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A B S T R A C T   

An integrated transportation-socioeconomic model is developed to analyze the economic conse
quences of and resilience to seaport and associated transportation network disruptions. Since such 
disruptions can affect people in a region unequally, the model is constructed to analyze both 
aggregate economic impacts and impacts across socioeconomic groups. We illustrate the model’s 
usefulness in a simulated earthquake scenario affecting the Ports of Los Angeles and Long Beach. 
Total GDP losses from port disruptions, highway transportation cost increases, and general 
building damages, working through regional and interregional supply-chains, are estimated at 
$24.2 billion in the Port Region and $30.2 billion in the U.S. as a whole. A combination of several 
resilience tactics is estimated to reduce GDP impacts by 41.3% in LA and 57.6% in the U.S. The 
distributional analysis indicates the extent to which lower-to-middle-income groups are more 
proportionally impacted by port disruptions and middle-to-higher-income groups are more 
impacted by building damages.   

1. Introduction 

Serving as critical portals of a nation’s supply networks, seaports and their associated inland transportation infrastructure are 
especially vulnerable to major disruptions from a variety of causes. The economic impacts of these disasters can extend well beyond the 
on-site operations at the port complex, through supply-chain curtailments and delays in delivering imports and exports to their 
destinations. 

Assessment of transportation system vulnerability and resilience has gained increasing attention, especially after incidents of port 
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closures and related transportation network downtimes following major natural disasters in recent years (such as the impacts of 
Superstorm Sandy on the Port of New York/New Jersey and the entire transportation infrastructure of New York City and the sur
rounding region, Hurricane Irma to the Ports of Jacksonville and Miami, Hurricane Harvey to Port of Houston, and their drastic impact 
on trucking transportation). Many studies have analyzed the impacts (including both direct and indirect effects) stemming from 
transportation network disruptions in general, some of which focus specifically on port disruptions, and found them to be sizeable 
(Chang et al., 2000; Cho et al., 2001,2004; Werner, 2003; Tsuchiya et al., 2007; Gordon et al., 2004; Jung et al., 2009; Park et al., 2008; 
Pant et al., 2011; Rose and Wei, 2013; Xie et al., 2014; Zhang and Lam, 2015; Rose et al., 2018; Wei et al., 2020). 

However, one of the major gaps in the literature is that most studies that estimate the economic impacts of such disruptions have 
not adequately accounted for the spatially-distributed and networked nature of the transportation systems. The functionality of in
dividual components of transportation system (e.g., airport, seaport, bridge, etc.) is largely dependent on the status of the entire 
infrastructure network, which can be affected by large-scale disaster events such as earthquakes and hurricanes that result in spatially- 
distributed impacts. The focus of many studies is often on a single infrastructure component and thereby omits interdependency ef
fects, such as the exacerbation caused by cascading failures, in today’s networked transportation systems (Wei et al., 2018a, 2018b).1 

These methods also typically omit major sources of resilience of ports and highway networks – ways to decrease the negative impacts 
from interruptions of import and export flows through such tactics as input substitutions, use of inventories, conservation, and 
rescheduling of economic activities (Wei et al., 2020). To obtain a more comprehensive and practical understanding of the potential 
impacts on the local and regional economy, the networked nature of transportation systems and their post-disaster degradation has to 
be taken into account. Moreover, carefully simulated hazard scenarios with detailed spatial delineation of damages and response 
should be integrated into the economic impact analyses. 

Furthermore, disasters and their impacts on critical infrastructure do not affect all people in a region equally. Studies have shown 
that economically disadvantaged groups typically suffer a higher proportion of income losses directly and indirectly from property 
damages and business interruptions caused by disasters than those in middle- and upper-income brackets (Mileti, 1999). Unfortu
nately, very few studies have analyzed these income distribution impacts (Masozera et al., 2007; Shaughnessy et al., 2010). Moreover, 
no studies to date have examined the income distribution impacts of more than a select few resilience tactics, which have the ability to 
reduce regional business interruption losses and have income distribution impacts of their own. 

We have developed a synergetic approach linking a regional transportation model and a multi-regional computable general 
equilibrium (CGE) model (the TERM Model). This integrated model is also capable of analyzing the effects of port and transportation 
resilience. Moreover, we constructed and integrated a multi-sector income distribution matrix (MSIDM) into the modeling framework 
to analyze the economic losses stemming from disruptions of port operations and transportation network services, and the varying 
effects of resilience tactics across household income brackets. The application of the fully integrated model is demonstrated by using an 
earthquake scenario simulation that affects commodity flows at the twin Ports of Los Angeles and Long Beach and the related highway 
transportation network in the Los Angeles metropolitan region. 

The paper is divided into eight sections. The background of the study is presented in Section 2, which summarizes the research gaps 
based on previous work in applying system-based analysis of transportation system resilience from both the transportation system 
analysis and economic impact analysis perspectives. Section 3 first presents the definitions and basic categories of economic resilience. 
The economic resilience tactics that are specifically applied to transportation system disruptions are then discussed. In Section 4, we 
introduce the individual modules of the integrated transportation-socioeconomic impact analysis model we developed. Section 5 
introduces the disaster scenario case study. The results of the direct impacts are presented in Section 6. The economy-wide aggregate 
impacts and the distributional impacts of the disaster scenario are presented and interpreted in Section 7. We discuss the limitations of 
the current study and suggest areas for further research in Section 8. Section 9 summarizes major findings and policy implications of 
the study. 

2. Background 

2.1. Resilience assessment in transportation systems 

Studies of transportation systems disruptions can generally be categorized into two broad methodological approaches: topological- 
based and system-based2 approaches (Mattson and Jenelius, 2015). The first category only requires the topological structure, with 

1 Notable examples of exceptions that evaluate the economic impacts of disturbance to urban transportation network-based on detailed spatial 
transportation modeling include Cho et al. (2001), Tatano and Tsuchiya (2008), Cho et al. (2015), Koc et al. (2020), etc.  

2 Here, the term ‘system-based’ does not make a reference to a system-of-systems perspective, rather it is used to refer to the approach to the 
transport system that takes topology and demand simultaneously into account. 
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which disruption-related performance measures based on network efficiency are quantified, to be known. Such measures could be 
defined in terms of robustness, vulnerability, resilience, etc.3 The efficiency metrics are quantities that can summarize the overall 
network state such as centrality (e.g., betweenness or closeness centrality), total shortest distance between pairs of nodes in the 
transportation system (or other indicators quantifying total cost in time or distance), size of the largest connected component, total 
changes in accessibility, etc. Topological studies mainly consider node or link removal scenarios, resulting either from random or 
strategic ‘attacks’ to the network. This approach is often subject to criticism along the dimensions of holism and realism, particularly in 
representing the physical infrastructure system as well as its characteristics with regard to demand and supply relationships. 

System-based approaches work in a more holistic manner. The explicit modeling of network supply and demand, in addition to 
detailed information on the topological structure of the network, makes way for a comprehensive treatment of disruption-related 
effects on the system such as increased congestion due to reduced link capacity and lower redundancy. This method measures 
network efficiency losses in terms of the deteriorating conditions of traffic. Regardless of such advantages over topological approaches, 
criticisms of system-based studies focus on their extensive data needs and the requirement of calibrated models of network demand and 
supply, as well as requirements related to sophisticated software platforms (often GIS-based) accommodating various algorithms and 
methodological frameworks to simulate mobility (Koc et al., 2020). 

Another task in this type of research is the assessment of the first-order damages (e.g., damage states for bridges) that arise from the 
disruption-causing event (Bocchini and Frangopol 2012). Specifically, if a formal assessment of the damages is to be implemented to 
determine the post-event condition of system components such as bridges or tunnels, detailed data-driven simulations are required (e. 
g., detailed infrastructure data inventories, open-source or proprietary simulation capabilities, etc.). Despite these challenges, system- 
based investigations offer a better opportunity to model for and simulate transportation system disruptions more comprehensively (in 
both realism and holism dimensions) while ensuring that desired granularity is achieved and, more significantly, they deem multi
disciplinary and stakeholder collaborations possible and allow the translation of findings in resilience research into more actionable 
insights for owners and operators of infrastructure.4 This characteristic facilitates the design and deployment of the synergetic 
approach linking a regional transportation model and a multi-regional CGE model. 

