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ABSTRACT

Optimization and uncertainty quantification have been playing an increasingly important role in computational hemodynamics. However,
existing methods based on principled modeling and classic numerical techniques have faced significant challenges, particularly when it
comes to complex three-dimensional (3D) patient-specific shapes in the real world. First, it is notoriously challenging to parameterize the
input space of arbitrary complex 3D geometries. Second, the process often involves massive forward simulations, which are extremely com-
putationally demanding or even infeasible. We propose a novel deep learning surrogate modeling solution to address these challenges and
enable rapid hemodynamic predictions. Specifically, a statistical generative model for 3D patient-specific shapes is developed based on a
small set of baseline patient-specific geometries. An unsupervised shape correspondence solution is used to enable geometric morphing and
scalable shape synthesis statistically. Moreover, a simulation routine is developed for automatic data generation by automatic meshing,
boundary setting, simulation, and post-processing. An efficient supervised learning solution is proposed to map the geometric inputs to the
hemodynamics predictions in latent spaces. Numerical studies on aortic flows are conducted to demonstrate the effectiveness and merit of
the proposed techniques.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101128

I. INTRODUCTION
Cardiovascular disease (CVD) remains the first leading cause of

death and morbidity in the United States, posing a major healthcare
concern.1 Although medical imaging techniques, for example, com-
puted tomography (CT) and magnetic resonance imaging (MRI),
have enabled the acquisition of exquisite anatomical information
and revolutionized cardiovascular medicine,2 they are usually not
able to provide hemodynamic information (e.g., flow field and pres-
sure losses) on their own, which is believed to be more important to
CVD diagnosis and prognosis.3 Computational models based on
physical principles of cardiovascular systems, combined with medi-
cal imaging, enable the derivation of functional information inacces-
sible by medical images alone. In the past decade, image-based
computational modeling has become a paradigm in cardiovascular
research4–6 and is pioneering new clinical applications.7–9 However,
the first-principle physics-based models are often computationally

expensive since they involve solving a large-scale discrete partial differ-
ential equation (PDE) system using numerical techniques, for exam-
ple, finite volume or finite element methods (FVM/FEM). Particularly,
when studying dynamics of blood flows (i.e., hemodynamics), compu-
tational fluid dynamics (CFD) and/or fluid–structure interaction (FSI)
models are needed, which are enormously time-consuming (requiring
supercomputing clusters) and prone to numerical challenges (requir-
ing significant domain expertise). These roadblocks have primarily
limited image-based CFD modeling in clinical applications that
require timely feedback for further therapeutic assessment and treat-
ment planning. For example, in the case of Heartflow (a medical com-
pany for precision heart care), image data must be sent outside the
hospital to be processed by in-house supercomputers and results sent
back to the hospital. Likewise, the high computational cost prohibits
many-query simulations for uncertainty quantification (UQ), parameter
estimation, design optimization, etc., which are becoming increasingly
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vital in advancing the utility of cardiovascular modeling to practical
applications.10–15

As a more efficient alternative to the principled CFD/FSI models,
reduced-order modeling (ROM) has been an area of intense investiga-
tion for years. One class of ROM is constructed by simplifying the phys-
ics of cardiovascular systems, such as lumped parameter (LP) models,
one-dimensional (1D) models, or hybrid 3D/1D/LP models,16–18

where the physical dimensions are reduced to different levels. For
example, LP models typically treat the hemodynamic system as an elec-
tric circuit, where the relations among pressure drop, viscous effects,
and flow velocity are modeled as simplified ordinary differential equa-
tions (ODEs). Although LP/1D models are very cheap, they only can
predict global information (integral quantities) instead of local ones
[e.g., spatiotemporal fields of velocity or wall shear stresses (WSS)],
while the latter is more useful to advance cardiovascular research/
health care. To preserve detailed hemodynamics information, the other
class of ROM is built by projecting the full-order governing PDEs (e.g.,
Navier–Stokes equations) onto a reduced subspace spanned by a group
of basis functions, such as proper orthogonal decomposition (POD)
modes, known as POD–Galerkin projection, which has been developed
for facilitating hemodynamics analysis in many 3D patient-specific
configurations.19–22 However, the projection-based ROM is often less
stable in parametric settings and highly code-intrusive, posing great
challenges to leveraging legacy CFD/FSI solvers.23–25 With the increas-
ing data availability and recent advances in machine learning (ML),
there has been growing interest in developing non-intrusive data-
driven approaches for surrogate modeling of cardiovascular systems.
In general, data-driven surrogate models aim to learn the mapping
between modeling inputs (e.g., geometry, inlet/outlet, material proper-
ties) and computed outputs (e.g., resolved flow field, pressure contour,
wall shear stress distribution) based on full-fidelity CFD/FSI simulation
data. A well-trained surrogate model can predict detailed hemodynam-
ics information rapidly, supporting real-time or many-query applica-
tions. For example, collocation-based polynomial chaos expansion
(PCE) has been used to build non-intrusive surrogates of 3D blood
flow simulations for uncertainty quantification (UQ) tasks.10,11 Gao
et al.14,15 developed a bi-fidelity (BF) surrogate model that leverages
the efficiency and accuracy of the low- and high-fidelity (HF) CFD
simulations, respectively. Deep neural network (DNN) has become a
popular surrogate modeling approach, renowned for their universal
functional approximation capability for high-dimensional system.26,27

Most recently, DNN-based surrogate models have been developed for
cardiovascular applications and shown great potential.28–35

However, ML-based surrogate modeling for complex patient-
specific hemodynamics still faces significant challenges that existing
techniques struggle to address simultaneously. First, the parameteriza-
tion of the geometric space spanned by irregular 3D patient-specific
shapes is very challenging. As a result, most existing ML-based surro-
gate hemodynamic models focus on inlet/outlet parameterization or
studying idealized geometries, which can be easily parameterized with
a few descriptors (e.g., radius), and only a few studies dealt with 3D
patient-specific cases.34,35 Second, a well-performed ML surrogate
model often requires a large number of training samples. However,
patient-specific geometries are commonly obtained by segmentation
from medical images [e.g., CT and magnetic resonance angiography
(MRA)], which are often cumbersome and time-consuming, leading
to a prohibitive cost for data generation. To address the issue, it is

necessary to effectively synthesize numerous new samples from a small
set of patient-specific geometries obtained by image segmentation.

