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Abstract

Interpretability is an important property for visual mod-
els as it helps researchers and users understand the in-
ternal mechanism of a complex model. However, gener-
ating semantic explanations about the learned representa-
tion is challenging without direct supervision to produce
such explanations. We propose a general framework, La-
tent Visual Semantic Explainer (LaViSE), to teach any ex-
isting convolutional neural network to generate text de-
scriptions about its own latent representations at the filter
level. Our method constructs a mapping between the vi-
sual and semantic spaces using generic image datasets, us-
ing images and category names. It then transfers the map-
ping to the target domain which does not have semantic la-
bels. The proposed framework employs a modular structure
and enables to analyze any trained network whether or not
its original training data is available. We show that our
method can generate novel descriptions for learned filters
beyond the set of categories defined in the training dataset
and perform an extensive evaluation on multiple datasets.
We also demonstrate a novel application of our method for
unsupervised dataset bias analysis which allows us to auto-
matically discover hidden biases in datasets or compare dif-
ferent subsets without using additional labels. The dataset
and code are made public to facilitate further research.’

1. Introduction

Convolutional neural networks have shown great perfor-
mance in visual representation learning, but the learned rep-
resentations are usually hard to explain or interpret. The
lack of explainability raises the concern that Al systems
and models, although very accurate in prediction, may have
hidden negative effects on human users and society, such
as Al bias. Several studies reported biases in computer vi-
sion models for face attribute classification [8, |2], recog-
nition [33, 58], and image captioning [25]. It is very chal-
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Figure 1. The proposed framework aims to semantically explain
the concepts learned by individual filters in a CNN without super-
vision on the concepts used for the semantic explanations.

lenging, however, to identify these biases from a black-box
model with distributed knowledge.

To date, several methods have been proposed to interpret
what are learned and captured in CNNs. These methods
vary greatly by the form (visualization, captions, synthe-
sized samples), the focus (individual filter vs network level),
and the scope (any existing models vs requiring training
with supervision) of the generated explanations, and each
method has its own strengths and weaknesses.

The main objective of this paper is to generate the tex-
tual interpretations of any existing black box model that can
overcome the limitations of existing approaches for several
reasons. First, it generates words and thus can be more
semantically meaningful and objective than visualization
based methods [42, 49, 66]. Second, it can apply to any
arbitrary network and does not require training or annota-
tions, which is much more applicable than methods that re-
quire training a model with ground-truth explanation anno-
tations [27]. We do train an adapter using general image
classification datasets which can apply to any given target
model. Third, it can generate explanations using novel con-
cepts that are not given in the training set. These properties
are critical in understanding black-box models for which
we do not have access to the original training data or any
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information about the training process. This is a realistic as-
sumption in practice where one needs to interpret and scru-
tinize a given model.

To this end, we introduce the Latent Visual Semantic Ex-
plainer (LaViSE) as a novel framework to teach any ex-
isting CNN to generate text descriptions about its own la-
tent representations at the filter level. Our framework dif-
fers from supervised approaches in that we do not require
to annotate the explanation itself along with an input im-
age and a category label. Instead, our method constructs a
mapping between the visual and the semantic space using
generic image datasets (using images and category names),
then transfers the mapping to the target domain without
semantic labels. We do not attempt to train more “inter-
pretable” models [7, | 1,38,40, 67] but interpret any given
network without changing its structure or retraining. Our
work is also closely related to the literature of visual at-
tribute or concept based learning [6, 17,45,47,50], but we
do not require any additional supervision for attribute label-
ing, which makes our approach more generally applicable.
It is also important to note that our method does not merely
explain each individual filter separately but uses aggregated
responses using a novel filter attention method. Experimen-
tal results show our method can generate novel descriptions
for learned filters beyond the set of categories defined in the
training dataset and provide more accurate explanations for
filters comparing to the existing method.