2.2. Limitations in system-based approach of transportation disruptions analysis 

First, we note that formal hazard considerations determining loads and damage are rarely made in a comprehensive manner in 
previous research, with exceptions (including, for example, Cho et al. 2001, Koc et al. 2020). This leads to an underutilization of the 
detailed data inventories on transportation infrastructure that exist in the United States. Whether such considerations are included 
depends on the research objectives. Typically, in topological approaches, the objective is to find the ‘most critical link’ independent of 
the disruption causing event; thus, formal hazard considerations are often missing from this type of work. Another genre of topological 
studies investigates the type of attack (random, targeted, mixed) and its relationship to network resilience or node criticality, yet these 
studies usually focus on assumed attack strategies rather than naturally occurring hazard risks. However, when the objective is to 
evaluate network performance against hazard scenarios that can be characterized and estimated, the potential damage from the 
characterized event can be assessed and included in the resilience study. Khademi et al.’s (2015) review of this research area reveals 
that researchers mostly fall back on “what-if” assumptions to determine a damage and try to understand the corresponding impact on 
network performance. In this analysis, we adopt state-of-the-art earthquake simulations based on detailed structure-specific and site- 
specific calculations from earlier work (Koc, 2019a). 

In the transportation systems analysis context, we observed that: 1) a key shortcoming for the works in this area is the use of heavily 
abstracted network models within a study region instead of leveraging the full availability of data and modeling tools in transportation 
engineering today, 2) a general lack of post-disaster travel demand data is hindering further advancements of research in this area, and 
3) a lack of attention to various socioeconomic and sociotechnical issues such as transportation equity and environmental justice (e.g., 
air quality impacts) within the resilience scope. 

In the case of (1), the level of abstraction expectedly varies from study to study; however, a commonality comes from the short
comings in granular network modeling capabilities where the networks of today’s metropolitan areas can be explicitly and holistically 
modeled (Koc et al., 2019b). According to Asakura (2007), in vulnerability and resilience assessments, the model constructed for a 
normal network state needs to be adjusted before being applied to the recovery network state. In terms of post-disaster travel demand 
data requirements (2), collecting empirical data is a limited option, because of the infrequent occurrence of disaster events. However, 
researchers have the option of resorting to existing travel demand models in efforts to analyze post-disaster travel behavior (see, e.g., 

3 We offer the following brief definitions and distinctions of these terms. Vulnerability relates to the drawdown on the functionality of the system, 
whereas resilience, in terms of the narrow definition used in this analysis, relates to the efficient recovery from an initial drawdown. Robustness 
refers to the ability to withstand the shock (e.g., being non-sensitive against wrong design assumptions).Other relevant concepts from reliability 
engineering include flexibility and reconfigurability, which also play important role that influence the recovery path of disrupted system. As 
presented in more details later in the paper, one of the contributions of this study is to examine various reconfigurations of the highway traffic 
system following the shock. The main one is, however, how businesses reconfigure their production processes through the use of various resilience 
tactics.  

4 Broadly, understanding the economic impacts of transportation system disruptions could allow an owner/operator of infrastructure to analyze 
the need for investing in mitigation and resilience, this need could be justified in the eyes of other entities such as the local, regional or national 
governments, etc. 
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Chen et al., 2007).5 

The lack of research on equity and environmental justice issues arising from transportation system disruptions (3) manifests itself in 
the narrow focus of studies on the travel cost-related aggregate or spatial effects of system disruptions. These large-scale events affect 
users of the system at varying levels. 

For the economic impact analysis methods used in this field, most studies only carry out calculations of the direct impacts by simply 
tabulating property damage or lost business revenue. These works do not consider interindustry supply-chain effects or interregional 
economic diffusion effects.6 Among the economic impact studies that apply different types of methodologies, Input-Output (I-O) 
modeling, in general, is a widely used approach (Pant et al., 2011; Okuyama and Santos, 2014; Rose et al., 2018). Furthermore, there 
exist some examples of state-of-the-art methods applied in this context, such as Computable General Equilibrium (CGE) and Spatial 
CGE (SCGE) models (Rose, 2015; Wei et al., 2020; Sue Wing et al., 2021). With regards to incorporation of the hazard and damage 
information, many works adopt simple assumptions related to the event causing the disruption, e.g., the hypothetical closure of a 
freight terminal over a period of time due to a simulated terrorist attack (MacKenzie et al., 2012; Park 2008). Such assumption-driven 
approaches do not utilize a comprehensive procedure of disaster assessment and associated damage estimation. To summarize, the 
state-of-the-art data, tools, and methods in hazard analyses are often not leveraged in most studies, particularly when economic 
impacts are simultaneously investigated (Wei et al., 2018b). Another major shortcoming in this area of work is (similar to the above) 
the failure in explicit and holistic modeling of the networked transportation system which leads to an oversimplified quantitative 
analysis of system functionality (Wei et al., 2018b). Abstraction of the network supply and travel demand as well as the dynamics of 
this pairing leads to a disconnect between the disciplines (engineering and economics) trying to advance the research in this area. In 
the case of the few studies that employ explicit network modeling, most examples aim exclusively at the quantification of the direct 
costs associated with transportation such as increased costs of travel or warehousing (see Xie and Levinson, 2011; Ashrafi et al., 2017; 
Vadali et al., 2015). 

3. Economic resilience to transportation systems disruptions: ports and hinterland road networks 

3.1. Economic resilience – definition and basic considerations 

The important role of economic resilience has been highlighted in many studies of the economic impacts of disasters in the U.S. in 
the past two decades (see, e.g., Flynn, 2008; Rose et al., 2009; Martin and Sunley, 2015; Chen and Rose, 2018; Wei et al., 2020). The 
losses incurred by regional and national economies after major disasters are usually less than expected because of the significant 
potential of resilience of the economy at both the micro- and macro-levels. Resilience also helps explain how impacted regions can 
recover more rapidly than expected. There has been increasing attention to and emphasis on the concept of resilience for more than a 
decade, including major advances in the definition of economic resilience stemming from the work of Cutter (2016), Rose (2017), and 
others. In this study, we adopt a more narrow definition of resilience as relating to business continuity and recovery (see, e.g., Berke 
and Campanella, 2006), and thus exclude actions that are broadly classified into the category of mitigation, which usually take place 
before disaster occurrences. We do include various prior-event actions that help build capacity of resilience, however, such as 
enhancing stockpiles of critical materials, obtaining emergency electricity generators, developing and maintaining contingency plans, 
and conducting emergency response drills for better implementation once the disaster strikes (see, e.g., Wei et al., 2020). 

Although the specific definitions of resilience can differ across disciplines, more commonalities than differences are found ac
cording to Alexander (2013), Cutter (2016), Rose (2017), and others. Below we first provide the general definitions of resilience, 
capturing the essence of the concept in many fields, followed by definitions that take into account economic considerations.7 Following 
Rose and Liao (2005) and Rose (2017), we divide the definitions of resilience into the following two major categories:  

• Static Resilience can be generally defined as the ability to maintain a high level of functionality in a system impacted by external 
shocks. Static Economic Resilience refers to the capability to use the remaining resources efficiently at a specific point in time. 
Therefore, it is in line with the core economic concept of efficient allocation of scarce resources, a condition worsened in disasters.  

• Dynamic Resilience can be generally defined as the capability and speed by which a system recovers from external shocks. Dynamic 
Economic Resilience focuses on how resources can be utilized efficiently for repair and reconstruction over the recovery time period. 

5 Four categories of efforts, including reduction, readiness, response, and recovery, to reduce unreliability of a road network are presented in 
Nicholson (2007). Khademi et al. (2015) found that many studies isolate the analysis of the pre-disaster phase. Mattsson and Jenelius (2015) discuss 
the importance of evaluating the entire timeline of the disaster, as well as the benefit from multi-disciplinary collaborations.  

6 In operations research, many studies have considered propagation impacts of disruptions both forward and downward the supply-chains, as well 
as effects of supply-chain resilience measures (such as identifying high-risk suppliers and contracting with backup suppliers) using methods such as 
Bayesian network approach (Garvey et al., 2015; Hosseini and Ivanov, 2019; Hosseini and Ivanov, 2020) and agent-based modeling (Giannoccaro 
and Iftikhar, 2020; Li et al., 2021).  

