2) numerical discretization and parame-
ter specification, (3) solving discretized partial differential equation (PDE) system, and (4)
post-processing simulated results. In this whole process, uncertainties can be introduced
from various sources, e.g., reconstructed geometries, inflow/outflow boundary conditions,
and specified mechanical properties, which largely impact the reliability of the simulated so-
lutions [4-6]. Quantifying and reducing these uncertainties in computational hemodynamics
have begun to draw attention in recent years [7-15]. Most of the existing literature has fo-
cused on forward uncertainty propagation, i.e., investigating the sensitivity of the simulated
hemodynamics to the modeling inputs. For example, Sankaran and Marsden [14] developed
an adaptive collocation polynomial chaos expansion (PCE) method with sparse grids to for-
ward propagate input uncertainties on several cardiovascular modeling problems. Fleeter et
al. [16] proposed a multi-fidelity stochastic framework to estimate propagated uncertainties
for both global and local hemodynamic indicators. Guzzetti et al. [9] integrated a transverse
enriched pipe element reduced order model into a PCE framework for efficient uncertainty
quantification in large-scale hemodynamics models.

When observations of the system outcomes are available, which might be indirect, sparse,
and noisy, the uncertainty of the modeling inputs and simulated states can be reduced within
a Bayesian framework, known as inverse uncertainty quantification (UQ). The general idea
is to describe the data under uncertainties in the form of likelihood functions and then
compute the posterior distributions of unknown modeling inputs and simulated states of
interest, given specified priors. Inverse UQ is more meaningful as it enables the assimila-
tion of imperfect data in a probabilistic way for model inference and uncertainty reduction,
which has attracted increasing attention in the cardiovascular hemodynamic community [17—
20]. Although there are many different ways to solve Bayesian data assimilation problems,

e.g., variational inference [21], sequential or iterative Kalman inversion [18, 19], ensemble
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average approaches [22]; etc, they can only approximate the posterior statistics to certain
extents. In order to accurately quantify the posterior distribution, Markov Chain Monte
Carlo (MCMC) sampling is still the gold standard for Bayesian computing and uncertainty
quantification [23]. MCMC only requires point-wise evaluations of the posterior density up
to its normalization constant, making the algorithm code non-intrusive and easy to imple-
ment. However, an intrinsic limitation of the MCMC algorithm lies in its inherent sequential
nature and the requirement of a huge sample size. This limitation makes it computationally
infeasible for applications involving expensive computer models, e.g., computational hemo-
dynamic simulations, since the MCMC typically requires hundreds of thousands (or more)
samples to reach the convergence, each of which requires a CFD forward simulation that has
to be done sequentially.

To alleviate the computational burden, one way is to replace the expensive CFD model
with an efficient surrogate, which can be constructed based on, e.g., radial basis function [24],
Gaussian process (or Kriging) [25], generalized polynomial chaos (PCE) [26], or multi-fidelity
models [20]. However, traditional surrogate modeling techniques, e.g., Gaussian process
(GP), can only handle problems with moderate dimensions, and thus the surrogate maps
are often built for predictions of global quantities instead of local hemodynamics (e.g., ve-
locity, pressure fields). In this work, we adopt deep learning (DL) for surrogate modeling
of local hemodynamics as it has been demonstrated to be capable of approximating high-
dimensional operators accurately [27, 28]. Although surrogate-based MCMC makes the
Bayesian computing tractable, the approximation errors introduced by the surrogate may
distort the computed posterior distribution. As an alternative, we leverage the DL-based
surrogate modeling in a different way: instead of replacing the CFD with the surrogate
emulator, we use the DL-based surrogate to accelerate the MCMC convergence by rejecting
proposals at an early stage without running the expensive CFD simulations. The ideas of de-
layed acceptance have been explored previously in other contexts either using unconverged
solutions [29, 30] or GP-based emulators [31, 32], showing asymptotically exact sampling

behavior at the cost of potential speedup by requiring full-order model evaluation for each
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accepted sample. To further improve the efficiency, making MCMC sampling in parallel is
desirable. In the past decade, many different parallelizable MCMC algorithms have been
proposed, which can be classified into three categories: (1) embarrassingly parallel MCMC
(EP-MCMC) that splits the dataset into multiple partitions and sample the corresponding
sub-posteriors in parallel [33-35], (2) multiple-proposal MCMC (MP-MCMC) that proposes
multiple samples simultaneously in every iteration while evaluates their densities in paral-
lel [36-39], and (3) parallel-chain MCMC (PC-MCMC) that runs multiple MCMC chains
in parallel [40-43]. In this work, we formulated a DL-assisted delayed acceptance scheme
within the parallel-chain MCMC framework based on an active learning strategy for geo-
metric uncertainty reduction in computational hemodynamics. In particular, a deep neural
network (DNN)-based surrogate model capturing local hemodynamics given geometric in-
puts is constructed and trained during MCMC sampling in an online manner. The trained
DNN-surrogate will be used for the delayed acceptance to significantly improve the con-
vergence. Moreover, multiple concurrent chains collaboratively provide sufficient training
samples to actively improve the DNN surrogate during MCMC sampling, enabling a novel
DL-assisted MCMC parallelism. The rest of the paper is organized as follows. The proposed
DL-assisted parallel-chain MCMC algorithm is introduced in Section 2. Numerical results
for geometric uncertainty reduction in aortic flows in 2-D irregular geometries are presented

and discussed in Section 3 Section 4 Finally, Section 5 concludes the paper.

