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Abstract

Images matter because they help individuals evaluate policies, primarily
through emotional resonance, and can help researchers from a variety
of fields measure otherwise difficult to estimate quantities. The lack
of scalable analytic methods, however, has prevented researchers from
incorporating large scale image data in studies. This article offers an
in-depth overview of automated methods for image analysis and explains
their usage and implementation. It elaborates on how these methods and
results can be validated and interpreted and discusses ethical concerns.
Two examples then highlight approaches to systematically understanding
visual presentations of political actors and events from large scale image
datasets collected from social media. The first study examines gender and
party differences in the self-presentation of the U.S. politicians through
their Facebook photographs, using an off-the-shelf computer vision model,
Google’s Label Detection APIL The second study develops image classi-
fiers based on convolutional neural networks to detect custom labels
from images of protesters shared on Twitter to understand how protests
are framed on social media. These analyses demonstrate advantages
of computer vision and deep learning as a novel analytic tool that can
expand the scope and size of traditional visual analysis to thousands of
features and millions of images. The paper also provides comprehensive
technical details and practices to help guide political communication

scholars and practitioners.
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1 Introduction: Image as Data

Images affect politics because they trigger emotions and provide information
shortcuts to evaluate complex issues (Popkin, 1994), but researchers have
rarely analyzed them in large quantities because of the difficulty of extract-
ing politically relevant information. Methods that simplify the extraction of
meaning from images now exist. In light of a growing body of work taking
advantage of these methods (Cantu, 2019; Casas & Webb Williams, 2019; Haim
& Jungblut, 2020; Peng, 2018; Torres, 2018; Xi et al., 2020), this article provides
a conceptual overview of the leading class of models, convolutional neural
networks, and applies them via two examples, each of which shows a different
approach to treating images as data. Images contain information absent in
text, and this extra information presents opportunities and challenges. It is
an opportunity because one image can document variables with which text
sources (newspaper articles, speeches, or legislative documents) struggle or
at scales not possible with manual coding (Valentino, Brader, Groenendyk,
Gregorowicz, & Hutchings, 2o011). It has been a challenge because of the
technical difficulty of identifying the objects and concepts encoded in an
image, requiring researchers to rely on manual coding. Because human
coders are slow, expensive, and have different interpretations of the same
images, studies using images have historically used few.

Intrinsic features of text and images differ in key ways. These differences
explain why the latter have resisted automated analysis. The fundamental
units of images, pixels, contain less meaning than words, the building blocks
of texts. Once built, however, image classifiers are more universally applica-
ble than text ones. Intuitively, the same concept, e.g. “violence”, expressed in
written languages requires training separate models to understand words
and syntax from multiple languages. Visual language is more universal
(Graber, 1996), so one image model of “violence” can apply to events from
places and periods that could require several text models. For example, a
police officer battering protesters in Hong Kong or Spain will look more
similar to each other than the words that would be used to describe that
event. Appendix Section A elaborates this assertion.

Advances in computer vision and machine learning algorithms, specifically
the rise of deep learning and convolutional neural networks (CNNs) (LeCun,
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Bengio, & Hinton, 2015), have lessened the challenge of automated visual
content analysis. Along with increased hardware capabilities, these algo-
rithms have expanded the frontier of computer capabilities. For social media
platforms, these advances mean automatically recognizing faces in uploaded
images. For governments, these advances mean increased biometric security
as well as policing capabilities (Kargar & Rauchfleisch, 2019). For researchers,
these advances mean the ability to better measure existing concepts (Hsiang,
Burke, & Miguel, 2013), operationalize measures previously only available in
theoretical models (Grabe & Bucy, 2009), and do both with greater geographic
and temporal resolution than previous efforts (H. Zhang & Pan, 2019).

This paper demonstrates how large scale image datasets can be in-
corporated in research and introduces computational techniques which
significantly enhance the scope, size, and efficiency of image analysis.
To this end, it first provides a conceptual overview of how convolutional
neural networks work and how they are structured compared to traditional
computational methods. Next, it introduces tasks — image classification,
object detection, and person attribute recognition — at which CNNs excel. It
then explains how to develop and train a CNN, including using off-the-shelf
models, and validate results. These sections are light on technical detail,
which we leave in the Supplementary Materials for the interested reader.

With these techniques, the second half of the paper provides examples
to demonstrate different approaches to images as data and discusses
ethical concerns facing researchers. In the first example, we examine self-
presentation of politicians in the U.S. using their Facebook photographs.
Politicians choose these photographs to communicate a range of their
activities, policy priorities, and even personality to supporters. Prior research
has found gender and party differences (Carpinella, Hehman, Freeman, &
Johnson, 2016), typically using a small number of images and a coding scheme
where researchers predefine variables. In contrast, our approach employs
an off-the-shelf computer vision method, the Google Vision application
programming interface (API), which automatically detects thousands of
distinct visual objects and attributes from images. This example exemplifies
a data-driven, bottom-up process for conceptualizing visual self-presentation
which can be confirmed and refined by a theory-driven approach. We
find clear party and gender differences. The second example investigates
visual event framing in social media, focusing on analyzing how Twitter
users describe protest events. We develop a series of CNNs to automatically
identify protest images, add labels (if the image contains state violence,
police, or large groups, for example) to them, and measure image duplication
rates within those labels. Focusing on protests across five countries, we show
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how protesters choose to frame events and how this framing varies across
labels. We find that frames emphasise state violence and group activity.

A growing body of work shows how images can detect voter fraud (Cantu,
2019), measure protests in China (H. Zhang & Pan, 2019), understand nonver-
bal communication in presidential debates (Joo, Bucy, & Seidel, 2019), reveal
media bias (Peng, 2018), or provoke emotional responses to protest (Casas &
Webb Williams, 2019). This paper fills a hole in the literature by explaining
how the methods these papers use work. While many textbooks perform the
same function, their examples and presentation are not aimed at practic-
ing researchers. This paper gives the reader an intuitive understanding of
how deep learning and computer vision work, directs them to appropriate
resources to learn more, and stimulates interest by showing intentionally
suggestive applications in two domains.

2 Why Study Images?

In addition to their widespread availability and amenability to automatic analy-
sis, images are of interest for two reasons: they are key inputs into individual
decision making and can provide improved data to advance research agendas.

2.1 Inputs Into Decision Making

Humans are more likely to notice and learn from visual information than
textual. Images provide information about a situation, such as a politician’s
patriotism or the beneficiaries of a new healthcare policy, more accessibly
and quickly than text (Barry, 1997). This faculty is probably because writing
is a technology that must be learned, while visual processing is evolutionarily
antecedent (Gazzaniga, 1998). Compared to text, images provide “a more
comprehensive and error-free grasp of information, better recall, and greater
emotional involvement” (Graber, 1996).

Moreover, emotional reactions often drive human behavior, and visuals
evoke these reactions more strongly than text (Grabe & Bucy, 2009). Images
drive emotions (Tukachinsky, Mastro, & King, 2011), and emotions lead
to information-seeking and political participation (Marcus, Neuman, &
MacKuen, 2000; Valentino et al., 2011). These emotions affect decisions
ranging from vote choice (Joo, Steen, & Zhu, 2015) to mobilization (Casas
& Webb Williams, 2019). Understanding how images matter for politics is
therefore central to understanding how politics works.

Images are a powerful means of persuasion and a critical device in media
framing, agenda-setting, and propaganda (Geise & Baden, 2015). They are
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carefully selected, edited and presented to audience, conveying various
intentions encoded in subtle or sometimes very obvious ways (Joo et al., 2014).
Scholars have demonstrated the effect of visuals on issue perceptions (Soroka,
Loewen, Fournier, & Rubenson, 2016) and candidate evaluations (Barrett &
Barrington, 2005; Joo, Bucy, & Seidel, 2019; Kang et al, 2020; Chen, Park, &
Joo 2020). Given a multimodal message, the audience construct a blended
representation of issues and events from verbal and visual cues, and when they
are not congruent, the visual one may dominate (Gibson & Zillmann, 2000).

Images encapsulate underlying, complex issues, providing an information
shortcut for individuals to evaluate multi-faceted political issues (Popkin,
1994). For example, Americans who watched the 1960 United States presi-
dential debates claimed that John F. Kennedy outperformed Richard M.
Nixon; those who listened, the opposite. In 1976, photographs of President
Gerald Ford failing to husk a tamale conveyed aloofness to a large part of
the Texas electorate, arguably costing him the state and presidency. More
recently, photos from Abu Ghraib prison increased opposition to the Second
Iraq War. Outside of the United States of America, video of a self-immolated
fruit vendor spread throughout Tunisia, sparking the Arab Spring. The Tank
Man image from Tiananmen Square symbolizes the Chinese Communist
Party’s resolve.

2.2 Advancing Communication Research

Framing. Facial expressions of politicians are an indicator of overall fa-
vorability. For instance, a smiling face is more likely to convey a positive
sentiment about the main person being depicted. Based on this assumption,
Groeling, Joo, Li, and Steen (2016) have examined the degree of media bias
present in TV news programs in the U.S. by automatically analyzing facial
expressions of presidential candidates across news networks. Going beyond
traditional professional sources, attempts have been also made to analyze
political images in social media. For instance, You, Cao, Cong, Zhang,
and Luo (2015) have analyzed multimodal cues of Flickr posts related to
presidential candidates in the U.S. to predict election outcomes based on
facial expressions and hashtags.

Candidate Evaluation. Computer vision methods have also shown the
potential effects of politicians’ facial appearance on voters’ trait judgment
and election outcomes. Personality inference from facial appearance is a well
studied topic in psychology (Zebrowitz & Montepare, 2008), and political
scientists have attempted to explain public responses to politicians, includ-
ing election outcomes, based on the physical appearance of political leaders
such as their visually-inferred competence (Todorov, Mandisodza, Goren,
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& Hall, 2005). Automated models have been used to extract visual features
from facial images to predict subjective trait judgments on dimensions such
as intelligence or trustworthiness (Rojas, Masip, Todorov, & Vitria, 2011;
Vernon, Sutherland, Young, & Hartley, 2014). Automatically inferred facial
traits may also predict election outcomes (Joo et al., 2015).