In this paper, we try to fill the gaps and develop an ML-based
surrogate modeling framework for rapid predictions of comprehensive
hemodynamics information in 3D patient-specific aortic geometries.
In contrast to many ML-based surrogates that predict global hemody-
namics information such as pressure loss, FFR, and mean WSS, this
work focuses on predicting local blood flow information (e.g., velocity,
pressure, and WSS fields), given irregular 3D patient-specific shapes.
The contributions of the current paper are summarized as follows.
First, we developed a method to parameterize 3D patient-specific aorta
geometries based on stochastic shape modeling (SSM). Second, a gen-
erative model is proposed to synthesize a massive amount of 3D
geometries from a small patient-specific dataset. Third, an automatic
simulation data generation routine is built, enabling automatic mesh-
ing, prescribing boundary conditions, solving, and post-processing.
Finally, an efficient ML-based surrogate is developed by learning the
functional map from geometries to hemodynamics in latent spaces,
and the performance of using DNN and bi-fidelity technique is com-
pared. The rest of the paper is organized as follows: The proposed
framework is introduced in Sec. II. Numerical results of the surrogate
modeling are presented and discussed in Sec. III, and Sec. IV con-
cludes the paper.

II. METHODOLOGY
The pipeline of the proposed ML-based surrogate modeling

framework is summarized by Fig. 1:
(i) a small set of 3D aorta geometries are reconstructed from ana-

tomical images acquired via CTA/MRI scans on real patients; (ii) the
geometric space spanned by the group of real patient-specific geome-
tries is parameterized based on statistical shape modeling (SSM),
where the variation of aorta surfaces can be described mathematically;

FIG. 1. The schematic of the proposed ML-based surrogate modeling of patient-
specific aortic flows, with several components, including dataset generation (green
box), network training (orange box), and DNN inference/prediction (blue box).
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(iii) a large number of virtual 3D aorta shapes are synthesized within
the latent geometric space; (iv) a python-based simulation routine is
developed for automating meshing, equation solving, and post-
processing of aortic CFD simulations on the generated ensemble of 3D
synthetic shapes, and a large dataset of hemodynamics (e.g., pressure,
velocity, and WSS fields) are obtained; (v) The 3D vascular shape and
hemodynamic fields of interest (FOI) of each aorta sample are
encoded into latent spaces using principal component analysis (PCA)
or proper orthogonal decomposition (POD), and then, a DNN is con-
structed to learn the non-linear mapping within the latent space. Once
the network is sufficiently trained, the ML surrogate model will be able
to predict the fully resolved 3D hemodynamic flow information within
a split second, given a new aorta shape.

A. Patient-specific aorta geometry parameterization

1. Aorta dataset preprocessing

Eight 3D aorta geometries are reconstructed from MRI scans of
patients with coarctation of the aorta (COA) conditions by the
German Heart Institute Berlin.36 The geometric characteristic of this
illness is that there is a narrowing near the aortic arch such as “A1”
and “A2” in Fig. 3. Prior to the parameterization of the variation of
aorta shapes, one crucial step is to build correspondence among them,
which is very challenging since the deformation across different
patients is non-isometric, especially aortas with a complex topological
structure (e.g., many branches). To reduce complexity, this work is
focused on 3D aortic geometries with homeomorphism. In particular,
several branches of the original thoracic aorta geometries, including
left subclavian artery (LSA), left carotid artery (LCA), right subclavian
artery (RSA), and right carotid artery (RCA), are trimmed off, simpli-
fying their structure to a single channel. Later, a point cloud of 4000
vertices is sampled from each aorta using Voronoi clustering imple-
mented via the pyacvd module in python, which is loosely based on
approximated centroidal Voronoi diagrams (ACVD).37 To regularize
the position and the orientation of the aorta samples in the 3D
Cartesian coordinate system, rigid iterative closest point (ICP) algo-
rithm38 is adopted to align every aorta geometry to a template selected
from the aorta dataset.

2. Statistical shape modeling and virtual aorta
synthesis

With the aligned real aorta geometries, we establish an SSM
framework to parameterize the complex 3D patient-specific geometric
input space and synthesize enormous virtual aorta geometries. The
procedure is conducted in three phases: (1) building correspondence;
(2) projection to latent space; (3) synthesizing virtual aortas.

a. Building correspondence. In order to synthesize new aorta
shapes, it is necessary to build correspondence between different aorta
geometries. In particular, suppose we have several patient-specific
aorta geometries. We first sample 4000 points on each aorta surface
using a random sampling algorithm. If one directly linearly interpo-
lates between a random pair of point clouds, the new geometry surface
will not be smooth or even have cracks, indicating a failure of the syn-
thesization. As a result, we sampled 4000 points on one template
geometry and deform the point cloud to every rest aorta point cloud.

Since we are using those point clouds as the surface vertices of the
aorta mesh, it is necessary that the deformation function preserves the
relative position of the points in the point cloud and hence maintain
the correctness of the mesh. The process of building correspondence
can be formulated as follow:

Let fAigi¼1;…;n denote the set of n original patient-specific aorta
shapes, and each shape sample Ai 2 R3#p is represented by a point
cloud of surface vertices Ai ¼ faijg

p
j¼1, where p is the total number of

vertices. Given a template geometry AS 2 fAigi¼1;…;n selected from
the set fAigi¼1;…;n, we aim to build correspondence by deforming the
template AS to all the other aorta shapes AT 2 fAigi6¼s, which are
referred to as source geometry and target geometries, respectively. The
diffeomorphism function AT ¼ UðASÞ : R3#p ! R3#p, describing
the deformation from the template AS to each of the rest aorta samples
fAigi 6¼S, can be solved based on the controlled-point-based large defor-
mation diffeomorphic metric mapping (LDDMM) algorithm.39 In
LDDMM, the deformation is described as a “current” of surface, which
is the flux of a 3D “velocity” vector field over the template faSi g

p
i¼1,

vðaiÞ ¼
Xr

j¼1
Kðai; qjÞ & lj; (1)

where fqjg
r
1 and flkg

r
1 represent a set of r “control” points and corre-

sponding “momentum” vectors, which are defined on the source
geometry As; K is a Gaussian kernel Kða; qÞ ¼ expð'jja' qjjL2=r

2Þ
with r controlling the typical width of the deformation. The deforma-
tion is performed along the pseudo time axis s, and the deformed
point cloud locations at s are denoted by AsðsÞ, where Asðt ¼ 0Þ rep-
resents the initial state (i.e., the point cloud fasjg

p
j¼1 of template As).

