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Abstract
Images matter because they help individuals evaluate policies, primarily 
through emotional resonance, and can help researchers from a variety 
of f ields measure otherwise diff icult to estimate quantities. The lack 
of scalable analytic methods, however, has prevented researchers from 
incorporating large scale image data in studies. This article offers an 
in-depth overview of automated methods for image analysis and explains 
their usage and implementation. It elaborates on how these methods and 
results can be validated and interpreted and discusses ethical concerns. 
Two examples then highlight approaches to systematically understanding 
visual presentations of political actors and events from large scale image 
datasets collected from social media. The f irst study examines gender and 
party differences in the self-presentation of the U.S. politicians through 
their Facebook photographs, using an off-the-shelf computer vision model, 
Google’s Label Detection API. The second study develops image classi-
f iers based on convolutional neural networks to detect custom labels 
from images of protesters shared on Twitter to understand how protests 
are framed on social media. These analyses demonstrate advantages 
of computer vision and deep learning as a novel analytic tool that can 
expand the scope and size of traditional visual analysis to thousands of 
features and millions of images. The paper also provides comprehensive 
technical details and practices to help guide political communication 
scholars and practitioners.
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1	 Introduction: Image as Data

Images affect politics because they trigger emotions and provide information 
shortcuts to evaluate complex issues (Popkin, 1994), but researchers have 
rarely analyzed them in large quantities because of the diff iculty of extract-
ing politically relevant information. Methods that simplify the extraction of 
meaning from images now exist. In light of a growing body of work taking 
advantage of these methods (Cantu, 2019; Casas & Webb Williams, 2019; Haim 
& Jungblut, 2020; Peng, 2018; Torres, 2018; Xi et al., 2020), this article provides 
a conceptual overview of the leading class of models, convolutional neural 
networks, and applies them via two examples, each of which shows a different 
approach to treating images as data. Images contain information absent in 
text, and this extra information presents opportunities and challenges. It is 
an opportunity because one image can document variables with which text 
sources (newspaper articles, speeches, or legislative documents) struggle or 
at scales not possible with manual coding (Valentino, Brader, Groenendyk, 
Gregorowicz, & Hutchings, 2011). It has been a challenge because of the 
technical diff iculty of identifying the objects and concepts encoded in an 
image, requiring researchers to rely on manual coding. Because human 
coders are slow, expensive, and have different interpretations of the same 
images, studies using images have historically used few.

Intrinsic features of text and images differ in key ways. These differences 
explain why the latter have resisted automated analysis. The fundamental 
units of images, pixels, contain less meaning than words, the building blocks 
of texts. Once built, however, image classif iers are more universally applica-
ble than text ones. Intuitively, the same concept, e.g. “violence”, expressed in 
written languages requires training separate models to understand words 
and syntax from multiple languages. Visual language is more universal 
(Graber, 1996), so one image model of “violence” can apply to events from 
places and periods that could require several text models. For example, a 
police off icer battering protesters in Hong Kong or Spain will look more 
similar to each other than the words that would be used to describe that 
event. Appendix Section A elaborates this assertion.

Advances in computer vision and machine learning algorithms, specifically 
the rise of deep learning and convolutional neural networks (CNNs) (LeCun, 



JOO & STEINERT-THRELKELD� 13

IMAGE AS DATA: AUTOMATED CONTENT ANALYSIS FOR VISUAL PRESENTATIONS

Bengio, & Hinton, 2015), have lessened the challenge of automated visual 
content analysis. Along with increased hardware capabilities, these algo-
rithms have expanded the frontier of computer capabilities. For social media 
platforms, these advances mean automatically recognizing faces in uploaded 
images. For governments, these advances mean increased biometric security 
as well as policing capabilities (Kargar & Rauchfleisch, 2019). For researchers, 
these advances mean the ability to better measure existing concepts (Hsiang, 
Burke, & Miguel, 2013), operationalize measures previously only available in 
theoretical models (Grabe & Bucy, 2009), and do both with greater geographic 
and temporal resolution than previous efforts (H. Zhang & Pan, 2019).

This paper demonstrates how large scale image datasets can be in-
corporated in research and introduces computational techniques which 
signif icantly enhance the scope, size, and eff iciency of image analysis. 
To this end, it f irst provides a conceptual overview of how convolutional 
neural networks work and how they are structured compared to traditional 
computational methods. Next, it introduces tasks – image classif ication, 
object detection, and person attribute recognition – at which CNNs excel. It 
then explains how to develop and train a CNN, including using off-the-shelf 
models, and validate results. These sections are light on technical detail, 
which we leave in the Supplementary Materials for the interested reader.

With these techniques, the second half of the paper provides examples 
to demonstrate different approaches to images as data and discusses 
ethical concerns facing researchers. In the f irst example, we examine self-
presentation of politicians in the U.S. using their Facebook photographs. 
Politicians choose these photographs to communicate a range of their 
activities, policy priorities, and even personality to supporters. Prior research 
has found gender and party differences (Carpinella, Hehman, Freeman, & 
Johnson, 2016), typically using a small number of images and a coding scheme 
where researchers predefine variables. In contrast, our approach employs 
an off-the-shelf computer vision method, the Google Vision application 
programming interface (API), which automatically detects thousands of 
distinct visual objects and attributes from images. This example exemplif ies 
a data-driven, bottom-up process for conceptualizing visual self-presentation 
which can be conf irmed and ref ined by a theory-driven approach. We 
f ind clear party and gender differences. The second example investigates 
visual event framing in social media, focusing on analyzing how Twitter 
users describe protest events. We develop a series of CNNs to automatically 
identify protest images, add labels (if the image contains state violence, 
police, or large groups, for example) to them, and measure image duplication 
rates within those labels. Focusing on protests across f ive countries, we show 
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how protesters choose to frame events and how this framing varies across 
labels. We f ind that frames emphasise state violence and group activity.

A growing body of work shows how images can detect voter fraud (Cantu, 
2019), measure protests in China (H. Zhang & Pan, 2019), understand nonver-
bal communication in presidential debates (Joo, Bucy, & Seidel, 2019), reveal 
media bias (Peng, 2018), or provoke emotional responses to protest (Casas & 
Webb Williams, 2019). This paper f ills a hole in the literature by explaining 
how the methods these papers use work. While many textbooks perform the 
same function, their examples and presentation are not aimed at practic-
ing researchers. This paper gives the reader an intuitive understanding of 
how deep learning and computer vision work, directs them to appropriate 
resources to learn more, and stimulates interest by showing intentionally 
suggestive applications in two domains.

2	 Why Study Images?

In addition to their widespread availability and amenability to automatic analy-
sis, images are of interest for two reasons: they are key inputs into individual 
decision making and can provide improved data to advance research agendas.

2.1	 Inputs Into Decision Making
Humans are more likely to notice and learn from visual information than 
textual. Images provide information about a situation, such as a politician’s 
patriotism or the beneficiaries of a new healthcare policy, more accessibly 
and quickly than text (Barry, 1997). This faculty is probably because writing 
is a technology that must be learned, while visual processing is evolutionarily 
antecedent (Gazzaniga, 1998). Compared to text, images provide “a more 
comprehensive and error-free grasp of information, better recall, and greater 
emotional involvement” (Graber, 1996).

Moreover, emotional reactions often drive human behavior, and visuals 
evoke these reactions more strongly than text (Grabe & Bucy, 2009). Images 
drive emotions (Tukachinsky, Mastro, & King, 2011), and emotions lead 
to information-seeking and political participation (Marcus, Neuman, & 
MacKuen, 2000; Valentino et al., 2011). These emotions affect decisions 
ranging from vote choice (Joo, Steen, & Zhu, 2015) to mobilization (Casas 
& Webb Williams, 2019). Understanding how images matter for politics is 
therefore central to understanding how politics works.

Images are a powerful means of persuasion and a critical device in media 
framing, agenda-setting, and propaganda (Geise & Baden, 2015). They are 
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carefully selected, edited and presented to audience, conveying various 
intentions encoded in subtle or sometimes very obvious ways (Joo et al., 2014). 
Scholars have demonstrated the effect of visuals on issue perceptions (Soroka, 
Loewen, Fournier, & Rubenson, 2016) and candidate evaluations (Barrett & 
Barrington, 2005; Joo, Bucy, & Seidel, 2019; Kang et al, 2020; Chen, Park, & 
Joo 2020). Given a multimodal message, the audience construct a blended 
representation of issues and events from verbal and visual cues, and when they 
are not congruent, the visual one may dominate (Gibson & Zillmann, 2000).

Images encapsulate underlying, complex issues, providing an information 
shortcut for individuals to evaluate multi-faceted political issues (Popkin, 
1994). For example, Americans who watched the 1960 United States presi-
dential debates claimed that John F. Kennedy outperformed Richard M. 
Nixon; those who listened, the opposite. In 1976, photographs of President 
Gerald Ford failing to husk a tamale conveyed aloofness to a large part of 
the Texas electorate, arguably costing him the state and presidency. More 
recently, photos from Abu Ghraib prison increased opposition to the Second 
Iraq War. Outside of the United States of America, video of a self-immolated 
fruit vendor spread throughout Tunisia, sparking the Arab Spring. The Tank 
Man image from Tiananmen Square symbolizes the Chinese Communist 
Party’s resolve.

2.2	 Advancing Communication Research
Framing. Facial expressions of politicians are an indicator of overall fa-
vorability. For instance, a smiling face is more likely to convey a positive 
sentiment about the main person being depicted. Based on this assumption, 
Groeling, Joo, Li, and Steen (2016) have examined the degree of media bias 
present in TV news programs in the U.S. by automatically analyzing facial 
expressions of presidential candidates across news networks. Going beyond 
traditional professional sources, attempts have been also made to analyze 
political images in social media. For instance, You, Cao, Cong, Zhang, 
and Luo (2015) have analyzed multimodal cues of Flickr posts related to 
presidential candidates in the U.S. to predict election outcomes based on 
facial expressions and hashtags.

Candidate Evaluation. Computer vision methods have also shown the 
potential effects of politicians’ facial appearance on voters’ trait judgment 
and election outcomes. Personality inference from facial appearance is a well 
studied topic in psychology (Zebrowitz & Montepare, 2008), and political 
scientists have attempted to explain public responses to politicians, includ-
ing election outcomes, based on the physical appearance of political leaders 
such as their visually-inferred competence (Todorov, Mandisodza, Goren, 
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& Hall, 2005). Automated models have been used to extract visual features 
from facial images to predict subjective trait judgments on dimensions such 
as intelligence or trustworthiness (Rojas, Masip, Todorov, & Vitria, 2011; 
Vernon, Sutherland, Young, & Hartley, 2014). Automatically inferred facial 
traits may also predict election outcomes (Joo et al., 2015).