Section 6.1 s analysis of politicians’ images shared on Facebook shows
how deep learning informs the study of elected officials’ self-portrayal
(Fenno, 1978). Most people access news through multimodal (a combination
of print, audio, or visual) media; even newspapers devote significant space
to photographs, and saying that the visual dimension of politics matters is
not new (Barrett & Barrington, 2005; Gilliam Jr & Iyengar, 2000; Grabe &
Bucy, 2009; Hansen, 2015; Schill, 2012). Presidential debates, for instance, are
both verbal exchanges of policy positions and, because they are televised,
conveyors of emotions and tensions between the candidates (Joo et al.,
2019; Shah et al., 2016). Indeed, the nonverbal cues and visual exposures of
politicians may encode their emotions and invoke voter reactions (Grabe
& Bucy, 2009; Sullivan & Masters, 1988). Prominent recent examples from
the United States include Donald Trump’s stalking of Hillary Clinton during
their debates as well as Speaker Pelosi’s sarcastic clapping during President
Trump’s 2019 State of the Union address. Visuals are an especially important
information shortcut for low-information voters (Lenz & Lawsom, 2011),
which may explain why out-parties tend to prefer more attractive candidates
(Atkinson, Enos, & Hill, 2009).

Media Bias. Computer vision techniques also enable measurement of
media bias and framing, which Section 6.2 demonstrates. Large literatures
analyze media bias of political news coverage (D’Alessio & Allen, 2000;
Gentzkow & Shapiro, 2010), its public perception (Watts, Domke, Shah,
& Fan, 1999), and effects (Baum & Groeling, 2008; Druckman & Parkin,
2005). Measuring media bias objectively is a challenging task because the
ground truth is unknown. For systematic analysis, studies have relied not
only on verbal content analysis (Baum & Groeling, 2008) but also on visual
analysis ranging from counting the number of photographs of a candidate in
newspapers (Stovall, 1988) to manually coding how favorable or unfavorable
their portrayals are (Grabe & Bucy, 2009). Computer vision based techniques
can significantly reduce coding costs by automatically recognizing people
in photographs, their expressions and favorability and comparing the results
across outlets or candidates (Peng, 2018). As traditional media faces increas-
ing competition from online, decentralized content producers (Blumler &
Kavanagh, 1999), the ability to analyze image framing at scale will only
increase in importance (Schmuck & Matthes, 2017).
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Opinion Formation. Issue behavior responds to visual communication.
Negative opinions towards immigration, for example, may be due to media
conflation of immigrants with crime and disease (Tukachinsky et al., 2011).
Attitudes about immigration are more positive, however, when the imagery
accompanying an article evokes European, instead of Latin American,
immigration, and this effect is caused by intervening emotional variables,
especially anxiety (Brader, Valentino, & Suhay, 2008). The power of images
explains why anti-immigrant rhetoric focuses on symbolic (visual) appeals
over economic ones (Schmuck & Matthes, 2017). Deep learning techniques
can also offer insight into what features of images provoke behavior. For
example, people are more likely to pay attention to negative or shocking
events (Baumeister, Bratslavsky, & Vohs, 2001), so newspapers and television
report those type of events. But how those events are portrayed should also

Polarization. Computer vision techniques can also shed light on changes
in political polarization. Dietrich (2018), for example, uses video data of
members of the House of Representatives to show that frequency of physi-
cally crossing the aisle to talk to members of the other party predicts how
polarized an upcoming vote will be. Which images politicians share on their
Facebook, Twitter, and Instagram profiles may reveal their ideological posi-
tion (Xi et al., 2020). Measuring ideology via images would prove especially
useful for evaluating incumbent challengers since their ideology cannot
be determined from voting history and campaign donation data may not
provide this information early enough in an election cycle (Bonica, 2018).

Appendix Section B details additional applications in the study of develop-
ment, natural disasters, civil war, state capacity, and protests.

3 Computer Vision and Deep Learning

Computer vision tries to solve visual problems with any kind of methods,
and deep learning refers to efficient methods applicable to any kind of data,
not just images.

Computer vision is an interdisciplinary branch of study crossing computer
science, statistics, cognitive science, and psychology. Its primary goal is
automatic understanding of visual content, i.e., to replicate human visual
abilities with computational models. Human vision is versatile, complicated,
and not fully understood, and computer vision systems cannot simply
reconstruct the mechanisms of human vision. Therefore, research has mostly
focused on using statistical inference and machine learning approaches to
deal with noisy inputs and discover meaningful patterns. In practice, this
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pipeline usually consists of collecting a large amount of visual data, manually
labeling them, and training a model that best explains the observed data.

Prior to the start of the deep learning era, the insufficient reliability and
accuracy of computer vision based methods was the primary factor limiting
practical applications, including political analysis of visual content. The
field made a dramatic leap forward with the advances in deep learning
based approaches (Krizhevsky, Sutskever, & Hinton, 2012). The next section
introduces those advances.

31 Deep Learning and Hierarchical Representations

Deep learning refers to a class of machine learning methods which utilizes
hierarchical, multi-layered models.' In contrast to single-layered models, such
as linear regression, in which output variables can be directly computed from
input variables, “deep” models employ repetitive structures with multiple
layers such that the final outputs of the model are obtained through a
sequence of operations applied to the input data and intermediate results.

In machine learning, hierarchical model structures are commonly
used, as in some topic models (Griffiths, Jordan, Tenenbaum, & Blei, 2004).
These models incorporate different levels of representations which capture
structured and global information (e.g., topic), as well as local information
(e.g., words) from input data. In political science, hierarchical text models
have been used to study Congressional press releases (Grimmer, 2010) and
open-ended survey responses (Roberts et al., 2014).

Deep learning based methods profit from the same hierarchical structure,
but they employ a larger number of consecutive layers. These extra layers
add the “deep” to the learning. Indeed, the success of deep learning is related
to the depth of the models, as additional layers can encode abstract visual
attributes and capture more complex data distributions than what shallower
models can (Delalleau & Bengio, 2011; Eldan & Shamir, 2016).

Furthermore, these complex internal structures are directly learned from
the images rather than manually defined by the researcher. Direct learning
contrasts with other approaches, explained in the next sub-section, that
require the researcher to specify the visual features of an image that cor-
respond to the desired image label (“car”, “torch”, “rally”, &c). That approach
is similar to using a dictionary in text analysis to identify texts as being
about a topic if it contains some combination of keywords in that dictionary.
Dictionary approaches to text are more productive than manual feature
specification in images because text can be represented more simply. Deep
learning, by contrast, does not use a pre-defined feature set, an advantageous
approach when applied to complex data such as images.
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Figure 1: Comparing Deep Learning to Traditional Computer Vision Methods

3.2 Advances Over Previous Computer Vision Methodology
Artificial neural networks have a long history in machine learning and
computer vision and regained popularity after Krizhevsky et al. (2012)
demonstrated a 21.9%-33.8% improvement in image classification per-
formance using a convolutional neural network on a benchmark dataset,
ImageNet (Russakovsky et al., 2015). Two major requirements for deep
learning, very large-scale datasets and high-performance computation
using graphical processing units (GPU), contemporaneously became
available.

Traditional computer vision methods heavily rely on manual feature
engineering. These methods typically utilize a two-step process, as shown in
Figure 1. Given raw input image data, the methods first extract features using
a hand-crafted feature extractor. Hand-crafting means that a researcher
has to manually design and define the feature extraction function based
on instinct and experience. Common features include edge histograms,
local image contrast, and color distributions. These features should capture
the most important cues in the raw data, and a separate classifier, such as
logistic regression, exploits them in the second step.

In contrast, deep learning methods learn their representations directly
from data without hand-crafted feature extraction. These methods employ
a data-driven approach in feature learning and train an integrated model
that will automatically learn and capture low- and high-level representations
of data. This approach is advantageous because the learning algorithm
can discover many subtle features which are specific to the given task. In
other words, the features in deep learning are optimized for the task during
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training, as opposed to traditional methods that require the researcher to
specify features before training.

The Appendix provides technical details about how convolutional neural
networks work. We leave the technical discussion for the appendix because
it is challenging for practitioners to design and construct their own CNN
from scratch. Rather, it is much more efficient to acquire a training set
of images that can be used to customize an existing pre-trained model.
Appendix Section D elaborates details for transfer learning, training, and
validating models for advanced readers.

4 Tasks in Computer Vision

This section discusses three common tasks in computer vision: image clas-
sification, object detection, and face and person analysis.

4.1 Image Classification

Image classification is a popular topic in computer vision. Given an input im-
age, 1, the goal of image classification is to assign a label, y, from a predefined
label set, ¥, based on the image content:

y = arg max p(y|l). 8y

For binary classification, Y = {positive (belongs to category), negative
(does not belong to category)}. In general, Y may contain any number
of possible labels. The posterior probability for each label is computed
for a given input image, and the classifier chooses the category with
the highest output score, similar to how a topic is assigned by some
text classifiers.

In multiclass (multinomial) classification, Y contains more than two,
mutually exclusive categories. The softmax function is commonly used in
multiclass classification to normalize output scores over multiple categories
such that the final scores sum to 1; the class with the highest normalized
output is assigned to that image. Suppose that the last fully connected layer
outputs a vector x = (x,, X,, ..., x,), where x is the raw output score before
normalization for the & -th class out of n classes. The final score will be
obtained as follows.

pu = KD = fitr) = S @)
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Figure 2: Example results of image classification with the confidence scores computed
from a CNN. Red color indicates the correct category and blue color indicates the
incorrect categories.

An image can contain more than one label. In this situation, called multilabel
classification, an image is allowed to be assigned more than one label. For
instance, Section 6.1 uses multilabel classification to understand politicians’
imagery, and Section 6.2 uses multiclass classification to identify images
of protest.

