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A B S T R A C T

The Maritime Transportation System (MTS) accounts for more than 80% of global merchandise
trade in volume and roughly one-sixth of the Total Gross Output of the United States. Given
that national and global economies depend upon efficient supply chains, port stakeholders must
develop security plans to respond to all hazards, natural and manmade. Given recent cyber-
attacks affecting shipping ports, along with the multi-billion dollar cyber insurance gap, ports
need to understand the tradeoffs between increased competitiveness and higher risk through
investment in automation and advanced logistics technologies. This article addresses the need
to understand the economic impact of cyber-attacks that affect shipping port operations and
thereby enable risk assessments that holistically evaluate interactions among port Information
Technology (IT) and Operational Technology (OT) systems. Using a Nearly-Orthogonal Latin
Hypercube (NOLH) experimental design, we construct transportation disruption profiles based
on actual cyber-attacks that specify the range of operational effects of IT/OT dependencies on
stakeholder transportation assets. To capture the costs of the physical disruption, we extend
Boland et al’s Dynamic Discretization Discovery (DDD) algorithm to capture capacity constraints
and enable delay modeling to accommodate commodities arriving late due to disruption.
Economic loss functions for seven commodity categories based on the willingness to pay
literature are used to compute delay costs so that stakeholders can estimate the range of
economic and operational impacts within a disruption profile. Results based on data for cyber-
attacks on landlord port and terminal operator assets provided by Port Everglades, FL illustrate
impacts at $80,000 and $1.2M on average during one week in October 2017 and at $141,000
and $2.8M for May 2017 respectively. The runtime performance of our enhanced DDD algorithm
improves on the state of the art by an order of magnitude and on larger problem sizes based
on real-world port networks.

1. Introduction

The Maritime Transportation System (MTS) accounts for more than 80% of global merchandise trade in volume and roughly
ne-sixth of the Total Gross Output of the United States (Hoffman and Sirimanne, 2017). Increasing vessel sizes drive the need for
land-side transportation systems that can handle larger container volumes. The off-loading and movement of these larger container
volumes must be handled efficiently in order to support just-in-time supply chains upon which local and regional economies depend.
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These efficiencies are increasingly enabled via complex logistics automation systems that coordinate business processes across diverse
stakeholders including terminal operators (TOs), trucking/rail companies, port owners, and many others.

Ports connect ocean-side or sea-side transport conducted by ships, to land-side movements connected by road, rail and sometimes,
air. Thus ports are facilities with a combination of multi-modal transfers and movements. A variety of commodities are transported
in shipping containers, including non-perishables like apparel and cars as well as perishables such as produce and food items. To
facilitate movement of commodities from the port to other downstream destination in the commodity supply chain, ports themselves
contain multi-modal transportation terminals, storage terminals, several container yards, storage areas and a network of roads to
facilitate movements within the port to external areas. Each of these assets inside the port is operated by various stakeholders.
For example, a port itself is operated by the county or an owning company, its storage terminals are operated by contracting
companies, the transportation terminals are operated by transportation companies or public organizations, and trucks to move
containers are operated by drayage companies. All these organizations are stakeholders who have a keen interest in ensuring efficient
port operations and minimizing the impact of disruptions. Because ports often represent the first point of entry into a country, the
Coast Guard and Customs and Border Protection are other stakeholders who aim to ensure port security. Moreover, because ports are
often relatively compact, roadways, gates, yards and cranes in the port have limited capacities and processing rates. Thus ports have
traditionally focused on improving throughput to move more containers to downstream destinations. As global trade has increased,
ports everywhere have adopted higher levels of automation to store their data, as well as to ensure more efficient operations. For
example, gantry cranes that unload containers and gates that allow trucks to move across regions of the port, are all operated using
processors connected to software components. Similarly, containers themselves typically include GPS trackers to be able to identify
their locations in a ship or in a container yard at a terminal. A cyber-attack that spoofs or disables GPS tracking, or causes cranes
or gates to fail, can thus significantly affect operations both for the duration of the attack as well as require time for the system to
get back to normal operations.

The various stakeholders at ports need approaches for holistic risk assessments that account for dependencies between Information
Technology (IT) and Operational Technology (OT) systems. A consequence of cross-organizational, inter-infrastructure dependencies
is that the threats faced by individual stakeholders, often considered separately due to specialization and organizational siloing,
can affect others within the global supply chain. Events such as the Port of San Diego ransomware attack (Anon., 2018), the Port
of Barcelona cyber attack (Tsonchev, 2018), the Maersk NotPetya incident (Greenberg, 2018), as well as other historical events
like the Port of Antwerp hack from 2011–2013 (Bateman, 2013), motivate the need for stakeholders to understand the economic
losses from cyber-attacks via secondary, operational effects on transportation networks. The remainder of this section describes this
article’s four intended contributions.

Gaps within the academic literature on optimization models applied to cyberinfrastructure, motivate this work from a modeling
and algorithmic perspective. A recent survey of 68 relevant peer-reviewed articles on optimization models and methods identified
that much of the existing literature focuses on the Energy sector and that other Critical Infrastructure (CI) sectors should be
explored (Enayaty-Ahangar et al., 2020). The same survey concludes that more research needs to be done on how to respond
o cyber-originating disruptions. The results of our article in Section 7, present a holistic risk assessment approach, based on the
early-orthogonal Latin Hypercube experimental design, to identify high-impact disruptions enabled by a cyber–physical threat
odel within the MTS. This approach enables stakeholders to estimate how risk exposure within cyberinfrastructure translates to
perational measures of performance and changes with seasonal variations in trade.
In addition to investments in the physical transportation infrastructure within shipping ports, investment in automation

echnologies and advanced logistics systems may create what some estimate is another trillion dollar market (Coren, 2017). Although
increasingly necessary for ports to be competitive with more efficient, transparent, and integrated with regional supply chains,
automation and other infrastructure dependencies also increase risks faced by shipping ports. In recent news, cyber attacks on
critical infrastructure systems are becoming increasingly frequent and have significant economic impact. For example, the Maersk
NotPetya incident was a 10 day outage that cost roughly $200M. Recent attacks on the Colonial Pipeline resulted in a $4M ransom
that resulted in temporary gas shortages in several states. Such disruptions are likely to increase in the future given gray-zone
warfare techniques and increased nation-state competition for trade through 2050 as well as the increased adoption of emerging
technologies within the sector and surrounding ecosystem (eg. smart cities).

1.1. Problem description

Cyber disruptions are unique in their own right and should be studied as a different type of phenomenon than physical
disruptions via weather or kinetic weapons. Traditional ‘Orange Book’ security defines security in terms of Confidentiality, Integrity,
and Availability. This paper focuses on cyber disruptions that affect availability of infrastructure and resources needed to move
commodities through the MTS. However, cyber attacks may also compromise the integrity of data to alter commodity movements
(e.g. Port of Antwerp hack from 2011–2013 to smuggle drugs) or be used to observe potentially sensitive movements. In this
sense, cyber allows for a greater variety of effects than other types of disruption categories. Briefly, cyber disruptions are different
from regular kinetic disruptions because of (a) spatially and temporally targeted nature of cyber-threats, (b) cyber-attacks being
coordinated across multiple locations simultaneously, and (c) state-dependent nature of the cyber-threat. We elaborate on these
features further, and the modeling implications, in Section 3.

In ports and other facilities of interest, cyber-attacks or disruptions translate almost instantaneously into attacks on physical
assets, causing disruptions on the transportation network – examples are loss of instructions from sensors directing the assets, stalling
2

of current physical resources (gantry cranes, automated vehicles) – resulting in cascading effects of such disruptions through the
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port. Our work aims to estimate the physical effects of such cyber-disruptions by assuming that, following a disruption event, actions
for recovery of movements (using unaffected vehicles or other resources) are undertaken. Such recovery actions involve dynamically
re-configuring the previous plan of resource allocations and movements for vehicles, people and shipments. In particular, we aim
to find an optimal or near-optimal reconfiguration, that will estimate a lower bound on the possible costs of the disruption, because
action is often taken to reduce the impacts of the disruption. The resulting problem is a network design problem, which we model
as a Disrupted Capacitated Continuous Time Network Design Problem (DC-CTSNDP), as we describe in the following section. While
in practice, optimal recovery actions are not always taken, solving this problem helps estimate the minimum costs that will have to
e incurred to recover the physical system from the cyber-disruption.
Our work and approach are motivated by large, real-world problem instances at ports in the US, which are larger in size in both

pace and time, than common network design optimization benchmarks and prior case studies. Because cyber-disruptions can affect
perations at a high granularity, we aim to capture resource allocations at similar granularity, i.e., the movements of individual
ontainers or TEUs. Our case study draws from fieldwork at Southport container operations at Port Everglades, FL and required a
arger network, more commodities, and a longer optimization time window than previous studies. For example, economic losses for
any imported commodity categories do not occur until past the 5 day mark. Therefore, we aim to study recovery windows that
ast at least a full week, consistent with historically-attested cyber-originating disruptions (e.g. NotPetya) described in Section 3.

.2. Overview of methodology

Our approach to estimating costs due to cyber–physical disruptions includes three types of modeling components. First, we create
modeling framework for cyber–physical dependencies in shipping ports — in particular, to map cyber disruptions to physical
isruptions using adjacencies between cyber and physical assets. This helps generate a physical disruption profile from the cyber
isruption, which fundamentally influences the movements of assets in the port and causes delays in the operations of the physical
ayer.
Our second modeling component estimates the cost of recovering from the mapped disruption in the physical (transportation)

ayer. This component estimates the costs of dynamically re-configuring the network, consisting of the physical assets such as
nfrastructure, vehicles and shipments and moving them across the network to minimize costs from the disruption. This problem
s called a service network design problem (SNDP) — it studies cost-minimizing ways of moving shipments over space and time
ithin specified time-windows. These movements should occur via vehicles whose routes and schedules are also to be determined
n the SNDP, while respecting the vehicle capacities. For cost-minimization, the movements of shipments or commodities should
e consolidated on the vehicles; and thus the SNDP is in fact, a problem of consolidating commodity movements in space and
ime. Routing vehicles and commodities on a network is a problem of large-scale network design, which adds on a packing element
o the multi-commodity flow problem over time, which itself is weakly NP-hard (Hall et al., 2007). This network design problem
s often studied using discretized time–space networks, which model movements on the network in both space and time, using a
riori specified time discretization to model decisions (Powell et al., 1995). However, discretization approaches often face issues of
calability in solving the SNDP at large scales. To address this, Boland et al. (2017) and Vu et al. (2020) study the continuous-time
ervice network design problem (CTSNDP), and show that the SNDP can be solved without discretizing every point in time, and
nstead discretizing dynamically, only as necessary. Their approach is called the Dynamic Discretization Discovery (DDD) algorithm.
owever, the CTSNDP and its associated DDD algorithm do not capture two aspects — allowing commodities or shipments to arrive
ate, and minimizing such lateness; as well as modeling the rate of flows of commodities through nodes or arcs (e.g. road capacity,
rane unloading rates). We therefore introduce the DC-CTSNDP (Disrupted Capacitated Continuous Time Service Network Design
roblem), in which we accommodate container movements arriving late. Furthermore, the rate of flow of commodities through a
ort network is limited (e.g. road capacity, crane rate) and so we introduce capacities to enforce flow rates of vehicles through the
odes and arcs of the network. Specifically, in our enhanced DDD algorithm for the DC-CTSNDP, we introduce delay nodes and arcs
o capture delays and minimize delay costs, and enforce flow rates, both in a continuous-time framework. This algorithm allows us
o estimate the costs due to optimal reconfiguration of the routes and schedules of vehicles and shipments following a disruption.
The third modeling component estimates the objective function (cost) parameters to be input to the optimizer in the second

omponent. The objective function measures direct economic losses due to import delays. Specifically, the cost penalties for import
elays differ across commodity categories, a classification defined to aggregate commodity groups found within Port Everglades’
conomic data on imported commodities. Our analysis and valuation of import delay cost penalties is related to the work of Hummels
t al. (2007) and Minor (2013). This paper extends these penalties for 1–2 day delays from on-loading/off-loading inefficiencies to
edium and longer-term disruptions such as those cataloged in Section 3. The intent of this approach is to address the need for
cientific studies to determine economic loss due to on-site port disruptions (Acosta, 2020).

.3. Paper outline

We discuss related literature and the contributions of our paper in Section 2. In Section 3, we discuss how we model cyber
etwork services and physical (transportation network assets) dependencies to create a disruption profile. In Section 4, we present
n algorithm for the DC-CTSNDP, for optimized recovery from the mapped disruption profile, to measure the best possible actions
hat could be taken to mitigate the disruption costs. We discuss the details of how costs are computed to be input into the recovery
lgorithm in Section 5. Section 6 discusses data analysis and fusion for real instances used in our paper, and Section 7 presents the
3

esults. We conclude in Section 8.
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2. Related work and contributions

Within the optimization literature, a recent, 68-page survey on using optimization to enhance and improve cyberinfrastructure
ecurity (Enayaty-Ahangar et al., 2020) concluded with both the need to study CI sectors other than energy and information—
uch as transportation and communications as well as to address the vulnerabilities introduced by CI sector interactions. The
roblem of routing vehicles and commodities is a large-scale network design problem, which adds on a packing element to the
ulti-commodity flow problem over time which itself is weakly NP-hard (Hall et al., 2007). Existing methods based on time–space

network models model delays and capacities at a large computational expense (Jarrah et al., 2009; Erera et al., 2013; Crainic
et al., 2016). The Continuous Time Service Network Design Problem (CTSNDP) and Dynamic Discretization Discovery (DDD) algorithm
proposed by Boland et al. (2017) and Vu et al. (2020), use continuous time to reduce the size of the time–space network and
improve scalability to larger problem sizes. The CTSNDP and associated algorithm however, do not consider transportation network
delays and rate-based capacities. Furthermore, there appears to be a gap between the size of flat networks used to benchmark
and evaluate algorithms within the optimization literature and empirical observations on transportation networks such as those
surveyed by Lin and Ban (2013). For example, Boland’s algorithm was benchmarked on flat networks with up to 30 nodes, 700
arcs, and 400 commodities whereas intermodal networks surveyed by Lin ranged from hundreds to thousands of nodes. Within the
operations research community Sanchez et al. (2018) emphasize the need for studies backed by a strong experimental design and
tout the benefits of a Nearly Orthogonal Latin Hypercube (NOLH) approach. Such benefits include the ability to identify combinations
of factors leading to high impact scenarios and the ability to visualize the extent to which runs have covered an experimental design
space.