While our main contribution is a novel method to gener-
ate explanations for any CNNs, our approach can be used
in a practical application of comparative analysis where
the goal is to discover and explain the differences between
given multiple models or multiple sets of images. To
demonstrate the utility, we compare a model finetuned from
a pretrained model and a model trained from scratch, and
we also compare the gender disparities in datasets. Besides
public image datasets, we collect and analyze social media
photographs posted by U.S. politicians to exemplify the ef-
fectiveness of our method in solving more challenging real-
world problems.

2. Related Work

Explanations via Visualization. Saliency methods [22,26,

,49,51,606] visually show the amount of contribution for
each pixel to the model prediction. They are widely used in
the literature but may be unreliable [18] because they can
respond to low level features such as image edges rather
than semantically more important features [1]. They also
require users to speculate meanings of the visualizations as
they do not provide explicit semantic explanations. Some
approaches have been proposed to perform case-based rea-
soning [9, 37] by providing patches from training images
as explanations, i.e. by analogy. These methods cannot be
applied to arbitrary networks across domains.

Explanations by Text. [24] propose to generate text to ex-
plain and justify the output of an image classifier. Simi-
larly, [27] take a hybrid approach and generate multimodal
explanations by using both visual highlights and textual de-
scriptions. [62] propose a VQA system that can not only
provide multimodal explanations but also link terms in the
textual explanation and segmented items in the image. [65]
use multimodal cues to interpret hidden messages (why and
what) in visual advertisements. These methods can gener-
ate a very meaningful and interpretable explanation to hu-
man users, however the explanation itself should be labeled
for each example, and the model will learn to generate it
in the same way it computes its outputs. Also, since these
explanations are annotated by humans before training, they
do not necessarily explain what the model has learned (dif-
ferent networks will yield the same explanations).

Visual Semantic Explanations of Visual Representation.
Our paper is the most closely related to [4, 48, 70]. They
explain an individual internal filter of a trained neural net-
work by measuring the alignments of images’ activations on
that filter to each predefined concept’s segmentation masks.
Furthermore, [4] provides a dataset with a broad range of
concepts annotated for the alignments. Our framework also
uses an annotated dataset so the model can learn to construct
the mapping between the visual representation and seman-
tic embedding space, but it differs in that it can discover
unseen novel concepts in another domain instead of being
restricted to the annotated ones in training data.
Generalization to Unseen Subjects. Zero-shot learning
(ZSL) aims to recognize instances of categories that have
not been seen in the training stage. Handcrafted attributes
and semantic representations learned from textual data are
often used to connect the seen and unseen classes, so knowl-
edge learned from training classes can be transferred to un-
seen categories. Most existing deep neural network based
ZSL works [3,16,31,32,36,41,52,68] either use the seman-
tic space or an intermediate space as the embedding space.
Our work relates to this topic as it also helps to discover
unannotated concepts. We do not compare our framework
with results in this area because our framework is not de-
signed for ZSL but can be built on any ZSL methods.

3. Latent Visual Semantic Explainer (LaViSE)

We now explain our main framework to explain the deep
visual representations of a given target model (a CNN), f.
We assume that this model has already been fully trained
from an unknown target dataset, D, and we do not have ac-
cess to D. In order to learn the visual-semantic explainer
on f, we instead use another dataset, the reference dataset
B = {(z;,vyi)}1,, where z; € R3*"*% ig an input image
and y; is a set of concept labels associated with the image
and corresponding masks, i.e. y; = {(t;, M;)}]L,. t; € C
is an annotated concept, and C'is the set of all concept labels
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Figure 2. An overview of LaViSE framework. (a) At the training phase, we train the explainer by connecting each image’s visual
representation with semantic concepts. The hinge rank loss helps the explainer learn the semantic embedding vectors, o, that are close to
the ground truth concept vectors v, while being far away from all the other concept vectors v, in the semantic space. (b) During inference,
LaViSE obtains the representation for each latent filter of the target layer via filter-level attention, and then the trained explainer takes this
representation to explain these filters semantically by selecting words with the highest similarities from V.

in B. M; € {0,1}"*% is a pixel-level mask for its corre-
sponding concept, t;. The reference dataset may already
provide these masks (e.g. semantic segmentation). For ob-
ject detection datasets, the region inside each bounding box
will be filled in with 1. For image classification datasets (no
bounding boxes), M; = 1"%®_ For each semantic concept
category t;, we obtain its semantic representation, vy, by
using a pre-trained word embeddings (e.g. GloVe [46]).