4.2 Object Detection

The goal of object detection is to localize (find) objects in images and assign
a category (gun, flag, or cup, for example) to each object. The output of
object detection is a set of detected objects, their locations, and categories.
Figure 3 shows example results of object detection with detection scores
from Google’s Cloud Vision API.?

Object detection is a more complex problem than image classification
because the model should classify the types of objects and their locations
in the image. In practice, many object detection systems utilize a two-stage
procedure. First, the system generates a number of generic object “proposals”
from an input image (Uijlings, Van De Sande, Gevers, & Smeulders, 2013).
These proposals are image subregions which the system believes are likely
to contain an object instance, regardless of its category. An object location
is represented by a rectangular bounding box, (x, y, w, A), indicating the
coordinates and the size of the bounding box. This bounding box is the
rectangular area of the minimum size that can cover all the pixels that
the object occupies in the image. Second, the image classification step is
then applied to each object proposal to determine whether it belongs to a
category or is background.
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Figure 3: Example results of object detection by Google Cloud Vision API.

4.3 Face and Person

The human face has received enormous research attention as a special
domain in computer vision since the 1970s, for two main reasons. First,
facial recognition has many useful applications, such as for personal
identification or security. Second, it is relatively easy to handle face im-
ages compared to other objects because the appearance of a human face
is consistent across individuals but distinct from other objects. These
properties motivated early approaches such as automated feature extrac-
tion (Kanade, 1977), feature learning with neural networks (Fleming &
Cottrell, 1990), and classification based on statistical analysis of data
(Belhumeur, Hespanha, & Kriegman, 1997). Existing work in this topic
can be categorized into three areas: face detection, face recognition, and
person attribute classification.

Face Detection. Face detection refers to finding the location of every
face in an input image. This is a special case of object detection where
only one object category (face) is considered. Both deep learning methods
(Ranjan, Patel, & Chellappa, 2017) and traditional methods (Viola & Jones,
2004) are widely used.

Face Recognition. Face recognition classifies the identity of a person
from a facial image. Most recent approaches in face recognition are based
on convolutional neural networks. A recent study by Facebook (Taigman,
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Figure 4: Example results of face detection, recognition, and attribute classification. The
labels were computed by a model from Kérkkainen and Joo (2019).

Yang, Ranzato, & Wolf, 2014) reports that a model based on a CNN is as
accurate as human annotators in face verification, after training on 4.4
million labeled face images obtained from their users.

Person Attribute Recognition. A face provides clues for recognizing
human attributes such as demographic variables (e.g., gender, race, age),
emotional states, expressions, and actions. Large scale datasets of facial
images and attribute annotations are also available (Liu, Luo, Wang, &
Tang, 2015) and enable training a deep CNN with a similar structure to an
image classification model.

Figure 4 shows two examples of face recognition and gender and race
classification from facial appearance. In this case, the system will first
detect every face in an image and each facial region will then be classified
separately by a model trained for face attribute classification.

5 Ethics

The explosion of data and computational power that has enabled
academic and commercial advances in the study of human behavior
stimulates a growing awareness of their ethical implications. Since deep
learning is a result of these advances, it is also implicated in resulting
ethical debates. This section focuses on five areas of concern: train-
ing data bias, privacy, informed consent, model opacity, and access to
resources.

Bias. Perhaps the biggest ethical challenge facing those employing
computer vision techniques is that a model will reproduce any biases in
the input data, and input data often already contain racist and gendered
stereotypes. For a similar reason, commercial gender classification APIs
offered by Microsoft, IBM, and Face++ have been criticized due to the
inferior classification accuracy on darker-skin females (65%; 99% on
lighter-skin males) (Buolamwini & Gebru, 2018). In image search results,

JOO & STEINERT-THRELKELD 23



COMPUTATIONAL COMMUNICATION RESEARCH

women are, on average, underrepresented relative to their participation
rate in a given occupation (Lam, Wojcik, Broderick, & Hughes, 2018). A
researcher relying on pre-trained models or commercial APIs should
make sure he or she is aware of any biases that model imbues. When
building one’s own model, labels applied to a validation dataset should
be examined for any biases before subsequent analysis uses the model
output.

Privacy. If a model involves face detection, one may be able to identify
individuals, violating their privacy. This concern is especially relevant in the
study of contentious politics, as this capability means governments could
engage in targeted repression by finding protesters in photographs and
matching those faces to identifying information. Governments like Russia
and China already deploy this technology to identify anyone in a crowd
(Purdy, 2018), and some law enforcement agencies in the United States have
adopted similar technology (Shaban, 2018). To protect individuals, research-
ers should not release photographs that could be used to identify them.
Researchers should also consider whether or not their research requires
identifying particular individuals at all.

User Consent. The concern about identifying individuals based on their
faces segues into a third concern, informed consent. When a user makes
their social media posts public, a researcher can reasonably assume that the
user has provided consent to be studied, much in the same way driving on
a public street provides data to traffic engineers. This assumption is more
questionable for individuals who appear in images but are not the owner
of the account. For example, if User A tweets a photo documenting Friends
1, 2, and 3 attending a baseball game, it is not clear that those three have
consented to inclusion in a study. (It may also not be clear if User A is in
the photo or not.) Researchers should seek approval from their Institutional
Review Board, as they should for every project using social media data
(Steinert-Threlkeld, 2018).

Interpretability. Finally, deep learning models are opaque because
they are complex. AlexNet, the original convolutional neural network that
launched the current renaissance in computer vision, contains 6o million
parameters (Krizhevsky et al., 2012). With only eight layers, it is much simpler
than current models. This opacity makes it difficult to understand what
features of an image drive label classification. Understanding the internal
logic of deep learning models is an active area of research. Q.-s. Zhang and
Zhu (2018) and Guidotti, Monreale, and Ruggieri (2018) provide thorough
reviews of current best practices.
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6 Case Studies

6.1 Self-presentation of Politicians in Social Media

Social media have been widely used by politicians for political communica-
tion (Stier, Bleier, Lietz, & Strohmaier, 2018). They allow them to bypass
traditional media and directly communicate with voters, redefining the
relationship between political actors and editorial media (Enli, 2017). These
platforms, such as Facebook and Twitter, offer various modes of interaction
and generate a massive amount of data in those modalities. This example
shows how an off-the-shelf classifier can generate insight about how politi-
cians’ self-representation varies by party and gender.

In the United States, politicians most commonly identify as liberal or
conservative. Conservatives are more likely to accept the status quo, while
liberals embrace social change (Jost, Federico, & Napier, 2009). Again speak-
ing in broad strokes, the conservative label manifests as strong affinities
toward nationalism, capitalism, and status quo political and economic
institutions (Feldman & Johnston, 2014). Liberal: social change and a rejec-
tion of inequality.

In terms of images, these ideologies should manifest as different emphasis
of objects and peoples (Kreiss, Lawrence, & McGregor, 2019). Conservative
ideology should manifest via objects that serve as symbols of nationalism,
freedom, and capitalism; liberal, objects that serve as symbols of inequality
reduction. In terms of people, conservative politicians should be more likely
to include individuals from dominant social groups; liberal politicians may
include members of under-represented groups, economically disadvantaged,
or protesters.

Like ideology, gender represents another axis along which politicians may
vary their self-presentation. Regardless of gender, voters prefer attractive
candidates (Ahler, Citrin, Dougal, & Lenz, 2017; Mattes & Milazzo, 2014).
This evaluation then maps onto gender, with female candidates stereotyped
as warm and men strong (Johns & Shephard, 2007). Voters in the United
States reward female candidates who appear more feminine (Carpinella et
al., 2016). Regardless of ideology, we therefore expect that female candidates
will emphasize physical features more than male candidates.

Scholars have attempted to understand the visual dimension of political
communication by analyzing social media images posted by politicians,
though typically without incorporating advances in computer vision. For
example, Towner and Muiioz (2018) manually codes the main topics covered
in Instagram photographs posted by candidates in the 2016 presidential pri-
maries and compares them with the main issues in newspapers. McGregor,
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Lawrence, and Cardona (2017) qualitatively analyzes social media profile
photographs and compares the activities of male and female politicians. The
majority of existing studies, however, are based on either manual coding or
qualitative close reading, limiting the scalability of their analysis.

Automated text analysis has been used to understand how politicians
verbally present themselves. These studies are typically based on topic
analysis (what is discussed), sentiment analysis (how topics are presented),
or both. For example, Stier et al. (2018), by using a probabilistic topic model,
show that politicians and audiences in social media focus on topics differ-
ent from mass media and discuss different topics on different platforms.
Sentiment analysis is also commonly applied to a large set of user posts to
measure public perceptions and preferences about political leaders or parties
(Nulty, Theocharis, Popa, Parnet, & Benoit, 2016) or predict their electoral
success (Tumasjan, Sprenger, Sandner, & Welpe, 2011).

Computer vision techniques can generate insight about politicians’
visual communication strategy (Haim & Jungblut, 2020; Xi et al., 2020),
similar to how automated text analysis has illuminated verbal behaviors.
To demonstrate this possibility, we use off-the-shelf commercial software
offered by Google to analyze Facebook photographs posted by candidates
in the 2018 U.S. general election. Google’s Label Detection API is an image
classifier which takes an image as input and outputs a set of labels describing
its content. Using this API, one can measure actions, events, places, objects,
and their attributes portrayed in politicians’ photographs.

The data used in this example was collected by one of the authors for a study
of candidates’ social media usage and electoral success. The list of candidates
who ran in the 2018 election was obtained from Wikipedia and their Facebook
accounts were manually identified. For each account, the public photographs
posted in timeline, mobile, and profile albums were collected using the
Graph API. For the current study, we use 15,647 photographs posted by 677
candidates during the time period of August 5 - November 6, 2018. Using this
dataset, we automatically detect gender and party differences in activities
and attributes portrayed in the photographs using the Google Vision APL

We submitted each of15,647 images to the API and obtained correspond-
ing labels for each image, examples of which are shown in Figure 5. Google
does not officially publish the entire list of labels their classifier can detect,
and we identified 1,730 unique labels from the obtained results. 4 Since
the APl is an already trained model, we simply made queries using their
interface and obtained the classification results.