Section 6.1 ’s analysis of politicians’ images shared on Facebook shows 
how deep learning informs the study of elected off icials’ self-portrayal 
(Fenno, 1978). Most people access news through multimodal (a combination 
of print, audio, or visual) media; even newspapers devote signif icant space 
to photographs, and saying that the visual dimension of politics matters is 
not new (Barrett & Barrington, 2005; Gilliam Jr & Iyengar, 2000; Grabe & 
Bucy, 2009; Hansen, 2015; Schill, 2012). Presidential debates, for instance, are 
both verbal exchanges of policy positions and, because they are televised, 
conveyors of emotions and tensions between the candidates (Joo et al., 
2019; Shah et al., 2016). Indeed, the nonverbal cues and visual exposures of 
politicians may encode their emotions and invoke voter reactions (Grabe 
& Bucy, 2009; Sullivan & Masters, 1988). Prominent recent examples from 
the United States include Donald Trump’s stalking of Hillary Clinton during 
their debates as well as Speaker Pelosi’s sarcastic clapping during President 
Trump’s 2019 State of the Union address. Visuals are an especially important 
information shortcut for low-information voters (Lenz & Lawsom, 2011), 
which may explain why out-parties tend to prefer more attractive candidates 
(Atkinson, Enos, & Hill, 2009).

Media Bias. Computer vision techniques also enable measurement of 
media bias and framing, which Section 6.2 demonstrates. Large literatures 
analyze media bias of political news coverage (D’Alessio & Allen, 2000; 
Gentzkow & Shapiro, 2010), its public perception (Watts, Domke, Shah, 
& Fan, 1999), and effects (Baum & Groeling, 2008; Druckman & Parkin, 
2005). Measuring media bias objectively is a challenging task because the 
ground truth is unknown. For systematic analysis, studies have relied not 
only on verbal content analysis (Baum & Groeling, 2008) but also on visual 
analysis ranging from counting the number of photographs of a candidate in 
newspapers (Stovall, 1988) to manually coding how favorable or unfavorable 
their portrayals are (Grabe & Bucy, 2009). Computer vision based techniques 
can signif icantly reduce coding costs by automatically recognizing people 
in photographs, their expressions and favorability and comparing the results 
across outlets or candidates (Peng, 2018). As traditional media faces increas-
ing competition from online, decentralized content producers (Blumler & 
Kavanagh, 1999), the ability to analyze image framing at scale will only 
increase in importance (Schmuck & Matthes, 2017).
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Opinion Formation. Issue behavior responds to visual communication. 
Negative opinions towards immigration, for example, may be due to media 
conflation of immigrants with crime and disease (Tukachinsky et al., 2011). 
Attitudes about immigration are more positive, however, when the imagery 
accompanying an article evokes European, instead of Latin American, 
immigration, and this effect is caused by intervening emotional variables, 
especially anxiety (Brader, Valentino, & Suhay, 2008). The power of images 
explains why anti-immigrant rhetoric focuses on symbolic (visual) appeals 
over economic ones (Schmuck & Matthes, 2017). Deep learning techniques 
can also offer insight into what features of images provoke behavior. For 
example, people are more likely to pay attention to negative or shocking 
events (Baumeister, Bratslavsky, & Vohs, 2001), so newspapers and television 
report those type of events. But how those events are portrayed should also

Polarization. Computer vision techniques can also shed light on changes 
in political polarization. Dietrich (2018), for example, uses video data of 
members of the House of Representatives to show that frequency of physi-
cally crossing the aisle to talk to members of the other party predicts how 
polarized an upcoming vote will be. Which images politicians share on their 
Facebook, Twitter, and Instagram profiles may reveal their ideological posi-
tion (Xi et al., 2020). Measuring ideology via images would prove especially 
useful for evaluating incumbent challengers since their ideology cannot 
be determined from voting history and campaign donation data may not 
provide this information early enough in an election cycle (Bonica, 2018).

Appendix Section B details additional applications in the study of develop-
ment, natural disasters, civil war, state capacity, and protests.

3	 Computer Vision and Deep Learning

Computer vision tries to solve visual problems with any kind of methods, 
and deep learning refers to eff icient methods applicable to any kind of data, 
not just images.

Computer vision is an interdisciplinary branch of study crossing computer 
science, statistics, cognitive science, and psychology. Its primary goal is 
automatic understanding of visual content, i.e., to replicate human visual 
abilities with computational models. Human vision is versatile, complicated, 
and not fully understood, and computer vision systems cannot simply 
reconstruct the mechanisms of human vision. Therefore, research has mostly 
focused on using statistical inference and machine learning approaches to 
deal with noisy inputs and discover meaningful patterns. In practice, this 
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pipeline usually consists of collecting a large amount of visual data, manually 
labeling them, and training a model that best explains the observed data.

Prior to the start of the deep learning era, the insuff icient reliability and 
accuracy of computer vision based methods was the primary factor limiting 
practical applications, including political analysis of visual content. The 
f ield made a dramatic leap forward with the advances in deep learning 
based approaches (Krizhevsky, Sutskever, & Hinton, 2012). The next section 
introduces those advances.

3.1	 Deep Learning and Hierarchical Representations
Deep learning refers to a class of machine learning methods which utilizes 
hierarchical, multi-layered models.1 In contrast to single-layered models, such 
as linear regression, in which output variables can be directly computed from 
input variables, “deep” models employ repetitive structures with multiple 
layers such that the f inal outputs of the model are obtained through a 
sequence of operations applied to the input data and intermediate results.

In machine learning, hierarchical model structures are commonly 
used, as in some topic models (Griff iths, Jordan, Tenenbaum, & Blei, 2004). 
These models incorporate different levels of representations which capture 
structured and global information (e.g., topic), as well as local information 
(e.g., words) from input data. In political science, hierarchical text models 
have been used to study Congressional press releases (Grimmer, 2010) and 
open-ended survey responses (Roberts et al., 2014).

Deep learning based methods profit from the same hierarchical structure, 
but they employ a larger number of consecutive layers. These extra layers 
add the “deep” to the learning. Indeed, the success of deep learning is related 
to the depth of the models, as additional layers can encode abstract visual 
attributes and capture more complex data distributions than what shallower 
models can (Delalleau & Bengio, 2011; Eldan & Shamir, 2016).

Furthermore, these complex internal structures are directly learned from 
the images rather than manually defined by the researcher. Direct learning 
contrasts with other approaches, explained in the next sub-section, that 
require the researcher to specify the visual features of an image that cor-
respond to the desired image label (“car”, “torch”, “rally”, &c). That approach 
is similar to using a dictionary in text analysis to identify texts as being 
about a topic if it contains some combination of keywords in that dictionary. 
Dictionary approaches to text are more productive than manual feature 
specif ication in images because text can be represented more simply. Deep 
learning, by contrast, does not use a pre-defined feature set, an advantageous 
approach when applied to complex data such as images.
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3.2	 Advances Over Previous Computer Vision Methodology
Artif icial neural networks have a long history in machine learning and 
computer vision and regained popularity after Krizhevsky et al. (2012) 
demonstrated a 21.9%-33.8% improvement in image classif ication per-
formance using a convolutional neural network on a benchmark dataset, 
ImageNet (Russakovsky et al., 2015). Two major requirements for deep 
learning, very large-scale datasets and high-performance computation 
using graphical processing units (GPU), contemporaneously became 
available.

Traditional computer vision methods heavily rely on manual feature 
engineering. These methods typically utilize a two-step process, as shown in 
Figure 1. Given raw input image data, the methods first extract features using 
a hand-crafted feature extractor. Hand-crafting means that a researcher 
has to manually design and def ine the feature extraction function based 
on instinct and experience. Common features include edge histograms, 
local image contrast, and color distributions. These features should capture 
the most important cues in the raw data, and a separate classif ier, such as 
logistic regression, exploits them in the second step.

In contrast, deep learning methods learn their representations directly 
from data without hand-crafted feature extraction. These methods employ 
a data-driven approach in feature learning and train an integrated model 
that will automatically learn and capture low- and high-level representations 
of data. This approach is advantageous because the learning algorithm 
can discover many subtle features which are specif ic to the given task. In 
other words, the features in deep learning are optimized for the task during 

Figure 1: Comparing Deep Learning to Traditional Computer Vision Methods
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training, as opposed to traditional methods that require the researcher to 
specify features before training.

The Appendix provides technical details about how convolutional neural 
networks work. We leave the technical discussion for the appendix because 
it is challenging for practitioners to design and construct their own CNN 
from scratch. Rather, it is much more eff icient to acquire a training set 
of images that can be used to customize an existing pre-trained model. 
Appendix Section D elaborates details for transfer learning, training, and 
validating models for advanced readers.

4	 Tasks in Computer Vision

This section discusses three common tasks in computer vision: image clas-
sif ication, object detection, and face and person analysis.

4.1	 Image Classification
Image classif ication is a popular topic in computer vision. Given an input im-
age, I, the goal of image classif ication is to assign a label, y, from a predefined 
label set, Y, based on the image content:

​​y​​ *​ = arg   ​max​ 
y∈Y

​ ​  p​​(​​​y​|​​I​​)​​​.​� (1)

For binary classif ication, Y = {positive (belongs to category), negative 
(does not belong to category)}. In general, Y may contain any number 
of possible labels. The posterior probability for each label is computed 
for a given input image, and the classif ier chooses the category with 
the highest output score, similar to how a topic is assigned by some 
text classif iers.

In multiclass (multinomial) classif ication, Y contains more than two, 
mutually exclusive categories. The softmax function is commonly used in 
multiclass classif ication to normalize output scores over multiple categories 
such that the f inal scores sum to 1; the class with the highest normalized 
output is assigned to that image. Suppose that the last fully connected layer 
outputs a vector x = (x1, x2, …, xn), where xk is the raw output score before 
normalization for the k -th class out of n classes. The f inal score will be 
obtained as follows.

​p​​(​​y = k​​|​​I​​)​​​ = ​f​ k​​​​(​​x​)​​​ = ​  exp ​​(​​​x​ k​​​)​​​ _ 
​∑ j=1​ n  ​ exp ​​(​​​x​ j​​​)​​​​

​.​� (2)
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An image can contain more than one label. In this situation, called multilabel 
classif ication, an image is allowed to be assigned more than one label. For 
instance, Section 6.1 uses multilabel classif ication to understand politicians’ 
imagery, and Section 6.2 uses multiclass classif ication to identify images 
of protest.