In order to explain filters in an arbitrary target model,
LaViSE first trains a feature explainer (Section 3.1) using
a reference dataset, B. Once trained, this explainer is fur-
ther used to explain filters that may not have any matching
concepts in B using our novel filter attention mechanism
(Section 3.2).

3.1. Training Feature Explainer

The purpose of our feature explainer is to transform the
visual feature representations of images from a target model
to equivalent representations in a semantic space, which can
be translated to words. To this end, we train a feature ex-
plainer Exp(-) with a reference dataset B as shown in Fig-
ure 2a. Given a target model, f, we take the feature extrac-
tor Feat(-) (e.g. by removing the last classification layer).
We use the feature extractor to obtain the visual represen-
tations of the images in B, F; = Feat(z;) € R&Mxw'
i.e. the output of the last convolutional layer with d filters.
This is the input to the feature explainer, but we first mask
this feature as follows. Each image has k pairs of a ground-
truth concept and its mask, (¢;, M;)?. For each concept,
we obtain a masked visual feature by element-wise prod-
uct, F; ® M;, because this masked feature corresponds to
the specific concept, t;. We then use the feature explainer

M ; is resized to the size of feature response map (h' x w’).
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to obtain the semantic representation of the masked visual
representation: o = Exp(F; ® M;).

To train the explainer, we use the semantic representa-
tions of the ground-truth concept, vt;, and negative con-
cepts, {v. : Ve € C,c # t;}, using a pre-trained word
embedding model such that 9 should be closer to v;, than to
ve. Note that we always normalize these semantic vectors.
We modify the objective function from [16] as follows:
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Our objective function combines dot-product similarity and
hinge rank loss as this combination has shown better per-
formance than other losses [64] in zero-shot learning. As
LaViSE is a general framework developed for the filter-level
interpretability, it can incorporate any other user preferred
loss functions or additional loss terms that can serve the pur-
pose of training a zero-shot mapping from visual represen-
tations to semantic embeddings. The procedure of training
the explainer is shown in Algorithm 1.

3.2. Inference with Filter Attention

The goal of training and using the feature explainer is to
explain filters that describe concepts not specified in the ref-
erence dataset. For example, the dataset may contain “foot-
ball” as a concept but lack other related concepts such as
“stadium” or “referee” which are still likely present in the
images. Since the feature explainer learns to map any visual
features to a semantic space, it can generalize to discover
novel concepts.

A naive way to use the explainer for each filter is to only
use the activation of the filter and suppress other filters’ re-
sponses. We found that this naive approach leads to very
poor performance, and this may be due to the fact that many

s
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Algorithm 1 LaViSE Training

Input: Target feature extractor Feat(-), reference dataset B and
the set of all annotated concepts C', pretrained semantic embed-
ding V.
Output: Trained explainer Exp(-) with parameters czp
Initialize explainer fcsp
for each image x and its annotations {(M, ¢)} in B do
Get features F' < Feat(x)
for each mask-concept pair (M;, t;) of = do
Get explainer output & < Exp(F © M;)
Get ground-truth concept embedding vy; € V
for each concept c € C'\ {t;} do
Get concept embedding v. € V
< I+ max(0,1 —v] o+ vl0)
end for
end for
Update 0., by Adam to minimize [ (eq 1).
end for

filters collectively capture visual features in a distributed
manner. This suggest that we can still use the entire feature
responses, with proper modification, even when explaining
one filter. Some previous studies in interpreting filters have
tried to use masking on filter activations [67] and use all the
filters together. We propose a novel attention-based mask-
ing mechanism, which is simple but effective in extracting
and reweighting features relevant to each target filter. Our
method is similar to recent self attention models, e.g. Trans-
former [14,57], but simpler because it doesn’t use repetitive
blocks or multi-head attention.