The detected labels serve as concise semantics describing image content,
allowing researchers to perform standard statistical analysis. In this example,

26 VOL. 4, NO. 1, 2022



IMAGE AS DATA: AUTOMATED CONTENT ANALYSIS FOR VISUAL PRESENTATIONS

Hand, Blue, Glove, Safety Glove, Health Care Provider, Golfer, Golf, Sport Venue, Professional Golfer,

Gesture, Meical Equipment, Medical Procedure, Scrubs, Golf Equipment, Golf Course, Golf Club, Recration,
Medical Assitant, Health Care, Medical Glove, Engineering Sports, Sports Equipment, Ball Game, Fourball, Lawn

y. = ) h 9
Smile, Face, Photograph, Plant, Purple, Happy, Yellow Outerwear, Picture Frame, Coat, Smile, Flag, Textile, Suit,

Leisure, Fun, Social Group, Recreation, Crowd, Toddler, Flag of the US, Military Person, People, Official, Military Uniform
Event, Snapshot, Team, Child, Fan, Grass, Eyewear Event, Military Officier, Blazer, Government, Curtain, Chair

Figure 5: Example results (inputimages and automatically detected labels) from Google’s
Label Detection API. To represent the four categories contained in Tables 1 and 2, images
were taken from Joe Biden (D), Donald Trump (R), Kamala Harris (D), Liz Cheney (R).

we compare images of Democrats and Republicans by conducting a chi-
squared test of the labels. To characterize such visual priorities, we measure
cross-party difference for each label by comparing the number of images
with and without the label. Since the two parties have different gender
ratios, we perform chi-squared test on male and female images separately.

The results are shown in Table 1 (male) and Table 2 (female). The labels
associated with each party are sorted in decreasing order of the chi-square
statistic. A notable group oflabels detected in the Republican male set are
military-related concepts which relate to national security and defense.
Democrats, on the other hand, feature more people, meetings, and conversa-
tions, which may show their priorities on social support. The labels that the
Google Vision API returns therefore suggest that conservatives and liberals
emphasize different visuals in their images.

This difference is moderated by gender, as Table 2 shows. The cross-
party difference in female politicians is less obvious than that of male
politicians, e.g. lack of military-related concepts in Republican female
candidates. The female candidates, however, clearly emphasize their facial
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Table 1 Top 20 labels associated with Democrats (left) and Republicans (right).
pD and pR indicate the ratio of images containing the label for each party. Male
candidates only.

Label X2 pD (%) PR (%) Label x2 pD (%) PR (%)
Adapta- 60.6 " 6.87 3.39 Official 53.0 9.69 14.64
tion
Com- 439™" 28.81 22.87 Military 16.6 " 1.02 2.09
munity officer
Youth 30.8"" 6.59 4.05 Suit 16.2"" 11.89 14.73
Conver- 235" 13.65 10.42 Uniform 150" 2.50 3.94
sation
People 19.8 " 16.47 13.22 Red 14.9 ™" 1.25 2.34
Speech 1717 3.68 2.24 Team 14.8™ 15.22 18.20
Orator 16.4™ 2.22 1.15 Vehicle 127 2.78 414
Sitting 149" 1.83 .90 Toddler 11.0™" 1.46 2.43
Glasses 146" 6.41 4.61 Product 10.8™ 2.29 3.45
Smile 145" 22.95 19.74 Employ- 96" 12.68 14.90
ment
Room 1317 6.89 5.12 Military 9.5™ .65 1.30
person
Head 129 3.01 1.86 Muscle 89™ 1.16 1.94
Public 11.5 ™ 3.12 2.02 Tie 8.6™ 1.57 245
speaking
Face 10.4™ 3.77 2.60 Busi- 8.0™ 11.78 13.73
nessper-
son
Interac- 9.8 2.87 1.88 Fashion 70" .90 1.53
tion accessory
Photog- 89" 12.03 10.10 Car 63" 1.25 1.92
raphy
Human 76" 2.1 1.36 Tuxedo 54" 2.59 343
Audience 727 1.76 1.09 Formal 42" 7.40 8.57
wear
Forehead 70" 4.03 3.01 Tourism 397 12.42 13.81
Tree 6.7" 8.03 6.63 Manage- 36" 3.45 4.22
ment
" p<0.001
“ p<0.01
*p<0.1
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Table 2 Top 20 labels associated with Democrats (left) and Republicans (right). pD
and pR indicate the ratio of images containing the label for each party. Female
candidates only.

Label X2 pD (%) PR (%)
Glasses 4.6 9.73 4.51
Adaptation 343" 7.12 3.03
Youth 27.2™ 11.87 716
Tree 1297 7.78 5.06
Shoulder 12.4™ 3.78 1.91
Forehead 104" 3.18 1.61
Chin 93" 1.89 74
Photography 9.0™ 14.87 11.80
Smile 87" 35.30 31.19
Vision care 8.6™ 2.18 99
Head 8.4™ 4.25 2.59
Public speaking 78" 1.50 .56
Student 76" 2.75 1.48
Performance 747" 1.82 .80
Speech 6.1" 1.71 .80
Face 59" 7.25 5.44
Nose 5.8~ 1.59 74
Friendship 57" 6.10 4.45
Design 52" 3.71 2.47
Community 477 31.04 28.10
Red 59.8 2.23 6.30
Blond 5117 3.68 8.21
Jeans 427 1.30 4.01
Recreation 28.7"" 13.96 19.64
Headgear 2697 2.27 4.88
Crowd 19.7™ 9.46 13.47
Tourism 146" 13.62 17.60
Product 1.2 2.84 4.63
Event 10.8 ™ 59.90 64.61
Textile 10.5™ 91 1.98
Competition event 10.0™ 1.41 2.66
Vehicle 9.6 2.96 4.63
Long hair 8.0™ 1.80 3.03
Team 8.0™ 17.01 20.20
Grass 6.9 1.34 2.35
Gesture 6.5" 4.84 6.55
Style 64" 1.14 2.04
Pink 6.4" 2.46 3.71
Beauty 6.0" 1.64 2.66
Sunglasses 57" 1.71 2.72

*

" p<0.001 " p<0.01 "p<0.1
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features more than their male counterparts, with the labels for Republican
females emphasizing traditional feminine stereotypes (blond, long hair,
pink, beauty). These two sets of results suggest that politicians optimize
their self-presentation by combining partisan values and gender stereotypes
(Bauer & Carpinella, 2018).

For an example of unsupervised learning using the politicians’ images,
sed Appendix F. That example runs k-means clustering (k=200) on the
penultimate layer of a pre-trained CNN. The resulting clusters contain
very similar, often identical, images, revealing common themes within an
image corpus.

Using a pre-trained classifier or API is a simple yet effective way for a
visual comparative analysis on an unknown domain. Researchers do not
need to prepare any training data or annotations or train their own models.
The key disadvantage of using an existing classifier is inferior customizability
in case a researcher wants to classify concepts not defined in the classifier
(or API). One solution to this situation is to train a custom classifier using
annotations, which we show in the next example.

6.2 Frame Alignment During Protest

Protests are a key tactic of social movements, recruitment to protest affects
the probability of success (Snow, Rochford Jr., Worden, & Benford, 1986),
and how they are portrayed to bystanders (“framed”) is a key input into
recruitment success (Benford & Snow, 2000). This example demonstrates that
Twitter users frame protests in ways likely to encourage bystanders to join.

Protesters seek to frame events to appeal to the most number of people.
For example, labor organizers and the family of Mohammed Bouazizi, the
Tunisian fruit vendor whose self-immolation sparked the Arab Spring,
transformed his death into a parable about corruption and gender politics
in a way that bridged class and geographic divides (Lim, 2013). From the
other side, states portray protesters as radical, foreign, violent, or some
combination thereof (Hamdy & Gomaa, 2012). This framing delegitimizes a
protest, decreasing the cost a state pays if it engages in repression (Stephan
& Chenoweth, 2008).

The rise of the internet and social media has empowered individuals to
construct frames, weakening media and activist gatekeepers (Livingston &
Bennett, 2003). A new logic of connective action now means that personal
action frames are commonly invoked during social movements, as they
allow individuals to connect their issues with a larger collective (Bennett
& Segerberg, 2013). This ability is especially important because the primary
source for framing movements, newspapers, prefers to report on violent
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events (Hellmeier, Weidmann, & Geelmuyden Red, 2018) and often have a
status quo bias, causing them to frame protests differently than protesters
would frame themselves (Hamdy & Gomaa, 2012).

The ability of individuals to construct and disseminate their own frames
is especially important because newspaper and television emphasize
protester violence (Myers & Caniglia, 2004). Media are especially likely
to negatively frame events when they are seen as threatening status quo
institutional interests, whether in democracies (Gitlin, 1980; Wittebols,
1996) or autocracies (Al-Rawi, 2015; Carter & Carter, 2019). Because protester
violence decreases support for protesters (Feinberga, Willer, & Kovacheff,
2017; Stephan & Chenoweth, 2008) while state violence increases support
for them (Steinert-Threlkeld, Chan, & Joo, forthcoming),the frames that
individual protesters emphasize should focus more on state violence and
less on protester violence. We therefore expect that protest images shared on
Twitter will frame the event as containing more state violence than protester
violence.

In addition to emphasizing state violence, individuals should prefer
to frame a protest as a collective endeavor. Because the risk of protesting
decreases as the size of the protest increases, bystanders are more likely to
join a protest they believe is already attended by large crowds. This large
crowd decreases the probability that an individual will suffer reputational
cost or be the victim of state repression (Moore, 1995). Since crowds create a
positive feedback loop of mobilization (Biggs, 2016), we expect that protest
images shared on Twitter will frame the event as containing crowds, not
individuals.

This subsection investigates these two expectations about framing by
analyzing protests in five countries.> To explore which types of frames
protesters choose, we first develop a pipeline to acquire geolocated tweets,
extract their images, and apply deep learning models to understand scene
and face features of the images. We find tweets from the five countries’
protest periods, download all images from those tweets, and then apply two
convolutional neural networks for image classification and person attribute
recognition tasks. The implemented models are fine-tuned versions of
leading CNN.