2. Methodology

2.1. QOverview

We present a novel Bayesian MCMC computing approach assisted by active deep learning
(DL) to estimate and reduce input uncertainties in computational hemodynamic simulations
based on noisy velocity measurements. Here, we restrict the discussion to the impact of
the uncertainty of the input geometry, which is usually due to imaging segmentation errors
and has been demonstrated as the most dominant uncertainty source in the computational
hemodynamics [44, 45]. Specifically, the prior uncertainty is defined based on the parame-

terization of the geometric variations and will be updated to the posterior by assimilating
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noisy velocity data via Bayes rule using the MCMC sampling. We leverage a DL-based
geometry-to-flow surrogate to facilitate the Metroplis-Hasting MCMC convergence by re-
jecting the proposed samples early to avoid a large number of expensive CFD simulations
for the likelihood evaluations. The DL surrogate is actively trained (i.e., iteratively im-
proved) using newly generated CFD data, gradually collected from multiple parallel MCMC
chains in an online manner. Note that the major focus of this work is algorithmic develop-
ment of the method that reduces the uncertainty under a Bayesian framework given sparse,
noisy measurments instead of clinical applications of aortic flows. Hence, we demonstrate
the feasibility of the algorithm on simplified 2-D aorta geometry for proof-of-concept, which

will be introduced in the following section.

2.2. Parametric 2-D aorta model

We use a 2-D aorta model to demonstrate the proposed inverse geometric UQ method.
The parameterization of the aorta geometry is shown in Figure 1. To start with, a 3-
D patient-specific aorta surface from [46] is reconstructed from medical images and pre-
processed using the Vascular Modeling Toolkit (VMTK), a popular open-source module for
3-D geometric reconstruction, analysis and mesh generation. For simplicity, the top branches
such as subclavian and carotid arteries are trimmed off, leaving a single-channel vessel with
its surface wall smoothed and outlet extended to facilitate convergence in CFD simulations.
The centerline of the vessel is extracted (highlighted in red color) from the aorta surface, and
both the aorta surface and its centerline are projected to a flat plane, the orientation of which
is determined by optimization to mostly preserve the side shape characteristics of the aorta.
In particular, we take the centerline of the 3D aorta geometry and project points {p; }i—1._m
(m denotes the total number of points on the centerline) of the centerline to the normal
vector n of the projection plane. The projected coordinates can be expressed as {p.} =
{< n,p >;}, where < .,. > is regular Euclidean dot product. We minimize the variance of
{p.} to obtain the optimized normal vector n,,;, which in this case, is [0.88,0.43,0.22]7. A
sequence of eleven equally-spaced locations are picked on the centerline along the streamwise

direction, including the inlet to the outlet, where normal vectors (perpendicular to the

220z Joquia)das /z uo Buep unx-Uelr ‘eweq 810N JO Ausianiun Aq Jpd 01 L-2Z-010/5280269/608550 L/S L L L 0L/10p/pd-ajoiLie/[eoiueyoawoiq/Bio-awse-uoos| 0o Bipawse)/:dny woly papeojumod



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

tangent direction) are calculated. The geometric space is spanned by the centerline and radii
at these locations. Hence, given a centerline C' and a set of finite radius values {r;};i—12. 11,
one can easily obtain a new aorta geometry, where the surfaces are obtained based on the
spline function with a specified resolution. To model the geometric uncertainty, we add a
perturbation of the radius as a function of the centerline locations. We design a perturbation
method that mimics the shape of an aorta with stenosis or aneurysm at the sixth location
of the aorta. We set the degree of freedom (number of elements) of the perturbation vector
as three, which is sufficient enough for this designing purpose and higher numbers are not
considered because they reduces the efficiency of the MCMC alogirthm. We assign one DOF
to the sixth location to enable sharp curvature changes. Then we correlate the deformation
of the upstream locations by perturbing them together in a sense of maintaining the topology
of the whole upstream section during deformation, which can avoid creating unrealistic aorta
shapes (e.g., extremely wavy vessel walls). Same for the downstream locations. Finally, we
define a three-element perturbation vector @ = {61, 05,63}, which are applied to the first five
{r"}iz12...5 (in blue), the sixth rg* (in green), and the rest radii {r!"},—7891011 (in purple),
respectively. Each component of 8 is drawn from a uniform distribution 6; ~ U(—Ar, Ar)

as the prior, where Ar = 2.57mm denotes the variation limit.

