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ABSTRACT

Regression testing is an important part of the software development

process but suffers from the presence of flaky tests. Flaky tests are

tests that can nondeterministically pass or fail regardless of code

changes. Order-dependent flaky tests are a prominent kind of flaky

tests whose outcome depends on the test order in which they are

run. Prior work has focused on detecting order-dependent flaky

tests through rerunning all tests in different test orders on a single

version of code. As code is constantly changing, rerunning all tests

in different test orders after every change is costly.

In this work, we propose IncIDFlakies, a technique to detect

order-dependent flaky tests by analyzing code changes to detect

newly-introduced order-dependent flaky tests due to those changes.

Building upon existing work in iDFlakies that reruns tests in dif-

ferent test orders, IncIDFlakies analyzes and selects to run only

the tests that (1) are affected by the change, and (2) can potentially

result in a test-order dependency among each other due to potential

shared state. Running IncIDFlakies on 67 order-dependent flaky

tests across changes in code in their respective projects, including

the changes where they became flaky, we find that IncIDFlakies can

select to run on average 65.4% of all the tests, resulting in running

68.4% of the time that baseline iDFlakies would use when running

the same number of test orders with the full test suite. Furthermore,

we find that IncIDFlakies can still ensure that the test orders it runs

can potentially detect the order-dependent flaky tests.
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ging.
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1 INTRODUCTION

Regression testing is an important part of software development but

is plagued by the presence of flaky tests. Flaky tests are tests that

nondeterministically pass or fail when run on the same version of

code [32]. A flaky test failure can mislead developers into believing

there is a fault introduced in the change, and they would waste

time debugging the non-existent fault when the real problem is that

the flaky test would have nondeterministically failed regardless of

that change. Prior work has found several reasons for flaky tests,

with common ones including asynchronous wait, concurrency, or

test-order dependencies [12, 32].

An important kind of flaky tests are order-dependent flaky tests.

Order-dependent flaky tests are flaky tests whose outcome depends

on the test order in which they are run. Luo et al. found order-

dependent flaky tests to be among the top three most common kinds

of flaky tests in their empirical study [32]. Prior work has focused

on developing techniques that detect order-dependent flaky tests

through various means of rerunning the entire test suite in different

test orders [24, 47] or analyzing the dependencies between all tests

in the test suite [9, 16]. However, these techniques are expensive

and analyze the tests through (re)running all tests on just a single

version of software. For example, iDFlakies [24] reruns all tests in

different, random test orders, detecting an order-dependent flaky

test when it runs both a test order in which it passes and another

test order in which it fails. iDFlakies tries all these different test

orders on one version of software. A developer who aims to use

iDFlakies to detect order-dependent flaky tests as soon as they are

introduced would have to run iDFlakies after every change they

make. Each iDFlakies run is independent of each other, and they

do not use any information concerning changes between versions.

Over time, using iDFlakies becomes expensive given the need to

rerun all tests multiple times across frequent changes.

We propose IncIDFlakies, a technique to detect newly-introduced

order-dependent flaky tests efficiently after a code change. IncID-

Flakies builds upon iDFlakies, detecting order-dependent flaky tests

by rerunning tests in random test orders. However, IncIDFlakies

also takes into consideration the code changes since the last time

IncIDFlakies was run, running test orders consisting of only the

subset of tests that may become order-dependent flaky tests after

the change. In general, an order-dependent flaky test can only fail

when run in relation with some other tests. The order-dependent

flaky test may fail when another test runs before it and “pollutes”

their shared state, or the order-dependent flaky test may actually

only pass when run after some other test that sets up the shared

state properly for it [40]. A detection technique that runs tests to

detect order-dependent flaky tests would need to run multiple tests

in relation to each other. A change may induce a test to become an

order-dependent flaky test if the change makes this test depend on

some shared state that some other test may modify. Conversely, a
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change may be such that a test starts modifying some shared state,

therefore leading to some other test to become an order-dependent

flaky test. In both scenarios, IncIDFlakies has to run at least these re-

lated tests to detect newly-introduced order-dependent flaky tests.

To select the necessary tests based on the changes, we leverage

regression test selection (RTS) techniques to select tests that are

affected by the change, meaning their behavior could differ after

the change [18, 28, 46]. However, running just these affected tests

is insufficient. It is possible that the change makes a test modify

some state shared with other tests, or the change makes the test

now depend on some shared state that other tests modify. These

other tests’ behavior may not differ after the change, so an RTS

technique would (rightfully) not select them. A technique that aims

to detect newly-introduced order-dependent flaky tests, however,

would need to run those tests as to ensure the order-dependent flaky

test can be detected.We use existing RTS techniques Ekstazi [17, 18]

and STARTS [28, 29] to analyze changes, and we also augment the

analysis to include additional tests that reach shared state used by

the affected tests.

We evaluate IncIDFlakies on a dataset of 67 order-dependent

flaky tests where prior work has already identified the code ver-

sion/commit where the test became flaky, termed the flakiness-

introducing commit [27]. These order-dependent flaky tests are

spread across 14 open-source Java projects, and we evaluate on

a total of 27 flakiness-introducing commits. For each flakiness-

introducing commit, we additionally select up to five commits right

before the flakiness-introducing commit, and we use the changes

between the commits to evaluate how efficient IncIDFlakies would

be at selecting and running the selected tests in different test orders

upon analyzing those changes. We find that IncIDFlakies can on av-

erage run 65.4% of the tests while taking 68.4% of the time it would

take iDFlakies to try the same number of test orders. Furthermore,

we find that IncIDFlakies can successfully select the necessary tests

to ensure it can run test orders that detect the newly-introduced

order-dependent flaky test at the flakiness-introducing commit.

This paper makes the following contributions:

• Evolution-aware flaky-test detection. We develop the

first technique that analyzes changes and code evolution to

more efficiently detect order-dependent flaky tests. Our tech-

nique builds upon RTS techniques to select all the necessary

tests to ensure order-dependent flaky tests can be detected

through running in different test orders after a change.

• Implementation.We implement IncIDFlakies as an addi-

tional detector for the existing tool iDFlakies.

• Evaluation. Our evaluation of IncIDFlakies shows it can

select the tests to detect all the order-dependent flaky tests

from our dataset at the flakiness-introducing commits. Our

evaluation shows that IncIDFlakies can provide substantial

time savings, running 65.4% of tests and taking 68.4% of the

time needed if running iDFlakies on the full test suite.