The importance of understanding CI interactions is echoed by a recent report by RAND (Engstrom, 2018), which emphasizes
the need for a system-of-systems perspective when thinking of disruption models. Within the critical infrastructure security
literature, DiRenzo et al. (2017) provide an overview of cyber-based threats to the MTS. In addition, the modeling and simulation
community has conducted several studies looking at inter-infrastructure impacts to shipping networks (Pant et al., 2011; Bou-Harb
et al., 2017; Cimino et al., 2017; Beyeler et al., 2004). The economics literature also estimates the impact of port disruptions.
nput–Output (I–O) models have been used to relate goods coming out of a port to dependent industries (Danielis and Gregori, 2013)
s well as estimate the impact of disruptions encompassing all hazards ranging from terrorist attacks (Park, 2008; Rose, 2009), cyber
ttacks (Rose, 2009), and port shutdowns (Wei et al., 2020; MacKenzie et al., 2011; Rose and Wei, 2013). In fact, a decision-support
ystem that estimates the economic consequence of maritime cyber threats, fits into several of the Coast Guard’s strategic priorities
nd this is discussed further by Rose et al. @in Rose et al. (2017). Pant et al. (2011) coupled the output of a simulation of the
ovement of imported goods through a port with an I–O model to estimate the economic impact of disruptions. In addition, work
one by Hummels et al. (2007) and Minor (2013) focuses on losses from short-term (1–2 day) delays due to on-loading/off-loading
nefficiencies.
This article intends to integrate and extend state-of-the-art techniques in modeling the economic impact of cyber-originating

isruptions to shipping ports with applicability to intermodal transportation systems in general. We now describe how each of our
our contributions extends previous research discussed above.
First, the results of our article contribute to a holistic risk assessment approach based on sound experimental design to identify

igh economic impact scenarios from cross-infrastructure, inter-organizational disruptions. In addition, our adjacency matrix, of
yber–physical interactions—with real-world disruption attestations shown in Table 4—explicitly encodes general information
ependencies between the Communications/IT and Transportation sectors. These general information dependencies are translated
o factor ranges for assets in a specific transportation network. These factor ranges specify a disruption profile used to generate
OLH experimental design matrices.
Second, with respect to solving multi-commodity flow problems on large-scale networks, our extensions to the state-of-the-art

DD optimization algorithm improve the scalability and applicability of existing approaches. In order to accommodate disruptions,
otivated by the need to study what-if scenarios for risk assessments, we added the ability to model late-arriving commodities.
oreover, we add the modeling of per-unit-rate capacities on nodes and arcs, to the existing DDD algorithm.
Third, we conduct extensive empirical and computational analysis on instances larger than those in recent literature. Specifically

he size of the transportation networks, number of commodities, and planning horizon for the optimizer are larger. These problem
nstances are motivated by cyber-originating disruptions on transportation networks such as those surveyed by Lin and Ban (2013).
he network size in our Port Everglades study is comparable to the local transit networks surveyed by Lin (using an L-space
epresentation Lin and Ban, 2013), but larger than those used for network optimization benchmarks and Boland’s case study (Boland
t al., 2017). Moreover, we adapt the Pant et al.’s simulation model of commodity movements through a terminal operator and use
t as a template to represent the four terminal operators in our Port Everglades’ transportation network. In addition, the number of
ommodities we consider, derived from vessel schedules and cargo manifests provided by Port Everglades, is an order of magnitude
arger. Finally, in order to see significant economic losses to commodity values as well as model the duration of real-world cyber
isruptions, we considered a longer planning horizon (one week) versus the prior work considering 5 days.
In order to understand the economic impact of cyber-originating disruptions, we estimate direct business losses due to cargo

elays. Specifically, we translate physical cargo volumes into dollar values and use our DDD algorithm to get a conservative
stimate on losses from delay costs. Given that the duration of disruptions due to cyberattacks can be much longer than short-term
n-loading/off-loading inefficiencies—it took ten days for Maersk to recover from NotPetya (Mathews, 2017)—we extended and
dapted work by Hummels and Minor to extrapolate loss functions for commodities delayed over longer periods of time than the
4

revious literature.
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3. Modeling cyber–physical dependencies in shipping ports

The characteristics of cyber-originating disruptions are different from other types of disruptions to intermodal transportation
systems such as extreme weather conditions or other rare events. First, intelligent adversaries can target specific infrastructure assets
at particular times to maximize the impact (or secondary impact) of the event. In contrast, extreme weather conditions or other rare
events cannot target specific infrastructure assets or flows at a particular time. As such, adversaries may even choose to launch a
cyber attack opportunistically in combination with another event such as a natural disaster. For example, after Hurricane Harvey,
there was an increase in spam posing as the Red Cross asking for donations. Cyber attacks are harder to predict than weather and as
a result, the time to prepare and respond is shorter, motivating the need for optimal response. Second, depending upon the target,
cyber attacks can simultaneously affect geographically distant locations. For example, the Maersk NotPetya incident simultaneously
affected several of Maersk’s global terminal operations. In contrast, kinetic disruptions are limited to the geographic area in which
they occur. Third, the trigger for cyber attacks may be logical, based on the overall state of the transportation system rather than
at a particular time. For example, a disruption to a particular type of cargo being unloaded by a specific company may result in
larger economic losses than a physical disruption of longer duration. Finally, the time scale at which cyber attacks can occur and
their impacts persist is different than that of physical disruptions. For example, electrons may move through copper communications
networks at the speed of light. In contrast, vehicle movements on a transportation network occur on the scale of minutes. The fact
that the timelines for events on the transportation network versus that of a communication network are at very different levels of
precision motivates us to explore continuous-time methods. A discrete time step within the transportation domain timeline may
undersample cyber events occurring in a short timeframe. In contrast, a discrete time step within the communications/IT domain
timeline may oversample given a lack of events occurring within the transportation domain when no events are occurring and
instead increase problem size leading to intractability. Thus we present a continuous-time algorithm for the recovery of the network
from these disruptions in Section 4.

Consequently, we explicitly represent dependencies of different types of intermodal transportation assets on information provided
y network services as an adjacency matrix. Table 1 encodes a template for an adjacency matrix of information dependencies
etween communications/IT network assets (blue rows) and transportation network assets (orange columns). Specifically, the
emplate is expressed in terms of the infrastructure networks’ semantic attribute values. These dependencies, if present, affect values
f transportation network queueing parameters (see Table 4) depending on the threat profile. Disruptions to such dependencies can
ffect the flow of commodities through a port by affecting gate service times, routes taken, traffic congestion, crane rates, and other
ransportation network performance factors.Entries in the corresponding table document attestations of real-world disruptions for
given dependency and may be used to inform the construction of realistic disruption profiles based on the unique characteristics
f cyber-originating disruptions. For example, a disruption profile could be constructed to target a specific terminal, type of
ransportation asset, or communication service within a port network. Since our disruption profile is based on logical dependencies,
he affected transportation assets may or may not fall within a contiguous geographic region, consistent with the second unique
haracteristic of cyber-originating disruptions versus other hazards. Finally, this approach sets the stage for modeling cyber attacks
ased upon the state of the transportation system, by integrating our optimization algorithm with a discrete event simulation (Weaver
nd Marla, 2019; Weaver et al., 2019). We now provide a brief overview of the different types of technologies upon which shipping
ort operations depend and associated potential disruptions.
Table 2 encodes a template for an adjacency matrix of information dependencies between communications/IT network assets

nd transportation network assets. Specifically, the template is expressed in terms of the infrastructure networks’ semantic attribute
values. These dependencies, if present, affect values of transportation network queueing parameters (see Table 4) depending on
the threat profile. As such, transportation network parameters are instantiated relative to dependency between a cyber asset and
transportation network asset involved. An example of such a network is illustrated in Fig. 1. For example, Broward County, as
landlord of Port Everglades, is responsible for gate service times and crane rates for transportation network assets, depend upon Gate
Kiosk and Crane HMI availability and performance within the Broward County comms/IT network. In contrast, Crowley, as terminal
operator, has their own gate kiosks to ensure efficient movements to/from the Container Yard. These cross-layer dependencies
determine how experimental transportation network factors (queuing parameter values) are sampled relative to a threat profile as
described in Section 7 of our paper.

Both port harbormaster and vessel pilots depend upon the Automatic Identification System (AIS) and Global Positioning System
(GPS). AIS connects new real-time information sharing among ships, via base stations and satellites, to supplement radar to prevent
collisions at sea (DiRenzo et al., 2017). GPS, an essential positioning, navigation, and timing service, has been jammed and spoofed in
the past, rendering vessels unable to navigate correctly (Burgess, 2019; Anon., 2013; Newman, 2017) and interfering with the ability
o track cargo (Anon., 2014). In addition, vessels may depend upon Programmable Logic Controllers (PLCs) for their engines and/or
allast (Muccin, 2016). Any of these cyber-originating disruptions have the potential to disrupt the ability to navigate shipping
ort channels by reducing capacity or completely blocking movement or degrading on-board systems (Cimpanu, 2019b). Based on
ieldwork as part of the Jack Voltaic v 3.0 exercises (Vavra, 2020), such a disruption could take from two days to two weeks to clear,
epending upon whether hazardous cargo was involved as well as the size of the vessel. More recently the mega-container vessel
ver Given blocked the Suez Canal for six days; this disruption resulted in an estimated loss of $400M USD per hour (LaRocco,
021).
Gantry cranes increasingly depend upon technologies to rapidly identify and locate shipping containers while loading and

nloading containers from vessels once docked. For example, both Optical Character Recognition (OCR) and Radio-Frequency
5

dentification (RFID) tags can be used by crane systems (Anon., 2017). Such systems, if the communications network is degraded or



Transportation Research Part C 137 (2022) 103423G.A. Weaver et al.

2

2
a
n
i

c
i
(
n
o
d
w

Fig. 1. An example cyber–physical network for stakeholders based upon fieldwork at Port Everglades used in Section 7. The transportation network 𝐺𝑇 𝑟𝑎𝑛𝑠 (the
flat network 𝐷 in Section 4) is illustrated in orange while the corresponding, per-stakeholder communications/IT networks are illustrated in blue. Potential
dependencies and associated disruptions between types of assets in the two layers are encoded by an adjacency matrix shown in Table 1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

connectivity lost, may result in slower crane rates. Typical crane rates at ports are 22–26 TEU moves per hour, but this may be as
large as 30 TEU moves per hour. These faster rates are driven by the need for more efficiency to accommodate larger vessel sizes
due to increased trade volumes and the formation of alliances among major ocean liners.

Within a container yard, terminal operators depend upon systems to manage vessel stow plans, optimize container storage in
the yard, and coordinate container arrivals and departures across multiple modes of transportation. For example, the Terminal
Operating System (TOS) is responsible for several of these functions within the port and if disrupted, can have a large impact on
container dwell times, gate service time, and effective road capacity due to traffic congestion. In 2017, a modified version of the
Petya ransomware, NotPetya, infected systems within Maersk. Maersk’s operations were affected at several ports for days, resulting
in inoperable TOS and Gate Operating Systems (GOS) (Greenberg, 2018). This ransomware incident forced Maersk to reinstall a
reported 4000 servers and 40,000 PCs in a period of 10 days (Osborne, 2018) and cost Maersk and estimated $200M (Mathews,
017). A study of the impact of a ransomware attack on 15 Asia-Pacific ports estimated a $101 Bn insurance gap Anon. (2019).
Additional ransomware attacks have been experienced by the Port of Long Beach Cimpanu (2019a), the Port of San Diego (Anon.,
018), the Port of Barcelona (Tsonchev, 2018), the Port of Kennewick (Anon., 2020c), and the impacts of the Ryuk ransomware in
maritime organization are documented by DHS CISA alert AA20-049 (Anon., 2020a). Other systems that could be impacted by
etwork latency or loss of connectivity due to unauthorized access (Mohindru, 2017) include customs inspection databases, resulting
n longer container yard dwell times.
Larger vessel sizes also drive demand for access roads and intermodal rail connections, demands which if not met, increase

ongestion of land-side operations and costs due to delays. Movements of containers depend upon a variety of systems to process
ncoming/outgoing trucks (e.g. TWIC, VOIP, OCR, RFID) and coordinate and document movements across transportation modes
e.g. EDI). For example, when a truck arrives/leaves a port through a gate, the gate kiosk used to confirm identity and booking
umber may depend upon Voice Over IP (VOIP) for communications with a gate clerk, as well as OCR or RFID and video. An attack
n the network’s quality of service (e.g. the VOIP attack in WI Anon., 2016), could result in longer gate service times. Similarly, a
isruption to trucks’ Electronic Logging Devices (ELD), could affect their operation and result in severe financial damage to companies
ithin the trucking industry Simpson (2018). Furthermore, under the Maritime Transportation Safety Act (MTSA) of 2002, employees

must have a Transportation Worker Identification Credential (TWIC) in order to get into US port facilities. Some ports use these TWIC
6

cards to determine physical access to port facilities by looking up scanned cards in an access control database. Hacking the TWIC
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Table 1
Cyber–physical dependencies within shipping ports. Each entry documents functions provided by a network service (blue rows) upon which transportation network
assets (orange columns) depend. Where appropriate, references identify historically-attested disruptions to the corresponding cyber–physical dependency.
Cyber–physical dependencies and disruptions within shipping port container operations

Shipper,
Trucking Co.

Landlord Port,
Terminal Operator

Terminal
Operator

Landlord Port Shipping Co. Shipping Co.
Landlord Port

Shipping
Co.

Other

Distribution
Center

Gate Container Yard Gantry Crane Vessel Channel Sea

AIS Harbormaster:
Vessel
Positioning
and Metadata

Vessel Pilot:
Navigation

GPS Jamming GPS
Cargo Trackers
(Anon., 2014)

Harbormaster:
Positioning,
Navigation,
Timing
(Burgess,
2019;
Anon., 2013;
Newman,
2017)

Vessel Pilot:
Positioning,
Navigation,
Timing

OCR Container
Identification,
Gate kiosk video

Container
Identification

RFID Container Identifi-
cation

Straddle:
Container
Identification

Container
Identification

TOS GOS: Booking
confirmation,
Container location
(Greenberg, 2018)

Bobcart/Straddle
Container
location

Container
location in
stow plan
and yard
(Bateman,
2013).

Container
location in
vessel stow
plan

Shen Virus,
Lloyds (Anon.,
2019), COSCO
Terminal Ryuk
(Cimpanu,
2019a);
Barcelona
(Tsonchev,
2018),
San Diego
(Anon., 2018),
Kennewick
(Anon.,
2020c)

TWIC GOS: Access Con-
trol to port facili-
ties

TWIC
Database Hack
(McGlone,
2014)

VOIP Gate kiosk phone Corporate:
TO voice
communications

WI Law
Enforcement
(Anon., 2016)

EDI Container
release
outgate
messages
from TO.