I perturbation 1
- perturbation 2
centerline I perturbation 3

qr(4> B AN
i ]

mean shape

patlent specific aorta

velocity inlet

a). projection b). set perturbation c). construct new shape

Figure 1: Illustration of the 2-D aorta model construction and shape parameterization
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To systematically generate a significant amount of CFD data for training and validation
purposes, we build a python routine that fully automates the tedious simulation procedure,
including shape construction (mentioned above), mesh generation, boundary settings, sim-
ulation and post-processing. Specifically, we develop an in-house mesh generation software
based on a constrained Delaunay triangulation algorithm [47]. The triangulated mesh will
be automatically generated given the outline of the aorta shape, where the boundary mesh
is obtained by extruding the internal ones along the normal direction with one unit length.
The generated vtk mesh files are converted into the polyMesh format, which can be used
for CFD simulations in OpenFOAM, an open-source CFD platform. The incompressible,
steady Navier-Stokes equations are solved based on the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) algorithm [48]. A parabolic velocity profile is prescribed at the
inlet with a maximum velocity U,, = 1m/s, constant pressure outflow boundary condition
is imposed at the outlet, and non-slip wall boundary condition is applied to the aorta walls,
assumed to be rigid. A python wrapper is developed to enable the automation of CFD
simulations in parallel. During the post-processing step, the simulated hemodynamic field
data are projected onto the surface or volumetric mesh grids, where the correspondences are

established by uniformly sampling points between the centerline and the surface vertices.

2.3. Fundamentals of MCMC Bayesian sampling

Given some (sparse) flow observations d, we can infer a more accurate vessel shape and

reduce the geometric uncertainty within a Bayesian framework,

p(0 [ d) o< L(@ | d)p(8), (1)

where 0 is the parameterization of the geometric variation; p(@) denotes the prior distribution
of the geometry perturbation, which is often due to the image segmentation uncertainty and
modeled as a uniform distribution in this work; L(@ | d) is known as the likelihood function,
which is often determined by the measurement uncertainty. In most cases, the posterior
density p(f | d) can not be solved analytically and has to be obtained by Monte Carlo
sampling. Markov Chain Monte Carlo (MCMC) sampling is the gold standard method for
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Bayesian computing, whose general idea is to efficiently sample the posterior using a Markov
chain. In particular, it starts from an initial sample 8, € Q and explores the parameter space
Q using a transition kernel T'(8; | 6;,1). Typically, the transition kernel is computed by two
steps: (i) propose a new sample ;.1 based on the current ; using a proposal distribution
q(@;11 | 0;) and (ii) determine whether or not accept the proposed sample based on the

acceptance probability,

(2)

A(B511 | 6:) = min {P(om | d)q(8i11 | 6)) 1}

p(0; | d)q(0; | 0:11)
which is known as the classic Metroplis-Hasting MCMC algorithm. To accurately recover
the posterior distribution, the Markov chain is supposed to run for enough iterations until
sufficient samples are collected and the posterior landscape is fully explored. In each itera-
tion, we need to calculate the likelihood density, which involves the evaluation of the forward

model F(-), as the measurement model is defined as,
d = h(F(8)) + o, (3)

where h(-) represents the state-to-observable map, and o; denotes the observation uncer-
tainty. The computational cost of each forward model evaluation (i.e., CFD simulation)
is nontrivial and can be significantly large in many cases (e.g., 3-D hemodynamics with
flexible walls). It is computationally infeasible to conduct enormous forward simulations
for MCMC, especially considering the sequential nature of the classic Metropolis-Hasting

algorithm, making the matter worse.

2.4. Delayed-acceptance via DNN surrogate

To tackle the challenge of applying MCMC to problems involving expensive simulation,
a straightforward remedy is to replace the costly forward model with an efficient surrogate
emulator, which may risk distorting the posterior due to surrogate modeling errors. As an
alternative, delayed-acceptance (DA) strategy can asymptotically reach the convergence by
combining both the full-order and surrogate models for MCMC sampling. The general idea
is to leverage the surrogate for screening of most unlikely proposals to avoid unnecessary full-

order model (FOM) evaluations. Only for those proposals likely to be accepted will involve

8
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expensive FOM evaluations. Let m(0) = p(@ | d) represent the posterior density obtained by
the FOM. The DA Metropolis-Hastings algorithm consists of two steps: (i) a pre-accept step
is performed using the posterior density 7(@) approximated based on the surrogate model,

and the acceptance probability is

A(6;11 | 6;) := min { ~7§0i+ )a(6 | aiﬂ), 1}. (4)

1
(0:)q(0i+1 | 6;)
(ii) if the proposal is accepted by A, the final accept /reject decision will be made by the
FOM based on the acceptance ratio A*,
. . [7(0;1)7(0;

A By 1) = min { TELE0 1 5)
Note that the product of the probabilities of these two sequential steps equals to acceptance
probability in the original Metroplis-Hasting algorithm (i.e., A = AA*), implying that the
detail balance is still satisfied and it will eventually converge to the target distribution.
A deep learning based-surrogate model is built in an encoding-decoding fashion to rapidly
predict hemodynamics given aorta shapes. In particular, we encode the 2-D aorta shape
into a 3-D parameter vector @ as described above. Meanwhile, the velocity fields computed
from CFD simulations are also encoded into the latent space using primary component
analysis (PCA). A total of 98% energy is preserved, resulting a decoding error less than 1%.
The mapping from the encoded shape to the flow field is learned by a multilayer perceptron
(MLP). The MLP uses Rectified Linear Unit (ReLU) as the activation function and is trained
using Adam optimizer where the learning rate is adaptively changed based on the estimates
of the moments. In order to achieve the best performance, we optimize the hyperparameters
of the MLP, including the number of layers, number of neurons of each layer, batch size
and initial learning rate based on the Bayesian optimization. The Asynchronous Successive
Halving Algorithm (ASHA) is utilized to aggressively terminate non-ideal trials in advance
to facilitate convergence. The network hyperparameter optimization process is implemented
in RAY-tune [49], which is an open-source python package designed for scalable parameter
tuning. The optimized parameters are summarized as: batch size = 8, number of layers =

4, initial learning rate = 6.5 x 107°, and the optimized MLP structure is given in Table A.3.
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To evaluate the performance of the DL-based surrogate model, the relative mean square
error (RMSE) is used to calculate the difference between the surrogate prediction and CFD
reference,

N 032
RMSE = 28 70 00, (6)
2

Zz‘ Yi
where X = (z1,...,zy) and Y = (91, ..., yn) are prediction and reference on N vertices/grids.