4.2	 Object Detection
The goal of object detection is to localize (f ind) objects in images and assign 
a category (gun, f lag, or cup, for example) to each object. The output of 
object detection is a set of detected objects, their locations, and categories. 
Figure 3 shows example results of object detection with detection scores 
from Google’s Cloud Vision API.2

Object detection is a more complex problem than image classif ication 
because the model should classify the types of objects and their locations 
in the image. In practice, many object detection systems utilize a two-stage 
procedure. First, the system generates a number of generic object “proposals” 
from an input image (Uijlings, Van De Sande, Gevers, & Smeulders, 2013). 
These proposals are image subregions which the system believes are likely 
to contain an object instance, regardless of its category. An object location 
is represented by a rectangular bounding box, (x, y, w, h), indicating the 
coordinates and the size of the bounding box. This bounding box is the 
rectangular area of the minimum size that can cover all the pixels that 
the object occupies in the image. Second, the image classif ication step is 
then applied to each object proposal to determine whether it belongs to a 
category or is background.

Figure 2: Example results of image classification with the confidence scores computed 
from a CNN. Red color indicates the correct category and blue color indicates the 
incorrect categories.
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4.3	 Face and Person
The human face has received enormous research attention as a special 
domain in computer vision since the 1970s, for two main reasons. First, 
facial recognition has many useful applications, such as for personal 
identif ication or security. Second, it is relatively easy to handle face im-
ages compared to other objects because the appearance of a human face 
is consistent across individuals but distinct from other objects. These 
properties motivated early approaches such as automated feature extrac-
tion (Kanade, 1977), feature learning with neural networks (Fleming & 
Cottrell, 1990), and classif ication based on statistical analysis of data 
(Belhumeur, Hespanha, & Kriegman, 1997). Existing work in this topic 
can be categorized into three areas: face detection, face recognition, and 
person attribute classif ication.

Face Detection. Face detection refers to f inding the location of every 
face in an input image. This is a special case of object detection where 
only one object category (face) is considered. Both deep learning methods 
(Ranjan, Patel, & Chellappa, 2017) and traditional methods (Viola & Jones, 
2004) are widely used.

Face Recognition. Face recognition classif ies the identity of a person 
from a facial image. Most recent approaches in face recognition are based 
on convolutional neural networks. A recent study by Facebook (Taigman, 

Figure 3: Example results of object detection by Google Cloud Vision API.
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Yang, Ranzato, & Wolf, 2014) reports that a model based on a CNN is as 
accurate as human annotators in face verif ication, after training on 4.4 
million labeled face images obtained from their users.

Person Attribute Recognition. A face provides clues for recognizing 
human attributes such as demographic variables (e.g., gender, race, age), 
emotional states, expressions, and actions. Large scale datasets of facial 
images and attribute annotations are also available (Liu, Luo, Wang, & 
Tang, 2015) and enable training a deep CNN with a similar structure to an 
image classif ication model.

Figure 4 shows two examples of face recognition and gender and race 
classif ication from facial appearance. In this case, the system will f irst 
detect every face in an image and each facial region will then be classif ied 
separately by a model trained for face attribute classif ication.

5	 Ethics

The explosion of data and computational power that has enabled 
academic and commercial advances in the study of human behavior 
stimulates a growing awareness of their ethical implications. Since deep 
learning is a result of these advances, it is also implicated in resulting 
ethical debates. This section focuses on f ive areas of concern: train-
ing data bias, privacy, informed consent, model opacity, and access to 
resources.

Bias. Perhaps the biggest ethical challenge facing those employing 
computer vision techniques is that a model will reproduce any biases in 
the input data, and input data often already contain racist and gendered 
stereotypes.3 For a similar reason, commercial gender classif ication APIs 
offered by Microsoft, IBM, and Face++ have been criticized due to the 
inferior classif ication accuracy on darker-skin females (65%; 99% on 
lighter-skin males) (Buolamwini & Gebru, 2018). In image search results, 

Figure 4: Example results of face detection, recognition, and attribute classification. The 
labels were computed by a model from Kärkkäinen and Joo (2019).
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women are, on average, underrepresented relative to their participation 
rate in a given occupation (Lam, Wojcik, Broderick, & Hughes, 2018). A 
researcher relying on pre-trained models or commercial APIs should 
make sure he or she is aware of any biases that model imbues. When 
building one’s own model, labels applied to a validation dataset should 
be examined for any biases before subsequent analysis uses the model 
output.

Privacy. If a model involves face detection, one may be able to identify 
individuals, violating their privacy. This concern is especially relevant in the 
study of contentious politics, as this capability means governments could 
engage in targeted repression by f inding protesters in photographs and 
matching those faces to identifying information. Governments like Russia 
and China already deploy this technology to identify anyone in a crowd 
(Purdy, 2018), and some law enforcement agencies in the United States have 
adopted similar technology (Shaban, 2018). To protect individuals, research-
ers should not release photographs that could be used to identify them. 
Researchers should also consider whether or not their research requires 
identifying particular individuals at all.

User Consent. The concern about identifying individuals based on their 
faces segues into a third concern, informed consent. When a user makes 
their social media posts public, a researcher can reasonably assume that the 
user has provided consent to be studied, much in the same way driving on 
a public street provides data to traff ic engineers. This assumption is more 
questionable for individuals who appear in images but are not the owner 
of the account. For example, if User A tweets a photo documenting Friends 
1, 2, and 3 attending a baseball game, it is not clear that those three have 
consented to inclusion in a study. (It may also not be clear if User A is in 
the photo or not.) Researchers should seek approval from their Institutional 
Review Board, as they should for every project using social media data 
(Steinert-Threlkeld, 2018).

Interpretability. Finally, deep learning models are opaque because 
they are complex. AlexNet, the original convolutional neural network that 
launched the current renaissance in computer vision, contains 60 million 
parameters (Krizhevsky et al., 2012). With only eight layers, it is much simpler 
than current models. This opacity makes it diff icult to understand what 
features of an image drive label classif ication. Understanding the internal 
logic of deep learning models is an active area of research. Q.-s. Zhang and 
Zhu (2018) and Guidotti, Monreale, and Ruggieri (2018) provide thorough 
reviews of current best practices.
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6	 Case Studies

6.1	 Self-presentation of Politicians in Social Media
Social media have been widely used by politicians for political communica-
tion (Stier, Bleier, Lietz, & Strohmaier, 2018). They allow them to bypass 
traditional media and directly communicate with voters, redef ining the 
relationship between political actors and editorial media (Enli, 2017). These 
platforms, such as Facebook and Twitter, offer various modes of interaction 
and generate a massive amount of data in those modalities. This example 
shows how an off-the-shelf classif ier can generate insight about how politi-
cians’ self-representation varies by party and gender.

In the United States, politicians most commonly identify as liberal or 
conservative. Conservatives are more likely to accept the status quo, while 
liberals embrace social change (Jost, Federico, & Napier, 2009). Again speak-
ing in broad strokes, the conservative label manifests as strong aff inities 
toward nationalism, capitalism, and status quo political and economic 
institutions (Feldman & Johnston, 2014). Liberal: social change and a rejec-
tion of inequality.

In terms of images, these ideologies should manifest as different emphasis 
of objects and peoples (Kreiss, Lawrence, & McGregor, 2019). Conservative 
ideology should manifest via objects that serve as symbols of nationalism, 
freedom, and capitalism; liberal, objects that serve as symbols of inequality 
reduction. In terms of people, conservative politicians should be more likely 
to include individuals from dominant social groups; liberal politicians may 
include members of under-represented groups, economically disadvantaged, 
or protesters.

Like ideology, gender represents another axis along which politicians may 
vary their self-presentation. Regardless of gender, voters prefer attractive 
candidates (Ahler, Citrin, Dougal, & Lenz, 2017; Mattes & Milazzo, 2014). 
This evaluation then maps onto gender, with female candidates stereotyped 
as warm and men strong (Johns & Shephard, 2007). Voters in the United 
States reward female candidates who appear more feminine (Carpinella et 
al., 2016). Regardless of ideology, we therefore expect that female candidates 
will emphasize physical features more than male candidates.

Scholars have attempted to understand the visual dimension of political 
communication by analyzing social media images posted by politicians, 
though typically without incorporating advances in computer vision. For 
example, Towner and Muñoz (2018) manually codes the main topics covered 
in Instagram photographs posted by candidates in the 2016 presidential pri-
maries and compares them with the main issues in newspapers. McGregor, 
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Lawrence, and Cardona (2017) qualitatively analyzes social media prof ile 
photographs and compares the activities of male and female politicians. The 
majority of existing studies, however, are based on either manual coding or 
qualitative close reading, limiting the scalability of their analysis.

Automated text analysis has been used to understand how politicians 
verbally present themselves. These studies are typically based on topic 
analysis (what is discussed), sentiment analysis (how topics are presented), 
or both. For example, Stier et al. (2018), by using a probabilistic topic model, 
show that politicians and audiences in social media focus on topics differ-
ent from mass media and discuss different topics on different platforms. 
Sentiment analysis is also commonly applied to a large set of user posts to 
measure public perceptions and preferences about political leaders or parties 
(Nulty, Theocharis, Popa, Parnet, & Benoit, 2016) or predict their electoral 
success (Tumasjan, Sprenger, Sandner, & Welpe, 2011).

Computer vision techniques can generate insight about politicians’ 
visual communication strategy (Haim & Jungblut, 2020; Xi et al., 2020), 
similar to how automated text analysis has illuminated verbal behaviors. 
To demonstrate this possibility, we use off-the-shelf commercial software 
offered by Google to analyze Facebook photographs posted by candidates 
in the 2018 U.S. general election. Google’s Label Detection API is an image 
classif ier which takes an image as input and outputs a set of labels describing 
its content. Using this API, one can measure actions, events, places, objects, 
and their attributes portrayed in politicians’ photographs.

The data used in this example was collected by one of the authors for a study 
of candidates’ social media usage and electoral success. The list of candidates 
who ran in the 2018 election was obtained from Wikipedia and their Facebook 
accounts were manually identified. For each account, the public photographs 
posted in timeline, mobile, and prof ile albums were collected using the 
Graph API. For the current study, we use 15,647 photographs posted by 677 
candidates during the time period of August 5 - November 6, 2018. Using this 
dataset, we automatically detect gender and party differences in activities 
and attributes portrayed in the photographs using the Google Vision API.