The point deformations are governed by the following ODEs:

_A
sðsÞ ¼ vðAsðsÞ; sÞ; (2)

which can be solved using the second-order Runge–Kutta method,
and meanwhile, the control points and momentum vectors are
updated based on the Hamiltonian dynamics

_qðsÞ ¼ KðqðsÞ; qðsÞÞlðsÞ; ð3aÞ

_lðsÞ ¼ ' 1
2
rqKðqðsÞ; qðsÞÞlðsÞ>l; ð3bÞ

8
><

>:

where K represents the kernel matrix and fK½qðsÞ;qðsÞ)gi;j¼K½qiðsÞ;
qjðsÞ). We force the deformed template ~A

S
se at the final step (i.e., s¼ se)

to match the target geometry AT using the steepest gradient descent
optimization algorithm. To define the loss function, a “distance” metric,

evaluating the difference between the deformed template ~A
S
se and the

target geometry AT, is required. As the aorta geometries are composed
of triangular meshes with grid centers fcigmi¼1 and edge normal vectors
fnigmi¼1, the varifold distance metric d is defined as

d nSi ; c
S
i

! "# $mS

i¼1; nT
j ; c

T
j

% &n omT

j¼1

' (

¼
XmS

i

XmT

j

K cSi ; c
T
j

% &
&

nSi
! "> & nTj
% &2

jjnSi jj & jjnTj jj
: (4)
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The metric is calculable regardless of whether point-to-point corre-
spondence exists between two geometries. Namely, the total amount
of grids mS and mT for source and target geometries can be different.
The tolerance of the distance error is 1# 10'4 for every deformation
optimization. Once the diffeomorphism functions are solved, all target
geometries can be approximated by the deformations from the tem-
plate, establishing a correspondence for the original shape dataset. The
LDDMM algorithm has been implemented in Deformetrica, an open-
source software designed for statistical analysis of meshes.40

b. Projection to latent space.. To enable a concise parameterization
of the input geometric space, PCA is applied to encode the 3D irregular
shape onto the latent space. Specifically, fðxij ; yij ; zijÞgj¼1;::;p, denoting
the Cartesian coordinates of the point cloud on the aorta sample ~Ai,

was flattened into a vector ~V
i ¼ ðxi1; yi1; zi1;…; xip; y

i
p; z

i
pÞ. The entire

3D shape dataset can be squeezed into a matrix A ¼ ð ~V>1 ;…; ~V
>
NÞ
>.

Subsequently, PCA acting on A yields the eigenvectors fW igi¼1;…;z

and eigenvalues fkigi¼1;…;z , where z is the truncation integer control-
ling the number of primary components needed. Each aorta shape can
be decomposed as follows:

~A
i * Amean þ

Xz

j¼1
aij

ffiffiffiffi
kj

q
W j; (5)

where the coefficient vector ai ¼ ðai1;…; aizÞ represents the encoded
shape, which, in other words, is the projection of sample Ai in the
latent space. Let F and F'1 denote the PCA operator and its inverse,
respectively. The reconstruction error Epca is defined to evaluate the
accuracy of the PCA transform

Epca ¼
jjF'1ðFðAÞÞ ' AjjL2

jjAjjL2
: (6)

c. Synthesizing virtual aorta geometries.. Motivated by the need of
sufficient training samples for data-driven ML surrogate modeling, we
propose a shape synthesizing method for producing a large amount of
synthetic 3D aortas from a small set of original aorta shapes. The gen-
eral idea is to sample from the latent geometric space spanned by the
original aorta shapes and then synthesize new aortas by decoding the
sampled latent shape vectors back to the Cartesian space, as illustrated
in Fig. 2, where the geometric space is spanned by three original aorta
shapes. To synthesize new geometries within the geometric space, we
propose two different methods: (1) random linear interpolation and
(2) uniform PCA sampling. The random linear interpolation approach
linearly combines the n original samples in the latent space with ran-
domly assigned weights to generate new samples A+,

A+ ¼ F'1
Xn

i¼1
xiai

 !
¼ Amean þ

Xn

i¼1

Xz

j¼1
xiaij

ffiffiffiffi
kj

q
W j; (7)

where x ¼ ½x1;…;xn)T is a randomly generated weight vector that
satisfies

Pz
i¼1 xi ¼ 1. As an alternative, uniform PCA sampling

approach generates new samples by uniformly perturbing the PCA
coefficients within the ranges bounded by the original geometries

A+ ¼ Amean þ
Xz

j¼1
~a+j

ffiffiffiffi
kj

q
W j; (8)

where ~a* ¼ ½~a+1;…; ~a+z )
T is a randomly generated vector, and each

dimension ~a+j is sampled from a uniform distribution U
½minðaijj

n
i¼1Þ;maxðaijj

n
i¼1Þ). Figure 2 plots a few generated samples

within the 2D latent space defined by its first (PC1) and second (PC2)
primary components and the corresponding synthetic geometries. The
synthetic geometries (blue) are scattered within the triangular region
bounded by three original geometries (orange).

B. Automatic CFD simulation routine
To systematically generate massive CFD simulation data, we

develop a python routine to automate tedious simulation procedures,
including geometry preprocessing, meshing, boundary setting, simula-
tion, and post-processing. As the first step, preprocessing of the aorta
geometries is needed in order to be suitable for CFD simulations. First,
since the edges at the entry and the exit of the raw aorta channel could
be jaggy, the entry is slightly extended to construct a circular rim at
the inlet. Similarly, the exit of the aorta is also extended, which also
avoids inverse flows at the outlet. Second, the aorta surface is
smoothed to reduce bumpiness while still preserving its geometric
characteristics. Third, caps are added to seal nonphysical holes on the
aorta geometry. Once the geometry preprocessing is done, 3D unstruc-
tured triangular meshes are generated accordingly and then converted
intomsh format suitable for subsequent CFD simulations. These oper-
ations are implemented based on the Vascular Modeling Toolkit
(VMTK),41 which is an open-source module specialized in 3D recon-
struction, geometric analysis, and mesh generation. A python wrapper
is implemented to automate the entire procedure in parallel for the
ensemble setting.