Image classification entails identifying photos of a protest. The photos in
our pipeline come from geolocated tweets. Sometimes, these tweets contain
photographs; sometimes, they are from protests. When they are from protests
and contain an image, we download the image. Using a mixture of Google
Image results and these geolocated images, we trained a convolutional neural
network to recognize protest photos. Tweets are not filtered for keywords.
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For person attribute detection, we have developed a pipeline that identifies
faces in a photo and estimates each face’s sex (male or female), race (Black,
East Asian, Latino, Middle Eastern, South Asian, Southeast Asian, White), and
age using the Fairface classifier (Karkkdinen & Joo, 2019). We use image clas-
sification to measure whether a protest image contains police or fire; whether
protesters are holding signs; and the amount of violence in a protest image.
The specific CNN we use is a fine-tuned Residual Network (ResNet) with 50
convolutional layers (He, Zhang, Ren, & Sun, 2016), a common architecture for
image classification. For verification, see Appendix Section G; for additional
training details, see Steinert-Threlkeld, Chan, and Joo Forthcoming.

We operationalize frames according to six labels. Many types of frames
are chosen to normalize a protest. Protests that are peaceful or mobilize
multiple types of participants often include pictures of youth or faces of
the participants, the first two labels. Participants will often share images
oflarge groups to convey that the issue being protested is not fringe, while
small groups tend to convey personal action frames (Bennett & Segerberg,
2013); these two types of groups are labels three and four. Because previous
literature has identified violence as a key frame (Myers & Caniglia, 2004),
we also generate protester and state violence labels, the final two. Figure
6 shows sample images and their ratings for protester and state violence.

To measure which frames protesters choose, we then detect duplicate
images and identify the rate of duplicate images within each label. To identify
duplicate images, we take each image’s last fully connected layer, a 1,000 feature
vector, and measure the pairwise distance between that vector and every other
image’s vector. If that normalized distance is below .2, a threshold chosen from
inspecting the distance histogram, two images are considered duplicates.

Table 3 provides initial support for the claims made about framing,
violence, and crowds. In three of the five protests, images containing state
violence are shared more. Images of groups are also shared at higher rates
in three of the events, though not the same three that frame state violence.
The protests framed more strongly as containing state violence (Catalonia
and Venezuela) also emphasize the group nature of protests. For an example
of the images driving frame alignment, see Figure 7. It shows the four most
duplicated images in our sample; two use the small group frame, one uses
a sign frame, a pleasant surprise because it is not a frame we expected to
be prominent, and a state violence frame.

Because policy makers are more likely to respond to protests the more
that protesters put forth a consistent frame (Wouters & Walgrave, 2017),
higher rates of duplication may indicate episodes of greater frame align-
ment, both across events and within event labels (Ketelaars, Walgrave, &
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Figure 6: Images and Ratings of Protester Violence and State Violence

Note: Sample images of protester (top) and state violence (bottom), with the classifier label
estimate and country labeled.

Table 3 Frame Alignment by Protest Event and Label

Event Label

Contains Faces Large Small Protester State

Child Group Group Violence Violence

Catalonia, a1 .071 122 144 212 .304
Spain
Hong Kong .003 .005 .024 .010 .047 .034
Russia .027 .069 .021 .065 a21 .100
South .027 .038 .022 .039 .023 .042
Korea
Venezuela 173 163 .249 .267 .280 .308

Note: The first column is the region, city, or country whose geocoded protest images we analyze.
The next six columns are each label. Framing - the percent of duplicate images - is calculated per
event-label. Two images are duplicates if the normalized distance between their feature vectors,
the output of a CNN, is closer than .2.

Wouters, 2017). For example, the divisiveness of protests in Russia may be
reflected in the lower rates of duplication of state and protester violent
frames in comparison to Catalonia, Spain and Venezuela. While protest
success is the result of multiple factors, the ability to measure framing
across countries may contribute to understanding when they succeed
or fail.

These results are provisional: this example demonstrates additional
understanding about protest framing that computer vision techniques
can generate, but it should not be considered a definitive answer. We have
suggested one way of measuring framing, but future work should explore
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Figure 7: The four most common images causing frame alignment in our sample. The
top row, and the two most shared, are from Venezuela and use a small group frame. The
bottom left image is from South Korea and uses a frame, sign usage, not shown in Table
3. The bottom right is from Catalonia and is an example of the state violence frame.

other operationalizations such as number of tweets containing a label
(instead of percentage) and expand the frames considered. This analysis
also discards temporal variation, which is almost certainly an important
determinant of when certain frames receive emphasis. Which frames
receive emphasis may also be affected by city and country correlates that
we do not consider.

The results in Table 3 reveal interesting variation warranting further
exploration. Across events, the most obvious difference is that each event
exhibits different baseline amounts of framing intensity. For example,
Venezuela contains the highest framing intensity (duplication rate) across
all labels, and the rank correlation of events across labels is quite high.
The relative rates of duplication, moreover, vary significantly: the most
duplicated event-label, Venezuela state-violence, resonates almost 103
times as much as the least, photos from Hong Kong with children. Two
possibilities are that frame alignment increases the more violent state
repression is or as social media penetration increases, increasing the rewards
to frame alignment. Within each event, violent images are duplicated the
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most, with images of state violence shared more in 3 events, protester
violence in 2, and a tie in Russia. Individuals also prefer to frame protests
in terms of groups as opposed to individuals, as evidenced by the higher
duplication rates in the group labels versus the child and faces label. That
the rank ordering of frames within events appears to correlate across events
suggests a hierarchy of protest frames, suggesting that forces beyond just
the presence of professional organizations also affect frame alignment
(Ketelaars et al., 2017).

7 Conclusion

If a picture is worth 1,000 words, then it would require approximately two
kilobytes of storage (Jagenstedt, 2008). Images from consumer cell phones
and digital cameras, however, require at least three megabytes of storage,
usually more. Even images shared on social media platforms, which are
compressed from their original size, require hundreds of kilobytes of
space. A picture, in other words, is worth anywhere from 50,000 (100
kilobytes) to 1,500,000 words (3 megabytes). A picture is actually worth
abook.®

This paper has argued that recent advances in computer vision, deep
convolutional neural networks, hold much promise for the study of politics.
Analyzing them in large quantities can inform research in behavior, com-
munication, development, and conflict. The paper then introduced deep
learning methods and how to validate model output. These techniques are
especially promising for the study of protest, and an example analyzes six
protests. The use of large, passively collected datasets raises new ethical
issues of which researchers should be aware, especially when the data are
images.

The increasing prevalence of digital technology has led to a greater
appreciation of the importance of images in political life. Images make
arguments, set agendas, document and dramatize events, activate emotions,
shape perceptions, build identity, generate social cohesion, build empathy,
and strategically create ambiguity (Schill, 2012). Whereas pedagogy, com-
munication, and academic analysis have traditionally focused on acquiring
textual information, cheap computing means that individuals consume
and produce increasing amounts of visual information (Kraidy, 2002).
Images are key drivers of political phenomena, and we would do well to
take advantage of new techniques to analyze them in large quantities in
research.
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Appendix A Comparing Text to Images

Visual data differ from text data in ways summarized in Table A1. The
most critical distinction between them is that, since words are the units of
meaning in texts and are easier to define than objects in images, it is easier
to process text than images.

An image’s constituent elements, pixels, carry no meaning, as opposed
to text data whose atomic elements are words. In other words, texts contain
less uncertainty about meaning than images, and the five differences in
Table A1 flow from that distinction.

More technically, a text’s characters, including spaces, are its atomic
elements. A string of characters is more meaningful than a sequence of
pixels, however, because human language provides predefined sequences
- words - that people learn. People do not learn pixels, and there are not
visual languages that codify collections of pixels the same way words codify
collections of characters. It is very easy to describe to a computer a text
building block: it is any sequence of characters bounded by a punctuation or
space character. Word detection is therefore equivalent to object detection in
images. A single word can provide a great deal of semantic information (e.g.,
“Trump” or “election”) and a simple string comparison operation allows one
to access the information. In contrast, one pixel, and even small groups of
pixels, are meaningless. In visual analysis, one has to process a huge number
of meaningless pixels to detect and identify people, objects and events.
Recognizing elementary content, visual “words,” from an image is, however,
extremely difficult. This technical difficulty has been the main obstacle
to research involving quantitative analysis of visual data on a large scale.

Itis also easier to build meaning from a collection of words than from pixels
because words are arranged in one dimension, whereas pixels spread across
two. The simplest text models take a bag-of-words approach, where the order of
words does not matter; while more complex models perform better, bag-of-words
models are nonetheless useful. A bag-of-pixels model would fail, however, since
each pixel is meaningless. Visual models therefore need to identify groups of
pixels. Groups are identified using sliding windows, and these windows vary
in two dimensions. The size of the window therefore becomes two parameters
open to the researcher to manipulate. While varying the window dimensions
is equivalent to choosing how many words to concatenate in an n-gram model,
meaning dissipates quickly the further away words are, meaning researchers do
not have to consider large sequences of words. There is no equivalent for pixels
and meaning (though there are rules of thumb), especially because the number
of pixels representing objects will vary depending on the resolution of the image.
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Table A1 Distinct Characteristics between Text and Image Data

Text Image
- Low uncertainty at word level - High uncertainty at any level
- One dimensional: a sequence of words - Two dimensional: an array of pixels

- Pre-defined dictionary of words, ngrams, - Unknown dictionary

or emojis
- Small file size - Large file size
- Language specific « Universal language

It is difficult to detect objects in images because visual object dictionar-
ies do not exist. They do not exist because visual languages do not exist.
For example, the word “trump” can be a verb, adjective, or proper noun.
While its meaning is not as clear as a word with only one usage, it can
nonetheless easily be inferred based on nearby words such as “opponent”,
“card”, or “President”. While an image of President Trump is immediately
recognizable to humans, it is not to computers. A white pixel surrounded
by other white pixels could be a dress shirt, or it could be a part of a flag.
Brown pixels separated from other brown pixels by 100 other pixels could
be two eyes, but they could also be two shoes or two coffee cups. Because
there is no easy definition of objects in images, it is harder to infer meaning
from images than text.