GOS:
Container release
outgate to Ship-
per, Booking num-
ber from Trucking
Co to TO.

Container
arrival message
to Ship-
per/Customers,
Container
location to
Trucking Co.

Send
container
discharge to
Shipping Co.

Receive cargo
manifest from
Shipper.

Receive
container
discharge
from TO.

Vessel
request
berth to TO

Other Contractor
(Mohindru,
2017),
Electronic
Logging
Device
(ELD)
(Simpson,
2018)

Engine PLCs,
(Muccin,
2016),
(Cimpanu,
2019b)

Vessel
Navigation
(Newman,
2017)

DC Police,
RDP (Green,
2017;
Cimpanu,
2019a)

database, as attested to in McGlone (2014), could result in longer gate service times, traffic congestion, and inability to access

port facilities. Similarly, compromising video surveillance systems (Green, 2017). Finally, Electronic Data Interchange (EDI) uses
7
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standard messaging formats among shipping companies, Terminal Operators (TOs), and drayage companies to coordinate container
movements. EDI compromises could potentially slow down the transfer of containers across stakeholders’ organizational boundaries.

4. Optimized disruption recovery: Model and algorithm for network design and commodity flows

Given a mapping of the cyber disruption to the physical transportation system as described in Section 3, our algorithm for the DC-
TSNDP may be used to optimize and recover disrupted commodity routes across a variety of intermodal transportation networks at
ifferent geographic scales (Weaver, 2021a,b). However, as described in Section 3, it is especially motivated by historically observed
yber–physical disruptions and their characteristics; in particular, the ability to have flexible time-scales and to solve problems with
arge number of commodities scalably.
Before describing the details of our Dynamic Discretization Discovery (DDD) algorithm for the DC-CTSNDP, we first discuss the

asic CTSNDP problem and provide a sketch of the DDD for that setting. The DDD algorithm for CTSNDP begins with a minimal
iscretization consisting only of points where events occur, such as the earliest available times of commodities and the latest
elivery times, and similarly for vehicles. This low or partial discretization captures all travel times between points on the static
etwork as equal or lower than the true travel times. Such discretization also allows for the maximum consolidation of shipments
r commodities, and a solution of the network design problem on this partially expanded time–space network provides an infeasible
ower bound. Repairing this solution involves checking if the movements prescribed by the solution can be executed without any
f the travel times being shorter than they truly are; and if so, generating a feasible set of movements. If not, arcs that need to
engthened to their correct length are identified, which also indicates some required points of discretization to create a feasible
olution. In the process, nodes and arcs that are required to be added to the partially time–space network are identified. This
epaired solution provides a feasible upper bound. If the upper bound is optimal, the algorithm terminates. Otherwise, new arcs to
e lengthened and points of discretization to be added are identified iteratively, and the algorithm is again solved to find a new
ower bound and upper bound. The algorithm continues until the upper bound is provably optimal or near-optimal.
In this paper, we are interested in solving the DC-CTSNDP, in which commodities are allowed to be delayed and where the nodes

nd edges have further time-based capacities. That is, the first extension is to model commodities being delayed at the destination.
ecause our goal is to capture re-routing and re-scheduling under disruptions, the consequent delays and their associated costs; it is
ssential to allow commodities to potentially arrive later than the scheduled delivery time. The CTSNDP does not allow the capture
f such delays. The modeling challenge in allowing delayed arrivals is that the amount of delay required to allow successful delivery
f the commodity to minimize the combination of vehicle costs and delay costs is unknown a priori. The second extension is to model
er-unit-time capacities on nodes and arcs. That is, on each physical link (roads) in the network, we wish to allow a certain flow
ate of vehicles that transport commodities in unit time (e.g., vehicles through a gate per unit time or vehicles in a road per unit
ime). Because the time discretization is not fixed a priori, it is not straightforward to capture these capacity constraints. To solve
he more complex DC-CTSNDP, we now expand on the DDD approach of Boland et al. (2017) and Vu et al. (2020), to incorporate
eatures not present in the original models.
The port’s land-side transportation network, represented by static network 𝐷 in our model, consists of several terminals connected

y roadways as well as entry and exit gates to and from the port. Specifically, we employ a modified version of the transportation
etwork used in our simulation study in Weaver et al. (2019), which consisted of the following stakeholders: (1) landlord port
e.g. Broward County) — crane operations and port gate operations, (2) terminal operators (e.g. Crowley, MSC, FIT, King Ocean) —
ovement from shore to land via Container Yards and Terminal Gates, (3) Drayage Companies — responsible for TEU movement
rom Container Yard out of Port, and (4) shipping companies: responsible for vessel movement from Seaway to Cranes. Each of
he terminals consists of a subgraph that reflects the queueing network topology of Pant’s simulation model (Pant et al., 2011).
pecifically, a terminal subgraph consists of a berth where commodity shipments arrive, gantry cranes that offload shipments,
container yard where commodities are stored, and terminal gates where containers move from the terminal to intermodal port
oads. From the complex transportation networks perspective, our port network is an L-space representation in which ‘‘steps or states
re vertices and two vertices are connected if they are consecutive on an arbitrary route’’ (Lin and Ban, 2013). Port transportation
etwork components have limited ability to process containers per unit time. For example, roadways have a limited vehicle capacity
nd crane rates specify the number of TEU per hour that can be moved. Therefore, transportation network nodes in the static
etwork 𝐷 are initialized with queueing attributes as shown in Table 4 and expressed as optimization constraints to enforce rates
in a continuous-time framework.

Containers moving through the port network are represented as commodities 𝐾. A given commodity 𝑘 ∈ 𝐾 represents a single
twenty-foot equivalent container (TEU) and contains a single commodity type represented by a 2-digit HS code. The commodity
type affects the loss function should that TEU arrive to its destination after its latest delivery time (LDT) . Finally, given that multiple
terminals are represented in 𝐷, other domain-specific considerations, such as that all containers offloaded from a given liner must
e routed through that liners’ terminal, are captured by side constraints that can be turned on depending upon the scenario.
In order to model disrupted commodity movements, in which TEU may arrive to their destination well after their LDT, we

developed delay nodes and arcs. For cyber-originating disruptions, the location and magnitude of a disruption, expressed as changes
in a transportation component’s queueing attributes, depends upon its dependencies on information provided by services accessed via
computer networks. These information dependencies between network services and types of transportation network assets (e.g. gates,
cranes), and how they are used to create a disruption profile, have been described in Section 3. Finally, port stakeholders need the
ability to relate disruptions to communications network services to economic losses, Section 5 describes our approach which required
extending loss functions in the willingness to pay literature from short 1–2 day delays to longer 6–10 day disruptions as seen in
8

recent ransomware attacks.
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Fig. 2. Flow chart describing our proposed algorithm (Algorithm 1). Bold lines describe the main algorithm and dashed lines the comparison with the upper
bound.

4.1. Sketch of algorithm

The flowchart in Fig. 2 presents an overview of our novel algorithmic approach to solving the CTSNDP including delay and
er-unit-time vehicle flow-related capacity constraints. The steps that check for capacity violations ‘‘are links over capacity?’’ and
elays ‘‘are delay arcs too long?’’, and the associated ‘Refine’ and ‘convert’ algorithms to address constraint violations are novel
dditions to the techniques proposed in Boland et al. (2017) and Vu et al. (2020).
The model proposed by Boland et al. (2017) and Vu et al. (2020) begins with a ‘flat’ or static network or graph  = ( ,), which

represents the physical connections from ships, to and within the port, and to delivery points in the supply chain.  represent the
physical locations in the network and  represent the existing directed connections between these nodes. For each arc 𝑎 = (𝑖, 𝑗) ∈ ,
here exist parameters 𝜏𝑖𝑗 ∈ N>0 that represent the travel time, capacity 𝑢𝑖𝑗 ∈ N>0, per unit flow costs 𝑐𝑖𝑗 ∈ R>0, and fixed costs
𝑓𝑖𝑗 ∈ R>0. 𝐾 denotes a set of commodities that needs to be moved on this network, in space and time. Specifically, each commodity
𝑘 ∈ 𝐾, of quantity 𝑞𝑘, should be moved from its origin 𝑜𝑘 ∈  to its destination 𝑑𝑘 ∈  . 𝑒𝑘 > 0 is the time that commodity 𝑘
ecomes available at its source and should be delivered to its destination by time 𝑙𝑘. The basic service network design problem is to
esign the underlying network of vehicle movements that facilitate commodity flows from their sources to sinks within the specified
ime windows while minimizing the sum of fixed costs and flow costs.
These problems are typically solved using a time–space network representation, which consists of the flat network expanded in

ime, where time is discretized in small increments (usually 5 or 10 min) that represent possible action points. However, we run into
ssues of intractability when the number of commodities in these networks are large. Boland et al. (2017) address the considerable
calability challenges using a continuous time solution approach. In this approach, discretization by time is introduced dynamically
s needed (Vu et al., 2020), starting from a partially expanded or discretized network where only time points of interest are captured
9

each point in space are captured, at some selected points in time). The (partial or full) time-expanded network is referred to as  ,



Transportation Research Part C 137 (2022) 103423G.A. Weaver et al.

N
c
t

r
s
t
n
p
n
o

u
p
a

S

where  = ( , ∪ ). The initialization of this network without modeling delays is described in lines 1–13 of Algorithm 2.
ote that because only some nodes are included, the arcs in the partially expanded time–space network, by construction, are ‘short’
ompared to the true travel times on the corresponding arcs on the flat network. The initial construction of the network allows for
he highest possible consolidation of the commodities with least cost, even if infeasibility can occur.
The solution to 𝑆𝑁𝐷( ) on the partially expanded time–space network is thus a dual-type lower bound. The solution when

epaired (using the Construct Feasible Solution Problem) creates a feasible solution which is an upper bound. If the upper bound
olution can be shown to be optimal or the gap is small, then the algorithm terminates. Else, the current solution cannot be converted
o an equivalent feasible solution, and the algorithm discovers new time points to be added to the partially expanded time–space
etwork that allow for further discretization of the partially-time expanded network. The authors demonstrate that because these
artially expanded time–space networks also conform to some basic principles that are also satisfied in fully-discretized time–space
etworks, infeasibilities are detected in each iteration and the network is appropriately expanded, the algorithm arrives at the
ptimal solution.
In this paper, we expand the above algorithm to include the ability to capture delayed delivery of commodities (when delays are

nknown a priori), and approximately capture per-unit-time vehicle-flow capacities corresponding to the number of vehicle flows
er unit time. To capture these aspects, we introduce new aspects into the network construction in the form of delay arcs, and hold
rcs. We describe these new network construction aspects in Sections 4.2.1 and 4.2.2 .

Algorithm 1 (SOLVE-CTSNDP)

Require: Flat network  = ( ,), commodity set 
1: Create a partially time-expanded network  satisfying Properties 1–4
2: while not solved do
3: Solve SND( )
4: Determine whether the solution to SND( ) contains any arcs that are ‘‘too short’’
5: if arcs are ‘‘too short’’ then
6: Refine the partially time-expanded network  by correcting the length of at least one such arc
7: else
8: if links are ‘‘over capacity’’ then
9: Refine the partially time-expanded network  by adding at least one such hold and travel arc
10: else
11: if delay arcs are ‘‘too long’’ then
12: Refine the partially time-expanded network  by correcting the length of at least one delay arc
13: else
14: The solution to SND( ) can be converted to a feasible solution to CTSNDP with the same cost
15: Stop. The converted solution is optimal for CTSNDP.
16: end if
17: end if
18: end if
19: end while

We introduce additional notation for the problem:
ets:

•  : set of nodes (locations) in the flat network;
• : set of arcs (links) in the flat network;
• : set of commodities to be transported on the service network, indexed by 𝑘;
•  be the subset of commodities in  that are allowed to arrive late;
•  : set of time points at which the time–space network is expanded, with  = ∪𝑖∈ 𝑖;• 𝑖: set of time points {𝑡𝑖1, 𝑡

𝑖
2,… , 𝑡𝑖𝑛𝑖}, 𝑡

𝑖
1 < 𝑡𝑖2 < ⋯ < 𝑡𝑖𝑛𝑖 , at which node 𝑖 ∈  is expanded;

•  : set of nodes in the partially expanded time–space network, described as (𝑖, 𝑡) where 𝑖 ∈  and 𝑡 ∈ 𝑖;•  : set of travel arcs in the partially expanded time–space network that connect some (𝑖, 𝑡) and (𝑖, 𝑡), where (𝑖, 𝑗) ∈ 𝐴;
•  : set of holdover arcs in the partially expanded time–space network that connect some (𝑖, 𝑡) and (𝑖, 𝑡), 𝑖 = 𝑗, 𝑡 ∈ 𝑖;• ′

 be a subset of  where the travel time for an arc is positive (travel arcs);
• ′′

 be a subset of  where the travel time for an arc is negative (delay arcs);
• ′′′

 be a subset of  where the source or destination node is a delay node

Parameters:

• 𝑜𝑘, 𝑑𝑘: origin location of commodity 𝑘 and destination location of commodity 𝑘
• 𝑒𝑘, 𝑙𝑘: earliest available time at origin 𝑜𝑘 and latest delivery time at destination 𝑑𝑘 for commodity 𝑘
• 𝑞𝑘: quantity or demand of arc (𝑖, 𝑗) to be transported from origin to destination
• 𝑓𝑖𝑗 : fixed cost of ‘installing’ arc (𝑖, 𝑗) in the static network, incurred based on the number of times the arc (𝑖, 𝑗) must be installed
to allow movements from location 𝑖 to location 𝑗 between any times 𝑡 to 𝑡,

• 𝑐 : variable (or handling) costs of using arc (𝑖, 𝑗) in the static network,
10
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• 𝑢𝑖𝑗 : capacity of arc (𝑖, 𝑗) in the static network, for each time the arc is used,
• 𝑑𝑒𝑙𝑎𝑦_𝑐𝑜𝑠𝑡𝑘: fixed delay charge cost charged to the shipper for any amount of delay, for commodity 𝑘,
• 𝛥𝑘: the maximum time commodity 𝑘 is allowed to be delayed by,
• 𝑑𝑒𝑙𝑎𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑟𝑎𝑡𝑒𝑘: rate at which a late arriving commodity is penalized per unit of time,• 𝑑𝑒𝑙𝑎𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑙𝑖𝑚𝑖𝑡𝑘: upper bound to the total delay penalty for commodity 𝑘

We will define variables for each problem as we describe the steps of the algorithm.
The following Properties 1–4 should hold for the consistent construction of the partially-expended time–space network at each

teration of the algorithm, as described in Boland et al. (2017). Our additions in the construction of delay nodes, delay arcs, and
per-unit-time vehicle-flow capacities will also obey these properties. Moreover our enhanced algorithm maintains these properties
at each iteration and modification of the partially expanded time–space network to ensure that repeated re-solving of the 𝑆𝑁𝐷(𝜏 )
always yield a lower bound to the true problem.