2.5. Active learning with parallel MCMC' chains

The DA strategy may fail when there is a large discrepancy between the surrogate and
FOM predictions due to a significant decrease in the acceptance ratio. On the other hand,
the FOM will be evaluated anyway in the DA-MCMC process for the proposed samples
accepted by the surrogate model. Therefore, the natural idea is to leverage these gradually
accumulated FOM solutions as data to train the DL surrogate online, known as the active
learning. Specifically, during each MCMC iteration, when a new proposal passes the first step
of surrogate screening, one FOM propagation will be executed, producing one high-fidelity
(HF) flow data. These newly generated HF CFD solutions will be collected to enrich existing
training and testing sets. The current DL surrogate will be tested on the constantly-updated
test set as long as a new group of N,., data are collected. If the testing error exceeds the
threshold of €}, ,,, the newly collected data will be added into the existing training set, which
will be used to refine the DL surrogate model actively. Note that the neural network does
not need to be re-trained from scratch. Instead, a transfer learning strategy can be used
to enable fast online model refinement. For example, the trained parameters of the current
MLP are saved and can be reloaded as the initial condition or even frozen to a certain extent
when the surrogate model needs to be further re-trained due to the addition of training data.
In this way, the training cost of the online update is extensively reduced. The details of the
proposed algorithm and pseudo code are given in Algorithm 1.

Active online training brings two major merits: i) During initialization of the DL sur-
rogate, data are collected uniformly over the entire parameter space, which may result in
insufficiency near high-density regions. However, online training data collected from MCMC

iterations are more likely to locate in high-density regions, and thus the surrogate can be

10
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refined in the area of interest. ii). When multiple MCMC chains run simultaneously (i.e.,
parallel-chain MCMC), it brings no additional merits other than leveraging multiple CPU
cores for classic Metropolis-Hastings or its DA variants. However, active learning-based DA
Metropolis-Hastings algorithms can further leverage the parallel-chain setting, where a sin-
gle surrogate can be updated over the new data collected across multiple chains, facilitating
surrogate model update and convergence. Suppose the posterior distribution has more than
one mode, and the parallel MCMC chains may move in different high-density regions si-
multaneously. The surrogate model will quickly improve over multiple high-density regions,

resulting in a vast improvement in the UQ performance.

3. Numerical Results

3.1. Surrogate CFD modeling of 2D aortic flows

The variation range of each input shape parameter 6; € 6 is normalized to [—1,1] and
a uniform distribution is given as the prior (i.e., §; ~ U(—1,1),Vi € {1,2,3}). In order to
fully explore the input parameter space, we draw 10000 samples and create corresponding
aorta meshes and solution fields using the developed python routine. Starting from the shape
parameter @, each python process, including construction outline, meshing, simulation and
post-processing, takes around 6 seconds on a single core on Intel(R) Xeon(R) Gold 6138
CPU. The dataset is generated by conducting a batch of 40 cases in parallel at one time.
After the generation of the dataset, the velocity field data is projected into latent space using
PCA. The fitted PCA transfer function is saved and serves as a transformation tool between
physical and the encoded velocity data. Utilizing RAY-tune tool, the training and MLP
hyperparameters are fully optimized. Subsequently, the MLP is trained on training sets of
different sizes and tested on a test set of 100 unseen samples to investigate the sensitivity of
the surrogate testing error with respect to training size. Each training process is conducted
on an Nvidia RTX A6000 GPU with a minimum of 1500 epochs to ensure convergence.

The model testing results are shown in Figure 2, where €, and €y, represent the RMSE

error of the velocity vector field and the velocity magnitude field. As expected, the results

11
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Figure 2: DNN prediction errors (averaged MSE) versus different training sizes. Testing errors of the interior

velocity vector field ey and velocity magnitude ey ps

show a decrease for both errors as the dataset size grows. The error of the predicted velocity
vector is slightly higher than that of the velocity magnitude prediction. The DL model
trained on the entire CFD dataset (N = 10000) has a test error of 5.1 x 107°. In percentage,
the error equals 0.005% in terms of ARMSE of the velocity magnitude, which is very small,
indicating a great consistency between the surrogate model and the CFD model. The velocity
contours are shown in Figure 3, where we randomly select five test aorta geometries, and
the hemodynamic fields predicted by the DL model are compared with the CFD reference
(referred to as ground truth). From comparison one can find out that the predicted velocity

contours agree well with the CFD ground truth across all selected samples.
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Figure 3: Comparison of the DNN-based surrogate model predictions and the CFD ground truth. (a) velocity
magnitude contours: prediction (top row), CFD ground truth (bottom row). (b) velocity profiles on all 11
locations along the centerline: e.g., “S1 NN” and “S1 CFD” denote the surrogate and the ground truth for

the first sample (first column in (a)) respectively.