Because words have clearer meaning than pixels, text files require less
space than images. For example, images in tweets require, on average, 100
kilobytes of storage space. A tweet cannot contain more than 240 characters,
which requires .24 kilobytes of space. A tweet of 100 kilobytes could contain
100,000 characters. The smaller size of texts means they are easier than
images to store, share for replication, and, most importantly, analyze.

Because there is not a universal verbal language, object detection in
images is more universal than meaning detection in texts. For example,
the vast majority of faces contain two eyes, two ears, a nose, mouth, and
forehead. The words for these facial features, however, vary across languages.
An image classifier to detect faces therefore is more likely to detect all
faces than a text classifier trained on one language, such as English, will
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be to detect facial words in another language’s text. The lack of structure
to images at the pixel level is therefore a blessing and a curse: it is a curse
because building and training image classifiers is harder than for text, but
it is a blessing because an image classifier is more broadly applicable than
a text one.

Appendix B Applications

Development
Socioeconomic Status Surveys. Any research question that requires, or would
benefit from, socioeconomic characteristics where the household, neighbor-
hood, or city is the unit of analysis would benefit from training a deep learning
model on satellite imagery data. Image data can measure different features of
cities, such as the distribution of building types, as well asland use in rural areas
(Jensen and Cowen, 1999). Imagery with a resolution of one meter or smaller can
provide data on socioeconomic characteristics as they vary by neighborhood,
allowing for frequent census-like data creation, an ability especially useful in
countries with no, or irregular, censuses (Tapiador, Avelar, Tavares-Correa and
Zah, 20n). For agricultural areas, it can measure changes in rainfall and crop
growth, proximate measures of income for many countries (Toté, Patricio,
Boogaard, van der Wijngaart, Tarnavsky and Funk, 2015). Since income shocks
are a precursor to civil conflict, data that accurately measure subnational
changes in income could act as an early warning system (Hsiang et al., 2013).

It is possible to measure socioeconomic variables using photographs
of places taken by people. Manual analysis of Google Street View (GSV)
imagery shows that photographs of streets correlates strongly with survey
based measures of neighborhood attributes (Odgers, Caspi, Bates, Sampson
and Moffitt, 2012; Wilson, Kelly, Schootman, Baker, Banerjee, Clennin and
Miller, 2012). A model trained on GSV images recovers income by block in
New York City (Glaeser, Kominers, Luca and Naik, 2018), and a deep learning
model of cars in GSV images can measure income, race, and education at the
precinct level (Gebru, Krause, Wang, Chen, Deng, Aiden and Fei-Fei, 2017).
Another promising approach is to pay people to take photographs of specific
phenomena, such as the price of goods at a supermarket or the prevalence
of anti-incumbent signs at a protest (Premise Data, 2017). Paying people to
capture images is especially useful in areas with otherwise insufficient
publicly available data.

Natural Disasters. Image data also provide access to temporal changes in
local regions. For example, a model that accurately recovers built features of
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towns and cities could provide insight into how institutions affect recovery
from natural disasters. If images exist of the same area immediately before
and after a natural disaster, the physical and geographic extent of damage
as well as the speed and amount of recovery may be measurable. These
dependent variables may then be related to various institutional ones.
Recovery may occur more quickly in democracies than non-democracies
or in countries with free media, for example. In democracies, subnational
variation could depend on whether a disaster strikes a powerful politician’s
district or if there is an impending election.

Contentious Politics

Civil War. Using computer vision, greed and grievance can be measured with
more geographic and temporal precision (Collier and Hoeffler, 2004; Kern,
2011). Those two concepts are notoriously difficult to operationalize, and
researchers rely on imperfect measures such as the availability of natural
resources (greed) or aggregate economic statistics such as gross domestic
product (economic grievance). For example, greed is measurable using the
precise outline of diamond mines, virgin forests, or oil deposits, and their
depletion can be observed from satellite data or resource maps (Hunziker and
Cederman, 2017). Grievance is reflected in city-level variation in economic
activity measurable using light emissions (Weidmann and Schutte, 2017).
Whether these measures are better than existing datasets will depend on
the dataset and country on which the researcher is focused.

State Capacity. Images can also be used to measure state capacity.
Humans-as-sensors can take photographs of specific objects, such as prices
in markets (to measure inflation), road conditions, or school conditions, using
smart phones (Premise Data, 2017). These images can give disaggregated
information about a state’s ability to repress intranational conflict, as well
as the ability of rebels to attack the state. Maps are also images, and digitiz-
ing them can provide historical data on state capacity, especially power
projection, that current measures, such as GDP, may not capture (Hunziker,
Miiller-Crepon and Cederman, 2018).

Protests. Image data can create improved measures of a protest’s
violence and features of participants. Existing datasets measure protester
or state violence coarsely, as an ordinal variable, because of interpretive
difficulty from relying on text. Images can generate continuous estimates
of how violent protesters or the state are. Text also makes it difficult to
understand exactly who is protesting because that detail is rarely reported;
surveys provide participant demographics but are very costly and require
foreknowledge of a protest. When protest images contain faces, traits such
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as protesters’ age, race, and gender become measurable, and protest size
can be estimated by summing the number of faces. For examples of this
approach, see (Won, Steinert-Threlkeld, and Joo, 2017), (Zhang & Pan, 2019),
and (Steinert-Threlkeld, Chan, and Joo Forthcoming).

Appendix C Artificial Neural Network Detail

Artificial Neural Network

While there have been different models proposed in the deep learning
literature, artificial deep neural networks (DNN) are the most popular
branch of deep models and have been used in a number of areas including
computer vision, audio processing, natural language processing, robotics,
bioengineering, and medicine. This subsection describes a general neural
network, and Section C discusses its variant, a convolutional neural network
(CNN). The convolutional neural network is commonly used in computer
vision applications with two-dimensional inputs.

Artificial neural networks represent complex concepts, like the prob-
ability an image contains a human face, as a system of connections between
elementary nodes; the collection of nodes and connections is the neural
network. Each node, also called a neuron or an unit, in this system only
performs simple computations and interacts with a few other nodes. Nev-
ertheless, the network of a large number of nodes enables complex data
modeling through their interactions.

Figure C1 shows an example configuration of a node and its connected
nodes. Each node takes input values from nodes in the proceeding layer
and evaluates a weighted sum using weights associated with edges (in this
example,10.7 + 0.5 - 0.3 + 0.3 1.0 = 0.85). Typically this value is transformed
by a non-linear activation function, e.g., sigmoid or rectified linear unit
(ReLU), and then passed to output node. For example, these input values
might be an individual’s values for gender (x,), race (x,), or income (x,) and
the output variable might be political ideology.

Figure C2 shows an example architecture of a neural network with several
layers. Neural networks with multiple hidden layers are considered “deep.”
A layer in a neural network is a set of nodes which takes inputs from the
nodes in the previous layer and deliver outputs to the nodes in the next
layer. When a network is visualized as Figure C2, a column of nodes is a
layer, and the number of columns is the number of layers. Inputs to the
whole network therefore undergo several steps of transformations through
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Figure C1: An example computation in a node and its connected nodes.
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Figure C2: An example architecture of a neural network with an input layer, an output
layer, and two hidden layers.
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Figure C3: An example of a convolutional neural network architecture.

layers until they reach the output layer of the network. The output layer is
the network’s final layer, and it contains one node per desired label in case
of classification.

Hidden layers are intermediate layers between the input and output layers
in a network whose true values are not observed during training. They play
a critical role in modeling complex concepts by giving an expressive power
to deeper networks. Studies have shown, both experimentally and theoreti-
cally, that the more layers a neural network has, the better performance
it can achieve (Eldan & Shamir, 2016; Poggio, Mhaskar, Rosasco, Miranda
and Liao, 2017). A drawback of having too many layers is that it is more
difficult to train such a model, i.e., vanishing gradients (Bengio, Simard
and Frasconi, 1994).7

Convolutional Neural Network

Figure C3 illustrates an example configuration of a typical convolutional
neural network (CNN) for classification with 12 layers.® LeCun et al. (1989)
first proposed the CNN structure with an efficient learning algorithm
based on backpropagation. Since Krizhevsky et al. (2012) showed that
deep CNNs (CNNs with many layers) improved image recognition by
21.9%-33.8%, it has become the de facto standard method for image
classification. CNNs have a repetitive structure with several important
layers: the convolutional layer, nonlinear layer (ReLU, in Figure C3),
pooling layer, and fully connected layer. This subsection describes each
in turn.

Convolutional layer

A convolutional layer in CNNs performs a smoothing operation (“convolu-
tion”) to the input to the layer, which is either raw image data or an output
from the previous layer. Convolution is widely used in signal processing for
transforming or comparing time series data. For example, one can reduce
noise in an audio signal by convolving it with a Gaussian filter, which will
smooth out the original signal by blending the original value at time ¢ with
other values at adjacent time points around ¢.
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Figure C4: lllustration of computations in a convolutional layer.

Formally, the convolution of two functions, fand g, is another function
defined by

(f*g)®t) = [foo) - gt - x)dx - (C3)

The second function, g (¢), is called a kernel. Note that the kernel is flipped
(g (t - x)) by the definition of convolution. In a discrete case, convolution
computes the sum of element-wise multiplication between two functions,
with one function being shifted over time, such that:

g)(t) = XS - glt-x) - (C4)

Each convolutional layer in a CNN uses a convolution operation in order
to compare the input data with the kernels (also called filters in the deep
learning literature) in the model. In practice, the kernel is not flipped in
computation in most implementations as it is unnecessary for the purpose
of CNN.? Not flipping the kernel creates a slightly modified definition of
convolution of a two-dimensional input / and a two-dimensional kernel K
in CNN:

Fxy) = (I*K)(, )2 Y0 Ywlx+ i -1y +j-1) - K(@j). ()

I (x, y) and K (x, y) denote the element in x th row and y th column in the
matrices ] and K. & and w denote the height and width of the kernel K, and,
typically, CNNs use square kernels (£ = w). The result of the convolution
is another 2D array, F, which is called a feature map. The feature map is
the output of the convolutional layer, and it is the same dimensions as the
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input data. This computation is performed on every location in an input
map and the result is stored in the same location in the output feature map
(See Figure Cg).