7 We acknowledge that there are other general approaches and definitions of resilience. For example, one of the first such approaches was in the 
realm of systems analysis, where resilience has a more dynamic connotation closely related to the concepts of stability (for an extensive review of 
systems resilience we refer the reader to Hosseini et al., 2016). We also acknowledge the important contributions to resilience by ecologists such as 
Holling (1973) and Pimm (1984) to whose work our definitions of static and dynamic economic resilience are related. Finally, we note that our 
definitions of economic resilience are highly cited in transportation literature (see, e.g., Pant et al., 2015; Janic, 2015; Renne et al., 2020; Zhou and 
Chen, 2021). 
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Investment involves a time dimension in the decision process—resources that can be utilized for immediate consumption are 
invested in the reconstruction and recovery process aiming to restore productivity in the future. 

In this study, the analysis is primarily focused on the role of static economic resilience from both the supplier and customer per
spectives. However, dynamic economic resilience also comes into play in relation to variations in the restoration of highway capacity. 

Important distinctions also exist between inherent and adaptive economic resilience (Rose and Liao, 2005; Tierney et al., 2007; 
Cutter, 2016). Inherent resilience relates to intrinsic capacity of resilience already existing within a system or the potentials to 
incorporate it prior to the disruptions by the enhancement of capabilities through “pre-positioning.” Some examples of inherent 
resilience include the existence and utilization of excess capacity and various forms of substitution options, such as rerouting ships, 
substituting between transportation modes, and geographic shifts of production activities. All of these coping strategies are in response 
to the functioning of the market system through price signals that influence decision-makings in reallocation of scarce resources. On 
the other hand, adaptive resilience is achieved by implementing tactics after the disruption strikes, such as conserving in ways pre
viously not thought possible or modifying a technology.8 

Economic resilience does not focus on property (including buildings and contents) damages, which typically occurs when the 
disruption commences, but instead highlights the loss reductions of the flow of goods and services resulting from the destruction of the 
capital stock of the port and associated highway network. The flow losses are typically measured as the reduction in production levels at 
the micro-level or as losses in gross domestic (regional) product (GDP or GRP) at the macro level, and are usually characterized as 
business interruption (BI). BI starts at the onset of the disaster, and typically continues throughout the entire process of individual 
business or system recovery (Rose, 2017). 

The next step of evaluating the effects of resilience is to convert these definitions into an operational metric. For static resilience, the 
metric can be calculated as the percentage of BI avoided by implementing a specific resilience tactic, or a resilience strategy comprising 
a group of tactics, with respect to the maximum BI loss potentials from the disaster without implementing any tactic (Rose, 2017). This 
and other related metrics have been adopted in several studies to measure the effects of resilience (see, Rose et al. 2009; Rose and Wei, 
2013; Xie et al., 2014). 

3.2. Economic resilience tactics applied to transportation system disruption 

Port resilience can be considered a special category of economic resilience (Rose and Wei, 2013; Wei et al., 2020). Static economic 
resilience to port disruptions refers to measures implemented by ports and businesses to effectively use remaining resources to 
maintain as much function as possible. Supplier-side resilience refers to a variety of tactics for keeping the port functioning. From the 
customer-side perspective, businesses affected both directly and indirectly by the interruption of imports or exports would not stand by 
passively, but could instead implement a broad set of coping measures. 

Expanding on our prior research, we provide in Table 1 the definitions of various types of resilience tactics that can be adopted by 
either suppliers or customers relating to disruptions of ports and their hinterland transportation systems. The majority of these 
resilience tactics are derived formally from economic production theory (Rose and Liao, 2005; Dormady et al., 2019) and are codified 

Table 1 
Summary of resilience tactics to port and highway transportation disruptions.  

Supplier-Side Resilience Options Customer-Side Resilience Options 

Excess capacity: Bringing online capacity not in use at terminals experiencing little or no 
damages 

Use of inventories: Stockpiling critical inputs 

Ship re-routing: Redirecting vessels to alternative undamaged ports Conservation: Implementing ways to utilize lower quantities of inputs 
per unit of output 

Cargo prioritization: Prioritizing the unloading/loading of cargos, taking cargo values into 
consideration 

Input substitution: Making use of goods similar to the ones whose 
output is disrupted 

Effective management: Improving decision-making, stakeholder coordination, information 
sharing, and expertise in general 

Import substitution: Transporting goods in supply shortages into the 
region from outside of it 

Export diversion for import use: Obtaining goods originally intended for international 
market as substitutes for disrupted imports or goods produced domestically 

Production relocation. Moving production activities to branch plants/ 
facilities located outside of disaster-affected regions. 

Production recapture: Working extra hours/shifts to unload backlogged ships after ports 
reopen. 

Production recapture: Working extra hours/shifts after the ports re- 
open to make up lost production 

Effective road infrastructure asset management: Improvements in traffic flows Effective travel demand management: implementing ways to decrease 
travel demand during recovery  

8 Some major parallels exist between the definitions of economic resilience in this paper and those associated with supply-chain resilience. A 
prime example is the review and synthesis of the literature of the latter by Hosseini et al. (2019), in which those authors divide resilience into three 
major categories: absorptive capacity, adaptive capacity, and restorative capacity. The latter two are closely related to our static and dynamic 
resilience definitions, with the major difference being our distinction between inherent and adaptive resilience. Note also that we have focused our 
definitions on the micro level of individual ports, business, and transportation systems. However, our analysis is undertaken with a general 
equilibrium model and thus captures supply-chain linkages (see Rose and Liao, 2005 and Rose, 2015 for more details of the extension of our 
definitions to multiplier and general equilibrium effects, and hence to the economy as a whole). 
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in a U.S. National Academies of Sciences report (NRC, 2012). The authors have also been able to measure resilience through survey 
research (see, e.g., Rose et al., 2009; Dormady et al., 2018, 2021).9 Dormady et al. (2021) have estimated the benefit-cost ratio of the 
two resilience tactics we apply as follows: Production Recapture – 1.5; Excess Capacity – 1.1. 

4. Integrated transportation-socioeconomic impact analysis system 

The integration of models on both transportation and economics fronts can provide rich insights for disaster resilience impact 
analysis. Hence, we have deployed a regional travel demand model that provides high-level spatial details of the disaster region and a 
CGE model that provides inter-sectoral and inter-regional linkages supplemented by a multi-sector income distribution matrix. In this 
section, we first describe each component of this integrated modeling system, followed by an overview of how they are linked, focusing 
especially on how the main outputs from one model are served as inputs into other models to create a holistic analysis of impacts of 
disaster scenarios. 

4.1. Hazard damage assessment model 

Hazard characterization and damage assessment results are adapted from a concurrent work, which discusses in detail the method 
used to select the specific seismic hazard scenario (a subsurface rupture length of 90.37 km for a 7.3-moment magnitude reverse-slip 
fault event) based on Probabilistic Seismic Hazard analysis (PSH), the calculation of the IMs resulting from the defined earthquake 
event by passing the source information to ground motion prediction equations (GMPEs), and the damage and recovery assessments of 
bridges (Koc et al., 2020). Additionally, the same seismic hazard scenario was simulated using FEMA HAZUS software to estimate 
damages to ports and the general building stock. Readers are referred to (Koc et al., 2020) for further discussion on the progression of 
calculations that lead to bridge damage state probabilities and restoration functions utilized to calculate the downtime associated with 
the simulated hazard used in this study. Hazard and vulnerability parameters are also summarized in Table 2. Fig. 1 summarizes results 
from hazard characterization and damage assessment with maps of the SA1.0 resulting from the scenario event and the locations of the 
damaged bridges and traffic implications in terms of bridge downtimes. 

4.2. Investigation of transportation resilience with the SCAG regional travel demand model 

The regional travel demand model (RTDM) of the Southern California region, developed under the Regional Transportation Plan 
(RTP) by the Southern California Association of Governments (SCAG), is adopted as the transportation system analysis module of the 
integrated model (SCAG, 2019). The model is built and operated using the transportation planning software of TransCAD. It is vali
dated using several types of travel data from independent sources, including automobile and truck travel counts, number of transit 
trips, Highway Performance Monitoring System (HPMS) data on Vehicle Miles of Travel, Freeway Performance Measurement System 
(PeMS) data on average speed, and other sources of travel survey data (Koc et al., 2020). 