Quantitively, we also compare the velocity profiles over cross-sections at all 11 locations
between the predictions and the ground truth in Figure 3. As expected, the predicted velocity
profiles agree well to the ground truth for all five samples at 11 locations. Small discrepancies
can be found at the 6-8th locations, where the sharp curvature of the aorta shape induces
large gradient flows. The boundary layer at location id 8 is less accurate, which may affects
wall shear stress calculations. This can be improved by adding finer boundary layer meshes
which will be addressed in the more realistic CFD models in future work. We also calculated
the velocity magnitude ARMSE for all the five examples as shown in table 1. The result

shows maximum discrepancy near the sixth location as expected. Note that the error at
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the inlet is zero because the inlet velocity is already prescribed. Although each FOM CFD
simulation is relatively cheap, it still poses a great computational challenge to systematical
analysis of MCMC algorithms in different settings. Since the DL model fully trained on the
entire CFD dataset (N = 10000) yields close results to the CFD ground truth, we will use it
as the synthetic “CFD model” (i.e., FOM) for subsequent MCMC experiments.

Locations(No.)  1(Inlet) 2 3 4 5 6 7 8 9 10 11(Outlet)
ARMSE 0% 0.015%  0.011%  0.017%  0.032%  0.15%  0.052%  0.024%  0.020%  0.025% 0.090%

Table 1: Quantitative comparison of ARMSE of the velocity magnitude on 11 locations along the centerline

between prediction (surrogate) and ground truth (CFD)

3.2. Geometric uncertainty propagation and reduction

Each MCMC simulation is performed with more than 10000 samples accepted to ensure
a low sampling error. The proposal distribution for every MCMC trial is a multivariate nor-
mal distribution over three shape parameters with no correlation structures imposed. The
proposal variance is set as 0.1 for all three dimensions such that good mixing is observed.
The velocity magnitude information on 50 uniformly sampled locations is “observed” inde-
pendently with 5% Gaussian noises. The observation data are synthesized from the CFD
simulation with a specified “true” shape 8 = [—0.1,0.3, —0.2]7, assumed unknown in the
MCMC inference process. The likelihood function is computed by taking the product of
the conditional density of all observations given 6. The classic Metropolis-Hasting algo-
rithm coupled with synthetic FOM is used to generate converged MCMC chains, which
is used as the reference (ground truth) results for all MCMC experiments. The proposed
method, delayed acceptance Metropolis-Hasting MCMC with online training (DA_OLT),
is run with the same settings and will be compared against the reference results. In the
proposed method, the initial surrogate model is trained on the set with the size of 10, which
has a large prediction error (Figure 2). Two chains are run in parallel on two different CPU
cores and the online update interval dt is 10 steps. The testing error threshold is set to be

€., = 1 x 107°. Note that every online refinement of the DL surrogate is performed on the
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GPU in parallel to the main sampling process. Also, benefiting from the continuous trans-
fer learning setup, each update is set to run only for 100 epochs, much less than the 1500
epochs for the initial training from scratch. Finally, the online update stopped at the 80
refinement step, where the test error falls below the threshold €},,,. More detailed statistics
of the proposed DA_OLT Metropolis-Hastings MCMC algorithm is plotted in Figure C.9 in
the Appendix C. The posterior sampling results obtained by the proposed DA_OLT method

are compared against the ground truth in Figure 4. To show how the geometric uncertainty

1.0 1.0 1.0
>08 >08 >08
0 0 0
0.6 c 0.6 c 0.6
() () ()
© © ©
504 504 504
= = =
0.2 0.2 0.2

007 0 1 007 0 1 003 0 1 shape prior ensemble

61 62 63

10 10 10
F N Bl = =
w8 DA_OLT w8 w8
C C C
36 36 36
S S S
T 4 T 4 T 4
2 2 2
3 2 3 2 3 2
a a a

0 0 0 .
-1 0 1 -1 0 1 -1 1 shape posterior ensemble
91 62

Figure 4: Comparison of prior (top row) and posterior (bottom row) of the DA OLT and GT MCMC
algorithms: density for the shape 6 (1st,2nd and 3rd column), shape ensemble (4th column)

is reduced, we present the prior distributions of all three shape parameters in the first row,
whereas the posterior distributions are plotted in the second row. Note that all sampled
distributions are fitted by a Gaussian mixture density via sklearn GaussianMixture mod-
ule with the same hyperparameter setting. Moreover, 1000 randomly selected aorta shape
samples are plotted at the rightmost column in Figure 4, where the black line is the mean
shape. The non-informative uniform prior distributions over the three parameters are up-
dated to the posterior ones, which agree well with the ground truth solutions. Compared to

the prior shape ensemble, the uncertainty range of the posterior ensemble is very small and
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concentrated to the synthetic truth, showing that the true aorta shape can be inferred with a
significant reduction of uncertainty. The good agreement between the posterior distributions
obtained by the proposed DA_OLT and ground truth (GT) demonstrates the effectiveness
of the proposed method. However, slight discrepancies can be seen in the distributions of the
second parameter #,, which corresponds to the perturbation of the sixth radius. This might
be because the curvature is rapidly changed near the location of the sixth radius, posing
challenges in surrogate modeling.