We submitted each of 15,647 images to the API and obtained correspond-
ing labels for each image, examples of which are shown in Figure 5. Google 
does not off icially publish the entire list of labels their classif ier can detect, 
and we identif ied 1,730 unique labels from the obtained results. 4 Since 
the API is an already trained model, we simply made queries using their 
interface and obtained the classif ication results.

The detected labels serve as concise semantics describing image content, 
allowing researchers to perform standard statistical analysis. In this example, 
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we compare images of Democrats and Republicans by conducting a chi-
squared test of the labels. To characterize such visual priorities, we measure 
cross-party difference for each label by comparing the number of images 
with and without the label. Since the two parties have different gender 
ratios, we perform chi-squared test on male and female images separately.

The results are shown in Table 1 (male) and Table 2 (female). The labels 
associated with each party are sorted in decreasing order of the chi-square 
statistic. A notable group of labels detected in the Republican male set are 
military-related concepts which relate to national security and defense. 
Democrats, on the other hand, feature more people, meetings, and conversa-
tions, which may show their priorities on social support. The labels that the 
Google Vision API returns therefore suggest that conservatives and liberals 
emphasize different visuals in their images.

This difference is moderated by gender, as Table 2 shows. The cross-
party difference in female politicians is less obvious than that of male 
politicians, e.g. lack of military-related concepts in Republican female 
candidates. The female candidates, however, clearly emphasize their facial 

Figure 5: Example results (input images and automatically detected labels) from Google’s 
Label Detection API. To represent the four categories contained in Tables 1 and 2, images 
were taken from Joe Biden (D), Donald Trump (R), Kamala Harris (D), Liz Cheney (R).
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Table 1 Top 20 labels associated with Democrats (left) and Republicans (right). 

pD and pR indicate the ratio of images containing the label for each party. Male 

candidates only.

Label χ2 pD (%) pR (%) Label χ2 pD (%) pR (%)

Adapta-
tion

60.6 *** 6.87 3.39 Official 53.0 *** 9.69 14.64

Com-
munity

43.9 *** 28.81 22.87 Military 
officer

16.6 *** 1.02 2.09

Youth 30.8 *** 6.59 4.05 Suit 16.2 *** 11.89 14.73
Conver-
sation

23.5 *** 13.65 10.42 Uniform 15.0 *** 2.50 3.94

People 19.8 *** 16.47 13.22 Red 14.9 *** 1.25 2.34
Speech 17.1 *** 3.68 2.24 Team 14.8 *** 15.22 18.20
Orator 16.4 *** 2.22 1.15 Vehicle 12.7 *** 2.78 4.14
Sitting 14.9 *** 1.83 .90 Toddler 11.0 *** 1.46 2.43
Glasses 14.6 *** 6.41 4.61 Product 10.8 ** 2.29 3.45
Smile 14.5 *** 22.95 19.74 Employ-

ment
9.6 ** 12.68 14.90

Room 13.1 *** 6.89 5.12 Military 
person

9.5 ** .65 1.30

Head 12.9 *** 3.01 1.86 Muscle 8.9 ** 1.16 1.94
Public 
speaking

11.5 *** 3.12 2.02 Tie 8.6 ** 1.57 2.45

Face 10.4 ** 3.77 2.60 Busi-
nessper-

son

8.0 ** 11.78 13.73

Interac-
tion

9.8 ** 2.87 1.88 Fashion 
accessory

7.0 ** .90 1.53

Photog-
raphy

8.9 ** 12.03 10.10 Car 6.3 * 1.25 1.92

Human 7.6 ** 2.11 1.36 Tuxedo 5.4 * 2.59 3.43
Audience 7.2 ** 1.76 1.09 Formal 

wear
4.2 * 7.40 8.57

Forehead 7.0 ** 4.03 3.01 Tourism 3.9 * 12.42 13.81
Tree 6.7 ** 8.03 6.63 Manage-

ment
3.6 * 3.45 4.22

*** p<0.001
** p<0.01
* p<0.1
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Table 2 Top 20 labels associated with Democrats (left) and Republicans (right). pD 
and pR indicate the ratio of images containing the label for each party. Female 
candidates only.

Label χ2 pD (%) pR (%)

Glasses 41.6 *** 9.73 4.51
Adaptation 34.3 *** 7.12 3.03
Youth 27.2 *** 11.87 7.16
Tree 12.9 *** 7.78 5.06
Shoulder 12.4 *** 3.78 1.91
Forehead 10.4 ** 3.18 1.61
Chin 9.3 ** 1.89 .74
Photography 9.0 ** 14.87 11.80
Smile 8.7 ** 35.30 31.19
Vision care 8.6 ** 2.18 .99
Head 8.4 ** 4.25 2.59
Public speaking 7.8 ** 1.50 .56
Student 7.6 ** 2.75 1.48
Performance 7.4 ** 1.82 .80
Speech 6.1 * 1.71 .80
Face 5.9 * 7.25 5.44
Nose 5.8 * 1.59 .74
Friendship 5.7 * 6.10 4.45
Design 5.2 * 3.71 2.47
Community 4.7 * 31.04 28.10
Red 59.8 *** 2.23 6.30
Blond 51.1 *** 3.68 8.21
Jeans 42.7 *** 1.30 4.01
Recreation 28.7 *** 13.96 19.64
Headgear 26.9 *** 2.27 4.88
Crowd 19.7 *** 9.46 13.47
Tourism 14.6 *** 13.62 17.60
Product 11.2 *** 2.84 4.63
Event 10.8 ** 59.90 64.61
Textile 10.5 ** .91 1.98
Competition event 10.0 ** 1.41 2.66
Vehicle 9.6 ** 2.96 4.63
Long hair 8.0 ** 1.80 3.03
Team 8.0 ** 17.01 20.20
Grass 6.9 ** 1.34 2.35
Gesture 6.5 * 4.84 6.55
Style 6.4 * 1.14 2.04
Pink 6.4 * 2.46 3.71
Beauty 6.0 * 1.64 2.66
Sunglasses 5.7 * 1.71 2.72

*** p<0.001  ** p<0.01  * p<0.1
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features more than their male counterparts, with the labels for Republican 
females emphasizing traditional feminine stereotypes (blond, long hair, 
pink, beauty). These two sets of results suggest that politicians optimize 
their self-presentation by combining partisan values and gender stereotypes 
(Bauer & Carpinella, 2018).

For an example of unsupervised learning using the politicians’ images, 
sed Appendix F. That example runs k-means clustering (k=200) on the 
penultimate layer of a pre-trained CNN. The resulting clusters contain 
very similar, often identical, images, revealing common themes within an 
image corpus.

Using a pre-trained classif ier or API is a simple yet effective way for a 
visual comparative analysis on an unknown domain. Researchers do not 
need to prepare any training data or annotations or train their own models. 
The key disadvantage of using an existing classifier is inferior customizability 
in case a researcher wants to classify concepts not def ined in the classif ier 
(or API). One solution to this situation is to train a custom classif ier using 
annotations, which we show in the next example.

6.2	 Frame Alignment During Protest
Protests are a key tactic of social movements, recruitment to protest affects 
the probability of success (Snow, Rochford Jr., Worden, & Benford, 1986), 
and how they are portrayed to bystanders (“framed”) is a key input into 
recruitment success (Benford & Snow, 2000). This example demonstrates that 
Twitter users frame protests in ways likely to encourage bystanders to join.

Protesters seek to frame events to appeal to the most number of people. 
For example, labor organizers and the family of Mohammed Bouazizi, the 
Tunisian fruit vendor whose self-immolation sparked the Arab Spring, 
transformed his death into a parable about corruption and gender politics 
in a way that bridged class and geographic divides (Lim, 2013). From the 
other side, states portray protesters as radical, foreign, violent, or some 
combination thereof (Hamdy & Gomaa, 2012). This framing delegitimizes a 
protest, decreasing the cost a state pays if it engages in repression (Stephan 
& Chenoweth, 2008).

The rise of the internet and social media has empowered individuals to 
construct frames, weakening media and activist gatekeepers (Livingston & 
Bennett, 2003). A new logic of connective action now means that personal 
action frames are commonly invoked during social movements, as they 
allow individuals to connect their issues with a larger collective (Bennett 
& Segerberg, 2013). This ability is especially important because the primary 
source for framing movements, newspapers, prefers to report on violent 
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events (Hellmeier, Weidmann, & Geelmuyden Rød, 2018) and often have a 
status quo bias, causing them to frame protests differently than protesters 
would frame themselves (Hamdy & Gomaa, 2012).

The ability of individuals to construct and disseminate their own frames 
is especially important because newspaper and television emphasize 
protester violence (Myers & Caniglia, 2004). Media are especially likely 
to negatively frame events when they are seen as threatening status quo 
institutional interests, whether in democracies (Gitlin, 1980; Wittebols, 
1996) or autocracies (Al-Rawi, 2015; Carter & Carter, 2019). Because protester 
violence decreases support for protesters (Feinberga, Willer, & Kovacheff, 
2017; Stephan & Chenoweth, 2008) while state violence increases support 
for them (Steinert-Threlkeld, Chan, & Joo, forthcoming),the frames that 
individual protesters emphasize should focus more on state violence and 
less on protester violence. We therefore expect that protest images shared on 
Twitter will frame the event as containing more state violence than protester 
violence.

In addition to emphasizing state violence, individuals should prefer 
to frame a protest as a collective endeavor. Because the risk of protesting 
decreases as the size of the protest increases, bystanders are more likely to 
join a protest they believe is already attended by large crowds. This large 
crowd decreases the probability that an individual will suffer reputational 
cost or be the victim of state repression (Moore, 1995). Since crowds create a 
positive feedback loop of mobilization (Biggs, 2016), we expect that protest 
images shared on Twitter will frame the event as containing crowds, not 
individuals.

This subsection investigates these two expectations about framing by 
analyzing protests in f ive countries.5 To explore which types of frames 
protesters choose, we f irst develop a pipeline to acquire geolocated tweets, 
extract their images, and apply deep learning models to understand scene 
and face features of the images. We f ind tweets from the f ive countries’ 
protest periods, download all images from those tweets, and then apply two 
convolutional neural networks for image classification and person attribute 
recognition tasks. The implemented models are f ine-tuned versions of 
leading CNNs.