Subsequently, a large-size ensemble of CFD simulations is per-
formed to obtain the corresponding FOIs for each sample of the gen-
erated dataset, based on the open-source CFD platform,
OpenFOAM.42 As handling a massive set of cases can easily be cum-
bersome and time-consuming, a python subroutine coupled with
OpenFOAM is established, such that the procedure of each simulation,

FIG. 2. Illustration of latent space distribution and visualization of generated syn-
thetic aortas (gray circle) from 3 original aorta shapes (red circle), where PC1 and
PC2 represent the first and second primary components of the latent geometric
space, respectively.
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including meshing, setting up cases, specifying boundary conditions,
solving, and post-processing, is automatically executed and repeated
through all samples in the dataset. The subroutine is written in a bash
script, and the process is formulated as follows: (a) A template case is
manually built with desired settings (e.g., numerical scheme, conver-
gence threshold, boundary conditions). Once the script is called, a
copy of the template case will be created and the geometry file will be
transferred into OpenFOAM mesh format. (b) The SIMPLE solver is
subsequently called to execute the simulation. (c) Several post-process
utility transfer solution results to convenient data formats; that is, the
probing function is used to directly obtain fluid quantities in an array
file. This process can be conducted in parallel as well. During the post-
processing step, the simulated field data on CFD meshes are projected
onto the surface or volumetric mesh grids where the correspondences
are established. In particular, surface pressure and wall shear stress are
projected onto surface vertices and velocity data are projected onto the
volumetric nodes via the nearest-neighbor interpolation. The volumet-
ric nodes are obtained by uniformly sampling points between the cen-
terline and the surface vertices. Finally, a large number of input
geometries and corresponding flow solutions are obtained as the
labeled dataset for surrogate modeling.

C. ML-based surrogate model
In order to build a fast forward map from the geometric space to

the solution space of interest, we propose a supervised deep learning
solution based on PCA encoding–decoding and fully connected deep
neural networks.

1. Encoding–decoding formulation

Considering the significantly high dimensions of 3D shapes and
solution fields in their discrete mesh forms, we adopt an encoding–
decoding strategy to reduce the learning complexity. Specifically, the
input geometries and output hemodynamic solution fields are encoded
into low-dimensional latent spaces. To promote training efficiency, the
encoder–decoder construction is decoupled with DNN-based surro-
gate training, and PCA (or POD) instead of DNN-based autoencoder
is used for the encoding–decoding process. The PCA algorithm is
implemented via the SciPy python package.43 To balance the recon-
struction accuracy and learning complexity, we keep the first seven
(maximum number of basis is eight) primary components for the
geometry input and ten (maximum number of basis is 1000) primary
components for the FOIs (e.g., pressure, velocity, and WSS), preserv-
ing 99.99% and over 95% of the total PCA variation, respectively. The
reconstruction error is 0.00% for the input and less than 1.5% for
the output solution fields. The relationship between the encoded shape
and solution fields is learned by a multilayer perceptron (MLP), where
rectified linear unit (ReLu) is used as the activation function.

2. Learning architecture optimization

The DNN-based forward map is learned from the labeled dataset
using the Adam optimizer, where the learning rate is adaptively
changed based on the estimates of the moments. To achieve the best
learning performance, we optimize the MLP architecture and other
learning hyperparameters, including the number of layers, the number
of neurons of each layer, batch size, and initial learning rate, using a

Bayesian optimization algorithm. Specifically, RAY-tune,44 an open-
source python module for scalable hyperparameter tuning, is adopted
here to achieve this goal. The general idea is to construct a posterior
distribution of functions based on Gaussian processes within the pre-
scribed ranges of the hyperparameters to be optimized. During the
optimization, the posterior of hyperparameters will be updated given
more and more training data, leading to the best learning configura-
tion. The Bayesian optimization is superior to a brutal grid search
method and can reach the optimized state in a fewer iterations. During
the optimization, the asynchronous successive halving algorithm
(ASHA) is utilized to aggressively terminate non-ideal trials in advance
in the interest of saving time, and more details can be found in Ref. 45.

3. Evaluation of performance

To evaluate the performance of the ML-based surrogate model,
relative mean square error (RMSE) is used to calculate the difference
between prediction and label, which is defined as

RMSE ¼

PN

i
ðxi ' yiÞ2

PN

i
y2i

# 100%; (9)

where X ¼ ðx1;…; xNÞ and Y ¼ ðy1;…; yNÞ are predictions and
labels of FOI on N vertices/grids, respectively. For scalar fields such as
pressure, RMSE is calculated directly upon the pressure field. For vec-
tor fields like wall shear stress and velocity, an array flattened from the
N # 3 vector–matrix containing three directional components (x, y,
and z directions) and the array of the vector magnitude are calculated
to estimate the RMSE, referred to as vector RMSE and magnitude
RMSE, respectively. When the error is evaluated upon a test dataset
with multiple samples, the average of the RMSE of each sample is
calculated.

III. RESULTS AND DISCUSSION
A. Statistical shape analysis and synthesis

We first register the eight original patient-specific aorta geome-
tries by solving seven diffeomorphisms from a randomly chosen tem-
plate to the rest of seven geometries. An example of such
diffeomorphism is demonstrated in Fig. 3. The template A1 is first
sampled with 4000 points P1 and so is the target geometry A2 with P2.
The shape deformation AðsÞ is solved with the boundary condition of
Aðs ¼ 0Þ ¼ P1 and Aðs ¼ 1Þ ¼ P2. Several intermediate states of the
function A are shown in the middle, in which the point clouds near
the left side resemble P1 and, likewise, point clouds near the right side
resemble P2. In addition, the intermediate states can be used to
“interpolate” between 3D irregular, showing geometric morphing
from aorta A1 to aorta A2.