In addition to the input shape uncertainty, we also investigate the posterior distributions
of the maximum and mean velocity magnitudes (V4 and Vi,eqan) by propagating the ge-
ometric uncertainty forward to flow via the FOM simulations. The propagated prior and

posterior distributions of V,,,, and V,,.., are shown in Figure 5. We observed that the

20 20
H = Prior
15 = Ground truth 15
> Posterior >
210 210
Q Q
o o
0 L —— 0
1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 1.4
Vmax Vmean

Figure 5: Comparison of prior and posterior of the DA OLT and GT MCMC algorithms: density for

maximum velocity Vi, (left) and maximum velocity (right)

non-informative prior is more spread out for both maximum and mean velocity magnitudes,
while their posteriors are significantly concentrated to 1.2 m/s and 0.96 m/s, respectively,
indicating a notable uncertainty reduction. The density contraction is very obvious for the
maximum velocity, implying the fact that a large proportion of the CFD samples has the
maximum velocity near 1.2 m/s. Again, the posterior distributions obtained by the proposed
DA _OLT perfectly agree with reference using FOM. A collection of five randomly selected
aorta shapes from prior and posterior distributions are shown in Figure 6, where the velocity

magnitude contours are also plotted.
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Figure 6: Comparison of the prior and posterior ensemble. (a) velocity magnitude field: Prior ensemble
(top row), posterior ensemble (bottom row). (b) velocity profile at all 11 locations, e.g., “S1” denotes
the first sample (first column in (a)) and the ground truth denotes the CFD results at parameter § =
[—0.1,0.3,—0.2]7.

The top row shows five instances from the prior ensemble, while the collection of the
posterior samples from DA_OLT is listed at the bottom. The variation of the velocity
field is significantly diminished compared to the prior instances. In addition, we added the
velocity profile comparisons between the prior and posterior ensemble and the ground truth
(6 = [-0.1,0.3,—0.2]7) in Figure 6. The results show a large variance of velocity profiles
for the prior ensemble, whereas the posterior profiles are much more consistent and closer
to the ground truth, indicating significant uncertainty reduction by the inverse UQ process.
We also compare the ARMSE of the velocity magnitude on 11 locations along the centerline
between the ensembles (prior and posterior) to the ground truth. The result shows that the

average differences between the prior ensemble and the ground truth are larger than that
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between the posterior ensemble and the ground truth. In other words, the prior samples
have very large uncertainties at 11 locations whereas the posterior samples have much less
uncertainty and high similarities to the ground truth. In general, the inverse UQ process can
increase the reliability of the velocity field prediction and hence facilitate CFD-supported

clinical diagnosis of cardiovascular diseases.

Locations(No.) 1(Inlet) 2 3 4 5 6 7 8 9 10 11(Outlet)
prior ARMSE 0% 0.064% 0.18% 0.32% 6.1% 9.7% 8.2% 7.7% 7.8% 8.1% 8.2%
posterior ARMSE 0% 0.0076% 0.0067% 0.0079% 0.010% 0.030% 0.035% 0.023% 0.016% 0.023% 0.030%

Table 2: Quantitative comparison of ARMSE of the velocity magnitude on 11 locations along the centerline

between (prior and posterior) ensemble and ground truth (CFD)

4. Discussion

4.1. Performance comparison of different MCMC methods

This section will mainly compare and discuss the performance of DL-assisted Metropolis-
Hastings MCMC with different settings. Besides the reference MCMC (GT) and the DA OLT
method, two other MCMC algorithms are added to the comparison: one is the classic
Metropolis-Hasting with a low-fidelity surrogate model trained by 10 samples (LF MCMC),
and the other is a DA Metropolis-Hastings with the same LF surrogate model without an
online update (DA). Figure 7 shows the posterior distributions for the shape parameter § and
the maximum velocity V,,.. obtained by different MCMC methods. In terms of the posterior
mean, a straightforward observation is that the LEE MCMC mean deviates from the ground
truth to a large extent, especially for the shape parameters, whereas the Metropolis-Hastings
algorithms featuring Delayed Acceptance (DA) always accurately capture the posterior mean.
Note that the detailed balance is not satisfied for the LF MCMC method, which results in
an erroneous posterior distribution approximation. In contrast, the MCMC method featur-
ing Delayed Acceptance satisfies the detailed balance, accounting for a much more accurate
prediction of the mean. Viewing from the posterior shape, the proposed method stands out

among all the methods. The DA MCMC method tends to heavily over-predict the posterior
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10.0 "

Figure 7: Comparison of posterior among different MCMC algorithms (GT:ground truth/high-fidelity
MCMC, DA_OLT: delayed acceptance online training MCMC, DA: delayed acceptance MCMC, LF: low
fidelity MCMC): density for the shape 8 (upper left, upper right and lower left), maximum velocity Vi,qx
(lower right)
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peak for shape parameters. Obviously, the presence of the LF filtering step alters the trace
of the states and consequently results in improper sample coverage over the high-density
region. For the velocity density plots, however, both the DA and DA_OLT methods are

very close to the reference (GT).