Most images are three-dimensional data with two spatial dimensions
and an additional dimension of color (e.g., RGB). Feature maps in each layer
are therefore also three-dimensional as each individual feature map (also
called a channel) corresponds to the response from a specific kernel (filter).
Each filter describes a specific pattern to be detected from an input from
the previous layer. The entire weight parameters of each convolutional layer
(K) are therefore represented by a four-dimensional array of size (w, h, m,
n), where m is the number of channels of the input (the number of channels
in the previous convolutional layer) and n is the number of channels in
the current layer. The number of channels (feature maps) in each layer is
arbitrary and typically ranges from 32 to 1024, except the color channel
(3). The feature map for each channel will therefore be obtained as follows:

Flx,yc¢) = Y Y hYrlxc+i-1y+j-10)-K(ijcc'). (Cq)

Convolutional layers enable the following two key properties of convolutional
neural networks.

Weight sharing. In Equation Cg, the kernel is invariant to the location of
each input node (x, y). Therefore, the same kernel will apply to every location
of the input map, and the connections between two layers (input and output
nodes of each convolutional layer) will share the same weights. Weight sharing
is effective because an object may appear in any location of an image and its
appearance is invariant to its placement. Weight sharing reduces the number
of free parameters in the network and makes it easier to train.

Local and sparse connectivity. Convolutional layers in CNN achieve
sparse connectivity by using a kernel much smaller than the size of input
map (h, w <10, usually). Each node in a convolutional layer is only connected
to a small number of nodes in the previous layer, i.e., a local region. This
kernel is small because adjacent pixels and subregions of an image are more
highly correlated than distant regions.

Nonlinear Layer

Each convolutional layer is typically followed by a nonlinear activation
function that applies to each element in the feature map. One of the most
common activation functions is the rectified linear unit (ReLU):

flx) = max(o, x). (Cs)
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Figure C5: lllustration of a max-pooling operation of the window size 2 x 2. For each
window, only the maximum value will be retained.

This function will simply replace negative feature map values with o and
keep positive values. Other functions such as sigmoid or hyperbolic tangent
function can be also used. The main advantage of the ReLU is that it runs
much faster than those functions.

Nonlinearity of visual models is important as it allows to capture a
complex data distribution. Visual data, projections to 2D space, are highly
nonlinear due to many factors such as occlusion, object deformation, and
camera exposure saturation. Human visual systems are capable of processing
this nonlinearity. Especially, nonlinear layers are essential in deep networks
because consecutive layers of linear operations collapse into one linear
layer. Thus, there will be no benefit of adding more layers to the network
without nonlinear functions.

Pooling layer
Pooling is another important operation in convolutional neural networks
since it reduces computational complexity. A pooling layer takes an input
feature map from the previous layer and generates a transformed map whose
size differs from its input size. Most images and feature maps in a CNN
are spatially correlated: values in closer pixels or nodes' tend to be more
similar than those far away. Instead of keeping similar values redundantly
from adjacent locations, one can simply choose the maximum response
(or the average value) in each spatial neighborhood (pooling window) to
represent the area.

Specifically, a max pooling layer compares values in each sub window (e.g,,
a2 x 2 window of pixels) of the input feature map and chooses the maximum
value (see Figure Cs). Only these maximum values will be stored in the output
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map; the other values are disregarded. Removing non-maximum values also
means that the resulting feature map will be of a smaller size than the input
map. For example, an input image of size 256 x 256 will be downsampled to
16 x 16 after applying 4 max-pooling layers of size 2 x 2. During the process,
the information originally encoded in the spatial dimension in images will be
translated into the non-spatial dimension in the feature map, e.g., 16 x 16 x1,024.
One main difficulty in visual learning is high geometric variations of
objects and parts arising from part movements and viewpoint changes.
Pooling not only reduces the number of free trainable parameters but also
helps the network achieve translation invariance, which is an important
property for computer vision systems. Robust computer vision system
needs to handle such geometric variations, and pooling operations help
by disregarding small spatial perturbations within the pooling window.

Fully connected layer
CNN architectures used for classification include one or a few fully connected
layers at the last stage. A fully connected layer densely (“fully”) connects all
the nodes from the previous layer to all the nodes in the current layer. A con-
volutional layer encodes local information tied to specific image subregions
distributed over a two dimensional map, through sparse connectivity (i.e.,
nodes are selectively connected in a convolutional layer). A fully connected
layer collects local features from all the subregions, captured in the prior
convolutional layer, and outputs the overall likelihood of a visual concept (label).
In the case of classification, the fully connected layer(s) in a CNN are usually
followed by a softmax function, which normalizes the final classification scores
over categories. This procedure is the same as multinomial logistic regression.

Appendix D Training and Validation

This section discusses practical issues in training a model and introduces
tools to diagnose the model performance. For technical details of training
and validation, see Section C in the appendix. The appendix also provides
precise definitions of technical concepts, such as weights, kernels, or loss
functions, and their computations in greater detail.

Training

New Models. As in other machine learning methods, training a new model
means using training data (labeled images) to estimate optimal values for
model parameters.
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Training a neural network means finding optimal values for weights
in the model (see Figure C1). In most cases, objective functions of neural
networks are non-convex and cannot be directly optimized, and training
is conducted by a gradient descent method with the backpropagation
algorithm (LeCun et al., 1989), alternating between forward and backward
passes.” In the “forward” pass, given an input value, the network evaluates
the output and computes the loss function based on the ground truth
output value, i.e. the image’s labels or class. In the “backward” pass, the
gradient of the loss function is propagated backward by the chain rule
and model weights are updated accordingly. Backpropagation is necessary
because neural networks have nested structures, so layers and weights
(parameters) in lower (earlier) layers are not directly connected to the
output variables where the gradients are first computed. See LeCun et
al. (1989) for detail.

There exist many types of loss functions. One can use a specific loss
function or a combination of multiple loss functions depending on the
task (classification, detection, or face recognition) and the output dimen-
sion (number of variables). In image classification, for example, the most
popular loss function is cross-entropy loss, also called log-loss. In a binary
classification task, the binary cross-entropy loss is:

05 3e(y,9) = =(y - logy + (1-y) - log(1 - 7)) (D1)

where y € {o, 1} is the true label for the example and § € (o, 1) is the
output value computed from the model. In training, all the model pa-
rameters are optimized to minimize this loss function across the entire
training set. Other loss functions can be also used in other tasks. For
example, mean square error loss can be used to estimate continuous
outputs such as age.

Figure D1 (a) shows an example of the evolution of a model loss over
iterations. Note that, after the 20th epoch,'* the model performance is
saturated and the validation loss starts increasing although the training
loss continues to decrease.”® This degradation arises because the model is
fitted too much to the training set. One can stop training at that point and
take the final model. Using more training data can help avoid overfitting
and train a better model (See Figure D1(b)).

Pre-Trained Models. Deep learning usually requires a large amount of
training data (1.28 million images in ImageNet (Russakovsky et al., 2015))
to be successful. It is usually not feasible for an individual researcher to
collect such a large training set or training a model to exploit those images’
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Figure D1: (@) The changes of training and validation losses over iterations. One epoch is
equivalent to using every image in each set once. (b) The effect of the training set size
on the model accuracy (100% = 32,611 images). See Section 6.2 for the details of the
data and model.

complexity. One method of overcoming the requirement is to use models
trained for another task with a larger dataset and apply to the current task
for which only a small amount of data is available. This is known as transfer
learning and is the process we recommend others follow.

Instead of using random values like when training a new model, one
can take the weight values from an existing model (the pre-trained model)
and initiate a new training process. This procedure is called fine-tuning,
or transfer learning, as an existing model is tuned to another task. For
example, one may use a model trained for generic image classification to
initialize the weight values of a new model for human activity detection
(Won et al., 2017). Figure D2 illustrates the advantage of using a pre-trained
model: it achieves a better classification accuracy and reduces training time
compared to making a new model.

Transfer learning works because CNNs, especially in their lower layers,
capture features that generalize to other related tasks. In visual learning,
these sharable representations include elementary features such as edges,
color, or some simple textures. Since these features can commonly apply
to many visual tasks, one can reuse what has been already trained from a
large amount of training data and refine the model to the new data. Doing
so saves significant time and hardware costs.

There exist many pre-trained models which are widely adopted as base-
lines for fine-tuning, such as AlexNet (Krizhevsky et al., 2012), Places365
(Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017), and VGG-Face (Cao, Shen,
Xie, Parkhi, & Zisserman, 2018). As their names suggest, these models are
trained from data in specific domains. Other examples include Residual
Net (ResNet) (He et al., 2016) and VGG-Net (Simonyan & Zisserman, 2014)
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Figure D2: The effect of fine-tuning (using a pre-trained model) in training. (One epoch
is equivalent to using every image in each set once.) See Section 6.2 for the details of
the data and model.

for image classification and Faster-RCNN (Ren, He, Girshick, & Sun, 2015)
and YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) for object detection.
Therefore, one can choose a model pre-trained for a task and domain related
to the researcher’s question.

Using one of these pre-trained models facilitates topic discovery. By taking
the last fully connected layer or the softmax layer of images run through
a classifier, one can find similar images using any preferred clustering
algorithm. The images in the clusters will contain similar features (pictures
of John McCain, for example), suggesting they are about the same topic.
Appendix Section F shows this approach to topic discovery using politicians’
images shared on Facebook and k-means clustering.