Filter-level Attention. To discover important concepts
which are implicitly represented and distributed over many
filters, we propose the filter attention module. Instead of
using each filter’s activation separately, our method finds
a representation for each filter using activations of all fil-
ters collaboratively via an attention-based approach. Essen-
tially, we take advantage of the spatial alignments between
filters describing a concept and collect their focused acti-
vations. In our filter attention method, the feature response
map of a target filter (u, the filter we want to explain) serves
as a spatial attention; the other filters are reweighted based
on their similarities to the target filter. Specifically, suppose
we have an input image, x, and d filters in the feature ex-
tractor, Feat(-), and the computed feature response map is
F = [F\,F,,...,F;] = Feat(z) € R %' The input
to the explainer, Exp(-), with respect to a target filter w,
is computed as follows: F" = a(F,, Fy) - Fy, Yk, where
a(-) computes spatial correlations between filters by cosine
similarity. Figure 3 illustrates the difference between our
method and other baseline methods.

Word Selection Method. To obtain a list of words to ex-
plain given images, LaViSE next computes the cosine sim-
ilarities between each semantic filter embedding vector and
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Figure 3. An illustration of comparing our filter attention method
with other masking methods.

all words in V, and collect s words with the highest similar-
ities. For each filter, we gather s x p words collected from
the top p most activated images and rank the words based on
their frequencies. Finally, our framework composes expla-
nations for filters using top-x ranked words. The users can
decide the number of words used for each filter explanation
depending on how much detail they desire. Note that we
empirically tested choices of parameters s and p, and found
that our framework works well when p is an integer between
5 and 25 while the choice of s may depend on the size of V
and does not have a substantial impact on the results.

4. Experiments
4.1. Datasets

To evaluate our proposed framework, we use the follow-
ing three publicly available datasets and one novel dataset
that we collected, which are used as a target dataset, a ref-
erence dataset, or both: (i) MS COCO [39]. MS COCO
has more than 200K daily scene images that are pixel-wise
labelled with 80 common object categories. To help with
our analysis, we also include the gender annotations of MS
COCO provided by [69]. (ii) Visual Genome (VG) [34].
We only use images that have box-able annotations for our
experiments. During pre-processing, we combined object
categories based on their synset names, combined instances
of the same category in the same image, and deleted cat-
egories that appear in less than 100 training images. In
the end, there remains 106,215 out of 107,228 images,
1,208 out of 80,138 object categories, and at most 47 ob-
ject categories per image. (iii) Broden [4]. Broden com-
bines selected examples from several densely labeled im-
age datasets to provide pixel level ground truth labels to
a broad range of visual concepts, including scene, objects,
object parts, textures, and materials. NetDissect [4] lever-
ages this dataset to provide explanations so we use it to
directly compare our framework with NetDissect without
biases imposed by the choice of datasets. (iv) Social Me-
dia Photographs of US Politicians (PoP). To demonstrate
the practice of our framework in real-world applications, we
also composed a new dataset of social media posts from ac-
counts of US politicians to be used as a target dataset with-
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out any visual category labels. We collected roughly 80k
images for politicians who ran for the 2018 election from
Facebook and annotated the images by the gender and polit-
ical party. Note that, we used GloVe [46] (i.e., 300d GloVe
embeddings) that contains total 400K vocabularies trained
on 6B Wikipedia tokens for the pre-trained word embed-
dings V.

4.2. Setup

For the experiments, we use ResNet [23] as our back-
bone models and build our framework on the PyTorch [44]
implementations of ResNet-18 and ResNet-50. In Table 1
and 2, “layer4” and “layer3” refer to the module names for
the PyTorch models.