Image classification entails identifying photos of a protest. The photos in 
our pipeline come from geolocated tweets. Sometimes, these tweets contain 
photographs; sometimes, they are from protests. When they are from protests 
and contain an image, we download the image. Using a mixture of Google 
Image results and these geolocated images, we trained a convolutional neural 
network to recognize protest photos. Tweets are not f iltered for keywords.
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For person attribute detection, we have developed a pipeline that identifies 
faces in a photo and estimates each face’s sex (male or female), race (Black, 
East Asian, Latino, Middle Eastern, South Asian, Southeast Asian, White), and 
age using the Fairface classifier (Kärkkäinen & Joo, 2019). We use image clas-
sification to measure whether a protest image contains police or fire; whether 
protesters are holding signs; and the amount of violence in a protest image. 
The specif ic CNN we use is a f ine-tuned Residual Network (ResNet) with 50 
convolutional layers (He, Zhang, Ren, & Sun, 2016), a common architecture for 
image classif ication. For verification, see Appendix Section G; for additional 
training details, see Steinert-Threlkeld, Chan, and Joo Forthcoming.

We operationalize frames according to six labels. Many types of frames 
are chosen to normalize a protest. Protests that are peaceful or mobilize 
multiple types of participants often include pictures of youth or faces of 
the participants, the f irst two labels. Participants will often share images 
of large groups to convey that the issue being protested is not fringe, while 
small groups tend to convey personal action frames (Bennett & Segerberg, 
2013); these two types of groups are labels three and four. Because previous 
literature has identif ied violence as a key frame (Myers & Caniglia, 2004), 
we also generate protester and state violence labels, the f inal two. Figure 
6 shows sample images and their ratings for protester and state violence.

To measure which frames protesters choose, we then detect duplicate 
images and identify the rate of duplicate images within each label. To identify 
duplicate images, we take each image’s last fully connected layer, a 1,000 feature 
vector, and measure the pairwise distance between that vector and every other 
image’s vector. If that normalized distance is below .2, a threshold chosen from 
inspecting the distance histogram, two images are considered duplicates.

Table 3 provides initial support for the claims made about framing, 
violence, and crowds. In three of the f ive protests, images containing state 
violence are shared more. Images of groups are also shared at higher rates 
in three of the events, though not the same three that frame state violence. 
The protests framed more strongly as containing state violence (Catalonia 
and Venezuela) also emphasize the group nature of protests. For an example 
of the images driving frame alignment, see Figure 7. It shows the four most 
duplicated images in our sample; two use the small group frame, one uses 
a sign frame, a pleasant surprise because it is not a frame we expected to 
be prominent, and a state violence frame.

Because policy makers are more likely to respond to protests the more 
that protesters put forth a consistent frame (Wouters & Walgrave, 2017), 
higher rates of duplication may indicate episodes of greater frame align-
ment, both across events and within event labels (Ketelaars, Walgrave, & 
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Wouters, 2017). For example, the divisiveness of protests in Russia may be 
ref lected in the lower rates of duplication of state and protester violent 
frames in comparison to Catalonia, Spain and Venezuela. While protest 
success is the result of multiple factors, the ability to measure framing 
across countries may contribute to understanding when they succeed 
or fail.

These results are provisional: this example demonstrates additional 
understanding about protest framing that computer vision techniques 
can generate, but it should not be considered a def initive answer. We have 
suggested one way of measuring framing, but future work should explore 

Figure 6: Images and Ratings of Protester Violence and State Violence

Note: Sample images of protester (top) and state violence (bottom), with the classifier label 
estimate and country labeled.

Table 3 Frame Alignment by Protest Event and Label

Event Label

Contains 
Child

Faces Large 
Group

Small 
Group

Protester 
Violence

State 
Violence

Catalonia, 
Spain

.121 .071 .122 .144 .212 .304

Hong Kong .003 .005 .024 .010 .047 .034
Russia .027 .069 .021 .065 .121 .100
South 
Korea

.027 .038 .022 .039 .023 .042

Venezuela .173 .163 .249 .267 .280 .308

Note: The first column is the region, city, or country whose geocoded protest images we analyze. 
The next six columns are each label. Framing – the percent of duplicate images – is calculated per 
event-label. Two images are duplicates if the normalized distance between their feature vectors, 
the output of a CNN, is closer than .2.
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other operationalizations such as number of tweets containing a label 
(instead of percentage) and expand the frames considered. This analysis 
also discards temporal variation, which is almost certainly an important 
determinant of when certain frames receive emphasis. Which frames 
receive emphasis may also be affected by city and country correlates that 
we do not consider.

The results in Table 3 reveal interesting variation warranting further 
exploration. Across events, the most obvious difference is that each event 
exhibits different baseline amounts of framing intensity. For example, 
Venezuela contains the highest framing intensity (duplication rate) across 
all labels, and the rank correlation of events across labels is quite high. 
The relative rates of duplication, moreover, vary signif icantly: the most 
duplicated event-label, Venezuela state-violence, resonates almost 103 
times as much as the least, photos from Hong Kong with children. Two 
possibilities are that frame alignment increases the more violent state 
repression is or as social media penetration increases, increasing the rewards 
to frame alignment. Within each event, violent images are duplicated the 

Figure 7: The four most common images causing frame alignment in our sample. The 
top row, and the two most shared, are from Venezuela and use a small group frame. The 
bottom left image is from South Korea and uses a frame, sign usage, not shown in Table 
3. The bottom right is from Catalonia and is an example of the state violence frame.
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most, with images of state violence shared more in 3 events, protester 
violence in 2, and a tie in Russia. Individuals also prefer to frame protests 
in terms of groups as opposed to individuals, as evidenced by the higher 
duplication rates in the group labels versus the child and faces label. That 
the rank ordering of frames within events appears to correlate across events 
suggests a hierarchy of protest frames, suggesting that forces beyond just 
the presence of professional organizations also affect frame alignment 
(Ketelaars et al., 2017).

7	 Conclusion

If a picture is worth 1,000 words, then it would require approximately two 
kilobytes of storage (Jagenstedt, 2008). Images from consumer cell phones 
and digital cameras, however, require at least three megabytes of storage, 
usually more. Even images shared on social media platforms, which are 
compressed from their original size, require hundreds of kilobytes of 
space. A picture, in other words, is worth anywhere from 50,000 (100 
kilobytes) to 1,500,000 words (3 megabytes). A picture is actually worth 
a book.6

This paper has argued that recent advances in computer vision, deep 
convolutional neural networks, hold much promise for the study of politics. 
Analyzing them in large quantities can inform research in behavior, com-
munication, development, and conflict. The paper then introduced deep 
learning methods and how to validate model output. These techniques are 
especially promising for the study of protest, and an example analyzes six 
protests. The use of large, passively collected datasets raises new ethical 
issues of which researchers should be aware, especially when the data are 
images.

The increasing prevalence of digital technology has led to a greater 
appreciation of the importance of images in political life. Images make 
arguments, set agendas, document and dramatize events, activate emotions, 
shape perceptions, build identity, generate social cohesion, build empathy, 
and strategically create ambiguity (Schill, 2012). Whereas pedagogy, com-
munication, and academic analysis have traditionally focused on acquiring 
textual information, cheap computing means that individuals consume 
and produce increasing amounts of visual information (Kraidy, 2002). 
Images are key drivers of political phenomena, and we would do well to 
take advantage of new techniques to analyze them in large quantities in 
research.
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Appendix A Comparing Text to Images

Visual data differ from text data in ways summarized in Table A1. The 
most critical distinction between them is that, since words are the units of 
meaning in texts and are easier to define than objects in images, it is easier 
to process text than images.

An image’s constituent elements, pixels, carry no meaning, as opposed 
to text data whose atomic elements are words. In other words, texts contain 
less uncertainty about meaning than images, and the f ive differences in 
Table A1 flow from that distinction.

More technically, a text’s characters, including spaces, are its atomic 
elements. A string of characters is more meaningful than a sequence of 
pixels, however, because human language provides predefined sequences 
- words - that people learn. People do not learn pixels, and there are not 
visual languages that codify collections of pixels the same way words codify 
collections of characters. It is very easy to describe to a computer a text 
building block: it is any sequence of characters bounded by a punctuation or 
space character. Word detection is therefore equivalent to object detection in 
images. A single word can provide a great deal of semantic information (e.g., 
“Trump” or “election”) and a simple string comparison operation allows one 
to access the information. In contrast, one pixel, and even small groups of 
pixels, are meaningless. In visual analysis, one has to process a huge number 
of meaningless pixels to detect and identify people, objects and events. 
Recognizing elementary content, visual “words,” from an image is, however, 
extremely diff icult. This technical diff iculty has been the main obstacle 
to research involving quantitative analysis of visual data on a large scale.

It is also easier to build meaning from a collection of words than from pixels 
because words are arranged in one dimension, whereas pixels spread across 
two. The simplest text models take a bag-of-words approach, where the order of 
words does not matter; while more complex models perform better, bag-of-words 
models are nonetheless useful. A bag-of-pixels model would fail, however, since 
each pixel is meaningless. Visual models therefore need to identify groups of 
pixels. Groups are identified using sliding windows, and these windows vary 
in two dimensions. The size of the window therefore becomes two parameters 
open to the researcher to manipulate. While varying the window dimensions 
is equivalent to choosing how many words to concatenate in an n-gram model, 
meaning dissipates quickly the further away words are, meaning researchers do 
not have to consider large sequences of words. There is no equivalent for pixels 
and meaning (though there are rules of thumb), especially because the number 
of pixels representing objects will vary depending on the resolution of the image.
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It is diff icult to detect objects in images because visual object dictionar-
ies do not exist. They do not exist because visual languages do not exist. 
For example, the word “trump” can be a verb, adjective, or proper noun. 
While its meaning is not as clear as a word with only one usage, it can 
nonetheless easily be inferred based on nearby words such as “opponent”, 
“card”, or “President”. While an image of President Trump is immediately 
recognizable to humans, it is not to computers. A white pixel surrounded 
by other white pixels could be a dress shirt, or it could be a part of a f lag. 
Brown pixels separated from other brown pixels by 100 other pixels could 
be two eyes, but they could also be two shoes or two coffee cups. Because 
there is no easy definition of objects in images, it is harder to infer meaning 
from images than text.

Because words have clearer meaning than pixels, text f iles require less 
space than images. For example, images in tweets require, on average, 100 
kilobytes of storage space. A tweet cannot contain more than 240 characters, 
which requires .24 kilobytes of space. A tweet of 100 kilobytes could contain 
100,000 characters. The smaller size of texts means they are easier than 
images to store, share for replication, and, most importantly, analyze.