Based on the set of eight original aorta geometries, a large num-
ber of virtual aortas are synthesized by sampling the geometric space
spanned by the original shapes. Both the uniform PCA sampling and
random interpolation methods are implemented, and the sample dis-
tributions of them are plotted in Fig. 4 to compare their coverage of
the input space. The 1000 synthetic shapes are scattered in the coordi-
nate plane of their PCA latent space with the first (PC1) and second
(PC2) primary components. The synthetic samples obtained by the
uniform PCA sampling are much more spread out over the coordinate
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plane than those from the random interpolation method, indicating a
better coverage of the input space and hence adopted for the data gen-
eration in this work.

Part of the synthetic geometries and the eight original geometries
are shown in Fig. 5. The uniform sampling method successfully
explores the input topological space and the synthetic geometries,
though virtual, possess geometric characteristics of biological shapes of
real aortas and fully displays the variation of the aorta shapes.

B. Surrogate CFD modeling using deep learning
Once the aorta geometry dataset is built, ensemble CFD simula-

tions are conducted to generate labeled hemodynamics data, which
will be used to train an ML-based surrogate.

1. Numerical setup

In this work, we made the following assumptions: (1) the blood
flow is Newtonian and governed by the steady-state incompressible

Navier–Stokes equations; (2) the vessel walls are rigid; (3) the inlet
velocity has a parabolic profile with a maximum magnitude of 1m/s,
which is close to the peak blood flow velocity during systole of one car-
diac cycle in a human body. A zero-gradient boundary condition is
applied at the inlet for pressure and a constant reference pressure with
outflow boundary condition is set at the outlet. The OpenFOAM, an
open-source Cþþ library for FVM, is used for CFD simulations. In
particular, the semi-implicit method for pressure linked equation
(SIMPLE) algorithms46 were used for solving the incompressible
Navier–Stokes equations, and the Rhie and Chow interpolation with
collocated grids was employed to prevent the pressure–velocity decou-
pling.47 All CFD simulations were run in parallel [four central process-
ing units (CPUs) per case], and each simulation takes around
1:2# 103 s to reach the convergence. Three decoupled MLPs are con-
structed to predict the velocity, surface pressure, and WSS fields sepa-
rately. The network architectures and learning parameters are
optimized using RAY-tune module, which is given in Table V. The
DNNs are trained on an Nvidia RTX A6000 GPU with a minimum of
2000 epochs to ensure convergence.

FIG. 4. Latent space distribution of synthetic (gray circle) and original (red circle) samples using (a) uniform PCA sampling and (b) random interpolation sampling.

FIG. 3. Building correspondence: Step ‹,
sample vertices from surface; Step›,
solve the diffeomorphism function; Stepfi,
reconstruct intermediate aorta.
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2. Learning performance study

As a demonstration, we generated a dataset of Ntot ¼ 1000 aorta
geometries and CFD simulated labels for training and validation study.
The dataset is divided into a training set (TS) and testing set with the
ratio of r ¼ Ntrain=ðNtrain þ NtestÞ, where Ntrain and Ntest denote the
size of training set and test set, respectively. The learning-prediction
performance of the trained DNN surrogates with different training-
testing ratios is reported in Table I, where the averaged MSEs of the
DNN-predicted surface pressure, velocity, and WSS fields are com-
pared. Considering the randomness of the DNN initialization, the
training processes for all DNNs are repeated by ten times with differ-
ent random initializations, and the averaged prediction errors over
these trials are reported for a more rigorous assessment. It can be seen
that the relative errors of the NN surrogate prediction are very low
once the DNNs are sufficiently trained. For velocity field prediction,
the prediction error is less than 1% even only 60% of the dataset is
used for training. Compared with the velocity, the errors of surface
field predictions such as surface pressure and WSS fields are slightly

higher since they are more sensitive to the shape of vessel walls and
the boundary layer conditions, which are not easy to capture well.
Also, for vector-valued fluid quantities like velocity andWSS, the mag-
nitude errors are smaller than the vector errors by about 30%. Viewing
the columns for each flow quantity, the prediction accuracy increases
as the training size grows, which is as expected. For example, the pres-
sure error climbs from 1:48% at r ¼ 90% to 1:83% at r ¼ 60% as r
decreases. In general, the prediction of the FOIs is accurate, indicating
the great capability of the proposed DNN-based surrogate model.

3. Predicting local hemodynamic information

In contrast to traditional surrogate model (e.g., GP models) or
reduced-space model (e.g., LP/1D models), the proposed ML-based
surrogate model is able to rapidly predict local hemodynamic informa-
tion such as blood flow pattern, surface pressure, and WSS distribu-
tions over the vessel walls. For illustration, we randomly selected four
test aorta geometries, and the hemodynamic fields predicted by the
DNN surrogate (r ¼ 80%) are compared with the CFD reference
(referred to as ground truth), as shown in Figs. 6 and 7. In addition,
the absolute error contours are also plotted out by subtracting the
ground truth from the prediction. The averaged and relative error is
also shown in Table II.

For pressures, the surrogate model yields very close surface distribu-
tion to the ground truth, yet slight differences exist at the stenosis of the
descending aorta. From the error contours, this discrepancy is very mild
on samples 1–4, but notable on sample 5, where the severity of stenosis is
much higher than other samples. This indicates that the surrogate model
is slightly less accurate in capturing flow features with large pressure gra-
dients, since more flow vortices are induced by sharp changes of surface
curvatures complicating the flow physics. This contrast is conspicuous
when comparing the maximum (sample 1) and minimum (sample 5)

FIG. 5. Latent space distribution (top) and
visualization (bottom) of synthetic (gray
circle) and original (red circle) aorta samples.