2 BACKGROUND

2.1 Order-Dependent Flaky Tests

An order-dependent flaky test is a flaky test whose outcome depends

on the test order in which it is run [24, 32, 47]. An order-dependent

flaky test must have both a passing test order (in which it passes)

and a failing test order (in which it fails). Furthermore, the order-

dependent flaky test must deterministically pass in the passing test

order and fail in the failing test order, i.e., it is not a nondeterministic

order-dependent flaky test [26].

Shi et al. [40] previously categorized order-dependent flaky tests

into two types, victims and brittles. A victim fails when some other

test, termed a polluter, runs before it in the test order. Conceptually,

the polluter “pollutes” some state the two tests share, so the victim

runs in an unexpected starting state and therefore fails. The victim

passes when run on its own or before the polluter. Conversely,

a brittle fails when run by itself, but it passes when another test,

termed a state-setter, is run before it. Conceptually, the state-setter

sets up the shared state properly for the brittle to start running in.

Figure 1 illustrates an example order-dependent flaky test taken

from ktuukkan/marine-api, a real-world project we use in our eval-

uation. In this project, testConstructor (Line 23) is an order-

dependent flaky test. testConstructor passes when it runs by it-

self. However, when testRegisterParserWithAlternativeBegin-

Char (Line 8) runs before, then testConstructor fails. In other

words, testConstructor is a victim and testRegisterParser-

WithAlternativeBeginChar is its corresponding polluter. More

specifically, the polluter unregisters VDMParser.class (Line 10)

from the parsers map (Line 32) of the shared SentenceFactory

instance obtained from calling SentenceFactory.getInstance()

(Line 3).When the victim runs, it invokes createParser() (Line 20)

to create a parser for VDMParser.class. However, if the polluter

had run before and removed this parser from the parsersmap, then

executing createParser() would throw an IllegalArgument-

Exception (Line 47), and so the victim would fail.

Note that the test code that tries to create the parser is actually

part of an instance field declaration in the test class Abstract-

AISMessageListenerTest, meaning it is run when an instance of

the test class is initialized, which, in JUnit, happens before every

test method gets run. As such, testConstructor is not the only

victim in this example but rather every test method in the test class

AbstractAISMessageListenerTest is a victim as well.

2.2 Regression Test Selection (RTS)

When developers run tests after they make changes as part of their

regression testing process, they can speed up the process by using

regression test selection (RTS) to select and run a subset of the

full test suite, namely the tests whose behavior could be affected

by those changes [46]. In general, an RTS technique analyzes the

dependency relationship between tests and code under test, creating

a mapping from tests to code elements, such as statements, methods,

or classes, that the tests depend on [46]. After determining which

code elements have changed, an RTS technique would select to

run the tests that depend on those elements; these tests are the

affected tests. Prior work has found that tracking dependencies at

the class level, i.e., mapping test classes to other classes that they

depend on, is the most efficient at reducing the cost of regression

testing [18, 28]. These findings have led to the creation of two open-

source RTS tools for Java projects, Ekstazi [17] and STARTS [29].

Ekstazi. Ekstazi [17, 18] is a dynamic RTS technique. Ekstazi cre-

ates its class-level dependency mapping by instrumenting the code

under test and tracking which classes each test class covers after
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1 // existing test class that contains polluter

2 public class SentenceFactoryTest {

3 private final SentenceFactory instance =

4 SentenceFactory.getInstance ();

5

6 @Test

7 public void

8 testRegisterParserWithAlternativeBeginChar () {

9 ...

10 instance.unregisterParser(VDMParser.class);

11 }

12 }

13

14 // newly -introduced test class with order -dependent test

15 public class AbstractAISMessageListenerTest {

16 private final SentenceFactory sf =

17 SentenceFactory.getInstance ();

18

19 private final AISSentence AIS_01 = (AISSentence)

20 sf.createParser("VDM");

21

22 @Test

23 public void testConstructor () {

24 ...

25 }

26 }

27

28 // class of shared static field

29 public final class SentenceFactory {

30 // map containing parser classes

31 private static

32 Map <String , Class <? extends SentenceParser >> parsers;

33

34 public void unregisterParser

35 (Class <? extends SentenceParser > parser) {

36 for (String key : parsers.keySet ()) {

37 if (parsers.get(key) == parser) {

38 parsers.remove(key);

39 break;

40 }

41 }

42 }

43

44 public Sentence createParser(String nmea) {

45 String sid = SentenceId.parseStr(nmea);

46 if (! parsers.containsKey(type)) {

47 throw new IllegalArgumentException (...);

48 }

49 return createParserImpl(sid , nmea);

50 }

51 }

Figure 1: Example order-dependent flaky test from

ktuukkan/marine-api

executing the tests. To track which classes have changed between

versions, Ekstazi also records a checksum representation of the

contents of each Java class file (a class in Java is represented as a

class file on disk). After recompiling the code after a change, Ekstazi

checks whether any new compiled class files now have a different

checksum from what was recorded before, meaning the class has

changed. Then, Ekstazi would select to run the test classes that

depend upon the changed classes based on the dependency map-

ping collected from running tests on the previous version; these

tests would be the affected tests. Ekstazi would also update the

class file checksums and the dependency mapping with coverage

information collected from executing the affected tests on this new

version in preparation for the next change.

STARTS. STARTS [28, 29] is a static RTS technique. Similar to Ek-

stazi, STARTS also creates a class-level dependency mapping, from

test classes to other classes each test class depends upon. However,

STARTS creates this mapping by first constructing an intertype

relation graph [35] of the code. In this graph, nodes are classes,

and an edge exists between one node to another if a class either

uses or inherits from that other class. This graph is constructed

purely statically by analyzing the compiled class files in a project.

STARTS then constructs a dependency mapping from test class to

other classes by finding which other classes are reachable within

this graph from each test class. To determine which classes have

changed, STARTS uses the same checksum logic as employed by

Ekstazi. Also like Ekstazi, STARTS determines affected tests as the

test classes that are mapped to any changed classes in the depen-

dency mapping. The key difference is that STARTS does not need

to run any tests beforehand to create this dependency mapping.