Whether using transfer learning or making a new model, it is critical to
ensure that the training data represent a diverse and balanced set of images
before they are annotated so that recall is high for each desired label. For
example, if one wants to collect images to be used for training a protest event
classifier, the set should contain enough protest images and non-protest
images. This task may not be trivial if the target event infrequently occurs.
If the task is well defined and clearly explainable by simple statements,
one can crowdsource the annotation task using online services, such as
Amazon Mechanical Turk. If an annotation task requires more expertise,
one should hire and directly supervise annotators.

Architecture and Hyperparameters. Table D1shows how different model
architectures and depths affect accuracy. The evaluation for fine-tuning on
our own data (32,611 training images) shows relatively small differences.'
When the training set is larger, deeper models tend to perform better.
The ImageNet challenge offers 1,281,167 training images (Russakovsky et
al., 2015), so the performance gap is wider. It is beyond the scope of this
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Table D1 Performance comparison for different models. See Section sm:Protest for
the details of the data for fine-tuning.

Architecture Depth Fine-tune (Protest) Imagenet Number of

Validation  Parameters

Best Loss Best Error (%)
Accuracy
(%)

Alexnet 8 0.249 89.29 16.6 60 M
VGG 1 0.223 90.52 10.4 133 M
VGG 16 0.204 92.33 7.2 138 M
VGG 19 0.197 92.16 7.1 144 M
ResNet 18 0.220 91.54 = 1"n7M
ResNet 34 0.213 91.65 5.60 21.8 M
ResNet 50 0.213 91.79 5.25 256 M

paper to discuss at length how to optimize the architecture of a CNN to be
used (number of layers in a model or types of regularization to be used),
preprocessing, best optimization methods, and other hyperparameters.
In general, these are empirical questions and the optimal solution varies
by task.

Validation and Interpretation

Deep neural networks often receive criticism due to the lack of interpret-
ability of their results and internal mechanisms compared to simple models
with a handful of explanatory variables. A deep model typically comprises
millions of parameters (see Table D1), and it is impossible to identify their
meanings or roles from the classifier output.

One method of validation is to use a validation dataset which does
not overlap with the training set. As in other classification problems, the
accuracy of a CNN-based classifier can be measured by several metrics,
including raw accuracy, precision and recall, or average precision, among
others. These measures, however, do not explain Zow the model achieves
its results.

Language-based Interpretation

Just as humans use language to explain a concept, one can develop a joint
model that incorporates visual and textual data such that the text part
explains its visual counterpart. For example, image captioning generates a
sentence describing visual content in an input image (Kiros, Salakhutdinov,
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& Zemel, 2014) or text-based justifications to explain why the model produces
particular outputs (Hendricks et al., 2016).

Another line of research on text-based interpretation of visual learning
utilizes questioning and answering (Antol et al., 2015). Such methods take
both an image and a text question as input and output a text-based answer
to the input question. This allows a more flexible interface between a user
and a model than a traditional classification task, which essentially asks a
fixed question to the model.

The key limitation of these methods is that they do not generalize:
they are unable to deal with novel content or questions. The models are
trained on image-text pairs and simply reproduce the mapping learned
from the training data. When the model is given a novel question which
was not given during training, it will not understand the meaning of
the question.

Visual Validation

Another method of understanding how a deep network produces its output
is through visualization. Since convolutional neural networks are largely
used for visual learning from images, visual validation is especially effec-
tive. We introduce the two most popular approaches: feature-based and
region-based.

Figure D3 provides examples of the feature-based approach, using a
random sample of images from ImageNet. This approach uses a “deconvo-
lutional” network (Zeiler & Fergus, 2014), which is akin to a reverse CNN.
Figure D3 shows that visually similar image patches that contain the same
image feature (left sub-panel) will trigger high activation scores in the same
node in the network that captures the image feature. The image feature can
be visually identified from the feature activation maps (right sub-panel).
Moreover, this visualization also confirms that the lower layers in a network
respond to the low level visual features such as color or texture, and the
higher layers capture more structured and semantically meaningful shapes
(“face”, “web”).

The region-based approach is exemplified by Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). Grad-CAM highlights
pixels in images based on how much they contribute to the final output of
the model. See Figure D4 for an example visualization using this paper’s
protester framing example. Grad-CAM can confirm that the model was
able to learn meaningful features such as “smoke” to model the concept
of “violence”.
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Figure D3: Visualization of feature activations at different layers in a CNN by a
deconvolutional network (Zeiler & Fergus, 2014). For each layer, the left panel shows
groups of similar image patches which produce high activation values for the same
node in the layer. The right panel shows corresponding feature visualizations. That the
patches become more recognizable as the layer depth increases confirms lower layers
capture low level features and higher layers capture more structured and semantically
meaningful patterns. Each layer shows four randomly chosen filters, and the filters are
not the same across layers.
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Figure D4: Visualization of Pixel Salience of CNN by Grad-CAM. It highlights image
sub-regions which more contribute to the classification output (pixels closer to red).
These labels are chosen from the protest example that follows.

JOO & STEINERT-THRELKELD 53



COMPUTATIONAL COMMUNICATION RESEARCH
Appendix E Software Libraries

There exist many open-source or commercial libraries and tools that re-
searchers can use for visual content analysis in their projects. Compared
to software for text analysis, these libraries are in general larger and have
more complex internal structures, which are required to provide various
image processing functionalities. Fortunately, there are a small number of
standardized, popular libraries that can be adopted for computer vision
and deep learning projects, which will be briefly reviewed in this section.

— OpenCV and dlib are currently the most popular computer vision
libraries. They offer a wide range of basic image processing, computer
vision, and machine learning functionalities. Python is best for OpenCV,
though there is a light wrapper in R for it. dlib is accessible via R and
Python libraries.

—  TensorFlow, PyTorch, Keras, MxNET, and Microsoft Cognitive Toolkit are
the most popular deep learning frameworks, as of 2019. These libraries
allow researchers to define custom network architectures and train the
network with their own data. For high-level use cases, these libraries
have little practical difference between them.

— In case researchers simply want to use existing classifiers which are
already trained without developing a model themselves, they can also
use commercial services through APIs. These options include Google
Vision API, Microsoft Vision API, Face++, and Amazon Rekognition.
These services return submitted images with labels.

Appendix F Self-presentation of Politicians in Social Media

One can also use an inductive approach by clustering a given set of images
without any annotations or labels. Figure F1 shows example clusters obtained
from images in the same dataset, not using the Google Vision labels. Specifi-
cally, we first computed generic image features using an image embedding
from a CNN pre-trained on ImageNet. We ran the model on each image
and obtained a numeric vector of length 2,048 from the activation values
of the second-to-last layer of the CNN. Then we ran K-means clustering (K
= 200) on these features.

By grouping similar images, one can identify clusters showing various
activities and events which politicians attend to. A cluster of John McCain
(the last cluster in Figure F1) arises as many politicians posted his photo-
graphs after his death on August 25, 2018. Clustering analysis is an effective
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Figure F1: Example clusters found in Facebook photographs posted by candidates.

way of discovering issues or topics which may be unknown to researchers
prior to analysis. This example of unsupervised learning is very similar to
unsupervised topic modeling in text analysis.

Appendix G Individuals’ Framing of Protest
Pipeline Detail

Verification
Figure D4 visualizes the internal mechanism of the model by showing which
features contribute to an image label. It uses the amount of output gradient
backpropagated to internal nodes and corresponding image subregions and
shows how strongly the nodes are activated in classification (Selvaraju et al.,
2017). This process is similar to the regular model training procedure. The closer
to red the area of an image, the more it contributes to the classifier output.
Figure D4 shows that the classifier is driven by parts of an image that a
human would recognize as important for each category. For example, the
protest label primarily activates on signs. Tear gas and police helmets drive
the violence classifier, while a child’s face, but not the nearby adults’, drive
the children classifier.
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Notes

1. Alayeris a separate operation or a collection of internal nodes placed at
the same stage in a network. It will be further elaborated shortly. The Sup-
plementary Materials discuss different types of layers in neural networks.

2. Google has not published details of the Vision API's architecture, though
it is safe to assume that it is based on a CNN. It is concerning that users
are not informed about these details. We discuss these issues, for example,
model biases and interpretability, in the Ethics section. We recommend this
API provided that researchers are aware of potential issues and validate
these APIs for their purposes (Section Appendix D), e.g. by measuring the
accuracy of the API with manual annotations.

3. This concern is a fancy rephrasing of the old adage, “Garbage in, garbage out."

4. Most labels are straightforward to comprehend except a few such as “Adap-
tation” which we believe refers to “screen adaptation” and correlates with
people and crowd.

5. The first is secessionist protests in Catalonia, Spain. The second is the 2014
Hong Kong protests against changes to Hong Kong’s electoral system seen
as contradicting the “One Country, Two Systems” relationship with China.
The third is anti-corruption protests in Russia on March 26, 2017. The fourth
is the 2016-2017 protests in South Korea against President Park Geun-hye.
Revelations in October 2016 that President Guen-hye received council from
a Rasputin-like figure triggered large protests, and those protests persisted
through her impeachment on March 10, 2017. The fifth is protests in Ven-
ezuela in 2014 and 2015.

6.  This estimate is poetic. Another way to think of images is that they have
high entropy, meaning they cannot be compressed as much as text. The
greater size of images reflects this greater difficulty of compressing them,
not necessarily a true quantum of information.

7. Networks are trained by a gradient descent method with backpropagation,
and the gradients become smaller as it goes back through more layers, mak-
ing it difficult to update the parameters.

8. Inpractice, only convolutional and fully connected layers are usually
counted to specify the number of layers in a model. The example model in
Figure C3 can be called a 5-layer CNN.

9.  The parameters will be learned in the same way irrespective of the flipping
direction.

10.  Pixels in an input image are the nodes in the first input layer.

1. Minimizing the sum of squares of residuals is convex and directly optimiz-
able, for example.

12.  One epoch is one pass over all training images.

13.  In training, available data is typically split into a training set and a valida-
tion set. Only the training set is used in actual model training and the
validation set is only used for evaluation.
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14.  VGG-Net (Simonyan & Zisserman, 2014), despite having fewer layers, per-
forms slightly better than deeper models. Note that it has more parameters.
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