Because there is not a universal verbal language, object detection in 
images is more universal than meaning detection in texts. For example, 
the vast majority of faces contain two eyes, two ears, a nose, mouth, and 
forehead. The words for these facial features, however, vary across languages. 
An image classif ier to detect faces therefore is more likely to detect all 
faces than a text classif ier trained on one language, such as English, will 

Table A1 Distinct Characteristics between Text and Image Data

Text Image

• Low uncertainty at word level • High uncertainty at any level

• One dimensional: a sequence of words • Two dimensional: an array of pixels

• Pre-defined dictionary of words, ngrams, 
or emojis

• Unknown dictionary

• Small file size • Large file size
• Language specific • Universal language
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be to detect facial words in another language’s text. The lack of structure 
to images at the pixel level is therefore a blessing and a curse: it is a curse 
because building and training image classif iers is harder than for text, but 
it is a blessing because an image classif ier is more broadly applicable than 
a text one.

Appendix B Applications

Development
Socioeconomic Status Surveys. Any research question that requires, or would 
benefit from, socioeconomic characteristics where the household, neighbor-
hood, or city is the unit of analysis would benefit from training a deep learning 
model on satellite imagery data. Image data can measure different features of 
cities, such as the distribution of building types, as well as land use in rural areas 
(Jensen and Cowen, 1999). Imagery with a resolution of one meter or smaller can 
provide data on socioeconomic characteristics as they vary by neighborhood, 
allowing for frequent census-like data creation, an ability especially useful in 
countries with no, or irregular, censuses (Tapiador, Avelar, Tavares-Correa and 
Zah, 2011). For agricultural areas, it can measure changes in rainfall and crop 
growth, proximate measures of income for many countries (Toté, Patricio, 
Boogaard, van der Wijngaart, Tarnavsky and Funk, 2015). Since income shocks 
are a precursor to civil conflict, data that accurately measure subnational 
changes in income could act as an early warning system (Hsiang et al., 2013).

It is possible to measure socioeconomic variables using photographs 
of places taken by people. Manual analysis of Google Street View (GSV) 
imagery shows that photographs of streets correlates strongly with survey 
based measures of neighborhood attributes (Odgers, Caspi, Bates, Sampson 
and Moff itt, 2012; Wilson, Kelly, Schootman, Baker, Banerjee, Clennin and 
Miller, 2012). A model trained on GSV images recovers income by block in 
New York City (Glaeser, Kominers, Luca and Naik, 2018), and a deep learning 
model of cars in GSV images can measure income, race, and education at the 
precinct level (Gebru, Krause, Wang, Chen, Deng, Aiden and Fei-Fei, 2017). 
Another promising approach is to pay people to take photographs of specific 
phenomena, such as the price of goods at a supermarket or the prevalence 
of anti-incumbent signs at a protest (Premise Data, 2017). Paying people to 
capture images is especially useful in areas with otherwise insuff icient 
publicly available data.

Natural Disasters. Image data also provide access to temporal changes in 
local regions. For example, a model that accurately recovers built features of 
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towns and cities could provide insight into how institutions affect recovery 
from natural disasters. If images exist of the same area immediately before 
and after a natural disaster, the physical and geographic extent of damage 
as well as the speed and amount of recovery may be measurable. These 
dependent variables may then be related to various institutional ones. 
Recovery may occur more quickly in democracies than non-democracies 
or in countries with free media, for example. In democracies, subnational 
variation could depend on whether a disaster strikes a powerful politician’s 
district or if there is an impending election.

Contentious Politics
Civil War. Using computer vision, greed and grievance can be measured with 
more geographic and temporal precision (Collier and Hoeffler, 2004; Kern, 
2011). Those two concepts are notoriously diff icult to operationalize, and 
researchers rely on imperfect measures such as the availability of natural 
resources (greed) or aggregate economic statistics such as gross domestic 
product (economic grievance). For example, greed is measurable using the 
precise outline of diamond mines, virgin forests, or oil deposits, and their 
depletion can be observed from satellite data or resource maps (Hunziker and 
Cederman, 2017). Grievance is reflected in city-level variation in economic 
activity measurable using light emissions (Weidmann and Schutte, 2017). 
Whether these measures are better than existing datasets will depend on 
the dataset and country on which the researcher is focused.

State Capacity. Images can also be used to measure state capacity. 
Humans-as-sensors can take photographs of specif ic objects, such as prices 
in markets (to measure inflation), road conditions, or school conditions, using 
smart phones (Premise Data, 2017). These images can give disaggregated 
information about a state’s ability to repress intranational conflict, as well 
as the ability of rebels to attack the state. Maps are also images, and digitiz-
ing them can provide historical data on state capacity, especially power 
projection, that current measures, such as GDP, may not capture (Hunziker, 
Müller-Crepon and Cederman, 2018).

Protests. Image data can create improved measures of a protest’s 
violence and features of participants. Existing datasets measure protester 
or state violence coarsely, as an ordinal variable, because of interpretive 
diff iculty from relying on text. Images can generate continuous estimates 
of how violent protesters or the state are. Text also makes it diff icult to 
understand exactly who is protesting because that detail is rarely reported; 
surveys provide participant demographics but are very costly and require 
foreknowledge of a protest. When protest images contain faces, traits such 
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as protesters’ age, race, and gender become measurable, and protest size 
can be estimated by summing the number of faces. For examples of this 
approach, see (Won, Steinert-Threlkeld, and Joo, 2017), (Zhang & Pan, 2019), 
and (Steinert-Threlkeld, Chan, and Joo Forthcoming).

Appendix C Artificial Neural Network Detail

Artificial Neural Network
While there have been different models proposed in the deep learning 
literature, artif icial deep neural networks (DNN) are the most popular 
branch of deep models and have been used in a number of areas including 
computer vision, audio processing, natural language processing, robotics, 
bioengineering, and medicine. This subsection describes a general neural 
network, and Section C discusses its variant, a convolutional neural network 
(CNN). The convolutional neural network is commonly used in computer 
vision applications with two-dimensional inputs.

Artif icial neural networks represent complex concepts, like the prob-
ability an image contains a human face, as a system of connections between 
elementary nodes; the collection of nodes and connections is the neural 
network. Each node, also called a neuron or an unit, in this system only 
performs simple computations and interacts with a few other nodes. Nev-
ertheless, the network of a large number of nodes enables complex data 
modeling through their interactions.

Figure C1 shows an example configuration of a node and its connected 
nodes. Each node takes input values from nodes in the proceeding layer 
and evaluates a weighted sum using weights associated with edges (in this 
example, 1 0.7 + 0.5 − 0.3 + 0.3 1.0 = 0.85). Typically this value is transformed 
by a non-linear activation function, e.g., sigmoid or rectif ied linear unit 
(ReLU), and then passed to output node. For example, these input values 
might be an individual’s values for gender (x1), race (x2), or income (x3) and 
the output variable might be political ideology.

Figure C2 shows an example architecture of a neural network with several 
layers. Neural networks with multiple hidden layers are considered “deep.” 
A layer in a neural network is a set of nodes which takes inputs from the 
nodes in the previous layer and deliver outputs to the nodes in the next 
layer. When a network is visualized as Figure C2, a column of nodes is a 
layer, and the number of columns is the number of layers. Inputs to the 
whole network therefore undergo several steps of transformations through 
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Figure C1: An example computation in a node and its connected nodes.

Figure C2: An example architecture of a neural network with an input layer, an output 
layer, and two hidden layers.
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layers until they reach the output layer of the network. The output layer is 
the network’s f inal layer, and it contains one node per desired label in case 
of classif ication.

Hidden layers are intermediate layers between the input and output layers 
in a network whose true values are not observed during training. They play 
a critical role in modeling complex concepts by giving an expressive power 
to deeper networks. Studies have shown, both experimentally and theoreti-
cally, that the more layers a neural network has, the better performance 
it can achieve (Eldan & Shamir, 2016; Poggio, Mhaskar, Rosasco, Miranda 
and Liao, 2017). A drawback of having too many layers is that it is more 
diff icult to train such a model, i.e., vanishing gradients (Bengio, Simard 
and Frasconi, 1994).7

Convolutional Neural Network
Figure C3 illustrates an example conf iguration of a typical convolutional 
neural network (CNN) for classif ication with 12 layers.8 LeCun et al. (1989) 
f irst proposed the CNN structure with an eff icient learning algorithm 
based on backpropagation. Since Krizhevsky et al. (2012) showed that 
deep CNNs (CNNs with many layers) improved image recognition by 
21.9%-33.8%, it has become the de facto standard method for image 
classif ication. CNNs have a repetitive structure with several important 
layers: the convolutional layer, nonlinear layer (ReLU, in Figure C3), 
pooling layer, and fully connected layer. This subsection describes each 
in turn.

Convolutional layer
A convolutional layer in CNNs performs a smoothing operation (“convolu-
tion”) to the input to the layer, which is either raw image data or an output 
from the previous layer. Convolution is widely used in signal processing for 
transforming or comparing time series data. For example, one can reduce 
noise in an audio signal by convolving it with a Gaussian f ilter, which will 
smooth out the original signal by blending the original value at time t with 
other values at adjacent time points around t.

Figure C3: An example of a convolutional neural network architecture.
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Formally, the convolution of two functions, f and g, is another function 
defined by

​​​(​​f * g​)​​​​​(​​t​)​​​ = ∫ f​​(​​x​)​​​ ⋅ g​​(​​t − x​)​​​dx ⋅​� (C3)

The second function, g (t), is called a kernel. Note that the kernel is f lipped 
(g (t − x)) by the def inition of convolution. In a discrete case, convolution 
computes the sum of element-wise multiplication between two functions, 
with one function being shifted over time, such that:

​​​(​​f * g​)​​​​​(​​t​)​​​ = ​∑ x​​ f​​(​​x​)​​​ ⋅ g​​(​​t − x​)​​​ ⋅​​� (C4)

Each convolutional layer in a CNN uses a convolution operation in order 
to compare the input data with the kernels (also called filters in the deep 
learning literature) in the model. In practice, the kernel is not f lipped in 
computation in most implementations as it is unnecessary for the purpose 
of CNN.9 Not f lipping the kernel creates a slightly modif ied def inition of 
convolution of a two-dimensional input I and a two-dimensional kernel K 
in CNN:

​F​​(​​x, y​)​​​ = ​​(​​I * K​)​​​​​(​​x, y​)​​​​ =​​ def​ ​∑ i=1​ h  ​ ​∑ j=1​ w  ​ I​​(​​x + i − 1, y + j − 1​)​​​ ⋅ K​​(​​i, j​)​​​.​​​� (C3)

I (x, y) and K (x, y) denote the element in x th row and y th column in the 
matrices I and K. h and w denote the height and width of the kernel K, and, 
typically, CNNs use square kernels (h = w). The result of the convolution 
is another 2D array, F, which is called a feature map. The feature map is 
the output of the convolutional layer, and it is the same dimensions as the 

Figure C4: Illustration of computations in a convolutional layer.
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input data. This computation is performed on every location in an input 
map and the result is stored in the same location in the output feature map 
(See Figure C4).