3 INCIDFLAKIES

We present IncIDFlakies to detect order-dependent flaky tests af-

ter they are introduced in a change. The use scenario for IncID-

Flakies is that developers would run the detection technique after

their changes and have performed basic regression testing to check

the correctness of their changes. The developer is already willing

to use a flaky-test detection such as iDFlakies after changes, so

IncIDFlakies aims to reduce that detection cost. In this scenario,

developers would then already be using RTS techniques to speed

up regression testing by running only the affected tests based on

the changes. The developer would only use IncIDFlakies to de-

tect newly-introduced order-dependent flaky tests after finishing

running affected tests, and as such, IncIDFlakies can then reuse

the results of the already run RTS technique, namely the affected

tests and the dependency mapping information (Section 2.2). IncID-

Flakies also takes as input the full test suite, as it needs to analyze

which additional tests from the full test suite are necessary to also

select as to ensure detecting newly-introduced order-dependent

flaky tests. IncIDFlakies would then run its selected tests in different

test orders to detect order-dependent flaky tests.

We next describe how IncIDFlakies selects the tests to run as

well as how IncIDFlakies then runs the tests to detect any newly-

introduced order-dependent flaky tests.

3.1 Selection

IncIDFlakies starts with the affected tests provided by the RTS

technique that ran previously. These affected tests are those whose

behavior could differ based on the changes, which means they could

now be modifying some state shared with other tests in the test

suite (i.e., they become polluters or state-setters), or they could now

depend on some shared state that is modified by some other tests in

the test suite (i.e., they become victims or brittles). As such, these

tests must be run to detect whether any test orders involving them

result in an order-dependent flaky test failure.
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contains static fields

AbstractAISMessageListener

AbstractAISMessageListenerTest

SentenceFactory

SentenceFactoryTest

Figure 2: Graph representation of dependencies between

classes from ktuukkan/marine-api

However, just running the selected tests based on the RTS tool is

not enough to ensure detection of newly-introduced order-dependent

flaky tests. Consider once again the example in Figure 1. The

example shows code and tests at commit 3d8dff0f. Before this

commit, the polluter already existed in the test suite. While it

was always unregistering the VDMParser.class from the shared

SentenceFactory instance, no other tests actually relied on that

instance. As such, no other test would be found to be an order-

dependent flaky test in relation to the polluter. However, this com-

mit introduced awhole new test class AbstractAISMessageListener-

Test, and its initialization depends on this shared SentenceFactory

instance. As such, tests in this test class are victims from the very

beginning, upon introduction into the test suite. Furthermore, this

commit only introduced the new test class and modified the class

it tests. Figure 2 illustrates how AbstractAISMessageListener-

Test and AbstractAISMessageListener are the only modified

classes (nodes with red outline), and only AbstractAISMessage-

ListenerTest is an affected test class (red-dashed rectangle). No

other test classes would be affected by this change (no dependency

edge to the modified classes). An RTS technique would (rightfully)

only select tests in AbstractAISMessageListenerTest as affected

tests, because no other test should behave differently after this

change. Even though the newly-introduced tests are indeed order-

dependent flaky tests due to their relation with another existing

test (in SentenceFactoryTest), it would not be detected as such

if not run alongside that other test.

To address this issue, we introduce analysis to select additional

tests that are related to the affected tests and should then be run

together to ensure any newly-introduced order-dependent flaky

test can be detected. Figure 3 shows the process. We start with the

affected tests provided by the RTS technique. For each affected test,

we use the mapping to find all its dependency classes (Line 13). We

analyze these dependency classes for potential sources of shared

state, namely static fields. While shared state can come in variety

of forms such as static fields, files, database connections, etc., we

focus on just static fields, as prior work found them to be a common

source of state shared between tests in Java [8, 20, 31, 32, 47].

For each dependency class, we obtain the static fields defined in

the class, if any (Line 21). If the dependency class contains static

fields, that means the affected test could modify or use any state

1 # Input: tests : all tests at the current sha

2 # affected_tests : affected tests from RTS

3 # deps : test to dependencies mapping from RTS

4 # Output: tests to run in different test orders

5 def IncIDFlakies(tests , affected_tests , deps):

6 additional_tests = set()

7 processed_deps = set()

8 # get the dependencies from class to tests

9 reverse_deps = get_reverse_dependencies(deps)

10 for test in affected_tests:

11 if not test in deps.keys ():

12 continue

13 dependencies = deps[test]

14 for dp in dependencies:

15 # process each dependency once

16 if dp in processed_deps:

17 continue

18 if in_third_party_library(dp):

19 continue

20 processed_deps.add(dp)

21 static_fields = get_static_fields(dp)

22 for field in static_fields:

23 # exclude final fields that are immutable

24 if is_final(field) and is_immutable(field):

25 continue

26 # include all tests that reach this class

27 additional_tests |= reverse_deps[dp]

28 break

29

30 return affected_tests | additional_tests

Figure 3: Process for selecting additional tests to run

reachable from the static field that could also be shared with other

tests. As such, we need to include other tests that also can reach this

dependency class. The affected test’s behavior could be changed

such that it modifies this shared state these other tests depend on,

or the affected test could now be depending on this shared state that

some other test is already modifying (e.g., the example in Figure 1).

We construct a reverse dependency mapping going from classes to

tests that depend on each class (Line 9). We use that mapping to

find all tests that reach this dependency class with static fields, to

be included as the additional tests needed to run (Line 27).

Consider Figure 2 again. IncIDFlakieswould start with Abstract-

AISMessageListenerTest and find all its dependency classes, even-

tually finding that SentenceFactory has a static field that is not

final and immutable. The process then finds all the test classes

that depend on SentenceFactory, namely test classes Abstract-

AISMessageListenerTest and SentenceFactoryTest, including

all of them to be run. As such, SentenceFactoryTest is an addi-

tional test class to be selected (blue dashed rectangle). Running both

test classes together could result in detecting the newly-introduced

order-dependent flaky tests in AbstractAISMessageListenerTest.

As a heuristic to avoid selecting too many additional tests, we ig-

nore dependency classes that are in third-party libraries beyond the

code in the project itself (Line 18). We want to focus on shared state

within the code that the developers have control over. In particular,

we do not want to track dependencies within the Java standard

library, as many classes could depend on some few Java classes

(as found in prior work on RTS [28]). While ignoring potential

dependencies on third-party library classes can result in missing to
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select relevant tests, we believe there is only a small chance that

tests may affect each other’s behavior through state shared from

static fields in these external classes.