Property 1. For all commodities 𝑘 ∈ 𝐾, the nodes (𝑜𝑘, 𝑒𝑘) and (𝑑𝑘, 𝑙𝑘) are in 𝜏 .

Property 2. Every arc ((𝑖, 𝑡), (𝑗, 𝑡)) ∈ 𝜏 has 𝑡 ≤ 𝑡 + 𝜏𝑖𝑗 .

Property 3. For every arc 𝑎 = (𝑖, 𝑗) ∈  in the flat network, , and for every node (𝑖, 𝑡) in the partially expanded network, 𝜏 =
(𝜏 ,𝜏 ∪𝜏 ), there is a timed copy of 𝑎 in 𝜏 starting at (𝑖, 𝑡).

Property 4. If arc ((𝑖, 𝑡), (𝑗, 𝑡′)) ∈ 𝜏 , then there does not exist a node (𝑗, 𝑡′′) ∈ 𝜏 with 𝑡′ < 𝑡′′ ≤ 𝑡 + 𝜏𝑖𝑗 .

4.2. Network construction

Algorithm 2 describes the initialization of the network. At this step, nodes that capture both time and space, in particular, (𝑜𝑘, 𝑒𝑘)
and (𝑑𝑘, 𝑙𝑘), which are the origin location and time of commodity 𝑘 and the destination location and delivery time of commodity 𝑘
respectively, are added. For all locations, the nodes (𝑢, 0) are added to represent that movements can begin at each location after
time 0. For every time–space node thus created in this network, arcs that are shorter than the true travel time to each connected
location are added. We also include holdover arcs that connect two nodes at the same location but successive times for which nodes
exist — representing the storage of a commodity at a given location for a time spanning the difference between the head and tail
nodes of the arc. Thus, the commodity can arrive early at the location and depart at a later time. Fig. 3 illustrates such initialization
with an example.

4.2.1. Late commodities
Let the maximum allowed delay for commodity 𝑘 be 𝛥𝑘. Each commodity 𝑘 arriving late has a delay penalty per unit time of 𝑝𝑘

associated with it. Moreover, we allow the ability to impose a maximum delay penalty cost that can upper bound the total penalty
cost. To model these aspects, we introduce the concept of delay nodes and delay arcs.

Delay node: A delay node is a node in the partially time expanded network at the commodity’s destination location, 𝑑𝑘, with
a time, 𝑙𝑎𝑡𝑒 (𝑙 < 𝑙𝑎𝑡𝑒 ≤ 𝛥 ), for commodity 𝑘. Each delay node has a commodity associated with the node because we restrict
11

𝑘 𝑘 𝑘 𝑘



Transportation Research Part C 137 (2022) 103423G.A. Weaver et al.

b

t
t
r

a
a

4

i
s
t

Fig. 4. Construction of delay nodes and arcs and repair-and-restore of the network to capture shorter delays as required.

this portion of the partially expanded network only to the delayed commodity. Note that there could be multiple delay nodes per
commodity 𝑘.

Delay arc: A delay arc connects the delay node in the partially time expanded network to the delay node that is closest in time
efore it, or to the destination node (𝑑𝑘, 𝑙𝑘), for the commodity. The ‘‘travel time’’ assigned to the delay arc is equal to the negative
of the time difference between the nodes it connects. Travel times on delay arcs will always be negative, and allows constraint (4) of
he minimum cost problem 𝑆𝑁𝐷( ) to be satisfied. To include delay arcs in the initialized network, we introduce operations 14
hrough 25 into Algorithm 2 to allow the initialization of delay arcs. Fig. 4 illustrates the initial construction of delay arcs, and
efine and restore steps in Algorithms 9, 10, and 11.
The existence of both holdover and delay arcs indicates that there are times when it would be beneficial for a commodity to

rrive late to its destination because the consolidation of commodities could result in an overall lower cost in terms of capacity
vailability.

.2.2. Modeling per-unit-time vehicle-flow capacities
We define three new terms to help capture per-unit-time vehicle-flow capacities.
Cycle Time (𝐶𝑇𝑖𝑗): To capture the rate at which vehicles, each with a capacity for commodities can enter a link (𝑖, 𝑗) ∈ 

n the network, we define the amount of time needed before a new vehicle can utilize an established service link. For example, a
hipping lane and dock might only have space for a single ship. The ship needs to enter the shipping land, dock, unload and clear
he shipping lane before another ship can utilize the shipping lane and dock. Similarly, trucks might be separated by a couple of
12
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minutes before entering a roadway to avoid congestion on the roadway. In the former example the cycle time for the link might be
quite large, and short in the latter example. The cycle time is defined per link in the service network.

Consolidation Time (𝐶̄): When the cycle time is short, we will be adding a large number of arcs to the partially time-expanded
etwork  . To avoid increasing size of  , we define consolidation time. Consolidation time groups arcs with a cycle time less
han the consolidation time into a single arc with a corresponding capacity increase. For example, if 𝐶𝑇𝑖𝑗=10 and 𝐶̄ =10, we create
single arc at the current time with a capacity of 𝐶̄

𝐶𝑇𝑖𝑗
= 1 (consolidation time divided by the cycle time). Another arc will be added

t the current time plus the consolidation time. Fig. 5 demonstrates the addition of travel arcs to capture per-unit-time vehicle-flow
capacities.

Hold Arc: Like holdover arcs, we introduce the concept of hold arcs that represent the storage of a commodity at a given node,
but must stay at that node for a given amount of time, 𝜏𝑖𝑖 > 0. Hold arcs are added to  as they are part of the total time it takes
for the commodity to travel through the service network, and are used for accounting purposes.

4.3. Algorithm components

Algorithm 2 (CREATE-INITIAL)

Require: Directed network  = ( ,), commodity set 
1: for all 𝑘 ∈  do
2: Add node(𝑜𝑘, 𝑒𝑘) to 
3: Add node(𝑑𝑘, 𝑙𝑘) to 
4: end for
5: for all 𝑢 ∈  do
6: Add node(𝑢, 0) to 
7: end for
8: for all (𝑖, 𝑡) ∈  do
9: for all (𝑖, 𝑗) ∈  do
10: Find largest 𝑡′ such that (𝑗, 𝑡′) ∈  and 𝑡′ ⩽ 𝑡 + 𝜏𝑖𝑗 and add arc((𝑖, 𝑡), (𝑗, 𝑡′)) to 
11: end for
12: Find smallest 𝑡′ such that (𝑖, 𝑡′) ∈  and 𝑡′ > 𝑡 and add arc((𝑖, 𝑡), (𝑖, 𝑡′)) to 
13: end for
14: for all 𝑘 ∈  do
15: if 𝑘 has maximum delay time then
16: 𝑡𝑚𝑎𝑥 = 𝑙𝑘 + 𝛥𝑘
17: else
18: 𝑡𝑚𝑎𝑥 = MAX_ALLOWED_DELAY ⊳ Largest allowed value in optimizer
19: end if
20: Add delay node(𝑑𝑘, 𝑙𝑘 + 𝑡𝑚𝑎𝑥, 𝑘) to 
21: Add delay arc((𝑑𝑘, 𝑙𝑘 + 𝑡𝑚𝑎𝑥), (𝑑𝑘, 𝑙𝑘)) to 
22: for all arc((𝑖, 𝑡), (𝑑𝑘, 𝑙𝑘)) ∈  do
23: Add arc((𝑖, 𝑡), (𝑑𝑘, 𝑙𝑘 + 𝑡𝑚𝑎𝑥)) to 
24: end for
25: end for

Problem 1. Problem 𝑆𝑁𝐷( ) that solves for minimum cost flow on a partially discretized network

𝑧( ) = 𝑚𝑖𝑛

⎧

⎪

⎨

⎪

⎩

∑

((𝑖,𝑡),(𝑗,𝑡))∈

𝑓𝑖𝑗𝑦
𝑡𝑡
𝑖𝑗 +

∑

𝑘∈

∑

((𝑖,𝑡),(𝑗,𝑡))∈

𝑐𝑖𝑗𝑞𝑘𝑥
𝑘𝑡𝑡
𝑖𝑗

⎫

⎪

⎬

⎪

⎭

(1)

s.t.
∑

((𝑖,𝑡),(𝑗,𝑡))∈ ∪

𝑥𝑘𝑡𝑡𝑖𝑗 −
∑

((𝑗,𝑡),(𝑖,𝑡))∈ ∪

𝑥𝑘𝑡𝑡𝑗𝑖

=

⎧

⎪

⎨

⎪

⎩

1 (𝑖, 𝑡) = (𝑜𝑘, 𝑒𝑘),
−1 (𝑖, 𝑡) = (𝑑𝑘, 𝑙𝑘), ∀ 𝑘 ∈ , (𝑖, 𝑡) ∈ 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

∑

𝑘∈
𝑞𝑘𝑥

𝑘𝑡𝑡
𝑖𝑗 ⩽ 𝑢𝑖𝑗𝑦

𝑡𝑡
𝑖𝑗 ∀ ((𝑖, 𝑡), (𝑗, 𝑡)) ∈  (3)

∑

𝜏𝑖𝑗𝑥
𝑘𝑡𝑡
𝑖𝑗 ⩽ 𝑙𝑘 − 𝑒𝑘; ∀ 𝑘 ∈ 𝐾 (4)
13

((𝑖,𝑡),(𝑗,𝑡′))∈
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Fig. 5. Creating copies of travel arcs to capture flows per unit time.

Table 2
Seven aggregate commodity categories and their delay cost functions. Given a commodity category and the length of delay, a percentage of TEU value lost
can be used to compute delay cost. The objective function of our DDD algorithm uses these loss functions to minimize delay costs when computing routes and
corresponding schedules.
Import commodity category loss parameters

Category Subcategory Inventory
holdings (days)

Initial
loss value

Loss threshold
(days)

Loss
adjustment

Trajectory Eventual loss Loss Pct

Perishables Short-term n.a. 1.93% 3 n.a. Exponential 100% end of day 3 100%
Long-term n.a. 1.51% 5 n.a. Exponential 100% end of day 5 100%

Just-in-time inputs n.a. 1.11% 1 n.a. Exponential 100% end of day 10 22.33%

Raw materials 15–30 1.75% 22 Double Linear 100% end of 3 months 2.25%

Non-durables 4–8 0.95% 6 Double Linear 100% end of 3 months 3.07%

Durables Producer 4–8 0.77% 6 n.a. Exponential 100% end of 1 month 2.10%
Consumer 8–15 0.89% 15 Double Linear 100% end of 3 months 1.28%

𝑥𝑘𝑡𝑡𝑖𝑗 ∈ {0, 1} ∀ 𝑘 ∈ , ((𝑖, 𝑡), (𝑗, 𝑡)) ∈  ∪ (5)

𝑦𝑡𝑡𝑖𝑗 ∈ N⩾0 ∀ ((𝑖, 𝑡), (𝑗, 𝑡)) ∈  (6)

Problem 1 minimizes the sum of fixed costs due to the establishment of links for vehicle movements and the variable costs
ue to the movement of commodities. (2) describes commodity flow balance constraints on the partially expanded time-expanded
network. Constraints (3) provide sufficient capacity for commodity travel between locations 𝑖 and 𝑗, between time 𝑡 and time 𝑡′.
Other constraints include the variable ranges and potentially constraining some commodities 𝑘 to not travel on a link (𝑖, 𝑗), we set
𝑥𝑘𝑡𝑡𝑖𝑗 = 0 for all 𝑘 ∈ . Constraint (4) is added particularly for commodities that can be delayed, and thus use one or more delay arcs,
ppended to the end of the path, for travel. The constraint indicates that the path chosen for each commodity by 𝑆𝑁𝐷( ), inclusive
of the negative travel time delay arcs used by the commodity, should not exceed the difference between the earliest available and
latest delivery times for the commodity. The output from Problem 1 is a path 𝑃𝑘 for each commodity, consisting of both travel arcs
nd holdover arcs, and also includes delay arcs for commodities that require additional time to be delivered at their destination.

roblem 2. Identify Arcs to Lengthen Problem

Problem 2 identifies arcs that are ‘too short’, that is, the movements and associated vehicle and commodity consolidations
esulting from solving 𝑆𝑁𝐷( ) which provide a dual infeasible solution cannot be converted into a corresponding feasible solution
f the same cost. Then, there exists an optimality gap between the (infeasible) dual solution and the feasible primal solution after
onversion.