We consider two challenging settings that are the closest
to the real-world scenarios: (1) the list of concepts that can
appear in the target dataset is known (but still no annotation
is given); (2) we have no prior knowledge about concepts
that can appear in the target dataset. We imitate (1) in a gen-
eralized zero-shot learning setting with the VG dataset. We
only train with a proportion of annotated classes and con-
sider all annotated classes as all concepts that can appear in
the dataset. In our experiments, we randomly selected 70%
categories for training the mapping and left 30% categories
for the model to discover. The split is manually set to en-
sure that we left out enough new concepts for the model to
find, and meanwhile, the model can have enough supervi-
sion. We test scenario (2) with the MS COCO dataset, as it
does not have as many annotated concepts as VG.

4.3. Compared Methods

To evaluate the performance of interpreting deep rep-
resentation, we deploy NetDissect [4] as our competing
method since it is the only applicable method of the filter-
level approach as we discussed in Section 2. Note that ex-
plaining methods are not easily comparable as they tend to
focus on unique settings.

Moreover, we carefully designed the following three
baselines to show that our novel filter attention is indispens-
able and irreplaceable for separating representations for fil-
ters at the inference stage:

(i) Original image: Without any attention or masking, the
image goes through the feature extractor and then directly
into the feature explainer. This baseline is equivalent to us-
ing a zero-shot learning model trained for image classifica-
tion and then collecting the top predictions of most activated
images of each filter as the explanation.

(i) Image masking: For each filter u of layer [, we collect
an activation map A;(z;),, for each z; € D, compute the
distribution of all unit activations {a;(z;), }?_, on u and se-
lect a threshold 7T, such that the probability of an activation
being above the threshold is p, namely P(a, > T,,) = p.
For top activated images, we scale their activation maps of
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Table 1. Human evaluation of comparing explanations generated
by LaViSE (ours) and NetDissect [4] in different settings.

layer [ to the shape of the images and set regions with acti-
vations below the threshold to zero after preprocessing. We
then input the masked images to the feature extractor and
then the feature explainer to get the results.

(iii) Activation masking: We use the same thresholds T’,’s
for the image masking baseline, but we apply the masks to
the activation maps directly. This method was also used
in [67] for interpreting CNNSs.

To ensure a fair comparison across all, we adopt the
probability threshold p = 0.005 used in [4] for all thresh-
olds mentioned above and also for all visualizations of acti-
vated regions in this paper.

4.4. Evaluation Protocols

For evaluation, we utilize two metrics [4], perceptual ef-
fectiveness (i.e., human evaluation) and objective accuracy.

Human Evaluation. Since the notion of interpretabil-
ity can be subjective and the standard way of quantifying
interpretability is still under exploration, we first evaluate
the quality of explanations with human examiners from
Amazon Mechanical Turk (MTurk). For each filter, hu-
man examiners were shown 15 images from the reference
dataset with highlighted patches showing the most highly-
activating regions for the filter (e.g. Fig 4). Note that this
amounts to 7-15K images used for a whole model per each
setting. We have at least 3 examiners to evaluate each filter,
and we take the averages of the median scores for all filters
as the results, shown in Table 1 and 2. We will elaborate the
protocol further in Section 4.5.

Objective Evaluation. We also compute the
intersection-over-union (IoU) score of each annotation
mask and the activation mask of each filter (i.e. segmen-
tation). If the score is above a certain threshold, then we
consider the concept corresponding to the annotation mask
is one of the ground-truth concepts for that filter. We set
the threshold to 0.04 to be consistent with [4].
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Figure 4. Qualitative comparison between explanations of the same filters given by LaViSE and NetDissect. We used the model (a
ResNet-18 trained on Places365) and dataset (Broden) provided by [4]. The first three rows are examples where human raters prefer our
explanations over NetDissect’s. The last row are examples where NetDissect’s explanations were more favored by human raters than ours.