As another optimization, we also check whether static fields

contained in a dependency class are final and are of an immutable

type, such as java.lang.String, java.util.regex.Pattern, or

a primitive type. We ignore any such static fields (Line 24). A final

field value cannot be changed after its initial assignment, and an

immutable object’s state cannot change, so tests cannot modify

shared state through these fields. If a dependency class only contains

such static fields, we would skip processing that class altogether.

3.2 Running Selected Tests

Once IncIDFlakies has selected the tests to run based on the changes,

it will next run them in different test orders for detecting any

newly-introduced order-dependent flaky tests. We build this part

of IncIDFlakies on top of iDFlakies [1, 24], an existing tool that

detects order-dependent flaky tests in a single version of software

by running all the tests in different, random test orders. While

effective at detecting order-dependent flaky tests, iDFlakies would

be costly to deploy as part of a continuous integration process given

that it would need to run many different test orders after every

change. IncIDFlakies aims to improve upon iDFlakies by running

fewer tests after every change.

Since we are building upon iDFlakies, we inherit many of the

same configuration options as well. The most relevant configura-

tion option is the number of rounds to run. In iDFlakies, a round

represents a test order that iDFlakies would run the tests in. If any

tests have a different outcome when run in this round than the

outcomes recorded from an initial so-called original test order, iD-

Flakies would mark the test as flaky. It would also rerun that same

test order to check whether it maintains the same outcome, and

if so, that detected flaky test would also be categorized as order-

dependent. The more rounds that iDFlakies is configured with then

the higher the chance of detecting any order-dependent flaky tests

(since iDFlakies would have tried more test orders). However, more

rounds means also a higher running cost.

In the case of IncIDFlakies, the expected use scenario is that

developers would choose a number of rounds to run IncIDFlakies

with, and IncIDFlakies would only run the selected tests that many

rounds, reporting any detected order-dependent flaky tests after-

wards. While some extra analysis is needed to determine which

additional tests to select, the expectation is that running fewer

tests per round would overall decrease the running cost for detect-

ing order-dependent flaky tests after every change. Furthermore,

with fewer tests, there would be fewer permutations of test orders

overall, so IncIDFlakies would likely cover more relative orderings

between the relevant tests in the limited number of rounds.

4 EXPERIMENTAL SETUP

4.1 Subjects

To evaluate IncIDFlakies, we use the order-dependent flaky tests

contained with IDoFT [2], a public dataset of flaky tests collected

across open-source Java projects on GitHub. These flaky tests were

detected using automated flaky-test detection tools such as iD-

Flakies [1] or NonDex [4]. In addition, Lam et al. [27] previously

Table 1: Filtering tests from IDoFT

# tests Category

104 initial order-dependent flaky tests

9 denoted as non-order-dependent flaky test

20 could not compile

8 cannot reproduce flakiness

67 final # tests

conducted a longitudinal study on flaky tests within this dataset,

where they determined the commit in the flaky test’s project’s

history where the flakiness was introduced, termed its flakiness-

introducing commit. They marked these flakiness-introducing com-

mits for a subset of tests in IDoFT. Given that IncIDFlakies specif-

ically targets order-dependent flaky tests, we start with the 104

tests in the dataset that are both marked as order-dependent and

have a corresponding flakiness-introducing commit. However, 9

of these tests fall into the category of what IDoFT considers non-

order-dependent or nondeterministic order-dependent [26], which

means the tests do not deterministically pass or fail in a specific

test order; we ignore such tests from our evaluation.

To determine whether IncIDFlakies can run the proper tests

to detect order-dependent flaky tests at the flakiness-introducing

commit, we need to first find possible passing and failing test orders

for each order-dependent flaky test. First, we found we could no

longer compile or run tests at the flakiness-introducing commit for

one of the projects (Activiti/Activiti), and so we excluded their 20

tests. Next, we ran iDFlakies on each of the flakiness-introducing

commits for 100 rounds as to detect both such test orders for each

of the remaining order-dependent flaky tests. Unfortunately, we

could not detect 8 order-dependent flaky tests at their flakiness-

introducing commits even after running iDFlakies for this large

number of rounds. From our inspection, we found that three of

them likely have their flakiness-introducing commit marked wrong

in the dataset, one cannot be run using the current iDFlakies tooling

given their use of a specialized test runner, and the remaining four

are likely non-order-dependent flaky tests. Overall, our evaluation

dataset consists of 67 order-dependent flaky tests from 14 projects,

consisting of 21modules. Table 1 shows a breakdown of our filtering

process to obtain those 67 order-dependent flaky tests.

These 67 order-dependent flaky tests are also spread across 27

flakiness-introducing commits (order-dependent flaky tests of the

same project/module may share the same flakiness-introducing

commit). We confirmed that these commits are indeed flakiness-

introducing commits for each test by also running iDFlakies on the

commit right before as to check the test is not detected as flaky

on the previous commit. There was just one flakiness-introducing

commit from the IDoFT dataset where we found the corresponding

test was still flaky on the previous commit, so we went back further

in that test’s history to find an earlier commit that constitutes the

flakiness-introducing commit (which matched with the flakiness-

introducing commit of another order-dependent flaky test in the

dataset). Table 2 provides the details of these projects/modules and

the flakiness-introducing commits. In the table, each row represents

the flakiness-introducing commit for a project and module, where
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4.2 Running IncIDFlakies

For each commit we use in our evaluation, we use each RTS tech-

nique to analyze the changes between that commit and the sub-

sequent commit we collected, obtaining both the set of affected

tests and the dependency mapping from tests to classes provided

by the RTS techniques. This part simulates our expected usage

for IncIDFlakies where a developer would have already used RTS

as part of their regression testing process, and IncIDFlakies as a

flaky-test detection tool can reuse that information. We then run

IncIDFlakies using the affected tests and dependency mapping pro-

vided by the RTS technique on this subsequent commit. We denote

IncIDFlakies that uses Ekstazi as IncIDFlakies� , and IncIDFlakies

that uses STARTS is denoted as IncIDFlakies( .