𝑍 =𝑚𝑖𝑛
∑

𝑘∈

|𝑃𝑘|−1
∑

𝑗=1
𝜎𝑘𝑖𝑗 ,𝑖𝑗+1 (7)

𝜃𝑘𝑖𝑗 ,𝑖𝑗+1 ≥ 𝜏𝑖𝑗 ,𝑖𝑗+1 (1 − 𝜎𝑘𝑖𝑗 ,𝑖𝑗+1 ) ∀(𝑖𝑗 , 𝑖𝑗+1) ∈ ′
 (8)

𝜃𝑘𝑖𝑗 ,𝑖𝑗+1 ≤ 𝜏𝑖𝑗 ,𝑖𝑗+1 (1 − 𝜎𝑘𝑖𝑗 ,𝑖𝑗+1 ) ∀(𝑖𝑗 , 𝑖𝑗+1) ∈ ′′
 (9)

𝛾𝑘 + 𝜃𝑘 ⩽ 𝛾𝑘 , ∀ 𝑘 ∈ , 𝑗 = 1,… , |𝑃 | − 1, (10)
14

𝑖𝑗 𝑖𝑗 ,𝑖𝑗+1 𝑖𝑗+1 𝑘
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Table 3
List of data sources used to calculate the dollar value of international imports through Port Everglades on a monthly basis.
Data sources for analysis

Id Name Time period Description Source

DS-1 Vessel Schedules FY2017–2018 Provide the time of arrival/departure of vessels to/from PEV PEV Harbormaster
DS-2 Per-Vessel Commodities FY2017–2018 Provide the contents of vessels in terms of commodity type PEV PIERS Data
DS-3 Commodity Origins FY2017–2018 Provides the country of origin for each of the commodity types PIERS Data
DS-4 Commodity Values FY2018 Provides the dollar value of imports/exports for monthly

imported commodity types
Census

DS-5 Port Map 2017-Current Map of shipping port intermodal transportation networks. Shipping Port
DS-6 Satellite Imagery Current Imagery of port Google Earth
DS-7 Port Seaway GIS 2018 GIS data of seaways at the port USACE Waterways
DS-8 Port/Operator Contracts 2019 Include demurrage rates PEV
DS-9 Port Economic Reports FY2017–2018 Provides monthly import/export volumes for empty/loaded TEU PEV

𝑒𝑘 ⩽ 𝛾𝑘𝑜𝑘 ∀ 𝑘 ∈  (11)

𝛾𝑘
|𝑃𝑘|−1

+ 𝜃𝑘𝑖
|𝑃𝑘 |−1 ,𝑑𝑘

⩽ 𝑙𝑘 ∀ 𝑘 ∈ , (12)

𝛾𝑘1𝑖 = 𝛾𝑘2𝑖 , ∀ (𝑘1, 𝑘2) ∈ 𝐽((𝑖,𝑡),(𝑗,𝑡′)), ∀ ((𝑖, 𝑡), (𝑗, 𝑡′)) ∈ ̄ (13)

𝛾𝑘𝑖𝑗 ⩾ 0, ∀ 𝑘 ∈ , 𝑗 = 1,… , |𝑃𝑘| − 1, (14)

𝜃𝑘𝑖𝑗 ,𝑖𝑗+1 ⩾ 𝜏𝑘𝑖𝑗 ,𝑖𝑗+1 , 𝜎𝑘𝑖𝑗 ,𝑖𝑗+1 ∈ {0, 1}, ∀ 𝑘 ∈ , 𝑗 = 1,… , |𝑃𝑘| − 1 (15)

Let 𝑃𝑘 be the path of commodity 𝑘 found from 𝑆𝑁𝐷( ), represented by 𝑃𝑘 = {(𝑜𝑘, 𝑒𝑘) = 𝑖𝑘1 , 𝑖
𝑘
2 , 𝑖

𝑘
3 ,… , 𝑖𝑘

|𝑃𝑘|
= (𝑑𝑘, 𝑙𝑘)} that is the

sequence of 𝑝𝑘 nodes in the path. Note that this path is inclusive of delay arcs if some commodities are delivered late; in which case,
the last arc (𝑖𝑘

|𝑃𝑘|−1
, 𝑖
|𝑃𝑘|𝑘

) (and possibly the penultimate arcs of length zero) is a negative length delay arc. Let 𝜏𝑖𝑗 𝑖𝑗+1 be the travel
time modeled in the current partially expanded time–space network  for arc (𝑖𝑗 , 𝑖𝑗+1). Let 𝐽𝑎 be the set of all pairs of commodities
𝑘 that use arc 𝑎 ∈  . Also, let 𝐽 be the set of arcs that are shared by multiple commodities during travel, that is, they belong to
multiple paths 𝑃𝑘. We define variables 𝛾𝑘𝑖𝑗 as the dispatch time for commodity 𝑘 from node 𝑖𝑗 , 𝜃𝑘𝑖𝑗 𝑖𝑗+1 as the maximum travel time
on (𝑖𝑗 , 𝑖𝑗+1) for commodity 𝑘’s path to be feasible, and 𝜎𝑘𝑖𝑗 𝑖𝑗+1 as a binary variable that is 1 if arc (𝑖𝑗 , 𝑖𝑗+1) is allowed to be too short
when taken by commodity 𝑘.

The formulation (7)–(15) takes the solutions from 𝑆𝑁𝐷( ) and computes if these solutions are only feasible when some travel
or holdover arc (but not delay arc) is ‘too short’, that is, the travel time has to necessarily be lower than the true travel time. Boland
et al. (2017) formulate this problem for arcs with non-negative travel times (set′

 ). Thus, constraint (8) ensures that sigma takes on
value 1 only if 𝜃𝑘𝑖𝑗 ,𝑖𝑗+1 is forced to take a value less then the true travel time 𝜏𝑖𝑗 ,𝑖𝑗+1 for all arcs 𝑎 ∈ ′

 with non-negative travel times.
We extend this to delay arcs, which have non-positive travel times (set′′

 ), by adding a corresponding constraint (9) for the negative
length delay arcs. Constraints (10) ensure that the dispatch times 𝛾 for each commodity on each arc differ by at least the travel
time 𝜃 modeled for that arc. Constraints (11) and (12) ensure that the dispatch times lie between the earliest available times and
latest delivery times of each commodity, with respect to the travel times modeled in  . Constraints (13) ensures that commodities
traveling together have the same dispatch times, and (14) and (15) specify the variable ranges. The objective (7) requires that
the least number of arcs in the network are ‘too short’ and are required to be lengthened in the next step (Algorithm 3) for
feasibility.

Algorithm 3 LENGTHEN-ARC((𝑖, 𝑡), (𝑗, 𝑡′)))
Require: Arc((𝑖, 𝑡), (𝑗, 𝑡′)) ∈  )
1: REFINE(𝑗, 𝑡 + 𝜏𝑖𝑗 )
2: RESTORE(𝑗, 𝑡 + 𝜏𝑖𝑗 ).

Algorithm 4 REFINE((𝑖, 𝑡𝑖𝑛𝑒𝑤))

Require: Node 𝑖 ∈  ; time point 𝑡𝑖𝑛𝑒𝑤 ∈ 𝑖 with 𝑡𝑖𝑘 < 𝑡𝑖𝑛𝑒𝑤 < 𝑡𝑖𝑘+1
1: Add node (𝑖, 𝑡𝑖𝑛𝑒𝑤) to  ;
2: Delete arc ((𝑖, 𝑡𝑖𝑘), (𝑖, 𝑡

𝑖
𝑘+1)) from 

3: Add arcs ((𝑖, 𝑡𝑖𝑘), (𝑖, 𝑡
𝑖
𝑛𝑒𝑤)) and ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑖, 𝑡

𝑖
𝑘+1)) to 

4: for all ((𝑖, 𝑡𝑖𝑘), (𝑗, 𝑡)) ∈  do
5: Add arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑗, 𝑡)) to 
6: end for
15
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Algorithm 5 RESTORE((𝑖, 𝑡𝑖𝑛𝑒𝑤))

Require: Node 𝑖 ∈  ; time point 𝑡𝑖𝑛𝑒𝑤 ∈ 𝑖 with 𝑡𝑖𝑘 < 𝑡𝑖𝑛𝑒𝑤 < 𝑡𝑖𝑘+1
1: for all ((𝑖, 𝑡𝑖𝑘), (𝑗, 𝑡)) ∈  do
2: Set 𝑡′ = arg max {𝑠 ∈ 𝑗 |𝑠 ⩽ 𝑡𝑖𝑛𝑒𝑤 + 𝜏𝑖𝑗}
3: if 𝑡′ ≠ 𝑡 then
4: Delete arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑗, 𝑡)) from 
5: Add arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑗, 𝑡

′)) to 
6: end if
7: end for
8: for all ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑘)) ∈  such that 𝑡 + 𝜏𝑗𝑖 ⩾ 𝑡𝑖𝑛𝑒𝑤 do
9: Delete arc ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑘)) from 
10: Add arc ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑛𝑒𝑤)) to 
11: end for

Algorithms 3, 4 and 5 are used in conjunction, once Problem 2 identifies arcs (𝑖𝑗 , 𝑖𝑗+1) that need to be lengthened. Because
the existing solution forces these arcs to be shorter than the true travel times, it results in a solution that is in reality infeasible.
Algorithm 3 lengthens these arcs to their true travel times 𝜏𝑖𝑗 ,𝑖𝑗+1 in  . Note that a ‘short’ arc ((𝑖, 𝑡), (𝑗, 𝑡′)), with 𝑡′ < 𝑡 + 𝜏𝑖𝑗 may be
engthened at most once, to its true travel time. The two steps in Algorithm 3 consist of Algorithms 4 and 5. Algorithm 4 introduces
new time point for location 𝑗 in  , specifically, at 𝑡 + 𝜏𝑖𝑗 , while adding holdover arcs to preserve Properties 1–4. Algorithm 5
emoves the too short travel arc, and replaces it with the arc ((𝑖, 𝑡), (𝑗, 𝑡+𝜏𝑖𝑗 )) that captures the true travel time, again while preserving
roperties 1–4.
Algorithm 6 detects if per-unit-time vehicle-flow capacities on specific links 𝑎 ∈ 𝐴 in the flat network are violated by the current

olution to 𝑆𝑁𝐷( ), based on the consolidation time and cycle times of the links. If yes, Algorithms 7 and 8 refine to partially
xpanded network  further to ensure that the rate of flow on each link cannot exceed the per-unit-time vehicle-flow capacity.

Algorithm 6 DETECT-CAPACITY-VIOLATIONS
Require: Solution from 𝑆𝑁𝐷( ), consisting of path 𝑃𝑘 for all 𝑘 ∈ 𝐾
1: for all (𝑖, 𝑗) ∈  do
2: 𝐽 ′

𝑖𝑗 = {𝑘 ∶ ((𝑖, 𝑡), (𝑗, 𝑡)) ∈ 𝑃𝑘 ∀ 𝑡, 𝑡}
3: end for
4: for all (𝑖, 𝑗) ∈  for which ∑

((𝑖,𝑡),(𝑗,𝑡′))∈

∑

𝑘∈𝐽 ′
𝑖𝑗
𝑞𝑘𝑥𝑘𝑡𝑡𝑖𝑗 > 𝑢𝑖𝑗 do

5: 𝑡𝑠𝑡𝑒𝑝𝑖𝑗 = 𝑚𝑎𝑥{𝐶𝑇𝑖𝑗 , 𝐶̄}
6: 𝑠𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡{𝛾𝑘(𝑖,𝑡) ∶ 𝛾𝑘(𝑖,𝑡) > 0 ∀𝑘 ∈ }
7: Divide the timeline of  from 𝑠𝑡𝑖 into intervals of size 𝑙𝑖𝑗
8: Compute utilization of (𝑖, 𝑗) ∈  in each interval (𝑡1, 𝑡2) = (𝑡1 + 𝑡𝑠𝑡𝑒𝑝𝑖𝑗 ) as:
9:

∑

((𝑖,𝑡′1),(𝑗,𝑡
′
2))∈

∑

𝑘∈𝐽 ′
𝑖𝑗
𝑞𝑘𝑥𝑘𝑡𝑡𝑖𝑗 for 𝑡′1 ≥ 𝑡1 and 𝑡′2 ≤ 𝑡2

10: if utilization exceeds per-unit-time vehicle-flow capacity then
11: ENSURE_CAPACITY (((𝑖, 𝑡1), (𝑗, 𝑡2)), 𝐶̄)
12: end if
13: end for

Algorithm 6 examines each arc (𝑖, 𝑗) ∈  and detects if the total flow on it, summed over all periods of time, exceeds the per-unit
ime capacity of the arc (line 4). If that occurs, the first time from which the arc (𝑖, 𝑗) ∈  is installed is divided into intervals equal
to the interval length 𝑡𝑠𝑡𝑒𝑝𝑖𝑗 and checked if per-unit time capacity in each interval is violated. If it is violated, Algorithm 7 is invoked
to further expand the partially expanded time–space network  by adding multiple arcs ((𝑖, 𝑡), (𝑗, 𝑡 + 𝜏𝑖𝑗 )) for various values 𝑡 in
order to ensure that per-unit time capacities are not violated.

Algorithm 7 ENSURE-CAPACITY(((𝑖, 𝑡), (𝑗, 𝑡′)), 𝐶̄)
Require: Arc((𝑖, 𝑡), (𝑖, 𝑡′)) ∈  )
1: Find 𝑡𝑛𝑒𝑤 by finding the last outflow hold arc from (𝑖, 𝑡)
2: Find 𝑡𝑠𝑡𝑒𝑝𝑖𝑗 = 𝑚𝑎𝑥(𝐶̄, 𝐶𝑇𝑖𝑗 )
3: if (𝑖, 𝑡𝑛𝑒𝑤) ∉  then
4: (𝑖, 𝑡′) = REFINE-CAPACITY((𝑖, 𝑡), 𝑡𝑛𝑒𝑤, 𝑡

𝑠𝑡𝑒𝑝
𝑖𝑗 , 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

5: RESTORE((𝑖, 𝑡′), 𝑡𝑘, 𝑡𝑛𝑒𝑤).
6: end if
7: for i = 1 to utilization of (𝑖, 𝑗) do
8: 𝑡𝑛𝑒𝑤 = 𝑡′ + 𝑡𝑠𝑡𝑒𝑝𝑖𝑗
9: (𝑖, 𝑡′) = REFINE-CAPACITY((𝑖, 𝑡′), 𝑡𝑛𝑒𝑤, 𝑡

𝑠𝑡𝑒𝑝
𝑖𝑗 , 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

10: RESTORE((𝑖, 𝑡′), 𝑡𝑘, 𝑡𝑛𝑒𝑤).
11: end for
16
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Algorithm 8 REFINE-CAPACITY((𝑖, 𝑡), 𝑡𝑛𝑒𝑤, 𝑡
𝑠𝑡𝑒𝑝
𝑖𝑗 , 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, (𝑖, 𝑗))

Require: Node 𝑖 ∈  ; time point 𝑡𝑖𝑛𝑒𝑤 ∈ 𝑖 with 𝑡𝑖𝑘 < 𝑡𝑖𝑛𝑒𝑤; (𝑖, 𝑗) ∈ 
1: if 𝑡𝑖𝑛𝑒𝑤 > 𝑡𝑖𝑘+1 and (𝑡𝑖𝑛𝑒𝑤 − 𝑡𝑖𝑘+1) < 𝑡𝑠𝑡𝑒𝑝𝑖𝑗 then
2: for all ((𝑖, 𝑡𝑖𝑘+1), (𝑗, 𝑡)) ∈  do
3: if ((𝑖, 𝑡𝑖𝑘+1), (𝑗, 𝑡)) = (𝑖, 𝑗) then
4: Delete arc ((𝑖, 𝑡𝑖𝑘+1), (𝑗, 𝑡)) from 
5: end if
6: end for
7: end if
8: Add node (𝑖, 𝑡𝑖𝑛𝑒𝑤) to  ;
9: if ((𝑖, 𝑡𝑖𝑘), (𝑖, 𝑡

𝑖
𝑘+1)) ∈  then

10: Delete arc ((𝑖, 𝑡𝑖𝑘), (𝑖,
𝑖
𝑘+1 )) from 

11: Add arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑖, 𝑡
𝑖
𝑘+1)) to 

12: else
13: Delete arc ((𝑖, 𝑡𝑖𝑘), (𝑖,

𝑖
𝑘+1 )) from 

14: Add hold arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑖, 𝑡
𝑖
𝑘+1), 𝑡𝑘+1 − 𝑡𝑛𝑒𝑤) to 

15: end if
16: Delete arc ((𝑖, 𝑡𝑖𝑘), (𝑖, 𝑡

𝑖
𝑘+1)) from 

17: if (𝑡𝑖𝑛𝑒𝑤 − 𝑡𝑖𝑘) <= 𝑡𝑠𝑡𝑒𝑝 then
18: Add hold arc ((𝑖, 𝑡𝑖𝑘), (𝑖, 𝑡

𝑖
𝑛𝑒𝑤), 𝑡𝑛𝑒𝑤 − 𝑡𝑘) to 

19: else
20: Add arc ((𝑖, 𝑡𝑖𝑘), (𝑖, 𝑡

𝑖
𝑛𝑒𝑤)) to 

21: end if
22: for all ((𝑖, 𝑡𝑖𝑘), (𝑗, 𝑡)) ∈  do
23: Add arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑗, 𝑡)) to 
24: Set 𝑤𝑖𝑗 for arc ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑗, 𝑡))
25: end for
26: return (𝑖, 𝑡𝑖𝑛𝑒𝑤)

Table 4
Data attributes for 𝐺𝑇 𝑟𝑎𝑛𝑠 and data sources used to populate them.
Transportation network (𝐺𝑇 𝑟𝑎𝑛𝑠) attributes

Attribute Description Sources

Semantic

𝚛𝚍𝚏 ∶ 𝚝𝚢𝚙𝚎𝚒 The type of network component 𝑖 ∈ 𝑉𝑇 𝑟𝑎𝑛𝑠 ∪ 𝐸𝑇 𝑟𝑎𝑛𝑠 as defined by an critical
infrastructure ontology.