Most images are three-dimensional data with two spatial dimensions 
and an additional dimension of color (e.g., RGB). Feature maps in each layer 
are therefore also three-dimensional as each individual feature map (also 
called a channel) corresponds to the response from a specif ic kernel (f ilter). 
Each f ilter describes a specif ic pattern to be detected from an input from 
the previous layer. The entire weight parameters of each convolutional layer 
(K) are therefore represented by a four-dimensional array of size (w, h, m, 
n), where m is the number of channels of the input (the number of channels 
in the previous convolutional layer) and n is the number of channels in 
the current layer. The number of channels (feature maps) in each layer is 
arbitrary and typically ranges from 32 to 1024, except the color channel 
(3). The feature map for each channel will therefore be obtained as follows:

​F​​(​​x, y, ​c ′​​)​​​ = ​∑ c=1​ m  ​ ​∑ i=1​ h  ​ ​∑ j=1​ w  ​ I​​(​​x + i − 1, y + j − 1, c​)​​​ ⋅ K​​(​​i, j, c, ​c ′​​)​​​.​​​​� (C4)

Convolutional layers enable the following two key properties of convolutional 
neural networks.

Weight sharing. In Equation C4, the kernel is invariant to the location of 
each input node (x, y). Therefore, the same kernel will apply to every location 
of the input map, and the connections between two layers (input and output 
nodes of each convolutional layer) will share the same weights. Weight sharing 
is effective because an object may appear in any location of an image and its 
appearance is invariant to its placement. Weight sharing reduces the number 
of free parameters in the network and makes it easier to train.

Local and sparse connectivity. Convolutional layers in CNN achieve 
sparse connectivity by using a kernel much smaller than the size of input 
map (h, w < 10, usually). Each node in a convolutional layer is only connected 
to a small number of nodes in the previous layer, i.e., a local region. This 
kernel is small because adjacent pixels and subregions of an image are more 
highly correlated than distant regions.

Nonlinear Layer
Each convolutional layer is typically followed by a nonlinear activation 
function that applies to each element in the feature map. One of the most 
common activation functions is the rectif ied linear unit (ReLU):

​f​​(​​x​)​​​ = max ​​(​​0, x​)​​​.​� (C5)
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This function will simply replace negative feature map values with 0 and 
keep positive values. Other functions such as sigmoid or hyperbolic tangent 
function can be also used. The main advantage of the ReLU is that it runs 
much faster than those functions.

Nonlinearity of visual models is important as it allows to capture a 
complex data distribution. Visual data, projections to 2D space, are highly 
nonlinear due to many factors such as occlusion, object deformation, and 
camera exposure saturation. Human visual systems are capable of processing 
this nonlinearity. Especially, nonlinear layers are essential in deep networks 
because consecutive layers of linear operations collapse into one linear 
layer. Thus, there will be no benefit of adding more layers to the network 
without nonlinear functions.

Pooling layer
Pooling is another important operation in convolutional neural networks 
since it reduces computational complexity. A pooling layer takes an input 
feature map from the previous layer and generates a transformed map whose 
size differs from its input size. Most images and feature maps in a CNN 
are spatially correlated: values in closer pixels or nodes10 tend to be more 
similar than those far away. Instead of keeping similar values redundantly 
from adjacent locations, one can simply choose the maximum response 
(or the average value) in each spatial neighborhood (pooling window) to 
represent the area.

Specifically, a max pooling layer compares values in each sub window (e.g., 
a 2 × 2 window of pixels) of the input feature map and chooses the maximum 
value (see Figure C5). Only these maximum values will be stored in the output 

Figure C5: Illustration of a max-pooling operation of the window size 2 × 2. For each 
window, only the maximum value will be retained.



46 � VOL. 4, NO. 1, 2022

COMPUTATIONAL COMMUNICATION RESEARCH

map; the other values are disregarded. Removing non-maximum values also 
means that the resulting feature map will be of a smaller size than the input 
map. For example, an input image of size 256 × 256 will be downsampled to 
16 × 16 after applying 4 max-pooling layers of size 2 × 2. During the process, 
the information originally encoded in the spatial dimension in images will be 
translated into the non-spatial dimension in the feature map, e.g., 16 × 16 × 1,024.

One main diff iculty in visual learning is high geometric variations of 
objects and parts arising from part movements and viewpoint changes. 
Pooling not only reduces the number of free trainable parameters but also 
helps the network achieve translation invariance, which is an important 
property for computer vision systems. Robust computer vision system 
needs to handle such geometric variations, and pooling operations help 
by disregarding small spatial perturbations within the pooling window.

Fully connected layer
CNN architectures used for classification include one or a few fully connected 
layers at the last stage. A fully connected layer densely (“fully”) connects all 
the nodes from the previous layer to all the nodes in the current layer. A con-
volutional layer encodes local information tied to specific image subregions 
distributed over a two dimensional map, through sparse connectivity (i.e., 
nodes are selectively connected in a convolutional layer). A fully connected 
layer collects local features from all the subregions, captured in the prior 
convolutional layer, and outputs the overall likelihood of a visual concept (label).

In the case of classification, the fully connected layer(s) in a CNN are usually 
followed by a softmax function, which normalizes the final classification scores 
over categories. This procedure is the same as multinomial logistic regression.

Appendix D Training and Validation

This section discusses practical issues in training a model and introduces 
tools to diagnose the model performance. For technical details of training 
and validation, see Section C in the appendix. The appendix also provides 
precise def initions of technical concepts, such as weights, kernels, or loss 
functions, and their computations in greater detail.

Training
New Models. As in other machine learning methods, training a new model 
means using training data (labeled images) to estimate optimal values for 
model parameters.
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Training a neural network means f inding optimal values for weights 
in the model (see Figure C1). In most cases, objective functions of neural 
networks are non-convex and cannot be directly optimized, and training 
is conducted by a gradient descent method with the backpropagation 
algorithm (LeCun et al., 1989), alternating between forward and backward 
passes.11 In the “forward” pass, given an input value, the network evaluates 
the output and computes the loss function based on the ground truth 
output value, i.e. the image’s labels or class. In the “backward” pass, the 
gradient of the loss function is propagated backward by the chain rule 
and model weights are updated accordingly. Backpropagation is necessary 
because neural networks have nested structures, so layers and weights 
(parameters) in lower (earlier) layers are not directly connected to the 
output variables where the gradients are f irst computed. See LeCun et 
al. (1989) for detail.

There exist many types of loss functions. One can use a specif ic loss 
function or a combination of multiple loss functions depending on the 
task (classif ication, detection, or face recognition) and the output dimen-
sion (number of variables). In image classif ication, for example, the most 
popular loss function is cross-entropy loss, also called log-loss. In a binary 
classif ication task, the binary cross-entropy loss is:

​los ​s​ bce​​​​(​​y, ​   y ​​)​​​ = − ​​(​​y ⋅ log​   y ​ + ​​(​​1 − y​)​​​ ⋅ log ​​(​​1 − ​   y ​​)​​​​)​​​​� (D1)

where y ∈ {0, 1} is the true label for the example and ŷ ∈ (0, 1) is the 
output value computed from the model. In training, all the model pa-
rameters are optimized to minimize this loss function across the entire 
training set. Other loss functions can be also used in other tasks. For 
example, mean square error loss can be used to estimate continuous 
outputs such as age.

Figure D1 (a) shows an example of the evolution of a model loss over 
iterations. Note that, after the 20th epoch,12 the model performance is 
saturated and the validation loss starts increasing although the training 
loss continues to decrease.13 This degradation arises because the model is 
f itted too much to the training set. One can stop training at that point and 
take the f inal model. Using more training data can help avoid overf itting 
and train a better model (See Figure D1(b)).

Pre-Trained Models. Deep learning usually requires a large amount of 
training data (1.28 million images in ImageNet (Russakovsky et al., 2015)) 
to be successful. It is usually not feasible for an individual researcher to 
collect such a large training set or training a model to exploit those images’ 
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complexity. One method of overcoming the requirement is to use models 
trained for another task with a larger dataset and apply to the current task 
for which only a small amount of data is available. This is known as transfer 
learning and is the process we recommend others follow.

Instead of using random values like when training a new model, one 
can take the weight values from an existing model (the pre-trained model) 
and initiate a new training process. This procedure is called f ine-tuning, 
or transfer learning, as an existing model is tuned to another task. For 
example, one may use a model trained for generic image classif ication to 
initialize the weight values of a new model for human activity detection 
(Won et al., 2017). Figure D2 illustrates the advantage of using a pre-trained 
model: it achieves a better classif ication accuracy and reduces training time 
compared to making a new model.

Transfer learning works because CNNs, especially in their lower layers, 
capture features that generalize to other related tasks. In visual learning, 
these sharable representations include elementary features such as edges, 
color, or some simple textures. Since these features can commonly apply 
to many visual tasks, one can reuse what has been already trained from a 
large amount of training data and ref ine the model to the new data. Doing 
so saves signif icant time and hardware costs.

There exist many pre-trained models which are widely adopted as base-
lines for f ine-tuning, such as AlexNet (Krizhevsky et al., 2012), Places365 
(Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017), and VGG-Face (Cao, Shen, 
Xie, Parkhi, & Zisserman, 2018). As their names suggest, these models are 
trained from data in specif ic domains. Other examples include Residual 
Net (ResNet) (He et al., 2016) and VGG-Net (Simonyan & Zisserman, 2014) 

Figure D1: (a) The changes of training and validation losses over iterations. One epoch is 
equivalent to using every image in each set once. (b) The effect of the training set size 
on the model accuracy (100% = 32,611 images). See Section 6.2 for the details of the 
data and model.
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for image classif ication and Faster-RCNN (Ren, He, Girshick, & Sun, 2015) 
and YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) for object detection. 
Therefore, one can choose a model pre-trained for a task and domain related 
to the researcher’s question.

Using one of these pre-trained models facilitates topic discovery. By taking 
the last fully connected layer or the softmax layer of images run through 
a classif ier, one can f ind similar images using any preferred clustering 
algorithm. The images in the clusters will contain similar features (pictures 
of John McCain, for example), suggesting they are about the same topic. 
Appendix Section F shows this approach to topic discovery using politicians’ 
images shared on Facebook and k-means clustering.