The results from damage assessment are integrated into the transportation model by manipulating its network topology to estimate 

Table 2 
Hazard and vulnerability parameters.  

PSH Source 2014 version of U.S. Conterminous Seismic Hazard Maps 

Deagregation Return Period 975 years 
Governing Fault Palos Verdes 
Moment Magnitude 7.3 
Subsurface Rupture Length 90.37 km 
Event type Reverse-lip fault 
Effects Ground-shaking only 
Intensity Measures for Damage 

Analysis 
SA0.3 and SA1.0 

GMPEs Weighted average of the median SA values computed from 2013 GMPEs by Abrahamson et al., Boore et al., Campbell and 
Bozorgnia, Chiou and Youngs, and Idriss with weights for the first four equations set 0.22 and the last one set to 0.12 (Gregor 
et al., 2014). 

Site Effects Using the slope-based VS30 proxy method suggested by Wald et al. (2011). 
Basin Effects Neglected  

9 One thing to note is that skills, capabilities, and attitudes of organizations can affect the actual implementation of the resilience tactics 
immediately after the disruption and throughout the recovery process. However, this consideration is beyond the scope of this study. The recovery 
functions used in HAZUS are largely based on expert surveys in which complexities such as organizational issues are not addressed. 
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the degradation (the reader is referred to Koc et al., 2020, for details of the hazard analysis). For example, if a bridge is damaged10 and 
cannot service traffic, the links and public transit routes going through the bridge are modeled closed until reconstruction is taken 
place. These post-disaster characterizations of the network capture the transportation disruption and the recovery in terms of network 
level functionality indicators, including VHT (Vehicle-Hours Traveled), VMT (Vehicle-Miles Traveled), delay, average speed, at the 
TAZ level. 

4.3. The TERM multi-sector CGE model 

We adapt the TERM multi-regional computable general equilibrium (CGE) model (Horridge et al., 2005, Wittwer, 2012) to estimate 
aggregate and sectoral economic impacts of the simulated earthquake scenario and the effectiveness of individual economic resilience 
tactics. CGE models are the state-of-the-art among applied general equilibrium modeling approaches used to study the economic 
impacts of disasters, including those affecting transportation systems (Rose, 2015; Rose et al., 2017; Chen et al., 2017; Chen and Rose, 
2018; Wei et al., 2020; Zhou and Chen, 2021). They model the economy in terms of changes in behavior of businesses and consumers in 

Fig. 1. Hazard characterization and damage assessment.  

10 Damage is considered binary based on a 75% post-event functionality threshold. Exact post-event functionality with respect to time is deter
mined by HAZUS recovery functions. The 75% threshold was adopted from literature due to the lack of standardized data on the relationship 
between damage or functionality information and closure decisions made by inspectors (Gordon et al., 2004). This threshold assumption could be 
changed according to the agency/analyst operating with this framework. In reality, bridge inspectors visit the damaged site and make recom
mendations on closure. 
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response to price signals, external shocks, and constraints of resources in the context of an integrated set of sectoral supply chains. The 
CGE formulation overcomes most of their limitation in related models, such as the input–output (I-O) analysis (Rose, 2015). 

The TERM model uses a “bottom-up” approach, treating each of its regions as an individual and separate economy. It is assumed 
that producers maximize their profits by minimizing the costs of an aggregate of intermediate production inputs and primary factor 
inputs. This is characterized by the Constant Elasticity of Substitution (CES) production functions with the nested structure to allow for 
elasticity variations across input combinations. At the top level of the nesting structure, an aggregate of primary factor inputs is 
combined with an aggregate of intermediate inputs to produce the output. The aggregate of the intermediate inputs is also a CES 
composite of various types of commodities (some representing aggregate of commodities from various sources, with relatively low 
substitution possibilities). The aggregate of primary factor is in turn a combination of capital, labor, and land, with labor being a 
composite of labor of various skill levels. In each region, a representative household maximizes its utility by purchasing the optimal 
combinations of goods and services subject to its budget and preferences. 

Our version of the TERM model is comprised of four regions and divides the economy into 97 sectors. The regions consist of Los 

Fig. 2. Integration of transportation and economic models.  

D. Wei et al.                                                                                                                                                                                                            



Transportation Research Part D 106 (2022) 103236

9

Angeles Metro Region11, San Francisco Metro Region12, the Rest of California, and the Rest of the U.S. Simulations were conducted 
with a short-run closure rule, under which wages were assumed rigid exogenously and employment adjusts endogenously. 

4.4. Construction of the multi-sector income distribution matrix of California 

In order to analyze the potential economic impacts stemming from disruptions of port and transportation networks and to evaluate 
the effects of resilience tactics across socioeconomic groups (specifically income groups), a Multi-Sector Income Distribution Matrix 
(MSIDM) for the state of California is constructed. The matrix provides the earnings profile according to nine income brackets for each 
producing sector in the economy, i.e., the proportion of the personal income (including both labor income and capital income) paid to 
each household income group by each economic sector (Rose et al., 1988; Li et al., 1999; Rose et al., 2012). 

In 2018, total personal income in California was more than $2.4 trillion (BEA, 2019). The first major component is Wages and 
Salaries, which includes the total remuneration of employees. The total Employee Compensations, which were $1.35 trillion in 2018, 
are the sum of Wages and Salaries and Employer Contributions for Employee Pension and Insurance Funds. The total Proprietors’ 
Income in 2018 was $249.6 billion. 

The next major component of the personal income accounts is capital income, which amounted to $538.3 billion in California in 
2018. These include dividends, interest payments, and rental income. The final major component of the personal income accounts is 
Personal Current Transfer Receipts, which were $341.2 billion in California in 2018. These mainly include payments from government 
welfare and benefit programs. The BEA Personal Income accounts for California were used as control totals when we constructed the 
individual income matrices in the following sections. 

In this study, we adopt the nine household income brackets that are used in IMPLAN (the largest provider of regional input–output 
and social accounting data in the U.S.). The income distribution matrix for wages and salaries is constructed using the Occupation- 
Industry Employment matrix and the Occupation-Industry Wage matrix obtained from the BLS Occupational Employment Statistics 
(OES) (BLS, 2019a). IMPLAN data are used as the main data source to distribute proprietors’ income, dividends, other property in
come, and transfers across sectors and income brackets (see Appendix A for more details). 

The total personal income matrix is constructed by combining each individual matrix of various personal income components. We 
then calculated the total income distribution coefficient (structural) matrix for California by dividing the income value for each bracket 
in a given sector by the total income for that sector. 

4.5. Model linkages 

Fig. 2 shows how the various analytical models discussed in the previous sub-sections are integrated in this study. 
Starting from the top of Fig. 2, hazard characterization and damage assessment results from a concurrent work (Koc et al., 2020), 

namely damage and recovery of bridges in the case of the simulated earthquake scenario, informed the transportation systems analysis. 
Additionally, the same scenario was simulated to estimate damages to other aspects of the built environments (i.e., General Building 
Stock) and ports. These hazard results inform both the transportation system analysis and the socioeconomic impact analysis. From left 
to right, Fig. 2 next presents the analytical framework of the transportation system model in terms of a 4-step travel demand model 
developed at the metropolitan-scale (see Koc et al., 2020 for a detailed description of the steps involved, including Network Skim
ming), Trip Generation and Distribution, Mode Choice, Time-of-Day Choice and Traffic Assignment. To arrive at the network per
formance indicators and resilience outcomes, the 4-step methodology is implemented for each of the network topology, including the 
versions of the pre-disaster baseline and the post-disaster degraded network. Traffic assignment results gathered across representative 
network versions along the disruption timeline set the stage to assess the functionality of network throughout the entire recovery path. 

The linkages between the transportation model and the TERM CGE model have been established using the approaches discussed in 
Wei et al. (2020). This involves the use of estimated increase in transportation costs, reductions in commodity supply caused by port 
disruptions, and business interruptions caused by general building damages of the scenario earthquake, which are all inputs into the 
CGE model. 