DS-6, DS-7

Queueing

𝑐𝑣,𝑒 Capacity, the number of entities (e.g. TEU on roadways, vessels on seaways)
that can be simultaneously served at a vertex or edge.

DS-7

𝑠𝑣 Number of minutes to process an entity at vertex. SMEs
𝑡𝑒 Travel time in minutes along an edge, computed using geodesic distance and

stakeholder feedback
DS-7, SMEs

𝑞𝑣 The maximum number of entities that can be stored while waiting for service
at a vertex.

SMEs

Extended Queueing

𝚌𝚘𝚜𝚝𝚟,𝚎 The fixed cost of using a vertex or edge. SMEs
𝚑𝚘𝚕𝚍𝚒𝚗𝚐_𝚌𝚘𝚜𝚝𝚟,𝚎 The fixed cost incurred by an entity held in storage SMEs
𝚑𝚘𝚕𝚍𝚒𝚗𝚐_𝚝𝚒𝚖𝚎𝚟,𝚎 The time an entity at a vertex or edge must spend in storage before being

processed.
SMEs

Extended Optimization

𝚌𝚢𝚌𝚕𝚎_𝚝𝚒𝚖𝚎𝚟,𝚎 The time to wait before trying to use a vertex or edge currently at full capacity SMEs

Spatial

𝑙𝑎𝑡𝑣 , 𝑙𝑜𝑛𝑣 Latitude and longitude of location 𝑣 ∈ 𝑉𝑇 𝑟𝑎𝑛𝑠. DS-5, DS-6, DS-7
17
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Problem 3. Minimize Delay Problem

𝑍 =min
∑

𝑘∈
(1 + 𝑑𝑒𝑙𝑎𝑦_𝑝𝑒𝑛𝑎𝑙𝑡𝑦_𝑟𝑎𝑡𝑒𝑘)(𝛾𝑘

|𝑃𝑘|−1
− 𝛼𝑘

|𝑃𝑘|−1,|𝑃𝑘|
) (16)

𝛾𝑘𝑖
|𝑃𝑘 |−2

⩾ 𝛼𝑘𝑖
|𝑃𝑘 |−2 ,𝑖|𝑃𝑘 |−1

, ∀ 𝑘 ∈  (17)

𝛾𝑘
|𝑃𝑘|−2

+ 𝜏𝑖
|𝑃𝑘 |−2 ,𝑖|𝑃𝑘 |−1

⩽ 𝑙𝑘 + 𝛥𝑘 ∀ 𝑘 ∈ ′ (18)

For commodities 𝑘 ∈  that are allowed to be delayed, we define variables 𝛼𝑘𝑖𝑗 for delay arc (𝑖, 𝑗), to capture the minimum arrival
ime of commodity 𝑘 along the arc. Specifically, if 𝛾𝑘𝑖 is the dispatch time of commodity 𝑘 from node 𝑖, we have 𝛼𝑘𝑖𝑗 = 𝜏𝑖𝑗 + 𝛾𝑘𝑖 .
ecollect that the path of the commodity is represented by 𝑃𝑘 = {(𝑜𝑘, 𝑒𝑘) = 𝑖𝑘1 , 𝑖

𝑘
2 , 𝑖

𝑘
3 ,… , 𝑖𝑘

|𝑃𝑘|
= (𝑑𝑘, 𝑙𝑘)} that is the sequence of |𝑃𝑘|

odes in the path. The last arc (𝑖𝑘
|𝑃𝑘|−1

, 𝑖
|𝑃𝑘|) is the delay arc. If the lengths of the delay arcs have been set too long, we minimize

hat length using (16), subject to constraints (17) that ensure that 𝛼 is the minimum arrival time of commodity 𝑘 along the arc,
nd constraints (18) that require the dispatch time to be such that the commodity cannot be delayed by more than the maximum
llowed delay at the destination.

Algorithm 9 SHORTEN-DELAY-ARC((𝑖, 𝑡), (𝑖, 𝑡′)), 𝑡𝑖𝑛𝑒𝑤)

Require: Arc((𝑖, 𝑡), (𝑖, 𝑡′)) ∈  ); time point 𝑡𝑖𝑛𝑒𝑤 ∉ 𝑖
1: Find ((𝑖, 𝑡𝑖𝑘+1), (𝑖, 𝑡

𝑖
𝑘)) ∈  such that 𝑡𝑖𝑘 < 𝑡𝑖𝑛𝑒𝑤 < 𝑡𝑖𝑘+1

2: REFINE_DELAY_ARC((𝑖, 𝑡′,′), 𝑡𝑘, 𝑡𝑛𝑒𝑤, 𝑡𝑘+1)
3: RESTORE_DELAY_ARC((𝑖, 𝑡𝑘,′), 𝑡𝑛𝑒𝑤).

Algorithm 10 REFINE_DELAY_ARC((𝑖, 𝑡′,′))

Require: Delay Node (𝑖, 𝑡′,′) ∈  ; time point 𝑡𝑖𝑛𝑒𝑤 ∉ 𝑖 with 𝑡𝑖𝑘 < 𝑡𝑖𝑛𝑒𝑤 < 𝑡𝑖𝑘+1
1: Add delay node (𝑖, 𝑡𝑖𝑛𝑒𝑤,

′) to  ;
2: Delete delay arc ((𝑖, 𝑡𝑖𝑘+1), (𝑖, 𝑡

𝑖
𝑘)) from 

3: Add delay arcs ((𝑖, 𝑡𝑖𝑘+1), (𝑖, 𝑡
𝑖
𝑛𝑒𝑤)) and ((𝑖, 𝑡𝑖𝑛𝑒𝑤), (𝑖, 𝑡

𝑖
𝑘)) to 

4: for all ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑘+1)) ∈  do
5: Add arc ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑛𝑒𝑤)) to 
6: end for

Algorithm 11 RESTORE_DELAY_ARC((𝑖, 𝑡𝑖𝑘,
′))

Require: Delay Node (𝑖, 𝑡𝑖𝑘,
′) ∈  ; time point 𝑡𝑖𝑛𝑒𝑤 ∈ 𝑖 with 𝑡𝑖𝑘 < 𝑡𝑖𝑛𝑒𝑤

1: for all ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑘)) ∈  such that 𝑡 + 𝜏𝑗𝑖 ⩾ 𝑡𝑖𝑛𝑒𝑤 do
2: Delete arc ((𝑗, 𝑡), (𝑖, 𝑡𝑖𝑘)) from 
3: end for

Problem 4. Construct Feasible Solution Problem

𝑍 =min
∑

((𝑖,𝑡),(𝑗,𝑡′))∈̄

∑

(𝑘1 ,𝑘2)∈𝐽((𝑖,𝑡),(𝑗,𝑡′))

𝛿𝑘1𝑘2𝑖𝑗𝑡 (19)

𝛾𝑘𝑖𝑗 + 𝜏𝑖𝑗 ,𝑖𝑗+1 ⩽ 𝛾𝑘𝑖𝑗+1 , ∀ 𝑘 ∈ , 𝑗 = 1,… , |𝑃𝑘| − 1, (20)

𝑒𝑘 ⩽ 𝛾𝑘𝑜𝑘 ∀ 𝑘 ∈ , (21)

𝛾𝑘𝑖
|𝑃𝑘 |−1

+ 𝜏𝑖
|𝑃𝑘 |−1 ,𝑑𝑘

⩽ 𝑙𝑘 ∀ 𝑘 ∈ , (22)

𝛿𝑘1𝑘2𝑖𝑗𝑡 = 𝛾𝑘1𝑖 − 𝛾𝑘2𝑖 , ∀ (𝑘1, 𝑘2) ∈ 𝐽((𝑖,𝑡),(𝑗,𝑡′)), ∀ ((𝑖, 𝑡), (𝑗, 𝑡′)) ∈ ̄ , (23)

𝛿𝑘1𝑘2𝑖𝑗𝑡 = 𝛾𝑘2𝑖 − 𝛾𝑘1𝑖 , ∀ (𝑘1, 𝑘2) ∈ 𝐽((𝑖,𝑡),(𝑗,𝑡′)), ∀ ((𝑖, 𝑡), (𝑗, 𝑡′)) ∈ ̄ , (24)

𝛾𝑘𝑖𝑗 ⩾ 0, ∀ 𝑘 ∈ , 𝑗 = 1,… , |𝑃𝑘| (25)

If the ‘Identify Arcs to Lengthen’ problem does not have an objective of zero, it means that the solution cannot be converted
to an equivalent feasible solution with the same cost (if it can be converted, we would have achieved the optimal solution). The
‘Construct Feasible Solution Problem’, (19)–(25) constructs a feasible solution of greater cost than the lower bound, as a linear
program instead of an integer program. Similar to Problem 2, the ‘Identify Arcs to Lengthen’ problem, we define the variables 𝛾𝑘
18
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that represent dispatch times for each commodity 𝑘 at each node in its path 𝑃𝑘 with respect to the true travel times between locations.
hese constraints ensure that the commodity departs after its availability time 𝑒𝑘 and arrives at the destination by the delivery time
note that delays are negative so the commodity will still arrive by 𝑙𝑘) and commodities’ consolidations discovered in the optimal
olution to 𝑆𝑁𝐷( ) are preserved to the extent possible. 𝛿

𝑘1𝑘2
𝑖𝑗𝑡 captures the difference in dispatch times between commodities 𝑘1

nd 𝑘2 on arc connecting locations 𝑖 and 𝑗. The objective (19) minimizes the total difference in dispatch times required to create a
easible solution. Also observe that this problem is always feasible because the length of the path of each commodity 𝑘 is always
ess than the difference 𝑙𝑘 − 𝑒𝑘. This solution, which forms an upper bound, also allows us to evaluate the optimality gap when
ompared to the solution of 𝑆𝑁𝐷( ).
Fig. 2 and Algorithm 1 summarize the working of our enhanced dynamic discretization discovery algorithm, which first captures

f the partially discretized network requires arcs to be lengthened for a feasible schedule; next if it captures delays required for
isruption management, followed by if per-unit-time vehicle-flow capacities are captured appropriately, and expands the network
o enforce capacities if otherwise. Upon termination of the algorithm, we would have found an optimal solution, or a close-enough
ptimal solution as measured by a comparison between the upper and lower bounds.

. Economic model

The objective of the optimization function is based on economic losses due to delays from disruptions that cause containers to
rrive later than their Latest Delivery Time (LDT). The economic cost of a TEU arriving late is a function of the length of the delay
nd the commodity category to which the TEU contents belong.
Our approach uses Vessel Schedules (DS-1), Per-Vessel Commodities (DS-2), and the Commodity Origins (DS-4) datasets to

enerate a schedule of imported loaded containers, Twenty-foot Equivalent Units (TEU), that move from a berth, through the port
erminal transportation network, onto a nearby highway. More details about the data fusion process and datasets may be found in
ection 6. Each TEU is represented as a commodity (𝑘 ∈ 𝐾) in the optimization and assigned an origin and destination as well as
n EAT and LDT as described in Section 4. In order to support the economic analysis, a single Harmonized System (HS) 2-digit code
or traded products, along with country of origin is assigned to each commodity. In this manner, our intent is to use this formalism
o align the senses of the word commodity from the optimization and economics domains respectively.
Our model may overestimate traffic congestion as it assumes that each TEU has a unique HS 2-digit code and vehicle. This is

ot the case in ports where a single TEU may be packed with multiple commodities and a Class 8 truck may carry multiple TEU.
n the other hand, our model only considers traffic generated from imports and so may underestimate traffic congestion in this
ense as we do not model exports. While we leave such details to future work, we still believe our approach represents a meaningful
ontribution to estimate economic losses from port disruptions.
The cost penalties for import delays differ across commodity categories. Table 2 presents a classification of import commodities

and parameters associated with these penalties. Our analysis and valuation of import delay cost penalties is related to the work
of Hummels et al. (2007) and Minor (2013), who estimated time delay costs for commodity groups across countries using extensive
atabases and sophisticated econometric methods. Note, however, the work of these researchers was oriented toward short-term
1–2 days) delays in cargo transfers by sea and air, relating to the normal course of business, such as inspections, paperwork, and
n-loading/off-loading inefficiencies, as opposed to medium to longer-term disruptions analyzed in this paper. Thus, their estimates
re taken as lower bounds applicable to the initial time stages of the disruptions analyzed here. Note also that the Hummels and
inor analyses also implicitly take inventories into account, but only for those shorter time periods. We view these estimates to be
uperior to using standard demurrage rates, primarily because the latter rates are relatively low and expressed as a standard per
ontainer value and hence ignore the economic value of the cargo itself and the specific characteristics of the commodities.
The adaptation of the Hummels/Minor estimates are as follows. Base estimates ‘‘Ad Valorem Value of (Cargo Delay) of One

ay’’ are presented in Minor, Appendix A-1 (Minor, 2013). Those estimates are expressed in percentage terms of import values for
one day delay by major GTAP commodity group and are aggregated to 7 aggregate commodity categories presented in Column
of Table 2.1 The values range from zero for Perishable and Raw Material categories to 2.93% of the value of the cargo for
egetables/Fruits/Nuts. Other high values include Refined Petroleum (1.99%), Ferrous Metals (1.96%), Motor Vehicles and Parts
1.77%), and Food Products (1.63%) in the more detailed categories of the source material. The estimates in the Minor report
re used as a starting point. Because our time periods of analysis are longer than that underlying the basic estimates, we insert
onsideration of Inventory Holdings in terms of number of days of supply in Column 2 of Table 2 (note that inventories are assumed
o be essentially zero for the first three commodity categories). Raw material stockpiles are often large, and inventories for the other
hree categories range from 4 to 15 days. Note also that the category of consumer durables pertains not to the ultimate consumer
ut rather to wholesale and retail outlets; hence, the specification of inventory levels for this category as well. The Loss Threshold
olumn reflects the date at which the perishables rot or the inventories run out. It is the end of Day 1 for JIT commodities, and
he average of the Inventory Holdings values for the other commodity categories. This is the time at which the Loss Adjustment—a
oubling of Initial Loss Values—affects the linear adjustment cases. The exponential trends serve the purpose of adjustments and
pply for the Perishable categories, JIT inputs, and Producer Durables after Day 1. See columns 5, 6, 7 for the Loss Adjustment, Loss
rajectory, and Eventual Loss Value specifications, respectively. Loss functions for each of these commodity categories are shown
n Fig. 6.