TABLE I. DNN prediction errors (averaged MSE) with different training to testing
size ratios for hemodynamics fields of interest, including surface pressure (!P), veloc-
ity vector (!V), velocity magnitude (!VM), wall shear stress (!WSS), and wall shear
stress magnitude (!WSSM).

r ¼ Ntrain
NtrainþNtest

(%) !P (%) !V (%) !VM (%) !WSS (%) !WSSM (%)

r¼ 60 1.83 0.735 0.504 1.88 1.33
r¼ 70 1.81 0.726 0.500 1.86 1.31
r¼ 80 1.67 0.734 0.505 1.86 1.32
r¼ 90 1.48 0.640 0.434 1.74 1.26
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predicted solution samples in Fig. 6. Sample 5 has a drastic change in
surface shape near the narrowing section resulting large pressure gra-
dients near the aortic arch, whereas sample one has a rather smooth
arch with less narrowing condition, leading to a much more accurate
pressure prediction. From Table II, one can see the maximum pressure
error is 8.93%, much larger than the average value (1.48%). The maxi-
mum error can be reduced if one increases the sample density locally
since the flow pattern changes rapidly at the maximum sample loca-
tion in the input space surrogate prediction of the WSS distribution is
in a good agreement with the ground truth. The pattern and low/high
WSS regions can be accurately captured. However, the surrogate
model tends to smooth out the small WSS fluctuations compared with
the CFD reference. It appears that high-frequency components of the

output are partially trimmed off when interpolating among neigh-
boring training samples based on the non-linear relations learned by
the neural network. Similar to pressure, notable inconsistency is also
observed near the stenosis on the descending aorta for sample 3. The
velocity contours on the cross section and internal velocity vector
fields are visualized in Fig. 7. Table II shows a maximumWSS predic-
tion error of 3.74% and 2.23% for relative vector and magnitude
error, respectively, which are also reflected on aortas with sharp sur-
face curvature changes. Again, the predicted velocity cross-sectional
contours agree with the CFD ground truth very well, and the overall
velocity vector fields from the neural network and CFD are almost
identical for all samples, although the error contours of planar veloc-
ity show slight prediction errors near the stenosis region for sample 3.

FIG. 6. ML surrogate predictions of pres-
sure (top) and wall shear stress (bottom)
are compared with the CFD ground truth:
prediction (1st and 4th row), CFD ground
truth (2nd and 5th row), and prediction
error (3rd and 6th row). Samples 1 and 5
represent minimum and maximum pre-
dicted solutions, respectively.
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The maximum error for velocity prediction is also about one time
larger than the averaged error, which is induced by flow inconsistency
near the stenosis region as expected.

We also briefly discuss the effect of PCA reconstruction error on
final prediction performance. Table III shows the comparison between
the reconstruction error and the prediction error. The results show

that the reconstruction error takes up a significant part of the predic-
tion vector error, especially for the velocity. The final prediction error
majorly comes from three sources: shape encoding, NN fitting, and
the field reconstruction step. The field reconstruction error results
from the truncation of PCA bases and grid interpolation. Because the
training samples have slight orientation differences, the shape encod-
ing error exists but is very small compared to other steps. The NN fit-
ting error is determined by the NN architecture and learning
parameters, which is minimized thanks to the Ray-tune module. The
field reconstruction error introduces an additional error to the final
prediction.

4. Training cost and prediction speedup

Table IV shows the time cost for every step in the surrogate pipe-
line. The mappings between shape input and FOIs, including pressure,
velocity, and WSS, are learned using separated neural networks, and
each takes about two minutes to be fully trained on an Nvidia RTX-
3090 GPU. The network inference for solution field prediction takes less
than 0.001 2 s. By contrast, a full-resolution CFD simulation needs about
20min to reach the steady state, not counting the overhead for mesh
generation and case setup, which could also be time-consuming. As a
result, the fully trained DNN surrogate model has 100000# speedup
over the full CFD simulation in the online inference phase. We should
note that a fair comparison should also consider the offline cost of

FIG. 7. Cross-sectional velocity magni-
tude (top) and velocity vector field (bot-
tom) comparison between prediction and
CFD ground truth: prediction (1st and 4th
row), ground truth (2nd and 5th row), and
error (3rd row). Samples 1 and 5 repre-
sent minimum and maximum predicted
solutions, respectively.

TABLE II. Averaged and maximum DNN prediction errors for 900 training size and
100 testing size for surface pressure (!P), velocity vector (!V), velocity magnitude
(!VM), wall shear stress (!WSS), and wall shear stress magnitude (!WSSM).

RMSE !P (%) !V (%) !VM (%) !WSS (%) !WSSM (%)

Maximum 8.93 1.37 0.768 3.74 2.23
Averaged 1.48 0.640 0.434 1.74 1.26

TABLE III. Reconstruction and prediction error for geometry (!G), surface pressure
(!P), velocity vector (!V), and wall shear stress (!W).

ARMSE !G (%) !P (%) !V (%) !WSS (%)

Reconstruction 0.00 0.74 0.61 1.5
Prediction & & & 1.48 0.64 1.74
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constructing the surrogate, which includes the cost for network training
and label generation. As for network training, the cost is
negligible compared to that of a CFD simulation, thanks to the light
DNN structure defined in the latent space. However, the cost for data
generation depends on the number of training labels required, which is
determined by the desired trade-off between the efficiency and
accuracy of the surrogate. For example, supposing 1000 CFD labels
are used for network training, the CFD data generation cost is 1000
#20ðminÞ ¼ 336ðhÞ min, which is significantly greater than that of a
single CFD simulation. Nonetheless, the surrogate model is built for
many-query applications (e.g., optimization, uncertainty quantification,
inverse modeling), and the huge speedup of single model evaluation can
be leveraged when a large number of model evaluations are required as
the offline cost is paid off at once. For example, Markov chain Monte
Carlo (MCMC), as the gold standard Bayesian inference method for for-
ward and inverse UQ, usually requires hundreds of thousands of model
evaluations to reach convergence, which well justifies the data genera-
tion at the cost of hundreds of full-order CFD evaluations. Moreover, it
is worth noting that the training dataset size is application-dependent
and the data generation cost can be significantly reduced if one allocates
the computational budget wisely. A comprehensive study on the use of
the proposed surrogate model in specific UQ or optimization applica-
tions is out of the scope of this work and will be conducted in the future.