The next steps are to establish the linkage between the economic impact model (the TERM CGE Model) and the MSIDM. The first 
step is to calculate changes in income by bracket caused by building damages and degradation of the transportation system by 
multiplying the sectoral income changes by the MSIDM. We next estimate the overall changes in distribution of income in the study 
region by adding the changes in income across sectors by income bracket. The Gini coefficients for both the reference case and the 
resilience cases are calculated to evaluate whether inequality in income distribution has been increased or decreased under different 
disruption and resilience cases. 

5. Disaster scenario and methods to estimate disaster damages 

To illustrate the working of the integrated transportation-socioeconomic impact model, we use the results of a simulated scenario 
earthquake, an earthquake of magnitude 7.3 caused by a rupture of the Palos Verdes Connected fault system with an epicentral 1.4 km 

11 This region includes three southern CA counties: Los Angeles, Orange, and Riverside.  
12 This region includes nine northern CA counties: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and 

Sonoma. 
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away from the San Pedro Bay ports as a case study.13 This scenario event was identified by examining the probabilistic seismic hazards 
in the area for a 975-year return period, and the effects of the earthquake were limited to ground shaking only. The methodology used 
for additional hazard characterization and damage assessment for 1) bridges, 2) ports, and 3) general buildings is discussed in detail in 
Koc et al. (2020). In transportation systems analyses, bridges are regarded as the most critical segments of a road network due to the 
lower redundancy associated with them. 

6. Direct impacts of the simulated earthquake scenario 

6.1. Disruption and recovery of regional transportation 

Based on HAZUS simulation results on damage state and replacement value of individual components of the transportation system, 
the repair and replacement costs of the highway transportation infrastructure are estimated to be over $300 million (in 2019 dollars). 
Six network versions in total (for Days 0, 1, 7, 30, 90, and 104 after the disaster event) were modeled for the simulated earthquake 
scenario. The solutions to the traffic assignment problem for each version were completed under fixed travel demand assumptions to 
quantify the disruption and recovery of transportation in the region. Simulation results indicate that 137 bridges are closed because of 
the earthquake damages on Day 1, and 62, 58, 45, and 19 bridges remain closed on Day 7, 30, 90 and 104, respectively. Every network 
version for the corresponding bridge closures, indicators of system level functionality, such as Total Travel Time (Vehicle-Hours- 
Traveled), Total Travel Distance (Vehicle-Miles-Traveled), and Delay, were quantified to investigate the disruption. 

The simulation results indicate significant interruptions to regional mobility, especially for the transportation network on Day 1 
(see Fig. 3a, which presents the percent changes in traffic flow on Day 1 and Day 7 after the scenario earthquake). Consequently, 
increases in total travel distance in terms of VMT on Days 1 and 7 after the earthquake for each TAZ are presented in Fig. 3b. In the first 
week after the earthquake event, about 850,000 h of increased travel time per day is estimated. This translates to a 6.52% reduction of 
TTT (Total Travel Time)-based functionality in the study region. Other than the quantitative results presented here and entered as 
inputs into the economic model, there are many ways that the detailed transportation simulation results could be utilized to inform 

Fig. 3a. Changes in vehicle flow during AM peak time on day 1 and day 7 after the simulated earthquake event.  

13 Note that the seismic hazard scenario was originally characterized by the authors’ collaborators at UCLA CEE’s Taciroglu Research Group for a 
concurrent study on a comprehensive evaluation of resilience of transportation systems in metropolitan areas (Koc et al., 2020). The same reference 
provides detailed discussions on how a computer vision-enabled methodology is used to estimate damages to and restoration of bridges. 
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operations and management of the road network under a disaster scenario. For example, Fig. 3b clearly shows the cascading 
disturbance in the transportation network towards west of the epicenter near POLA/POLB, primarily through I-405. A quick inspection 
of the root cause of this cascading effect reveals the damaged bridges along this highway corridor as critical network components that 
could be identified for a rapid restoration effort after the strike of the simulated earthquake or could be prioritized for seismic 
hardening or retrofitting in preparation of future disasters. We presented an example of such analysis below, which investigates the 
potential of prioritizing recovery effort to keep eight relatively less damaged bridges along I-405 open after the earthquake as a dy
namic resilience tactic. More broadly, decision makers carrying out associated planning/modeling tasks for the owners/operators of 
road infrastructure can readily implement this integrated modeling framework or one they develop based on a similar perspective as 
they prioritize their resilience tactics to improve the performance of their networked infrastructure in the context of hazard risk. 

In the simulation, Los Angeles County experiences the largest burden of this degradation, with a 11.81% decline in TTT-based 
functionality. The transportation disruption results, estimated at a much higher resolution (at the Traffic Analysis Zone level),14 

are aggregated up to regional breakdowns in the TERM Model. We use changes in TTT directly as the indicator of changes in trans
portation costs15. This is expressed as an average percent increase in transportation costs, which include labor costs that constitute the 
larger share, as well as fuel, operation, and maintenance costs, for the LA Metro Region as a whole, both within the Region and between 
LA Region and the rest of the state. For this TTT-based functionality, results for every network version are benchmarked to their 
baseline levels (see Table 3). 

Since the simulations in the TERM Model are conducted on an annual basis, we first translated the transportation cost increases 
over the 105-day period presented in Table 3 to an overall percentage transportation cost increase per year. This is calculated as a 
0.5271% increase in truck transportation cost within the LA Metro Region and a 0.26356% increase between the LA Metro Region and 
Rest of CA (on an annual basis). 

We also simulated a hypothetical intervention to keep eight bridges open to service on the I-405 corridor from Day 1 (in the 
Reference Case, the service of these eight bridges is not restored until 7 days after the earthquake) to evaluate how the accelerated 
recovery of a critical component of the corridor in the highway transportation system can reduce the degree of transportation network 

Fig. 3b. Changes in Vehicle-Miles-Traveled (VMT) during AM peak time on day 1 and day 7 after the simulated earthquake event.  

14 
>11,000 TAZs are used to model the travel demand in the SCAG region.  

15 TTD (Total Travel Distance)-based functionality indicates only marginal changes given the high redundancy in the dense urban network. High 
redundancy enables short detours, and TTD indicators change only marginally, while TTT indicators show a major disruption. In Los Angeles, the 
dense street networks result in this phenomenon. In other cities, such as San Francisco, closure of a few low redundancy links can result in significant 
decreases in TTD based functionality. 

D. Wei et al.                                                                                                                                                                                                            



Transportation Research Part D 106 (2022) 103236

12

functionality decline during the first week in the aftermath of the earthquake. Such an intervention could entail the rapid installment of 
temporary support structures such as shoring systems that are often used in bridge construction. 

The results in Fig. 4 indicate a significant improvement to system functionality for the resilience case of a more accelerated recovery 
of major bridges during Week 1: functionality loss in L.A. County is reduced by 3% and 220,000 h/day spent in traffic are saved with 
respect to the reference case.16 As a result, the transportation cost increases in Days 1–7 are reduced from 9.88% to 7.27% within the 
LA region and from 4.94% to 3.63% between LA and the Rest of CA. 

6.2. Functionality loss and recovery at the ports of Los Angeles and long beach 

We also employed the HAZUS methodology to estimate the port’s remaining functionality following the earthquake, as well as its 
recovery path (FEMA, 2013). HAZUS accommodates a database that provides detailed information on the berths at the ports. The total 
costs of repair and replacement of damaged port facilities are estimated to be over $210 million. The restoration at the port is simulated 

Table 3 
Percentage increase in transportation costs for intraregional and interregional transportation between the LA metro region and the rest of 
CA.  

FROM / TO Days after Earthquake LA METRO REST OF CA 

LA METRO 1–7  9.88  4.94 
7–30  1.34  0.67 
30–90  1.28  0.64 
90–104  1.04  0.52 
104–105  0.92  0.46  

Fig. 4. Regional system functionality Q(t) (in VHT) before and after tactic to accelerate the opening of eight major bridges in week 1. Note: the 
system functionality measures are discrete in time (based on the simulation results of six network versions or key days in the aftermath of the 
scenario earthquake). Thus, the lines in the figure are simply drawn to join the various measurement points. 