1 GTAP stands for Global Trade Analysis Project, which consists of extensive databases on economic activity of all countries in the world with an emphasis
19
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Fig. 6. Loss functions for the seven aggregate commodity categories used in the study. The plots illustrate percentage of total TEU value lost over a period of
15 days.

There are two categories of perishables, whose values plummet exponentially to zero, i.e., the total loss reaches the total cost of
he cargo, after the threshold number of days. Just-in-Time inputs are needed by day 1, and the initial cost penalty at the threshold
ises exponentially to complete loss after 10 days. The losses are exacerbated because customer inventory holdings of these three
ommodity categories are close to nil.
Raw material inventories are typically substantial, and we estimate the initial loss threshold at 22 days (halfway between the

nventory holdings range). The cost penalties, however, are fairly linear after doubling them when the inventories run out, up to a
otal value at the end of 3 months. Non-durable inventories are typically only 4 to 8 days, and we estimate the initial loss threshold
t the mean of 6 days. Again, the cost penalty is linear prior to and after the loss adjustment doubling, and we also assume total
oss reaches total value of the cargo at the end of 3 months.
Durables are broken into two categories. Producer durable inventory holdings are typically only 4 to 8 days, and again we take

he mean of six days for the loss threshold. The loss trajectory is assumed to be exponential. With this loss trajectory, the delay cost
s 2.3 times of the Day 1 initial loss on Day 6. Retailers and wholesalers of consumer durables typically have between 8 and 15 days
f inventory, but their initial loss threshold is actually past the inventory limit because they are not a production line operation that
omes to a halt or requires expensive input substitution of the commodity not in stock. Moreover, consumer purchasing delays do
ot cause immediate significant losses, and thus we assume the loss trajectory is linear, and, in this case, not a complete loss until
months have passed.
Recent work by Rose et al. (2018) and Wei et al. (2020) indicates considerable customer resilience when imports are disrupted.

This refers to a broad range of resilience tactics that can be utilized to cushion the negative impact of the disruption (e.g. input
conservation, input substitution, relocation to branch plants where the commodity is available). Hence, we perform sensitivity tests
in which we reduce the cost penalty by 50% for the last four categories in Table 2. We also perform a sensitivity analysis of a
50% increase in the cost penalties in consideration of our conservative assumptions underlying the adapted estimates presented in
Table 2.

Translating delay costs into the optimization model. The loss functions are used by our optimization algorithm when a delay arc is
added for a commodity 𝑘 ∈ 𝐿 that is allowed to be delayed. Given the delay time, provided by the absolute value of the delay
arc’s travel time, and HS 2-digit code of commodity 𝑘, a percentage of value lost coefficient is calculated by the loss functions
described in Table 2. Delay cost is given by the product of this coefficient and the dollar value for 𝑘’s HS 2-digit code averaged
over all countries of origin. Note that the value of commodities with the same HS 2-digit code may vary from month to month
and our analysis framework takes this into account. For instances where a given HS 2-digit code maps to multiple categories in our
20
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Table 5
Data sources for commodity attributes.
Commodity (𝐾) attributes

Attribute Description Sources

Optimization

𝑜𝑘 Origin of commodity 𝑘 in 𝑉 [𝐺𝑇 𝑟𝑎𝑛𝑠]. DS-1, DS-5
𝑑𝑘 Destination of commodity 𝑘. DS-5
𝑒𝑘 Earliest Arrival Time (EAT) of 𝑘 at its origin. DS-1
𝑙𝑘 Latest Departure Time (LDT) of 𝑘 at its destination. SMEs

Economic

𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘) The country of origin for commodity 𝑘 DS-3
𝚑𝚜𝟸(𝑘) The HS 2-digit code for commodity 𝑘 DS-2
𝚖𝚘𝚗𝚝𝚑(𝑘) The month in which commodity 𝑘 arrives at port DS-1

classification, we interpolate the cost with a weighted sum of delay costs across the relevant classification categories. More details
about how the dollar values for each HS-2 code are estimated may be found in Section 6.2.

6. Data analysis and fusion

This section provides a detailed discussion of data processing to estimate commodities imported through Port Everglades; the
dollar value per TEU; and the calibration, verification, and validation of the optimizer relative to generated inputs. The data sources
used to instantiate inputs to the optimizer—the transportation graph and commodity flows—are listed in Table 3.

6.1. Data fusion for optimizer inputs

The current implementation of our enhanced DDD algorithm takes two types of inputs: a transportation network and a set of
commodities for which to compute an optimal schedule.

The graph 𝐺𝑇 𝑟𝑎𝑛𝑠 is an L-space representation in which ‘‘stops or stations are vertices and two vertices are connected if they
are consecutive on an arbitrary route’’ (Sienkiewicz and Hołyst, 2005; Von Ferber et al., 2009). The attributes in Table 4 list
ransportation network attributes and data sources used to populate them. Attributes are categorized into semantic, queueing, and
patial categories. Semantic attributes allow one to conduct analyses relative to graph component types defined within an ontology.
n ontology for the transportation network defines concepts and roles that are used to specify types for vertices and edges. A more
n-depth discussion of this approach, including description logics, ontologies, and graph theory, may be found in Cheh et al. (2015).
Queueing attributes allow stakeholders to interpret 𝐺𝑇 𝑟𝑎𝑛𝑠 as a queueing network and thereby simulate the movement of vessels and
containers over time. By assigning attributes for capacity, service/travel time, queue length, and queuing discipline, a queueing
network can be instantiated. More details about this approach may be found in Weaver et al. (2019). Finally, spatial attributes
nable stakeholders to conduct risk assessments based on geographic regions of interest (e Silva et al., 2019). Through including
atitude and longitude, we interpret and operate upon 𝐺𝑇 𝑟𝑎𝑛𝑠 as a spatial network, a network in which a metric is defined over the
ertices (Barthélemy, 2011). These attributes are used to process 𝐺𝑇 𝑟𝑎𝑛𝑠 into the ‘flat’ network 𝐷 = (𝑁,𝐴) for our DDD algorithm.
Commodities 𝐾 encode Twenty-foot Equivalent Units (TEU) with attributes for the origin (𝑜𝑘), destination (𝑑𝑘), Earliest Arrival

Time (EAT) (𝑒𝑘), and Latest Departure Time (LDT) (𝑙𝑘). Table 5 lists commodity attributes and data sources used to populate them.
The remainder of this subsection describes the data fusion tasks used to generate 𝐾. To compute 𝑜𝑘, 𝑒𝑘, and 𝚑𝚜𝟸(𝚔) a schedule of
vessel calls is constructed by extracting and aligning vessel arrivals from the Vessel Schedules (DS-1) and Per-Vessel Commodities
(DS-2) datasets.

Commodity arrivals. Imported commodities, and the vessels upon which they arrive, are defined by the Per-Vessel Commodities
dataset (DS-2). A commodity’s origin, EAT, and LDT are a function of the arrival of the vessel containing that commodity.
Specifically, a commodity’s origin in the transportation network (𝑜𝑘) must equal its vessel’s berth in the Vessel Schedule (DS-1).
A commodity’s EAT must be the time at which that vessel arrives at the berth. Finally, a commodity’s LDT is based on its EAT and
expected dwell time informed by demurrage rates in shipping port contracts (DS-9).

Both DS-1 and DS-2 are used to instantiate a set of vessel arrivals (VA𝐷𝑆−1 and VA𝐷𝑆−2 respectively). In order to construct
a set of vessel arrivals used as input for our analysis, we compute the intersection (VA𝐼 = VA𝐷𝑆−1 ∩ VA𝐷𝑆−2). Equality for this
intersection was defined in terms of normalized Vessel Name arrival/departure dates that overlapped within 1 day of each other.
Table 6 provides the results of this fusion approach for FY2018 imports at Port Everglades.

Table 6 illustrates that between 83%–92% of vessel arrival events DS-1 are represented in intersection 𝐼 . In addition, between
55%–71% of the vessel arrival events occurring within the DS-2 are represented in set 𝐼 . However, when measured in terms of total
TEU imported |𝐼|𝑇𝐸𝑈 rather than in terms of vessel arrivals, the intersection of the two datasets captures 87%–97% of the TEUs in
DS-2. This indicates that for a study focusing on TEU imported in FY2018 (e.g. Section 7), our data fusion approach is adequate.
Further research into better data fusion algorithms, though outside the scope of this paper, could improve results to support higher
fidelity modeling of port operations.
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Table 6
Results of mapping Vessel Arrivals from Harbormaster Vessel Calls (DS-
1) and PIERS vessel commodity data. When measured in terms of number of
imported TEU, the intersection of the two datasets (𝐼) captures 87%–97% of the
imported container volumes in FY2018.
Analysis of FY2018 vessel arrival fusion: Datasets 1 & 2

Month VA𝐼
|VA𝐷𝑆−1−𝑉 𝐴𝐼 |

|VA𝐷𝑆−1 |

|VA𝐷𝑆−2−VA𝐼 |

|VA𝐷𝑆−2 |

|VA𝐷𝑆−2−VA𝐼 |𝑇𝐸𝑈

|VA𝐷𝑆−2 |𝑇𝐸𝑈

10/17 136 0.13 0.32 0.1
11/17 148 0.12 0.29 0.09
12/17 141 0.14 0.37 0.13
1/18 130 0.13 0.33 0.09
2/18 126 0.15 0.45 0.1
3/18 133 0.14 0.41 0.08
4/18 127 0.15 0.4 0.12
5/18 137 0.11 0.33 0.05
6/18 145 0.1 0.36 0.03
7/18 134 0.13 0.38 0.04
8/18 153 0.08 0.39 0.1
9/18 114 0.17 0.42 0.07

6.2. Dollar value per TEU

The delay cost functions in Section 5 describe the percentage of total TEU value lost due to arriving at its destination after its
DT. We use Eq. (26) to compute USD(𝑘), the estimated dollar value of a commodity 𝑘 ∈ 𝐾. The term TotalImportsUSD𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘)

𝚑𝚜𝟸(𝑘)
efers to the total value of goods with a given HS code from a given country of origin. This is given by the Commodity Values (DS-4)
ataset provided by the US Census Trade Online Database. Similarly, the term TotalImportedTEU𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘)

𝚑𝚜𝟸(𝑘) , refers to the total number
f full (non-empty) TEU imported with a given HS code and country of origin. This is given by the Per-Vessel Commodities (DS-2)
ataset.

USD(𝑘) =
TotalImportsUSD𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘)

𝚑𝚜𝟸(𝑘)

TotalImportedTEU𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘)
𝚑𝚜𝟸(𝑘)

, 𝑘 ∈ 𝐾 (26)

Eq. (26) requires that each commodity have a country of origin. This country is probabilistically assigned to a commodity based
on DS-3. By sampling an empirical distribution for a given month and HS-2 code, a country of origin is assigned. The probabilities
for different countries of origin for the same HS 2 code vary from month to month and thereby may affect the economic impact of
a disruption.

Two types of errors were encountered while computing Eq. (26) due to mismatches between datasets. In the first case, the Per-
Vessel Commodities (DS-2) dataset may have a value for TotalImportedTEU𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘)

𝚑𝚜𝟸(𝑘) , but the Census data (DS-4), may lack an entry
for that HS code, country pair. Conversely, the Census Trade Online Database (DS-4) may have a value for TotalImportsUSD𝚌𝚘𝚞𝚗𝚝𝚛𝚢(𝑘)

𝚑𝚜𝟸(𝑘) ,
but imported TEU of a given commodity type are not found in the Per-Vessel Commodities dataset (DS-2).

A few possible causes of a mismatch between these data sources are briefly discussed. First, if the imports of a given commodity
only come from one or two big US companies, the Census might not disclose such data to protect the confidentiality of company-
specific information. Second, if the import amount is trivial for certain shipments, it might not be reflected in the data. Third, there
can be data capture errors. As noted on the Census website on Foreign Trade Statistics: ‘‘The U.S. Census Bureau captures import and
export information either from paper documents that are keyed manually or from automated collection programs. . . . Lost documents,
errors in the on-line validations and edits of electronically reported data, and incorrectly keyed, coded, or recorded documents are
examples of data capture errors that can impact the statistics’’ (Anon., 2020b). Fourth, it may be possible that different data sources
are used for the two datasets. Census data comes from information collected by CBP which is largely based on the self-reporting by
importers, exporters, and their agents.

Since our study is based on movements of commodities through the port as captured by DS-2, the study only handles the first
type of error. When Census data was missing, the average price of that HS Code was calculated. This average was given by the
total customs value of that HS code imported through the port (via DS-4) by the total number of TEUs with that HS code (via
DS-2). Generally, this approach worked, but where the price data was missing from the Census data at the aggregated port level,
or the calculated average price was too low to be possible (e.g. under $1000 per TEU), additional adjustments were made to deal
with these cases. For example, when the price data for a certain commodity was lacking in one month, the average price that was
available in the most adjacent month was used. In other cases, the average price was used for similar commodities in the same
month.

6.3. Calibration, verification, and validation

Calibration of baseline scenarios was accomplished by comparing optimizer inputs/outputs to known data sources. Both the
volume and duration of imported, loaded TEUs were used as calibration points. Looking at a period of 7 days in October, 28 vessel
22
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calls delivered 4618 TEU for import. This is reasonable considering all loaded TEU imported in October 2017 were 25,000; therefore
our inputs capture roughly 70% of total weekly TEU volumes assuming an even distribution of volumes per week (DS-9). Within
the 17 baseline scenarios, TEU took 3 days to move through the port. This is consistent with stakeholders at Port Everglades, who
pointed us to Port/Operator contracts (DS-8) as an indicator of container dwell times in container yards. As mentioned in the results,
no delay costs were incurred across all baseline scenarios.