Settings Results

Model Target Reference Method Precision-H  Precision-H  Recall-H  Recall Recall Recall
& Layer dataset dataset (Top-1) (Top-5) (Top-5) (Top-5)  (Top-10)  (Top-20)

Original image 0.66 0.300 0.626 0.599 0.641 0.675

ResNet-18 Image masking 0.61 0.280 0.586 0.567 0.619 0.659

Layer 4 MS COCO  MS COCO Activation masking [67] 0.68 0.310 0.658 0.629 0.676 0.721

Filter attention (Ours) 0.70 0.320 0.670 0.675 0.728 0.776

Original image 0.02 0.056 0.024 0.182 0.251 0.334

ResNet-18 ImageNet Visual Image masking 0.00 0.016 0.006 0.181 0.253 0.337

Layer 4 8 Genome | Activation masking [67] 0.34 0316 0.149 0.235 0.309 0.382

Filter attention (Ours) 0.44 0.340 0.159 0.273 0.353 0.429

Original image 0.10 0.096 0.139 0.160 0.229 0.302

ResNet-50 ImageNet Visual Image masking 0.05 0.036 0.049 0.084 0.134 0.213

Layer 4 & Genome Activation masking [67] 0.37 0.264 0.557 0.199 0.264 0.333

Filter attention (Ours) 0.46 0.274 0.583 0.226 0.302 0.373

Original image 0.00 0.012 0.050 0.070 0.097 0.136

ResNet-50 ImageNet Visual Image masking 0.00 0.020 0.080 0.022 0.045 0.055

Layer 3 & Genome | Activation masking [67] 0.24 0.148 0.470 0.099 0.155 0.210

Filter attention (Ours) 0.26 0.156 0.473 0.110 0.156 0.207

Table 2. Quantitative evaluation for different masking methods. Columns with “H” are the results of human evaluation. Human raters are
generally giving higher scores because they also accept synonyms. Please see Section 4.5.2 for the details.

4.5. Results

4.5.1 Comparing with NetDissect

Table 1 shows the quantitative comparison of our frame-
work and NetDissect. We have various settings with differ-
ent models, layers, and target and reference datasets, includ-
ing the same setting from [4] which uses Places365 [71] as
the target dataset and Broaden as the reference dataset for a
fair comparison. The results demonstrate that LaViSE sig-
nificantly outperforms NetDissect in human-evaluated top-
1 precision with margins in all settings. Note that, LaViSE
shows almost twice larger precision values than NetDis-
sect in certain settings. In addition to the precision, we
ask human examiners to compare semantic explanations of
LaViSE and NetDissect side by side along with the most ac-
tivated images in the reference data and give a comparative
rating inspired by [72]. For each comparison, the order of
the presented methods to an annotator is randomized. The
“Prefer” column of Table 1 records the proportions of hu-
man evaluations that prefer one method over another. The
results show that human raters preferred LaViSE’s expla-
nations more often than NetDissect’s with a large margin.
Figure 4 provides examples of user preferred explanations.
As shown in the example images and explanations, our

method provides more informative explanations than Net-
Dissect. It is critical to note that the key advantage of our
LaViSE framework is that it can apply to any trained net-
work to generate novel textual explanations about filters.
NetDissect requires a known training dataset and hence its
interpretations are limited to the annotated categories in the
dataset. NetDissect, therefore, focuses on estimating the
interpretability of a network architecture given a specific
training dataset, whereas LaViSE can additionally interpret
any network trained from any arbitrary unknown data and
generate novel descriptions beyond pre-defined categories
by using a visual-semantic mapping.

4.5.2 Comparing with Masking Schemes

To measure the effect of LaViSE’s filter attention module,
we conduct an ablation studies with three masking baseline
methods described in Section 4.3. Table 2 shows the quan-
titative results when we ask human examiners to evaluate
the explanations. Note that we conduct experiments in two
different cases where one that has the same target and ref-
erence datasets, and the other with different target and ref-
erence datasets. Since the COCO case uses the same target
and reference datasets for validation purposes, all methods
in the COCO case perform better than the ImageNet case
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Figure 5. Qualitative examples for image masking vs. LaViSE

where transferred features learned with ImageNet to a dif-
ferent reference dataset (VG). In practice, target and refer-
ence datasets will differ since we want to explain a model
already traiend with an unknown target dataset. Figure 5
showcases the example filters generated by our method and
image masking method on the same images in the two cases
with different datasets.