16 The Reference Case only considers inherent resilience of the transportation network, such as road redundancy. The Resilience Case considers an 
accelerated recovery of eight bridges in the main highway corridor, which help reduce the disturbance of the transportation network in the first 
week after the earthquake. Note, however, that we assume this strategy will not affect the speed of recovery of the other components on the highway 
corridors. Therefore, the degradation levels of the system are the same on the remaining simulated days (i.e., the solid and dotted lines overlap after 
Day 7 in Fig. 4). 
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based on the analysis of the damage state probability of the 171 port facilities under the earthquake scenario event, the repair and 
reconstruction time needed for different damage states, and the expected functionality levels of these facilities on selected key days 
after the strike of the earthquake until the recovery to 100% functionality. Since an industry classification scheme is not given for the 
port facilities in HAZUS, we used official facility maps published by the port authorities to manually classify the berths in the HAZUS 
inventory into main categories of cargos handled by the damaged facilities (containerized, breakbulk, dry bulk, liquid bulk, and 
automobiles). The HAZUS simulation results are presented in Appendix B. We then translate the reduction in port capacity into dis
ruptions of import and export flows through the twin ports, measured as percentage reductions in import uses and export production 
by sector in each of the TERM regions. 

6.3. General building stock damages in greater Los Angeles 

The general building damages are calculated based on the HAZUS earthquake simulation results. The percent building damages are 
calculated by dividing the sum of dollar losses in building and contents by the total exposure values of building stocks. On average, 
business sectors in the LA Metro Region experience 1.4% to 6.21% property damages. The total costs of repair and replacement of the 
general building stock are estimated to be about $64 billion. 

The percentage property damages from HAZUS occupancy classes are then mapped to TERM economic sectors. The weighted 
average recovery period by sector is calculated using the information on building damage states and the associated recovery time both 
obtained from HAZUS. Finally, the percent destruction of capital input is calculated on an annual basis based on the recovery time. 
Appendix C presents the percentage building damages by TERM model sector and the average recovery time for each sector based on 
HAZUS simulation results for various occupancy classes. 

7. Socioeconomic impacts of the simulated earthquake scenario 

7.1. Aggregate impacts of port disruptions 

To simulate the macroeconomic impacts of port disruptions, we first translated reductions in port functionality into disruptions of 
import and export flows. The percentage reductions in import uses and export production by sector in each of the TERM regions are 
then calculated. 

Like other CGE models, the TERM Model automatically captures the effects of three categories of inherent economic resilience that 
work through the price system. These are input substitution, import substitution, and regional production relocations (IIR).17 

Following the methodology developed in Wei et al. (2020), we estimate the loss reduction potential of the IIR by comparing the 
simulation results using the I-O analysis and the TERM simulation results of the port disruptions. The I-O analysis assumes fixed 
production coefficients (or a linear relationship between the changes in production inputs and changes in the output), and thus can be 
used as the Base Case with no resilience tactics incorporated. Table 4 first presents the GDP impacts of the Base Case (no resilience) and 
the GDP impacts obtained from the TERM simulations that take into consideration IIR (the Reference Case in Table 4). 

The port disruptions are estimated to result in $1.76 billion GDP losses (0.219% reduction) in the LA Metro Region after the three 
major types of inherent resilience tactics are considered. The other regions in California, as well as the Rest of U.S., also experience GDP 
losses, but in smaller magnitudes in percentage terms because the LA Region is the final destination and direct user of nearly 50% of the 
import shipments through the Ports. The total losses in GDP are estimated to be about $11.0 billion for the U.S. as a whole, though this 
translates to less than a 0.1 percent decline. 

Table 4 
Real GDP impacts of port disruptions for the base case, reference case, and resilience case simulations. (in millions 2019 dollars and % reduction with 
respect to pre-disaster baseline levels).   

Los Angeles 
Metro 

San 
Francisco 

Metro 

Rest of CA Rest of U.S. U.S. Total Loss Reduction 
Potential (for 

LA) 

Loss Reduction 
Potential (for U. 

S.) 

Base Case (no resilience) − 13,754.92 − 5,912.57 − 6,342.29 − 52,900.52 − 78,910.42   
− 1.71% − 1.24% − 1.12% − 0.41% − 0.54% 

Reference Case (With Inherent 
Resilience (IIR)) 

− 1,763.81 − 936.19 − 739.53 − 7,535.55 − 10,975.09 87.18% 86.09% 
− 0.22% − 0.20% − 0.13% − 0.06% − 0.08% 

Resilience Case (With 
Combined Resilience– IIR, 
Other Inherent, Adaptive 
Resilience) 

− 284.92 − 64.06 − 77.21 − 331.96 − 758.15 97.93% 99.04% 
− 0.04% − 0.01% − 0.01% 0.00% − 0.01%  

17 Input substitution refers to the use of similar goods as a replacement in the production process to the goods whose production and supply is 
interrupted directly and/or indirectly. Import substitution is the strategy to purchase goods and services in shortage from outside of the disaster 
impacted region. Regional production relocation can be achieved by shifting production activities to branch plants and facilities located outside of 
the disaster region. 
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The percentage loss reduction potential of the IIR resilience and of all resilience tactics considered for port disruptions in this study 
are presented in the last two columns of Table 4. A comparison of the Reference Case simulation results (presented in row 2) and the 
results from the I-O analysis (row 1) indicates that the IIR resilience automatically captured in the TERM model simulations can reduce 
87.2% of the GDP impacts for the LA Metro Region and 86.1% at the national level. 

We next run a simulation of other types of inherent and adaptive resilience tactics pertaining to port disruptions (see the last row of 
Table 4). The combined resilience can further reduce the GDP impacts to $0.28 billion for LA and $0.76 billion for the U.S., or a 
reduction of the potential GDP losses by almost 98% and over 99%, respectively, compared to the Base Case. 

7.2. Aggregate impacts of truck transportation cost increases and building stock damages 

The transportation cost increases over the 104-day recovery period, translating to a 0.5271% increase in truck transportation cost 
within the LA Metro Region and a 0.26356% increase between the LA Metro Region and the Rest of CA on an annual basis. 

The GDP losses in the LA Metro Region are estimated to be $17.0 million. The Rest of California will only experience very slight 
GDP losses. The Rest of U.S. is estimated to have a small increase in GDP of $4.21 million, which can be explained by the effect of 
regional production shifts automatically captured by the TERM Model caused by a truck transportation cost increase (and thus an 
implicit production cost increase) in the LA Metro Region and the Rest of CA in comparison to the Rest of US. The resilience tactic of a 
more rapid opening of critical highway corridors during the first week after the seismic event is estimated to have a loss reduction 
potential of about 10% over the entire recovery period. 

The simulated earthquake also results in destructions and damages to general building stock in the LA metro region, which in turn 
results in interruptions to the production of goods and services using the productive capital stock. The total GDP losses stemming from 
property damages are estimated to be nearly $23.4 billion (or a 2.8% reduction from the annual baseline level) in the LA Metro Region. 
The Rest of CA (excluding Northern California) is estimated to experience very slight GDP losses. The Rest of the U.S. is estimated to 
have an increase in GDP of $3.3 billion, which again can be explained by the effect of regional production shifts or locational sub
stitution of economic activities caused by the simulated disaster. 

After we take into consideration two major types of resilience tactics to cope with general building stock damages – the use of 
undamaged spare/excess capacity and production recapture – GDP losses decrease from $22.4 billion to $13.8 billion for the LA Metro 
Region and from $19.3 billion to $11.8 billion for the U.S. as a whole, a reduction of about 38% compared to the Reference Case, in 
which only the three major inherent resilience tactics (IIR) are taken into account. 

When we compare the economic impacts of the three types of disruptions/damages of the earthquake scenario – port disruption, 
hinterland transportation cost increase, and general building damages – the impacts from general building damages account for over 
92% of the total impacts in the LA Metro Region before resilience other than IIR is taken into account. The hinterland transportation 
system disruption results in the smallest impacts because of the high redundancy of the transportation network in the region. At the 
national level, impacts from general building damages account for about 63% of the total impacts (without resilience adjustments), 
while the port disruptions account for another one third of the total impacts. After the adjustment of the various resilience tactics, 
impacts from general building damages account for nearly 98% of the total impacts in the LA Metro Region and 94% for the U.S. This is 
because there are more effective resilience tactics businesses can implement to deal with port disruptions and supply chain shortages 
than are available in the case of physical damages to buildings and facilities. 