4.2. Efficiency of active-learning delayed-acceptance MCMC

Another vital topic to discuss is the improvement of efficiency over the classic FOM-
based Metropolis-Hasting method (GT) for all methods. Since the computational cost of
the LF forward model is trivial compared to the FOM simulation, we care about how many
realizations of FOM are needed in order to obtain the desired number of MC samples. Hence

we create a new criterion called “effective acceptance ratio (EAR)”, simply defined as,

number of accepted samples

EAR = (7)

number of realizations of the HF model

Apparently, for the GT and the LF MCMC methods, EAR = A (defined in Eq. 2). Whereas
FAR = A* (defined in Eq. 5) the DA and DA OLT MCMC methods. The Effective ac-
ceptance ratios are plotted in Figure 8 (left). As expected, the LF MCMC method has the
same level of FAR compared to the ground truth. However, the DA MCMC method has
a surprisingly low acceptance ratio when a LF surrogate is used, which means the required
FOM queries is extensively higher than that of the classic Metropolis MCMC. In fact, the
intention of the delayed acceptance technique is to improve the effective acceptance ratio
(second stage) by introducing a surrogate screening step (first stage). However, the addition
of the screening step may backfire when the surrogate model’s prediction error is significant.
Active learning can come into play to timely improve the LF surrogate by leveraging gradu-
ally collected FOM solutions to address this issue. As shown in Figure 8 (left), the proposed
DA_OLT method raises the EAR to 45.6%, which is about five times higher than the refer-
ence MCMC. Note that the EAR will increase if the accuracy of the surrogate model grows
and will asymptotically reach 100% if the surrogate has the same accuracy as the FOM.
We further evaluate the extent of efficiency improvement of the proposed method at dif-

ferent ratios Ryp/rr of cost between the FOM and surrogate forward models. A normalized
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Figure 8: Comparison of effective acceptance ratio FAR of posterior among different MCMC algorithms

(left), Relationship of normalized cost C};c ¢ and HF-to-LF ratio Rgp/ppy for DA.OLT and GT

cost Cy e is defined which represents the total cost of the MCMC simulation normalized
by the cost of executing FOM queries for the accepted samples. The relationship of those
two variables are demonstrated in the right panel of Figure 8. The result indicates the ef-
ficiency of the proposed DA_ OLT MCMC method will be significantly improved over the
reference as the FOM becomes more and more expensive. On the other hand, the cost of the
DA_OLT MCMC method can be higher than the reference MCMC method when the surro-
gate model’s cost is close to the FOM due to two-stage acceptance/rejection determination.
The intersection of two curves is located at R}, . JLF = 2.30. Usually, for DL-based surrogate
models for complex computational hemodynamics, the Ryp/rr value is much higher than
the critical value R;IF/ .r = 2.35 due to the extremely fast inference speed of the neural
network and high cost of 3-D CFD simulations. For example, the surrogate model and the
CFD forward model cost about 0.006 and 6 seconds in the current pipeline, resulting in a
high to low fidelity model ratio of Ryp/rr = 6/0.006 = 1000. Suppose the MCMC has
to collect 10000 samples to be reliable, then a standard MCMC with CFD forward model
requires 221.6 hours, whereas the MCMC_OLT method costs about 37 hours, resulting in a
reduction in time of 83.3% Note that in this work, we adopted the high fidelity (HF) model
as the neural network with 10000 training data, so the HF model costs 0.006 as well and the

actual time costs in this work are 13.3 minutes and 27.4 minutes for classic MCMC and the
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propose DA_OLT respectively. Assuming in a more realistic application where the forward
model costs 6 minutes and the surrogate model’s cost stays the same, the computational costs
for classic MCMC and proposed DA_OLT method are 13295 and 2193 hours respectively,
bringing an efficiency boost of 83.5%. In conclusion, our proposed method will bring a sig-
nificant efficiency boost compared to the conventional Metropolis-Hastings MCMC method

for forward and inverse UQ) problems.

4.3. Limitations for patient-specific applications

In the previous results, we demonstrate the feasibility of the algorithm using synthetic
data on simplified 2-D aorta geometries as an example for proof of concept. However, it
is noteworthy to discuss whether the method can be extended to patient-specific hemody-
namic applications. Admittedly, the CFD simulation in the present work is a simplified
numerical example and has not considered many realistic aspects for real patient-specific
cases, e.g., 3D patient-specific geometry, measured pulsatile inflow boundary conditions,
fluid-structure interactions (FSI), etc. Hence, extending the proposed algorithm to patient-
specific settings requires several improvements: 1). The CFD forward model can be updated
to patient-specific settings. E.g., setting the CFD simulation to be 3-D and transient, as-
signing measure pulsatile inlet flow boundary conditions based on clinical measurements,
adding Windkessel boundary conditions at the outlet, enabling FSI, etc. 2). Use a more
sophisticated parameterization method to describe complex 3-D geometries (e.g., 3-D aorta
with branches). 3). Use a more sophisticated neural network (e.g., Graph neural network
(GNN) ) to learn the mapping between 3-D input geometry and field outputs. In future
work, we expect to address those issues to apply the proposed algorithm to clinical usage.
In addition, in the context of patient-specific hemodynamics simulation, information such as
flow rate data obtained from 2D PC MRI at certain cross-sections or 3D /4D flow MRI data
can be assimilated using the proposed method to reduce the uncertainty of the geometries
of interest and enhance the model predictive accuracy. One can also evaluate the similarity
between the predicted aorta geometry shape and the flow field to direct image data (e.g.,
4D flow MRI).
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5. Conclusion