On each commit where we run IncIDFlakies, we configure it to

use 10 rounds, as suggested by previous work on iDFlakies [24].

On each of these commits, we also run iDFlakies, which does not

analyze any changes and simply runs with the entire test suite;

we also use the same 10 rounds configuration so it can be a fair

baseline for comparison against IncIDFlakies. We measure what

percentage of all the tests are selected to run by IncIDFlakies and

how much time it takes for IncIDFlakies to run compared against

iDFlakies for the same number of rounds. In both cases, a smaller

percentage is better, as it would indicate IncIDFlakies provides

savings in tests to run and time to run them. Note that the time we

measure for running IncIDFlakies includes both the analysis time

for determining the additional tests to also select and also the time

to run all the selected tests for 10 rounds.

Another configuration detail for our experiments is that we dis-

able the step where iDFlakies reruns test orders where it discovers

a difference in test outcome as to check whether the test is an actual

order-dependent flaky test [1, 24]. Since iDFlakies and IncIDFlakies

can be running different tests at the same commit, they may run

different test orders that may detect different sets of flaky tests. As

such, their runtimes can differ drastically if one detects more flaky

tests and has to rerun more times. To allow for fairer comparison

of runtime differences, we disable the rerun step in both iDFlakies

and IncIDFlakies, ensuring they always run the exact same number

of rounds without any additional test runs.

4.3 Potential for Detection

Given that the order-dependent flaky test flakiness only first mani-

fests at the flakiness-introducing commit, we evaluate how effective

IncIDFlakies is at detecting the order-dependent flaky tests only on

the flakiness-introducing commit. We compare how many of the

order-dependent flaky tests are detected by IncIDFlakies compared

against those detected by baseline iDFlakies within the same 10

rounds, with the higher percentage the better.

However, given the nondeterministic nature of running different

test orders, it is not guaranteed that every order-dependent flaky

test would be detected in the 10 rounds we use for our evaluation.

As such, we need a metric for determining whether it is possible for

IncIDFlakies to potentially detect the order-dependent flaky test if

it was to run long enough (iDFlakies would always be guaranteed

to detect the test given that it is running the full test suite).

An order-dependent flaky test would only be detected if running

in different test orders reveals a passing test order and a failing

test order. In other words, if the order-dependent flaky test is a

victim, then it needs to be run with at least one of its polluters; if the

order-dependent flaky test is a brittle, then it needs to be run with

at least one of its state-setters. As such, we say the technique can

potentially detect the order-dependent flaky test at the flakiness-

introducing commit if it selects both the order-dependent flaky test

and at least one of its corresponding polluters/state-setters.

For each order-dependent flaky test, by definition, we will al-

ready have one passing test order and one failing test order at

the flakiness-introducing commit. We run iFixFlakies [40] on the

order-dependent flaky test using those test orders. iFixFlakies can

minimize the test orders and be configured to find all the possible

polluters and state-setters. We record the polluters and state-setters,

and we use that information to determine whether a technique

can actually detect the order-dependent flaky test at the flakiness-

introducing commit.

5 EVALUATION

We address the following research questions:

• RQ1:How efficient is running IncIDFlakies compared against

baseline iDFlakies?

• RQ2: How effective is IncIDFlakies at detecting the newly-

introduced order-dependent flaky tests?

We address RQ1 to check whether it is practical to use IncID-

Flakies compared against just running iDFlakies after every change.

We address RQ2 to check whether using IncIDFlakies can detect a

newly-introduced order-dependent flaky test by selecting both the

test itself and the relevant other tests such that the order-dependent

flaky test can be detected when run in different test orders.

5.1 RQ1: Efficiency of Running IncIDFlakies

Table 3 shows results concerning efficiency of IncIDFlakies com-

pared against baseline iDFlakies when run across all commits used

in our evaluation. In the table, we show under column “iDFlakies”

the average number of tests across all commits (which is the num-

ber of tests that iDFlakies would run) along with the average time

in seconds to run iDFlakies configured for 10 rounds across those

commits; each row represents commits collected relative to the

corresponding flakiness-introducing commit (Section 4.1). The final

row shows the average number of tests and the time to run across

all commits across all projects.

In the table, we show the average percentages of tests selected

by IncIDFlakies� and IncIDFlakies( across all commits w.r.t. the

baseline all tests that would be run by iDFlakies. We also show the

percentage of time IncIDFlakies� and IncIDFlakies( would take

to both analyze and select tests to run along with running those

tests the same number of rounds as baseline iDFlakies. We see

that IncIDFlakies allows for savings in both number of tests to

run and time to run and detect order-dependent flaky tests. On

average, IncIDFlakies� selects 65.4% of the tests while taking only

68.4% of the time for running iDFlakies. IncIDFlakies( has a similar

reduction, selecting 70.0% of the tests while taking only 70.5% of

the time for running iDFlakies.