There is a good deal of literature on calibration of microscopic traffic models and simulation in general. The intent is to
nderstand overall system behavior and estimate economic loss from disruption. The measures of performance (MOP) by which
land-side import flows were calibrated include number of vessels, number of TEU, and duration of TEU in the system. The approach
is briefly summarized below with results presented in Section 7. More details about calibration with respect to these measures may
be found in Weaver et al. (2019).

A calibration procedure of the transportation network from the microsimulation literature was employed (Chu et al., 2003).
Specifically, this procedure consists of estimating an Origin–Destination Demand Matrix for vessels and imported TEU, and defining
a Route Choice Model. Calibration of the model with respect to number of TEU of a given HS code moving from a berth (𝑜𝑘) to
immediately outside of port (𝑑𝑘) provides an approach to calibrate the number of type of TEU that move through a port under
baseline conditions. We note that runs of our DDD algorithm presented in Section 7 do not require shipments to pass through a
pecific Terminal Operator and this may affect utilization of a given TO. In the future, experiments that use such a side constraint
ay be interesting to explore as a way of evaluating the impact of a disruption to a specific Terminal Operator.
Given the timing of container arrivals defined by the vessel arrivals (via DS-(1), and a good approximation of dwell time (via port

MEs and DS-8), this calibration may be good enough to understand the number of TEU in components of the transportation network
lose to TEU origin nodes. Within the microscopic simulation literature, some consider estimating the number of trips between an
rigin–Destination pair during a given time period as the first (and potentially only necessary) step in model calibration (Chu et al.,
003). Estimated O-D pairs are provided by datasets DS-1 and DS-3. The Route Choice through the port is an output of our DDD
lgorithm in Section 4.
In order to gain credibility among stakeholders, a study should conduct verification and validation to determine the degree to

hich outputs align with the behavior of the system being modeled (Youngblood et al., 2000). A full Verification, Validation, and
ccreditation (VV&A) process is beyond the scope of this article, however, steps have been taken to ensure results yield reasonable
stimates of system behavior. For example, our extended DDD algorithm was built using the Gurobi optimization framework (Gurobi,
020). The data used to generate NOLH experiment design points were obtained directly from the port. Moreover, the CTSNDP code,
nd supporting data processing pipeline, uses a unit testing framework to test for errors in implementation and is implemented using
build system to encourage repeatability.
Validation is necessary to determine the degree to which the outputs provide an accurate representation of the system. In order to

alidate results, estimated economic losses generated by the CTSNDP algorithm were compared to the economic losses generated by a
iscrete-event simulation using a shortest path algorithm to compute commodity routes. More details about calibration, verification,
nd validation of the simulation model are discussed in Weaver et al. (2019).

. Results and discussion

In this section, we present the results of our holistic risk assessment approach, based on a Nearly Orthogonal Latin Hypercube
NOLH) design, to identify high-impact disruptions enabled by cyber–physical dependencies in the Maritime Transportation System
MTS). The intent is to enable stakeholders to estimate the economic costs of how risk within IT systems affects efficient port
perations.
Columns of our NOLH experimental design matrix define factors that specify the function of assets in a shipping port

ransportation network (e.g. gate service times, crane rates). The range of values for these factors specifies the degree to which
yber dependencies—such as those shown in Table 1—may affect transportation network operations. Ranges of possible values for
actors may be defined by Subject Matter Experts (SMEs), historical incidents, the academic literature, or even empirical data. These
ossible ranges of values may be used to define a general threat profile or a profile for a specific threat catalog item. Using the
OLH approach defined by Sanchez et al. these factors are sampled and used to generate an experimental design matrix whose rows
orrespond to scenario parameter settings for the optimizer.
There are several benefits to this approach. First NOLH allows one to explore the impact of varying several factors simultaneously,

ith the ability to identify factor interactions (Cioppa and Lucas, 2007). Second, NOLH provides a comprehensive approach to define
he space of possible disruption scenarios and to understand the degree to which these scenarios have been explored (Kleijnen et al.,
005). Each row in the design matrix is used to set the parameter values of the transportation network and TEU shipments. The
apping from profile to network/shipment is based on asset type and so they enable the same disruption profile to be applied to
ifferent networks or shipment schedules. Baseline factor levels were calibrated based on a procedure from the microsimulation
iterature (Chu et al., 2003). More details about this calibration, as well as verification and validation, can be found in Section 6.3.
The results in this section apply two threat profiles (with multiple disruption scenarios in each threat profile) for cyber-originating

isruptions to commodity flows through container operations in Port Everglades, FL. The first threat profile considers the impact of
cyberattack on the systems controlled by Broward County. As a landlord for the port, responsibilities include proper operation of
antry cranes and gates along the shipping port perimeter. As such, disruptions affecting crane rates, perimeter gate service times,
nd capacities for roads leading to those gates were generated using the NOLH approach. The second threat scenario considers the
23
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Fig. 7. Runtimes for baseline and disruption scenarios. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

for moving containers between the land and sea, with containers staying in the container yard for some period of time. As such,
disruptions increase the time spent in the container yard, TO gate service times, and capacities for roads leading to those gates.
We run our enhanced DDD algorithm to estimate costs occurring due to these disruptions. Observe that the estimates obtained will
be lower bounds on the true costs, as these recovery actions are optimized whereas in practice, decision support tools may not be
available and costs may be higher.

7.1. Algorithm performance

Fig. 7 illustrates the runtimes across the baseline and disrupted scenarios. Experiments were run on a VM with 4 CPUs and 64 GB
of memory. Baseline scenario run times for the first week of October, with 4618 TEU, ranged from approximately 2 min to 7 min
with an average of 6 min. In contrast, baseline run times for the first week of May, with 7214 TEU ranged from 6 min to 11 min
with an average of 8 min. Run times for disruption profile 1, cyber-attacks on landlord port resources, took between 8 min to 6 h
with a mean of 1.5 h to complete for October scenarios and between 10 min to 4.6 h with a mean around 1 h to complete for May
data. In contrast, run times for disruption profile 2, cyber-attacks on terminal operator resources, took from 7 min to 10 h with
an average runtime of 3 h for October scenarios. The May scenarios, however took from 9 min to 5.5 h with an average runtime
of 2.4 h. The baseline runtimes for scenarios are faster and the runtimes for disrupted profiles are (on average) comparable to the
2 h runtimes (on 32 GB machines) presented by Boland et al. (2017) when applied to 5 days of freight movements in the Pacific
Northwest.

Our algorithm’s run times are based on a larger transportation network, more commodities, and a longer time window than in
previous literature (Boland et al., 2017). The parameters in our experimental setup are an order of magnitude higher than in existing
work — each of our scenarios (experiment design points) are based on a flat network with 138 nodes, 163 links, and 4618/7214
commodities in the October/May scenarios respectively. As described in 6.1, the number of commodities is derived from actual
vessel manifests for loaded TEU imported into Port Everglades. Moreover, we increased the duration of the recovery window in our
scenarios as the durations in existing work (5 days) were too short to capture economic losses resulting from inventory depletion
in our commodity classification. Therefore, a minimum of one week was considered in our study. With respect to the number of
nodes, our scenarios are comparable in size to several public transportation networks surveyed by Lin et al. whose node counts
ranged from 124 to 46244 (Lin and Ban, 2013).

The number of nodes and arcs in the expanded network varied across the disruption profiles and number of commodities. As
shown in the first row of Fig. 8, the number of delay nodes and storage arcs was close to zero for baseline scenarios in October
and May, with May having more nodes and arcs overall in the baseline due to the larger number of commodities. In contrast, in a
disrupted scenario, the number of nodes (including delay nodes) increases as do the number of storage arcs. Overall, the number
of nodes and arcs from baseline to disruption profile increases by a few hundred between baseline and disrupted cases. Within the
baseline and disrupted cases, there is no clear separation between counts in October and May scenarios, indicating that the size of
the expanded networks depends more on the disruption profile than on a difference of a few thousand commodities.

7.2. Summary of economic impacts

Fig. 9 illustrates the coverage of scenarios run within the experimental design spaces for both threat profiles using the October
scenarios. In all, we present results from 28 (17/11) baseline or no-disruption scenarios, 15 (10/5) landlord port disruption scenarios,
24
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Fig. 8. Node and arc counts for baseline and disruption profile 2 scenarios. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

and 27 (15/12) terminal operators’ disruption scenarios in October/May respectively, using our enhanced DDD algorithm. Design
points for which an optimal solution could be computed are colored from lowest economic loss to highest economic loss. The first
disruption profile (threats to the Landlord Port) results in delay costs ranging from $0 to approximately $650,000 shown in colors
ranging from blue to red respectively. The second disruption profile (threats to Terminal Operators) results in delay costs ranging
from $0 to $4M shown in colors ranging from purple to orange. Although October scenarios are shown, scatterplots of the May
shipments yielded the same relative distribution of economic loss across the same design points though with different magnitudes
of impact. For example, the maximum delay cost for the Terminal Operator disruption scenarios was $4M in October but $7M in
May.

Fig. 10 below illustrates estimated daily costs of commodity schedules output by our extended DDD algorithm for the baseline
and two disruption scenarios. The delay costs in the baseline cases were $0 USD, indicating negligible costs if the port is functioning
normally with no disruptions. The economic impact of disrupted scenarios, on average, were $82,224/$141,647 for cyber-attacks on
the landlord port’s cyber-controlled assets and $1.2M/$2.8M for cyber-attacks affecting all port terminal operators in October/May
respectively.

7.3. Landlord port threat profile

In the first threat profile, a cyber-originating attack affects transportation assets controlled by the landlord port; and consists
f 34 scenarios. 15 of 34 scenarios run in this profile’s design space ran to completion using our algorithm. Of the scenarios that
an to completion, ten belonged to October and five to May. Among these, five scenarios from October and four from May did not
esult in any economic delay costs because of the re-routing and re-scheduling decisions provided by our enhanced DDD algorithm.
his demonstrates that updated re-routing and re-scheduling decisions that respond to the disruption, computed using an efficient
nd highly tractable algorithm, can significantly recover system delay costs. Of the five remaining October scenarios that incurred
cost despite re-routing and re-scheduling, direct economic losses ranged from $3400 to $650,000 as shown in Fig. 10. In contrast,

the May scenario that still incurred a cost despite re-routing and re-scheduling incurs a cost of $708,234 dollars. The same scenario,
when run on October data has a cost of $243,154 dollars, indicating the importance of seasonality on the impact of disrupts at
ports.

One scenario that resulted in losses of approximately $400,000 over the week-long period was of particular interest as the gate
service time was 9 min, and the crane rate was 21 TEU per hour. These parameter settings are both close to baseline configurations,
1 to 3 min for gate service time and 23 TEU per hour respectively. This indicates that a slowdown in crane rate (e.g. due to a
cyber disruption that affects container recognition) combined with a longer gate service time (e.g. due to MARSEC level increase)
can result in economic losses over the course of a week. Fig. 11 (Scenario 11) illustrates the operational impact of this particular
scenario on container lateness leaving the port. While in the baseline scenarios, TEU spent 3 days in the port system and none
25
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Fig. 9. The coverage of scenarios run within the experimental design space for both threat profiles in October. Economic losses from cyber-originating disruptions
o the Landlord Port were up to $650,000 (red) in whereas those for the Terminal Operators were up to $4M (orange). The relative impact of the Terminal
perator disruption scenarios for May shipments looked much the same as those for October, but were up to $7M in delay costs. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The estimated economic impact of cyber attacks on a landlord port versus that of terminal operators. Notice that the in the latter case, disruptions are
an order of magnitude more severe economically. This is for a week-long disruption to container imports in the first week of October. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

7.4. Terminal operator threat profile

The second threat profile looks at the impact of a cyber-originating disruption simultaneously affecting the four terminal
perators’ transportation assets, and consists of 34 scenarios with 17 each from October and May. Across both months, 27 of 34
26
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Fig. 11. The operational impact of cyber-attacks on landlord port assets versus those of terminal operators. In the former, imported TEU take up to 5 days to
ove through the port whereas in the latter, they take a little under a week. Mean and median durations are shown by red and blue lines respectively. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

cenarios ran to completion: 15 of 17 for October, and 12 of 17 for May. A third of these scenarios resulted in no delay costs, as
e-routing and re-scheduling solutions from our algorithm mitigated costs. Of the remaining ten October scenarios, economic losses
anged from $5000 to $4.3M as shown in Fig. 10, with an average of $1.22M. The remaining eight May scenarios had economic
losses ranging from $50K to nearly $7M with an average of $2.8M.

The scenarios that incurred the most costs were those that affected container dwell times the most. Rather than 1–3 days,
scenarios in this category that resulted in 4–5 day container yard dwell times saw the most economic losses. One scenario combined
a slightly longer dwell time (3.3 days) with traffic congestion and a longer gate service time (13 min) resulted in a roughly $1M
loss in October. Fig. 11 (Scenario 10) illustrates the operational impact of the scenario with the highest economic losses in October,
approximately $4.4M. In this scenario, TEU take from half a week to nearly a week to move through the port system, resulting in
the highest increases in costs. These cost estimates and magnitudes have been validated with the terminal operators and compared
with similar historical scenarios.

8. Conclusions

This paper presents an optimization-based approach to estimate the functional and economic impacts of cyber-originating
disruptions to a shipping port’s transportation network. Disruption profiles, informed by a real-world cyber–physical threat catalog,
are specified as experimental design matrices. We present an extended Dynamic Discretization Discovery algorithm building on the
approach of Boland et al. (2017), by building novel methodology to capture the delays and disruptions and per-unit-time vehicle-
flow capacities. The algorithm generates schedules and routes that optimize disrupted shipping container flows relative to seasonal
commodity values — thus finding the lower bound on costs due to the disruptions. The economic cost, based on extending the
willingness to pay literature, provides a way to understand the range of impacts for multiple scenarios across a threat profile.
Informed by fieldwork at Port Everglades, FL, our work advances the state of the art. In terms of performance, our enhanced
DDD algorithm runs disruption scenarios an order of magnitude faster than the current state of the art in the baseline case and
in comparable time for disrupted scenarios. As a result, we hope to enable MTS stakeholders to continually evaluate the operational
and economic risks introduced when adopting automation technologies in order to drive efficiencies in this highly competitive
industry.

We also anticipate that in addition to optimizing for recovery actions, our enhanced algorithm can also be used for evaluating
infrastructure investment decisions that mitigate future costs, under ‘what-if’ scenarios. In future work, we aim to utilize this
algorithm to also generate infrastructure planning and routing and scheduling decisions that are robust to future disruptions.
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