Whether using transfer learning or making a new model, it is critical to 
ensure that the training data represent a diverse and balanced set of images 
before they are annotated so that recall is high for each desired label. For 
example, if one wants to collect images to be used for training a protest event 
classif ier, the set should contain enough protest images and non-protest 
images. This task may not be trivial if the target event infrequently occurs. 
If the task is well def ined and clearly explainable by simple statements, 
one can crowdsource the annotation task using online services, such as 
Amazon Mechanical Turk. If an annotation task requires more expertise, 
one should hire and directly supervise annotators.

Architecture and Hyperparameters. Table D1 shows how different model 
architectures and depths affect accuracy. The evaluation for f ine-tuning on 
our own data (32,611 training images) shows relatively small differences.14 
When the training set is larger, deeper models tend to perform better. 
The ImageNet challenge offers 1,281,167 training images (Russakovsky et 
al., 2015), so the performance gap is wider. It is beyond the scope of this 

Figure D2: The effect of fine-tuning (using a pre-trained model) in training. (One epoch 
is equivalent to using every image in each set once.) See Section 6.2 for the details of 
the data and model.
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paper to discuss at length how to optimize the architecture of a CNN to be 
used (number of layers in a model or types of regularization to be used), 
preprocessing, best optimization methods, and other hyperparameters. 
In general, these are empirical questions and the optimal solution varies 
by task.

Validation and Interpretation
Deep neural networks often receive criticism due to the lack of interpret-
ability of their results and internal mechanisms compared to simple models 
with a handful of explanatory variables. A deep model typically comprises 
millions of parameters (see Table D1), and it is impossible to identify their 
meanings or roles from the classif ier output.

One method of validation is to use a validation dataset which does 
not overlap with the training set. As in other classif ication problems, the 
accuracy of a CNN-based classif ier can be measured by several metrics, 
including raw accuracy, precision and recall, or average precision, among 
others. These measures, however, do not explain how the model achieves 
its results.

Language-based Interpretation
Just as humans use language to explain a concept, one can develop a joint 
model that incorporates visual and textual data such that the text part 
explains its visual counterpart. For example, image captioning generates a 
sentence describing visual content in an input image (Kiros, Salakhutdinov, 

Table D1 Performance comparison for different models. See Section sm:Protest for 

the details of the data for fine-tuning.

Architecture Depth Fine-tune (Protest) Imagenet 
Validation 
Error (%)

Number of 
Parameters

Best Loss Best 
Accuracy 

(%)

Alexnet 8 0.249 89.29 16.6 60 M
VGG 11 0.223 90.52 10.4 133 M
VGG 16 0.204 92.33 7.2 138 M
VGG 19 0.197 92.16 7.1 144 M
ResNet 18 0.220 91.54 - 11.7 M
ResNet 34 0.213 91.65 5.60 21.8 M
ResNet 50 0.213 91.79 5.25 25.6 M
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& Zemel, 2014) or text-based justifications to explain why the model produces 
particular outputs (Hendricks et al., 2016).

Another line of research on text-based interpretation of visual learning 
utilizes questioning and answering (Antol et al., 2015). Such methods take 
both an image and a text question as input and output a text-based answer 
to the input question. This allows a more flexible interface between a user 
and a model than a traditional classif ication task, which essentially asks a 
f ixed question to the model.

The key limitation of these methods is that they do not generalize: 
they are unable to deal with novel content or questions. The models are 
trained on image-text pairs and simply reproduce the mapping learned 
from the training data. When the model is given a novel question which 
was not given during training, it will not understand the meaning of 
the question.

Visual Validation
Another method of understanding how a deep network produces its output 
is through visualization. Since convolutional neural networks are largely 
used for visual learning from images, visual validation is especially effec-
tive. We introduce the two most popular approaches: feature-based and 
region-based.

Figure D3 provides examples of the feature-based approach, using a 
random sample of images from ImageNet. This approach uses a “deconvo-
lutional” network (Zeiler & Fergus, 2014), which is akin to a reverse CNN. 
Figure D3 shows that visually similar image patches that contain the same 
image feature (left sub-panel) will trigger high activation scores in the same 
node in the network that captures the image feature. The image feature can 
be visually identif ied from the feature activation maps (right sub-panel). 
Moreover, this visualization also confirms that the lower layers in a network 
respond to the low level visual features such as color or texture, and the 
higher layers capture more structured and semantically meaningful shapes 
(“face”, “web”).

The region-based approach is exemplif ied by Gradient-weighted Class 
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). Grad-CAM highlights 
pixels in images based on how much they contribute to the f inal output of 
the model. See Figure D4 for an example visualization using this paper’s 
protester framing example. Grad-CAM can conf irm that the model was 
able to learn meaningful features such as “smoke” to model the concept 
of “violence”.
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Figure D3: Visualization of feature activations at different layers in a CNN by a 
deconvolutional network (Zeiler & Fergus, 2014). For each layer, the left panel shows 
groups of similar image patches which produce high activation values for the same 
node in the layer. The right panel shows corresponding feature visualizations. That the 
patches become more recognizable as the layer depth increases confirms lower layers 
capture low level features and higher layers capture more structured and semantically 
meaningful patterns. Each layer shows four randomly chosen filters, and the filters are 
not the same across layers.
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Figure D4: Visualization of Pixel Salience of CNN by Grad-CAM. It highlights image 
sub-regions which more contribute to the classification output (pixels closer to red). 
These labels are chosen from the protest example that follows.
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Appendix E Software Libraries

There exist many open-source or commercial libraries and tools that re-
searchers can use for visual content analysis in their projects. Compared 
to software for text analysis, these libraries are in general larger and have 
more complex internal structures, which are required to provide various 
image processing functionalities. Fortunately, there are a small number of 
standardized, popular libraries that can be adopted for computer vision 
and deep learning projects, which will be briefly reviewed in this section.
–	 OpenCV and dlib are currently the most popular computer vision 

libraries. They offer a wide range of basic image processing, computer 
vision, and machine learning functionalities. Python is best for OpenCV, 
though there is a light wrapper in R for it. dlib is accessible via R and 
Python libraries.

–	 TensorFlow, PyTorch, Keras, MxNET, and Microsoft Cognitive Toolkit are 
the most popular deep learning frameworks, as of 2019. These libraries 
allow researchers to define custom network architectures and train the 
network with their own data. For high-level use cases, these libraries 
have little practical difference between them.

–	 In case researchers simply want to use existing classif iers which are 
already trained without developing a model themselves, they can also 
use commercial services through APIs. These options include Google 
Vision API, Microsoft Vision API, Face++, and Amazon Rekognition. 
These services return submitted images with labels.

Appendix F Self-presentation of Politicians in Social Media

One can also use an inductive approach by clustering a given set of images 
without any annotations or labels. Figure F1 shows example clusters obtained 
from images in the same dataset, not using the Google Vision labels. Specif i-
cally, we f irst computed generic image features using an image embedding 
from a CNN pre-trained on ImageNet. We ran the model on each image 
and obtained a numeric vector of length 2,048 from the activation values 
of the second-to-last layer of the CNN. Then we ran K-means clustering (K 
= 200) on these features.

By grouping similar images, one can identify clusters showing various 
activities and events which politicians attend to. A cluster of John McCain 
(the last cluster in Figure F1) arises as many politicians posted his photo-
graphs after his death on August 25, 2018. Clustering analysis is an effective 
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way of discovering issues or topics which may be unknown to researchers 
prior to analysis. This example of unsupervised learning is very similar to 
unsupervised topic modeling in text analysis.

Appendix G Individuals’ Framing of Protest

Pipeline Detail

Verification
Figure D4 visualizes the internal mechanism of the model by showing which 
features contribute to an image label. It uses the amount of output gradient 
backpropagated to internal nodes and corresponding image subregions and 
shows how strongly the nodes are activated in classification (Selvaraju et al., 
2017). This process is similar to the regular model training procedure. The closer 
to red the area of an image, the more it contributes to the classifier output.

Figure D4 shows that the classif ier is driven by parts of an image that a 
human would recognize as important for each category. For example, the 
protest label primarily activates on signs. Tear gas and police helmets drive 
the violence classif ier, while a child’s face, but not the nearby adults’, drive 
the children classif ier.

Figure F1: Example clusters found in Facebook photographs posted by candidates.
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Notes

1.	 A layer is a separate operation or a collection of internal nodes placed at 
the same stage in a network. It will be further elaborated shortly. The Sup-
plementary Materials discuss different types of layers in neural networks.

2.	 Google has not published details of the Vision API’s architecture, though 
it is safe to assume that it is based on a CNN. It is concerning that users 
are not informed about these details. We discuss these issues, for example, 
model biases and interpretability, in the Ethics section. We recommend this 
API provided that researchers are aware of potential issues and validate 
these APIs for their purposes (Section Appendix D), e.g. by measuring the 
accuracy of the API with manual annotations.

3.	 This concern is a fancy rephrasing of the old adage, “Garbage in, garbage out."
4.	 Most labels are straightforward to comprehend except a few such as “Adap-

tation” which we believe refers to “screen adaptation” and correlates with 
people and crowd.

5.	 The first is secessionist protests in Catalonia, Spain. The second is the 2014 
Hong Kong protests against changes to Hong Kong’s electoral system seen 
as contradicting the “One Country, Two Systems” relationship with China. 
The third is anti-corruption protests in Russia on March 26, 2017. The fourth 
is the 2016-2017 protests in South Korea against President Park Geun-hye. 
Revelations in October 2016 that President Guen-hye received council from 
a Rasputin-like figure triggered large protests, and those protests persisted 
through her impeachment on March 10, 2017. The fifth is protests in Ven-
ezuela in 2014 and 2015.

6.	 This estimate is poetic. Another way to think of images is that they have 
high entropy, meaning they cannot be compressed as much as text. The 
greater size of images reflects this greater difficulty of compressing them, 
not necessarily a true quantum of information.

7.	 Networks are trained by a gradient descent method with backpropagation, 
and the gradients become smaller as it goes back through more layers, mak-
ing it difficult to update the parameters.

8.	 In practice, only convolutional and fully connected layers are usually 
counted to specify the number of layers in a model. The example model in 
Figure C3 can be called a 5-layer CNN.

9.	 The parameters will be learned in the same way irrespective of the flipping 
direction.

10.	 Pixels in an input image are the nodes in the first input layer.
11.	 Minimizing the sum of squares of residuals is convex and directly optimiz-

able, for example.
12.	 One epoch is one pass over all training images.
13.	 In training, available data is typically split into a training set and a valida-

tion set. Only the training set is used in actual model training and the 
validation set is only used for evaluation.
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14.	 VGG-Net (Simonyan & Zisserman, 2014), despite having fewer layers, per-
forms slightly better than deeper models. Note that it has more parameters.
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