We also compare the results of IncIDFlakies against running only

the tests selected by the RTS techniques Ekstazi and STARTS. These

tests are just the affected tests based on the changes and would

120



ISSTA ’22, July 18–22, 2022, Virtual, South Korea Chengpeng Li and August Shi

Table 3: IncIDFlakies tests selected and time to run

iDFlakies IncIDFlakies� IncIDFlakies( Ekstazi STARTS

ID # Tests Time (s) % Sele % Time % Sele % Time % Sele % Time % Sele % Time

V1 108.0 55.1 94.4 97.6 100.0 98.4 37.7 32.9 92.0 96.0

V2 287.2 142.6 39.3 68.1 49.9 75.0 3.3 26.8 3.7 26.9

V3 35.0 54.6 60.0 60.3 40.0 39.9 48.7 49.2 40.0 39.7

V4 62.4 61.9 22.7 61.1 58.1 61.2 14.3 54.4 47.8 62.8

V5 2.8 12.4 80.0 77.4 80.0 77.7 80.0 77.1 80.0 77.6

V6 52.8 49.3 63.1 43.0 77.6 58.2 39.0 38.5 39.3 32.9

V7 61.8 6.0 40.0 39.1 60.0 57.5 40.0 40.0 60.0 57.4

V8 8.5 10.3 50.0 50.6 50.0 48.1 50.0 52.0 50.0 48.2

V9 74.4 36.6 64.9 74.5 66.9 75.7 37.6 66.5 52.3 71.6

V10 309.2 82.4 74.1 36.1 88.6 36.3 40.0 33.4 63.0 36.1

V11 310.2 122.2 71.8 36.2 83.6 37.1 24.1 27.4 28.8 30.8

V12 308.2 121.8 72.6 36.4 83.5 37.2 34.4 28.9 42.1 32.7

V13 174.8 13.1 10.3 18.3 62.8 91.6 3.2 15.4 55.1 90.8

V14 20.8 18.5 80.0 76.9 80.0 78.3 72.9 76.6 61.6 76.3

V15 150.4 12.5 80.0 73.6 80.0 73.1 79.7 74.1 79.7 74.0

V16 716.4 18.3 21.8 67.0 23.5 67.3 2.2 25.1 2.2 24.9

V17 693.6 17.7 30.7 64.2 32.1 64.5 19.5 38.8 23.3 54.4

V18 1156.2 338.0 97.5 99.8 97.5 99.4 34.9 89.8 58.9 75.0

V19 1117.6 323.5 78.5 79.5 78.5 79.5 66.0 77.4 78.3 79.6

V20 1052.4 48.7 97.3 97.4 97.3 97.4 3.8 24.4 41.0 54.8

V21 1124.0 330.6 97.5 97.5 97.5 101.0 37.9 90.8 59.5 63.0

V22 13.0 27.2 80.0 82.1 80.0 79.1 80.0 80.0 80.0 78.8

V23 19.8 5.1 80.0 76.1 80.0 74.6 80.0 76.8 80.0 75.7

V24 62.2 31.7 72.6 100.5 72.6 96.5 22.9 29.2 22.9 27.8

V25 11.6 9.0 20.7 28.7 20.7 29.1 20.7 29.1 20.7 28.8

V26 82.0 19.2 100.0 99.7 100.0 98.8 100.0 100.3 100.0 99.0

V27 55.0 93.5 81.9 102.3 44.2 65.9 55.7 84.5 30.7 43.4

Average 301.1 76.8 65.4 68.4 70.0 70.5 41.7 53.3 51.6 57.8

not include the additional tests IncIDFlakies would select based on

their relation to the affected tests w.r.t. static fields. Table 3 shows

the percentage of tests selected by Ekstazi and STARTS (under the

columns labeled by the technique). The table also shows the time

to run the same 10 rounds for just the affected tests relative to

the time to run iDFlakies on the full test suite (note that this time

does not include any time to analyze to select additional tests, it

is just the time run Ekstazi/STARTS’s affected tests). On average,

Ekstazi selects 41.7% of the tests while taking only 53.3% of the

time needed for iDFlakies, while STARTS selects 51.6% of the tests

while taking only 57.8% of the time. In general, STARTS selects

more tests than Ekstazi, which is expected given that the static

analysis STARTS uses tries to over-approximate which tests are

affected by the changes. However, there are still some commits

where STARTS would select fewer tests than Ekstazi, which can

occur due to dynamic dependencies between tests and classes, such

as through reflection [28, 39], which a static technique such as

STARTS would not track. Ekstazi, however, would track them.

Overall, our results show that a large number of additional tests

would be selected due to their relation to the affected tests via

shared static fields. While IncIDFlakies does require a nontrivial

amount of additional time to run with more tests, we see later

(Section 5.2) that this additional time is necessary as to ensure the

newly-introduced order-dependent flaky tests can be detected.

RQ1: Overall, IncIDFlakies outperforms iDFlakies, providing

a reduction in both tests selected and time to run. Specifically,

IncIDFlakies� selects 65.4% of the tests and take 68.4% of the

time iDFlakies needs; IncIDFlakies( selects 70.0% of the tests and

takes 70.5% of the time iDFlakies.

5.2 RQ2: Detecting Order-Dependent Flaky
Tests

Table 4 shows the detection results from running IncIDFlakies

across the 27 flakiness-introducing commits (note that we only eval-

uate on the flakiness-introducing commits here because these are

the commits where a technique could actually detect the flaky test).

We show the percentage of the known order-dependent flaky tests

(total number of order-dependent flaky tests shown in Table 2) at

each flakiness-introducing commit that can potentially be detected

by IncIDFlakies, shown under columns marked “% P”, meaning both

it and any of its corresponding polluters or state-setters are part
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Table 4: Order-dependent flaky tests detected using IncIDFlakies

iDFlakies IncIDFlakies� IncIDFlakies( Ekstazi STARTS

ID % D % P % D % P % D % P % D % P % D

V1 100.0 100.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

V2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0

V5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V6 50.0 100.0 50.0 100.0 50.0 100.0 100.0 100.0 50.0

V7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V9 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

V10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V11 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V12 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

V13 100.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0

V14 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

V15 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V16 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0

V17 100.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0

V18 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0

V19 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V20 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0

V21 50.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0

V22 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V23 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V24 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V26 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

V27 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 91.0 100.0 85.1 100.0 73.1 71.6 67.2 73.1 67.2

of the selected tests (Section 4.3). Overall, we see that IncIDFlakies

can select the tests necessary to detect all 67 order-dependent flaky

tests, for both IncIDFlakies� and IncIDFlakies( .

In contrast, we also show the percentage of order-dependent

flaky tests that can be detected by using just the affected tests from

RTS techniques Ekstazi and STARTS. Use of Ekstazi can only detect

71.6% of the order-dependent flaky tests, and STARTS can only

detect 73.1% of the order-dependent flaky tests. We also find that,

on average, Ekstazi’s affected tests only include 70.6% of all the

polluters/state-setters per order-dependent flaky test; the percent-

age is 73.1% for STARTS’s affected tests. Meanwhile, IncIDFlakies�
and IncIDFlakies( both end up selecting all the polluters/state-

setters per order-dependent flaky test (though selecting all polluters

and state-setters is not guaranteed). These results show the impor-

tance of IncIDFlakies’s extra analysis to select the additional tests

related to the affected tests, as to ensure the order-dependent flaky

tests can be detected from running in different test orders.