7.3. Combined economic impacts 

We also run a simulation in which we combine all three types of disruptions/damages together. This simulation is run for both the 
Reference Case and the Combined Resilience Case (see Table 5). The total GDP losses are estimated to be $24.2 billion (or a 3% 
reduction) in the LA Metro Region, and $30.2 billion in the U.S. as a whole (or a 0.21% reduction). After taking into account the effects 
of various resilience tactics, the total impacts are reduced to $14.2 billion in the LA Metro Region and $12.8 billion for the U.S. as a 
whole, or a loss reduction of 41.3% and 57.6%, respectively. The reason that total impacts are less at the national level than at the 
regional level in the Combined Resilience Case is that the Rest of the U.S. is expected to experience an overall increase in economic 
activities due to regional production shifts after the earthquake hits the LA area. 

7.4. Income distribution impacts 

Based on the simulation results from the TERM Model, we performed income distribution analyses for the LA Metro Region (the 
region affected most by the simulated earthquake scenario). The detailed income distribution impacts for port disruption, trans
portation cost increase, general building damage, and all three combined, are presented in Appendix D. The tables first present the 
distribution of personal income across income brackets in the baseline, followed by the income distribution impacts for both post- 
disruption simulation cases (Reference Case and Combined Resilience Case). For port disruptions, the percentage reductions in in
come are relatively higher for the lower- to middle-income groups in the Reference Case, but are relatively higher for the middle- to 
high-income groups in the Combined Resilience Case. For the transportation cost increase simulation, the percentage changes are 
relatively higher for some middle- and upper-income groups. For the building damage simulations, the middle- and higher-income 
groups in general experience relatively higher income losses in both the Reference Case and Resilience Case. This can be explained 
by the fact that a higher proportion of capital-related income is earned by higher-income groups. 

Table 6 first presents the Gini coefficients for the income distribution in the baseline and various simulation cases. The changes in 
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the Gini coefficient relative to the baseline level are then presented. Finally, we compute the Gini coefficient for the income loss alone. 
The Gini coefficient increases in the port disruption Reference Case, which indicates that the disruption is borne slightly dispropor
tionately by lower- and middle-income groups. The Resilience Case results in a Gini coefficient slightly lower than the baseline level, 
which is explained by the fact that the various resilience tactics are more effective in reducing impacts in the sectors that employ more 
people from the lower-income groups. For example, manufacturing sectors have a higher potential to use inventory and implement 
production recapture compared with service sectors such as healthcare, finance and insurance, or professional and business services. 
The Gini coefficients of the other cases decrease compared to the baseline level, indicating that the income losses stemming from 
transportation cost increases and general building damages are borne disproportionately by middle- and higher-income groups. This is 
because these groups earn a higher proportion of capital-related income and thus are expected to experience a higher proportion of 
income losses from capital stock damages. Since the impacts of general building damages account for over 90% of the total impacts in 
the LA Metro Region, the combined simulation of all three types of disruptions/damages also leads to lower Gini coefficients. 

8. Limitations of current study and areas for future research 

There are several limitations to the current study. First, the recovery of bridges in our integrated framework is largely based on 
HAZUS recovery functions that are derived from expert surveys. The difference in our case from a typical all-HAZUS methodology is 
the adoption of more advanced modeling through the image-to-model method for the bridges that are within the immediate periphery 
of POLA/POLB. For those bridges modeled based on HAZUS inventory, the assumption is that recovery will happen with estimated 
durations based on the Applied Technology Council evaluation of earthquake damage for California (ATC, 1985). No resource 
constraint is taken into consideration in the HAZUS modeling. Optimal resource allocations under resource constraints in the aftermath 
of disasters are important strategies to lead to faster recovery, which is an important topic for further investigation in future studies. 

Second, the transportation system analysis in this study only focuses on the impacts on the road network (including both highways 
and surface roads) under disruptive events. It does not incorporate explicit analyses of intermodal substitutions between highway 
transportation and other transportation modes. Similarly, although inter-seaport substitutions (through ship diversions) are included 
in the port resilience analysis, rail as a resilience transportation substitution is not considered. Future studies can enhance these aspects 
by deploying multi-modal transportation infrastructure models. 

Third, the current study models the disruption and recovery of the transportation network in the disaster region based on the 
assumption of fixed travel demand. This is a simplified assumption to make the current analysis, which has a primary focus on eco
nomic and distributional impacts of disaster resilience, manageable. In future work, changes in post-disaster travel demand should be 
taken into consideration. The change in travel demand can take place in both freight transportation and passenger travel flows. For the 
former, iterative simulation process can be constructed between the transportation and economic models, so that declines in pro
duction of goods and services caused by business interruptions estimated by the economic model can be fed back to the transportation 
model to re-calculate traffic assignment and trip distributions. The re-estimated system level functionality can then be used to further 

Table 5 
Real GDP impact of the combined disruptions/damages in the reference case and resilience cases (in millions 2019 dollars and % reduction with 
respect to pre-disaster baseline levels).   

Los Angeles 
Metro 

San 
Francisco 
Metro 

Rest of CA Rest of U.S. U.S. Total Loss Reduction 
Potential(for LA) 

Loss Reduction 
Potential (for U. 
S.) 

Reference Case (With 
Inherent Resilience 
(IIR))  

− 24,207.64  − 827.70  − 855.49  − 4,295.82  − 30,186.64    
− 3.00%  − 0.17%  − 0.15%  − 0.03%  − 0.22% 

Combined Resilience Case 
(IIR, Other Inherent, 
Adaptive Resilience)  

− 14,200.35  − 11.71  − 166.77  1,570.97  − 12,807.86 41.34% 57.57%  
− 1.76%  0.00%  − 0.03%  0.01%  − 0.09%  

Table 6 
Gini coefficient impacts.  

Disruption Type Baseline Scenario Gini 
Coefficient 

Change in Gini 
Coefficient 

Gini Coefficient of the Income 
Loss 

Port Disruption_Reference Case 0.465478 0.465614 0.000136 0.413109 
Transportation Cost Increase_Reference 

Case 
0.465478 0.465478 0.000000 0.490154 

Building Damage_Reference Case 0.465478 0.463904 − 0.001574 0.508171 
Combined Disruptions_Reference Case 0.465478 0.464041 − 0.001438 0.501768 
Port Disruption_Resilience Case 0.465478 0.465473 − 0.000006 0.471813 
Transportation Cost Increase_Resilience 

Case 
0.465478 0.465478 0.000000 0.490157 

Building Damage_Resilience Case 0.465478 0.464243 − 0.001235 0.508481 
Combined Disruptions_Resilience Case 0.465478 0.464238 − 0.001240 0.507328  
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adjust the economic impact modeling, in an iterative fashion. As for passenger travel flows, behavioral response such as increased 
telecommuting due to reduced transportation network functionality can be modeled by altering the number of home-based-work trips 
in the travel demand model. The other possible option is to use the trip distribution (destination choice) and the mode choice modeling 
components in the travel demand model. 

Fourth, there is a mis-match of the spatial resolutions of the transportation model at the Traffic Analysis Zone level and the eco
nomic model at the regional level. The main advancement of the current study is to aggregate and use the more accurate functionality 
losses estimated based on the high-resolution transportation model as inputs in the multi-regional economic consequence analysis 
model because these two types of models are typically utilized in isolation. Since transportation planning agencies are also interested in 
better understanding of distribution of impacts of disruptive events across more localized areas, including impacts to more socially and 
economically vulnerable communities and neighborhoods, method to allocate economic impacts to more granular analysis zones can 
be adopted in future analysis. 

Finally, this study focuses on a single simulated disaster scenario. Our main purpose is to use this case study to illustrate how the 
integration of detailed models on transportation and economics fronts can provide rich insights in terms of the cost-effectiveness of 
resilience tactics to port and transportation system disruptions, and the economic aggregate and distributional impacts of the 
disruption before and after the implementation of the resilience tactics. Substantial uncertainty exists in disaster events, including 
factors such as type of incidents, intensity and magnitude of disruptions, recovery path and duration, among others. The results we 
present for this case study are sensitive to the values of these parameters. The owner/operator of port or other civil infrastructure could 
run a range of scenarios as they desire relating to their decision-making. The analytical framework established in this study can be 
adapted to estimate the disaster resilience impact in different contexts. Reduced-form models can be developed based on this analytical 
framework to enable decision-makers to alter key parameters of the disruption scenarios and obtain rapid simulation results as in the E- 
CAT (Economic Consequence Analysis Tool) decision support tool (Rose et al., 2017). 