This work presents a Bayesian framework for geometric uncertainty reduction using DL-
assisted MCMC sampling. First, shape parameterization is performed on the aorta geome-
tries based on a patient-specific 3-D aorta sample, from which multiple aorta geometries are
created by perturbation of radii at different sections. An automatic python routine is estab-
lished to encapsulate all necessary simulation procedures to simulate flow information from
a given aorta shape 6. The geometry-to-flow surrogate model is built upon the CFD dataset
to learn the non-linear relationship between the input shape to the flow solution fields. The
trained surrogate model exhibits an increase of accuracy as the size of the training set grows.
We propose a Metropolis-Hastings algorithm featuring delayed acceptance and active learn-
ing (DA_OLT), enabling the inference of the aorta shape and uncertainty reduction based
on observed velocity information at sparse locations. The results show a significant uncer-
tainty reduction given a non-informative prior. A good consistency is observed between
the proposed method and the reference Metropolis-Hasting MCMC (GT MCMC) in terms
of the posterior approximation. The proposed method is compared with Delayed Accep-
tance Metropolis-Hastings MCMC (DA MCMC) and standard Metropolis-Hastings MCMC
algorithms equipped with the same surrogate model without an active learning component
(LF MCMC). Regarding accuracy, the proposed method stands out among those methods,
while the LF MCMC method completely fails due to high bias of the surrogate. As for
the efficiency, again, the proposed method brings a huge efficiency improvement, whereas
the standard DA Metropolis-Hastings MCMC method failed in this specific setting due to
the large discrepancy between the surrogate and FOM solutions. The cost of the proposed
method is further analyzed by inspecting the normalized cost change as a function of the
HF-to-LF model cost ratio. It appears that the efficiency boost is more conspicuous when
the FOM is more expensive. Typically when a DNN-bases surrogate model is embedded
into the proposed DA scheme with active learning, a considerable promotion of efficiency is
guaranteed.

In general, this work focuses on the algorithmic development of a method to reduce the
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uncertainty of reconstructed geometry via assimilating sparse, noisy flow measurement data
using a Bayesian framework. The major highlight of the algorithm is that it improves the
UQ process, where only one version of the forward model (either full-order or reduced-order)
is repetitively evaluated, and enables combining models with different levels of complexity
into one UQ algorithm. In addition, the active-learning feature further reduces the cost of
training data generation via selectively collecting the data in an online manner and gains
an extra efficiency boost in parallel MCMC settings. Achieving patient-specific settings for
the CFD forward model is out of the scope of this paper. The current pipeline is subjected
to multiple limitations for its application in clinical situations, where the forward model
is usually patient-specific. As a result, certain improvements have to be made for clinical
applications (e.g., using patient-specific settings for the forward model, updating the pa-
rameterization for complex 3-D geometry and improving the neural network architecture to
learn more complicated mappings between 3-D geometry and the field outputs), which will

be addressed in future work.
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w3 Appendix A. Optimized deep neural network architecture

NN Type Layers Characteristics
Linear Layer Input feature = 3 input feature = 8
Relu -

Linear Layer  Input feature = 8 input feature = 256
MLP Relu -
Linear Layer Input feature = 256 input feature = 128
Relu -
Linear Layer Input feature = 128 input feature = 20

Table A.3: The optimized MLP structure based on Bayesian tuning
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w2 Appendix B. Proposed DL-assisted parallel-chain MCMC algorithm

Algorithm 1 Active Learning Delayed Acceptance Metropolis-Hastings MCMC

Data: Staring point 8 = 6y € €2, test error threshold €}, ,, online update period dt; online dataset OLT = [],
initial accepted samples set AS =[]

Result: Accepted sample set AS

for each MCMC iteration i =1,2,... do

Draw next state 6,11; Calculate surrogate model posterior 7(0;41) and acceptance ratio .&(49Z | 0;41);
Generate a random number a; ~ U(0, 1);

if A(Gl ‘ 0,‘4.1) > a; then
Calculate high-fidelity model posterior 7(6;+1) and acceptance ratio A*(6; | 0;41);

Generate a random number as ~ U(0, 1);
Append sample 6,1 and its solution F(#;1) to online dataset OLT

if A*(ﬁz | 0i+1) > ao then
Accept the new sample §;, =0, 1;

Append sample 8,1 to Accepted sample set AS;

else
| Reject sample 0,1

end

else
| Reject sample 6,41

end
if len(OLT)%dt = 0 then

test the surrogate model F(f;1) on the dataset OLT; if test error > €f,,, then
| add new data to dataset OLT, train surrogate model

else
| stop the training update

end

end

if training is finished then
‘ update surrogate model F=F

end

end
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w5 Appendix C. DA_OLT alogirthm statistics
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Figure C.9: Statistics for DA_OLT MCMC algorithm: trace of state (left column, first 3 rows), posterior
sample distribution of state (right column, first 3 rows), training error history (left, 4th row), online test

error €, , and threshold e}, (right, 4th row)
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