Besides determining whether it is possible to detect the order-

dependent flaky tests in different test orders, we also measure

whether running those tests in 10 rounds actually detects the order-

dependent flaky test. In Table 4, we also show under columns “% D”

the percentage of known order-dependent flaky tests that were ac-

tually detected within the 10 rounds. We also show this percentage

for the baseline iDFlakies, because, given the random nature of us-

ing a limited number of different test orders, it may not be possible

to detect all the order-dependent flaky tests. Indeed, iDFlakies that

runs on the full test suite detects 91.0% of the order-dependent flaky

tests within 10 rounds. Note that we only measure the percentage

of the known 67 order-dependent flaky tests detected in our eval-

uation; we do not consider additional order-dependent flaky tests

detected across the rounds.

IncIDFlakies also does not detect all the order-dependent flaky

tests, detecting 85.1% and 73.1% for IncIDFlakies� and IncIDFlakies( ,

respectively. We also see that running just the tests selected by

Ekstazi or STARTS for the same number of rounds results in even

fewer order-dependent flaky tests detected, which is expected given

the order-dependent flaky tests that they cannot possibly detect

(e.g., the example in Figure 1). While IncIDFlakies does not detect as

many order-dependent flaky tests as baseline iDFlakies in the same

number of rounds, they are still able to detect most of the order-

dependent flaky tests within a shorter amount of time compared

against iDFlakies (Section 5.1). Given some more resources (or
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different seeds for random number generation), they could still

potentially detect all newly-introduced order-dependent flaky tests.

Indeed, when we inspect the cases where IncIDFlakies did not

detect order-dependent flaky tests within the 10 rounds, we confirm

that, if we were to run the selected tests for more rounds (up to

100), IncIDFlakies could actually detect all order-dependent flaky

tests. In all these cases, we found the order-dependent flaky tests

would each have many “cleaners”. While an order-dependent flaky

test normally fails when run after a polluter, if there is another test,

called a cleaner, that runs in-between, the order-dependent flaky

test would pass [40]. Large number of cleaners reduces the number

of test orders that can fail, which explains why it is so difficult to

induce a failing test order, even with fewer tests to run overall.

RQ2: IncIDFlakies can potentially detect all newly-introduced

order-dependent flaky tests from our evaluation at the flakiness-

introducing commit by selecting the order-dependent flaky tests

along with at least one corresponding polluter/state-setter.

5.3 Discussion

Finer-grained dependency analysis. Currently, we rely on the

dependencies provided by Ekstazi and STARTS, which both collect

class-level test dependencies. Collecting test dependencies at a

finer granularity, such as at the method level, could result in more

precisely identifying the relationship between tests and static fields,

resulting in fewer tests to run. In our preliminary work, we used

Soot [5] to compute a method-level call graph connecting tests to

static fields. Starting with the initial affected tests from an RTS

technique, we would find the additional tests by navigating this

more precise call graph. For example, when we used this call graph

to select additional tests on top of the STARTS affected tests, the

average percentage of tests to run across all commits is 67.3% (vs.

the 70.0% using STARTS’ class-level dependencies). However, the

combination of analysis and running selected tests took on average

154.8% of the time baseline iDFlakies would take across commits.

In other words, using the finer-grained analysis resulted in higher

runtime than the baseline. Future work for more precise analysis

should focus on improving its cost.

Polluted shared state. Recall that IncIDFlakies employs a heuris-

tic that ignores dependencies on classes in third-party libraries

(Section 3.1). Using ODRepair [31], a technique that can identify

shared static fields for order-dependent flaky tests, we find two

order-dependent flaky tests where the relevant shared static field is

found in third-party library code. We also find one order-dependent

flaky test where the shared static field likely is from third-party

library code (but not confirmed through ODRepair).

Interestingly, we see several cases where we believe the polluted

shared state is not due to static fields. For example, the tests in wild-

fly/wildfly seem to depend on shared state accessible using the JNDI

service [3], not through static fields. However, the RTS technique

selects all the tests due to the change. In general, the combination

of both RTS and the analysis for determining additional tests helps

with selecting the necessary tests to detect newly-introduced order-

dependent flaky tests (Section 5.2). The over-approximation from

the coarser-grained analysis of class-level dependencies, while se-

lecting more tests, helps with increasing the chance of selecting all

relevant tests. In the future, we can extend the analysis to consider

not just static fields but also other code elements that indicate using

different kinds of shared state, e.g., code that accesses files.

6 THREATS TO VALIDITY

The results of our evaluation may not generalize to other projects.

Our evaluation dataset was obtained from prior work that evaluated

on a large dataset of order-dependent flaky tests [27]. These order-

dependent flaky tests are from popular open-source Java projects,

spread across a wide range of application domains.

The flakiness-introducing commits we use in our evaluation have

the risk of not being the exact commit where the test is flaky. We

obtained these flakiness-introducing commits from prior work [27],

where they started from the commit where the flaky test was in-

troduced and worked their way forward while running iDFlakies

to find which commit is the flakiness-introducing commit. We also

confirm that the tests are indeed flaky at the flakiness-introducing

commit by obtaining both a passing and failing test order there.

Further, we check that the order-dependent flaky tests are not flaky

on the commit before the flakiness-introducing commit by running

iDFlakies on that prior commit for 100 rounds without obtaining

both a passing and failing test order.

Our implementation may contain bugs. To mitigate this threat,

we build IncIDFlakies upon existing tools Ekstazi, STARTS, and

iDFlakies. These tools have been utilized extensively in research [18,

19, 24–28, 30, 40, 42, 48]. For the newer analysis parts, we reviewed

code and execution logs to confirm the implementation correctness.

7 RELATED WORK

Flaky tests. Luo et al. conducted the first empirical study on flaky

tests in open-source projects [32]. They studied the common root

causes for fixed flaky tests along with how they could manifest and

how developers would fix them. Eck et al. conducted a similar study

with a focus on the developers’ perspectives [12]. Flaky tests are

also prevalent in industry, to the point that researchers at Facebook

propose everyone to “assume all tests are flaky” [21].

To help with the issue of flaky tests, there has been numerous

work in detecting different types of flaky tests, such as detecting

order-dependent flaky tests [16, 24, 45, 47], flaky tests that make

assumptions on determinism in specifications [38], flaky tests that

depend on random number generation [11], or time-constrained

flaky tests [43]. Our work focuses on detecting order-dependent

flaky tests, but unlike prior work that detects through analysis on a

single code version, we consider the changes between code versions.