C. Comparison between DNN-based and bi-fidelity
surrogate models

Finally, we investigate how well the proposed DNN-based surro-
gate model performs compared with other state-of-art surrogate mod-
els that can provide full-field hemodynamic predictions. To enable the
full-field prediction capability with the same resolution as that of full-
order CFD simulations, a multi-fidelity strategy is often adopted for

surrogate modeling. The multi-fidelity paradigm is pioneered by
Kennedy and O’Hagan48 decades ago, originally from a statistical
point of view (e.g., GP-based multi-model approach). Very recently,
multi-fidelity strategy has been applied for surrogate modeling in
inference and uncertainty quantification (UQ) problems in cardiovas-
cular biomechanics problems.14,15,49–51 In particular, Gao and Wang14

developed a bi-fidelity (BF) surrogate modeling approach for 3D
patient-specific hemodynamic simulations, which has been demon-
strated effective for both forward and inverse UQ problems.14,15 The
theoretical backbone of the BF surrogate is based on the multi-fidelity
paradigm, which leverages the accuracy of high-fidelity CFD solutions
and the efficiency of low-fidelity (LF) CFD solutions, largely reducing
the total computation cost compared with conventional full-order CFD
simulations. Here, we compared the proposed DNN-based surrogate
with the state-of-the-art BF surrogate model, which are built with the
same amount of training labels. It is worth noting that the training over-
head and prediction cost of the BF surrogate are always higher than
those of the DNN-based surrogate with the same amount of training
data (i.e., high-fidelity CFD labels), because low-fidelity CFD simula-
tions have to be performed for both training and inference. Specifically,
to build the BF surrogate model, in addition to high-fidelity (HF) CFD
training data, another 1000 low-fidelity (LF) CFD simulations are con-
ducted on low-resolution meshes. As the low-res meshes are very
coarse and the convergence criterion is set to be large, the LF simula-
tion cost is much lower than that of a HF simulation. The LF data are
used to explore the input geometric space to determine important
points, where HF CFD simulations are performed for training. More
details of the BF surrogate construction can be found in Ref. 14.

To find out how the prediction errors change with the training size,
the training set size (TS) changes from 300 to 900, and the testing set is a
fixed group of 100 aortas randomly generated. The comparison of per-
formance is shown in Fig. 8. Both surrogate models have reasonably

TABLE IV. Time cost for the pipeline for one sample (2nd row) and N samples (3rd row). Steps include: Preprocess (geometry manipulation); mesh generation; CFD simulation;
NN training; prediction. Total time cost is in 4th row.

Time Preprocess Mesh generation CFD simulation NN training Prediction

One sample 12.0 s 1.7 min 20.2 min & & & 0.001 2 s
N¼ 1000 samples 3.3 h 28.33 h 336 h 12.1 min 1.2 s
Total Offline time¼ 367.83 h Online time¼ 1.2 s

FIG. 8. Comparison between neural network (NN) and bi-fidelity model (BF) for predicted (a) pressure, (b) velocity, and (c) wall shear stress, respectively. Y and X axes denote
averaged mean square error (AMSE) and training set size (TS).
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good predictions, but the proposed DNN-based surrogate model out-
performs the BF surrogate model for all FOIs under all different train-
ing scenarios. Both surrogate models reach their best accuracy at
TS¼ 900 for all FOIs. The prediction error of the BF model quickly
increases as the training sample size decreases, while this trend is less
notable for the DNN-based model, particularly for velocity and WSS
predictions, indicating a more robust behavior in the small data regime.
For both models, the learning performance for the 3D velocity vector
field is slightly better than that of surface field outputs, such as pressure
and WSS, due to the fact that they are more sensitive to the local
changes of the input geometry cross-difference patients. Moreover, the
BF prediction cost is higher than the DNN-based surrogate, since each
BF prediction requires an LF CFD simulation. Therefore, the proposed
DNN-based surrogate model is superior to the BF model in terms of
accuracy and efficiency, though both models can predict all FOIs rea-
sonably well.

Besides the bi-fidelity and NN surrogate models compared in this
work. There are many other surrogate models one can explore. One
most relevant kind of model is the NN-based multi-fidelity model,
where either the bi-fidelity element or the NN element is dominant.
An example of a bi-fidelity dominant method is the work of Lu and
Zhu.52 They noticed that the LF and HF coefficients are not identical
but highly correlated. Therefore, they used a NN to map the relation-
ship between the input (input parameters and LF coefficients) and the
output (HF coefficients). Instead of regarding the LF and HF coeffi-
cients to be identical in the original bi-fidelity model, this method
approximates the difference between LF and HF basis and can
improve the prediction accuracy. For NN dominant methods, the NN
is approximating the relationship between input parameters and out-
put solution in the high-fidelity space. Then, an LF solution is evalu-
ated and added to the middle layers of the NN. For example, Pepper
et al.53 created a knowledge-based neural network (KBaNN) to learn
high-fidelity fluid field given input parameters, where NN mapping
and LF CFD solution are calculated in parallel and then combined to
produce the output. In general, those models can be called as hybrid
models, which leverage both the numerical solution and the machine
learning. Recently, researchers begin to combine differentiable solvers
with NN structure to create differential hybrid surrogate models,54

which are supposed surpass the performance for mere NN models
while still maintain high efficiency.

D. Limitations and future work

1. Geometry parameterization

In this work, we have successfully demonstrated the feasibility of
the proposed pipeline (PCA and MLP) focusing on the geometric
space for patients suffering from COA. However, the current geometry
parameterization has its limitations. For example, the encoded PCA
vector changes for operations like translation or rotation. Although we
aligned the geometries to a template using the ICP algorithm to avoid
this, the orientations of the synthetic training samples are, though very
close, different from the template geometry, resulting in a decrease in
prediction accuracy. An alternative way is to use graph neural net-
works (GNNs) for the geometry representation, which is translation-
and rotation-invariant and contains more topology information
compared to point clouds.

In addition, the LDDMM algorithm in the current pipeline is a
surface-based approach and can be extended to large deformations
with geometries that have a single channel (e.g., aorta) or one volume
(e.g., left atrium). However, for geometries with multiple channels, the
LDDMM is no longer applicable as the correspondence cannot be well
built. Many works have been done to apply centerline-based parame-
terization for those cases. For example, Thamsen et al.55 created a syn-
thetic database of aortas with carotid artery to the subclavian artery.
However, there is insufficient work on parameterization using a
surface-based representation for complicated geometries. In future
work, we aim to develop a hierarchical algorithm that can synthesize
complex geometries such as aorta with branches.