We find that our method outperforms the original image
baseline and the image masking baseline with large margins
in all settings, especially when we aim to explain lower lay-
ers. This suggests that our proposed filter attention mod-
ule can effectively discover important masks of given im-
ages. Our method also outperforms the activation masking
method [67] except for the top-20 recall value in the set-
ting of ResNet-50 and layer 3. We observe that the perfor-
mance differences between these two methods are smaller
in the layer 3 than the layer 4. That is because our method
is more effective in leveraging cross-filter activations in se-
mantic mapping to capture more context at the upper layers.

4.5.3 Explanations at Different Layers

Different layers in a CNN may capture different types of vi-
sual concepts and also have different levels of interpretabil-
ity. For example, some low level features such as texture
may not be easily explainable compared to high level vi-
sual structures or objects [4]. We observe significant per-
formance drops at lower layers in Table 2. Our human eval-
uation results also confirm that the lower layers of a CNN
can be harder for both our framework and NetDissect to ex-
plain (Table 1). To analyze the performance of LaViSE at
different layers, we use a ResNet-50 pre-trained with the
ImageNet as our backbone model, and Visual Genome as
the reference dataset to train the explainer for each layer
separately. Results in Table 3 are consistent with the hu-
man ratings. The Supplementary Material provides more
detailed analysis results due to the space limit.

4.5.4 Explaining with Unsupervised Concepts

Our method can explain novel concepts because the seman-
tic embedding can generalize beyond the category names
given in the reference set. A similar idea has also been
used in image captioning for novel objects [2]. We use PoP

Layer Recall Recall Recall
(Top-5)  (Top-10)  (Top-20)
Layer 4 0.226 0.302 0.373
Layer 3 0.110 0.156 0.207
Layer 2 0.086 0.131 0.181
Layer 1 0.042 0.060 0.092

Table 3. Comparison for different conv layers of ResNet-50.
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Figure 6. Examples of discovered concepts by LaViSE using the
PoP dataset. Concepts in red are the ones outside of the pre-
defined categories (i.e. no annotations) during training.

as the target dataset and Visual Genome as the reference
dataset, and select 70% categories from the Visual Genome
for training the mapping, and leave 30% categories for the
model to discover. Figure 6 shows the examples of concepts
that were discovered by LaViSE. As shown in the examples,
we observe that LaViSE can explain convolutional filters by
finding more accurate concepts that have not been trained.
This suggests that our LaViSE can be deployed to any unan-
notated datasets to gain insights based on the explanations.
Figure 7 shows the proportion of the novel (i.e., unseen)
concepts discovered by LaViSE according to the different
percentages of annotated sementics in training. Note that
we consider a concept as a novel concept when it matched
to the annotated categories but not included in the training.
We find that the recall values proportionally increase to the
annotation rates in training. That is, LaViSE discovers more
unseen concepts with a comprehensive reference dataset.

4.5.5 Effect of Pre-training on Interpretability

To understand the effect of pre-training on the interpretabil-
ity of LaViSE, we compare two models with the same archi-
tecture but different pre-training procedures. Note that ex-
isting methods including NetDissect are not suitable for this
analysis since new concepts would not be captured from a
pre-trained model while LaViSE naturally supports this be-
cause it can use any arbitrary network and dataset. More
specifically, we take two ResNet18 models trained with the
MS COCO dataset for multi-class classifications where one
model is pre-trained with ImageNet [13] while the other
model is randomly initialized. According to the filter expla-
nations generated by the LaViSE, even though two models

W
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Figure 7. The proportion of the novel (unseen) concepts discov-
ered by LaViSE.

have comparable classification accuracies, the model fine-
tuned after pretraining on the ImageNet learned more con-
cepts (219) than the model trained with MS COCO from a
random initialization (150). We present the full list of dis-
covered concepts in the Supplementary Material.