There has also been work in detecting flaky tests without having

to rerun tests but rather through machine learning techniques [6].

However, there is risk that tests classified as flaky are actually

not. Our work builds upon iDFlakies to detect flaky tests through

reruns [24], ensuring detected flaky tests are actually flaky, but

doing so more efficiently by leveraging code evolution. Bell et

al. [10] proposed DeFlaker, which detects flaky tests by checking

whether a test has a different outcome after a change yet does not

cover that change. Such a test must be flaky since its outcome is not

related to the change. However, DeFlaker can only detect flaky tests
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if it so happens to have a different outcome after a change, unlike

our work that reruns tests in different test orders to more easily

manifest flakiness. Indeed, Bell et al. found that flakiness manifests

more easily if they would change up the running environment.

Order-dependentflaky tests. Luo et al. found that order-dependent

flaky tests are one of the top three kinds of flaky tests [32]. Zhang et

al. [47] developed DTDetector to detect order-dependent flaky tests

proactively by running tests in random test orders. Lam et al. [24]

followed up with iDFlakies to both detect and partially classify flaky

tests as order-dependent or non-order-dependent flaky tests. We

build upon iDFlakies to make it evolution-aware and run more effi-

ciently by only selecting the necessary tests between code versions.

Our evolution-aware analysis could potentially be applied to other

techniques that aim to detect order-dependent flaky tests [16, 45],

but across multiple code versions. Lam et al. [27] also used iD-

Flakies in their longitudinal study to find the flakiness-introducing

commit for known order-dependent flaky tests. They start with

the commit that first introduced the test into the project and then

moved forward through commits until reaching one where using

iDFlakies detects the order-dependent flaky test (which could be at

the test-introducing commit). We reuse their dataset for our work

on detecting such tests at the flakiness-introducing commit.

Huo and Clause [23] proposed OraclePolish to detect tests with

assertions that depend on input data not controlled by the tests

themselves, meaning they could potentially fail when run by them-

selves (these assertions are “brittle”). Gyori et al. [20] developed

PolDet to find tests that could “pollute” the state for other tests

(which may not even exist in the test suite yet) by tracking whether

shared state via static fields have changed between when a test

starts and when a test finishes. Shi et al. [40] would define specific

tests related to order-dependent flaky tests (with terms “brittle” and

“polluter” inspired by previous work) and developed iFixFlakies

to find the polluters and state-setters for order-dependent flaky

tests. iFixFlakies would ultimately propose patches for these order-

dependent flaky tests by leveraging code from the existing test suite.

We use iFixFlakies to find all polluters and state-setters to help with

our evaluation. Li et al. [31] proposed ODRepair as another means

to repair order-dependent flaky tests without relying on test-suite

code. ODRepair identifies the polluted shared state between tests

and then constructs method sequences that reset that state. We use

ODRepair to check the shared state between tests.

Bell and Kaiser [8] proposed VmVm as a runtime environment to

reset shared state from static fields as to prevent pollution between

tests. Arcuri et al. [7] also noticed issues with tests sharing state

when automatically generating tests. They also proposed a runtime

to reset shared state between generated tests. We also focus our

analysis on how tests depend on each other through static fields.

Regression test selection. Regression test selection (RTS) aims to

reduce the cost of regression testing by selecting to run only the

tests that are affected by recent changes [46]. Early work on RTS fo-

cused on reducing the number of test selected through finer-grained

analysis of the relationship between tests and code elements, such

as statements or methods [22, 35–37, 46]. Recent work found that

coarser-grained analysis, such as tracking the dependencies be-

tween test classes and classes under test, can be more efficient due

to the faster analysis despite selecting more tests [18]. Industry

has taken this finding further, focusing on even coarser-grained

analysis for RTS, at the target/module level [13, 15, 34, 41, 49].

For Java projects, RTS techniques such as Ekstazi [17, 18] and

STARTS [28, 29] are available to perform RTS by tracking class-

level dependencies dynamically and statically, respectively. We use

Ekstazi and STARTS to analyze changes and help select the rele-

vant tests for detecting newly-introduced order-dependent flaky

tests. Extensive work in recent years have leveraged Ekstazi and

STARTS for different goals, e.g., evolution-aware runtime monitor-

ing [30], detecting faults in RTS tools [48], or evaluating large-scale

ecosystem RTS [19]. There have also been efforts to improve these

tools, such as making Ekstazi refactoring-aware [44] or improving

STARTS to approximate dependencies from reflection [39].

Recent work has also started exploring RTS that leverages ma-

chine learning algorithms as to predict which tests could fail based

on a change before running them [14, 33]. These ML-based RTS

techniques do not explicitly analyze the code changes to perform its

prediction. For the purposes of our work, we cannot use such ML-

based RTS techniques, because our goal is not to select which tests

would newly fail after a change but rather identify new flakiness.

8 CONCLUSIONS

We propose IncIDFlakies, a technique for efficiently detecting order-

dependent flaky tests introduced in a change. Existing technique

iDFlakies must run all tests in different test orders without any

knowledge of changes between code, resulting in high overheads

if it has to run after every change, which happens frequently. In-

cIDFlakies improves upon iDFlakies by selecting to run in different

test orders the subset of tests that can ensure detecting newly-

introduced order-dependent flaky tests after a change. IncIDFlakies

leverages RTS techniques to analyze the changes to find the tests

whose behavior would be affected by the changes. However, run-

ning just these affected tests are not enough to ensure detecting

order-dependent flaky tests given the nature of dependencies be-

tween tests. We augment the analysis to also include tests that

are related to the affected tests through static fields, a common

way that state is shared between tests in Java. Our evaluation on 67

order-dependent flaky tests where prior work has identified the cor-

responding flakiness-introducing commit shows that IncIDFlakies

can select to run 65.4% of tests while running only 68.4% of the

time baseline iDFlakies would need to run the same number of test

orders with the full test suite. Furthermore, IncIDFlakies ensures

all order-dependent flaky tests in our evaluation can be detected

when running using its selected tests.

In the future, we plan on additional strategies to prioritize relative

orderings between selected tests as to increase the chances of detect-

ing newly-introduced order-dependent flaky tests within a limited

number of test orders. We also plan to apply similar evolution-

aware analysis to augment other techniques beyond iDFlakies for

detecting order-dependent flaky tests [16, 45].
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