In addition to PCA, there are various tools to compress high-
dimensional data such as auto-encoder. In this work, we choose PCA
because it has linearly independent bases and high efficiency.
Considering we are establishing the whole surrogate pipeline from
scratch in this work, the PCA encoder is sufficient for the current
stage. However, more sophisticated encoding tools are necessary for
future development since we expect to handle more complicated data
in the future. More intuitively, because the fluid quantities are valued
on an unstructured mesh, we can build a GNN from the unstructured
mesh and implement graph embedding to encode the irregular high-
dimensional data.

2. Simulation authenticity

Another important topic is the applicability of the model to situa-
tions where realistic flow behaviors (e.g., transient, non-Newtonian, FSI)
are modeled. In general, when considering factors such as transient flow,
which is crucial for reflection wave analysis, the mapping unit (MLP)
will have to be replaced by a recurrent neural network (RNN) such as
long short-term memory (LSTM) or gated recurrent unit (GRU). If one
encounters gradient loss due to a long time sequence or wants to com-
pute in parallel, a transformer can be used to process the inlet time
sequence at one time. For the non-Newtonian assumption of the blood
flow, the current MLP can be extended to this situation as long as a spe-
cific non-Newtonian model (e.g., the generalized power law model) is
used while generating the CFD results as the training data. However, if
such model is unknown, one can embed NN into a solver to learn the
stress–shear rate relationship from the ground truth data

3. Machine learning

Observing the prediction results in Figs. 6 and 7, the prediction
flow predictions are smoother than the ground truth. The incapability
of capturing high-frequency components in the flow field is induced
by several limitations of the current method: (a) the PCA encoding
method reconstructs flow field from truncated primary components,
which is more likely to keep averaged values of the fluid fields. (b) The
number of training samples is not large enough and the interpolation
over sparsely distributed samples is likely to induce underfitting and
yield smooth flow fields.

Also we note that the stenosis area at the aortic arch requires the
most prediction accuracy and meanwhile has the largest discrepancy in
this work. This is because to the current PCAþMLP architecture enco-
des the geometry and flow field as a whole and usesMLP to fully connect
all information in the mapping. As a result, the surrogate model yields
good predictions globally and inevitably has less accuracy near the region
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of interest. To address this issue, we can represent the geometry with a
graph and use graph convolution to learn the relationship between the
neighborhood geometric features and the local flow patterns.

4. Uncertainty

In this section, we briefly discuss the uncertainty in the model
including epistemic and aleatoric components. The former kind of
uncertainty comes from the simplified boundary conditions such as
rigid wall assumption, parabolic inlet flow, and constant reference
pressure at the outlet; non-Newtonian behavior from the blood flow,
whereas the aleatoric uncertainty can come from: noise from image
scans such as phase-contrast magnetic resonance angiogram (PC-
MRA) scans; human artifacts during image segmentation; randomness
in numerical discretization; random distribution of the training sam-
ples; and random initialization of the MLP. In terms of factorizing
those uncertainties, the current model can only separate part of the
resources. For example, we can train the NN multiple times with ran-
dom parameter initializations and take the average of the learned
parameters to remove NN initialization uncertainty from others. We
can increase more training samples to suppress the uncertainty from
the training sample distribution.

IV. CONCLUSION
In this study, we developed a statistical shape modeling (SSM)

approach to parameterize the geometric space spanned by a set of 3D
patient aorta geometries and systematically synthesize a large number of
virtual aorta geometries. The results show that the proposed SSM
method successfully established correspondence among aorta geometries
from different patients and the uniform PCA sampling algorithm suffi-
ciently explored the input space, generating abundant synthetic aorta
shapes that fully cover the geometric variation. Subsequently, an ML-
based surrogate model is proposed to predict comprehensive local
hemodynamic information (e.g., surface pressure, velocity, and WSS
fields), where an encoding-decoding structure is built based on PCA and
multiple MLPs are constructed to learn the non-linear mappings
between the input geometries and flow fields of interest within the latent
spaces. The PCA encoder and decoders managed to reduce the dimen-
sion of the mesh-based 3D aorta shapes and field outputs to a large
extent and maintained a reconstruction error as low as 1%. The MLPs
are well optimized in terms of their hyperparameters and trained on dif-
ferent sizes of sample sets. The testing results prove that the proposed
surrogate model is able to yield hemodynamic field predictions in a
good agreement with the ground truth obtained from full-order CFD
simulations, yet the accuracy is slightly lower near the stenosis of the
descending aorta, where flow features are more complicated due to
sharp pressure gradients. The accuracy of the proposed model can be
improved by increasing the size of training set. The proposed DNN-
based surrogate is compared with the state-of-the-art bi-fidelity (BF) sur-
rogate model, and the DNN surrogate outperforms the BF surrogate in
terms of both efficiency and accuracy for all FOIs under different train-
ing scenarios. Furthermore, the proposed model exhibits a robust behav-
ior when the number of samples drops, whereas the BF model easily
loses its accuracy, especially for surface pressure predictions. In conclu-
sion, the proposed DNN-based surrogate model shows a great capability
of approximating the non-linearity of the CFD simulations for cardio-
vascular flows. Considering extremely low costs of DNN for inference,
the trained DNN-based surrogate is able to provide high-resolution local

hemodynamic information in split of second, showing a great potential
for applications requiring massive model queries, such model inference,
optimization, and uncertainty quantification problems. Although the
current work focus on aortic flows, the proposed methods can be
applied to hemodynamic modeling for other anatomies in general.
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TABLE V. The optimized MLP structure and hyperparameters based on Bayesian
tuning.

FOI DNN layers
In and

out features
Batch
size

Learning
rate

Pressure Linear layer 7,64 8 1# 10'3

ReLu & & &
Linear layer 64,8

ReLu & & &
Linear layer 8,256

ReLu & & &
Linear layer 265,10

Velocity Linear layer 7,64 8 4:07# 10'4

ReLu & & &
Linear layer 64,512

ReLu & & &
Linear layer 512,256

ReLu & & &
Linear layer 265,10

APPENDIX: OPTIMIZED MLP STRUCTURES
AND HYPERPARAMETERS
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