4.6. Unsupervised Dataset Bias Analysis

We now demonstrate a novel application of our LaViSE
framework for the purpose of unsupervised comparative
data and model analysis. The main purpose of the analy-
sis is to discover and explain differences between multiple
datasets, or different subsets of a given dataset without any
labels. Prior work has also shown biases between datasets
using labels [55], but we are interested in interpreting the
differences in an unsupervised fashion. This approach al-
lows us to examine hidden biases in datasets or media out-
lets using machine learning models [54, 63].

We consider gender representation bias in public datasets
as our examples here. Recent studies have reported vari-
ous gender biases in image datasets and computer vision
models such as accuracy disparity [8, 30] or spurious cor-
relation [10, 28, 69]. We mainly consider the latter, i.e.
how gender correlates with other unknown covariates in the
dataset.> For example, Zhao et al. [69] showed that in pop-
ular image datasets gender is associated with activities such
as shopping for women and driving for men. This analysis
is supervised and requires annotations on activities or ob-
ject categories. In contrast, LaViSE can directly apply to a
dataset without any additional labels (except gender) such
that it can discover hidden biases on unknown factors.

Specifically, we show gender bias in the MS COCO
dataset, i.e. which concepts are associated with gender. We
split the images by gender according to [69] and train a
binary CNN (ResNet-18) classifying gender (we only use
gender annotations). LaViSE then generates explanations
for conv filters in the model. For each filter u, we count the
number of images whose maximum activation is above the
threshold T;,, and we call these images “qualified images.”
Each gender is a group, and we compare the difference in
percentages of qualified images between two groups. In
Figure 8, we list filters that have the most considerable dis-
tinctions between gender groups, their top-1 explanations

3Some papers also consider causal or counterfactual model bias or ex-
planations [19,20,28]. Our main interest is to explain biases in a dataset.

MS COCO: Gender

® Male ® Female
1000/
7.50%
5.00%
2.50%
0.00%

PoP: Gender

= Male ® Female

PoP: Party
= DEM = GOP _

I[ 7|‘]L 0y
P "--

Figure 8. Comparative analysis of different groups of images in
the MS COCO dataset and the PoP dataset.
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predicted by LaViSE, and examples of qualified images on
the sides. The results reflect the gender biases in this bench-
mark dataset and provide a guideline for future improve-
ments of the dataset. Note that LaViSE can discover con-
cepts which are not part of the COCO categories (e.g. food)
as it does not use the categories or labels in analysis.

We also use the same method to compare social media
photographs of politicians between gender and party affili-
ations using PoP dataset. Such comparative analysis is es-
sential in social science and media studies [5, 35,53, 54, 56,

, 00, 63] but requires a huge amount of human effort for
manual coding and may be susceptible to the bias of in-
vestigators. LaViSE offers an efficient data-driven way to
explore group differences in unlabeled image datasets. The
result in Figure 8 shows interesting gender and party dif-
ferences. For example, male politicians tend to show large
crowds to signal competence and popularity [21,29] and fe-
male politicians show more “sign” (panels) commonly used
in public demonstrations and protests, which communicates
their trustworthiness and interests in social welfare and pro-
tection for minority groups [15,61].

5. Conclusion

We proposed LaViSE, a novel framework which can both
visually and semantically explain latent representations of a
trained CNN. It also enables users to discover concepts that
a CNN learned without being explicitly taught. Empirical
results show that our framework can accommodate differ-
ent CNN architectures and datasets with varying formats of
annotations. We also demonstrated a novel application for
unsupervised bias analysis using our framework. We hope
our work can help enhance transparency in both black-box
models and datasets in Al research.
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