9. Conclusion 

The increasing number of incidents of port closures and related transportation network downtimes following major disasters in 
recent years signify the importance of preparation and response. Integrated and operational models that combine considerations of 
structural engineering, transportation flows, economic linkages, and distributional implications can provide unique insights on the 
impacts of large-scale disasters, and the benefits associated with resilience during the recovery process. We contribute to the economic 
impact analysis of ports and their hinterland transportation infrastructure disruptions in two ways. First, we developed an integrated 
model that links a transportation network model with an economic impact analysis model in order to conduct a more holistic and 
accurate analysis of the impacts of and resilience to the transportation system disruptions. The functionality losses and recovery paths 
analyzed by the high-resolution transportation model greatly enhance the accuracy of the estimation of the average transportation cost 
increase both within the disaster directly impacted region and between the core impacted region and other regions, and thus enable us 
to model the spillover effects on the entire economy based on the sectoral specific dependence on transportation services. Second, to fill 
in an important gap in the port and transportation network disruption literature, we examine not only the impacts of such disruptions 
and the effectiveness of resilience tactics at the aggregate level, but also the income distribution impacts across socioeconomic groups 
for individual damage and disruption categories. Such analysis provides insights not only on the effectiveness of resilience tactics to 
reduce the aggregate economic losses, but also the potential to reduce distributional inequities. The application of the integrated model 
is demonstrated by using a simulated seismic event affecting commodity trade flows at the Port of Los Angeles and Port of Long Beach 
and the related inland freight transportation network in the Los Angeles Metro Region. 

The integrated modeling system starts with a hazard characterization and damage assessment model that combines estimation of 
damage state probabilities and restoration functions to calculate the functionality downtimes of key components of the transportation 
network under the simulated earthquake scenario (Koc et al., 2020). Based on the damage assessment results, the four-step SCAG travel 
demand model is then used to generate transportation network functionality and performance indicators on key days throughout the 
entire recovery path. Damage assessment for ports and general building stocks was carried out using HAZUS. The results from the first 
two models are fed into the multi-regional TERM CGE model that estimates the aggregate and sectoral economic impacts of the 
simulated seismic scenario, with formal incorporation of modeling of a wide range of relevant static resilience tactics. A multi-sector 
income distribution matrix is constructed that uses the TERM model estimates on sectoral income changes to evaluate the equity 
implications of the disaster impacts and implementation of resilience tactics. 

Our study confirms the findings of many other works that transportation network disruptions caused by disasters affecting a broad 
region can be sizeable, especially after the indirect and spillover effects through the supply-chain network and interconnected 
transportation infrastructure system are accounted. At the same time, various types of resilience tactics that can be implemented by 
both the suppliers and customers of the transportation (including port) services have the potential to significantly reduce business 
interruption losses. Our analysis results indicate that it takes 150 days for the ports to fully recover from the simulated seismic event. 
The total GDP impacts stemming from both import and export disruptions are estimated to be $11.8 billion in the LA Metro Region and 
$67.5 billion for the U.S. before we consider any resilience. These impacts are reduced to $1.5 billion and $9.4 billion, respectively, 
after the three major inherent economic resilience tactics (input substitution, import substitution, and inter-regional production re
locations) estimated by the TERM CGE Model are taken into account. After we consider the other inherent and adaptive resilience 
tactics, the total impacts are further reduced to $0.24 billion in the LA Metro Region and $0.65 billion in the U.S. In addition, damages 
to the highway transportation system cause a 0.53% increase in truck transportation cost within the LA Metro Region and a 0.26% 
increase between the LA Metro Region and the Rest of CA (on an annual basis). The associated GDP losses are estimated to be only $15 
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million in the LA Metro Region because of the general high redundancy of the transportation network. The total GDP losses from 
damages to building stock are estimated to be $19.2 billion in the LA Metro Region, which is reduced to $11.8 billion after the 
adjustment for resilience. The GDP losses for the U.S. are $16.5 billion with no resilience, and $10.1 billion after the resilience ad
justments. The lower impacts at the national level are due to the offsetting effect of regional production shifts from the earthquake- 
impacted region to elsewhere in the country. The combined simulation of all three types of disruptions/damages yields GDP losses 
of $12.1 billion for the LA Metro Region and $10.9 billion for the U.S. after we consider all the relevant resilience tactics. The loss 
reduction potential of resilience is 41.3% at the LA regional level and 57.6% at the national level. 

New findings in this study contributing to the state-of-the-art knowledge of the literature are the distributional impacts of trans
portation disruptions and resilience, and thus providing insights on the potential to reduce disaster distributional inequities. The 
income distribution analyses for the LA Metro Region indicate that the income losses stemming from port disruptions are borne slightly 
disproportionately by lower- and middle-income groups. The Resilience Case for port disruptions results in a slightly lower Gini co
efficient than the baseline level (indicating a more equitable distribution of income), which is explained by the fact that the various 
resilience tactics are more effective at reducing impacts in the sectors that employ more people from the lower-income groups. For 
example, manufacturing sectors have a higher potential of inventory uses and production recapture compared with service sectors such 
as healthcare, finance/insurance, and professional/business services. The Gini coefficients of the other cases decrease compared to the 
baseline level, which indicates that the income losses stemming from increased transportation cost and general building damages are 
borne disproportionately by middle- and higher-income groups. This can be explained by the fact that a higher proportion of capital- 
related income is earned by higher-income groups. 

The authors also investigated adaptive resilience tactics relating to the transportation system and the corresponding improvements 
in functionality losses due to the initial disruption. The I-405 corridor was identified as a critical link that could be kept open due to the 
relatively lower levels of estimated damage in eight bridges located away from the epicenter of the scenario earthquake. This adaptive 
resilience tactic was shown to mitigate a significant amount (about 25%) of system functionality loss in the first week after the seismic 
event. Such calculations can provide important insights for decision-makers. 

The results provide managerial insight in terms of estimates of aggregate and distributional losses from transportation disruptions 
and inform facility owners and operators the special values of resilience in reducing these losses. The disaggregation of these impacts 
and the corresponding resilience to them help distinguish the impacts between disruption of the port and earthquake damage to other 
structures, including the adjoining highway system. Moreover, the integrated and operational modeling framework developed in this 
study can be used by regional transportation and planning agencies for any relevant disaster scenario analysis to evaluate and prioritize 
resilience measures, including alternative restoration strategies of critical components (e.g., bridges) in the transportation network 
system in the aftermath of disasters. A framework like the one we developed would allow transportation agencies such as Caltrans to 
simulate extreme events and rank its assets like bridges in the order of individual economic impacts under alternative extreme event 
scenarios. This would allow them to compare the cost of upgrading (retrofit to increase resilience) each asset against the probability 
and costs of their failure during future extreme events. Such analyses would provide Caltrans valuable insights in terms of the utili
zation of their limited resources optimizing their asset upgrade strategies by identifying which assets should be prioritized to upgrade 
and in which order. Our analytical framework can also be used to provide technical support to define the best construction strategy. 
Using bridges as an example, after selecting the best ones to upgrade, Caltrans would be able to determine the best construction 
sequence/strategy (such as total vs. partial closures of certain bridges or segments of highways) that would minimize the economic 
impact on the local and regional economy in order to obtain community support for the projects. 

Finally, actual resilience can differ from potential resilience modeled in this study. Given the various potential obstacles in practice, 
including restrictive regulations, market failures, and bounded rationality in decision-making, the presence of various resilience tactics 
does not necessarily lead to their optimal utilization. Our analysis provides useful insights to port authorities and terminal operators, 
businesses that depend on the services of the ports and the freight transportation network, and policymakers to identify and implement 
effective resilience measures and tactics and to establish or improve business emergency and continuity plans in preparation of un
expected disasters and disruptions. 
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Appendix A. Construction of income distribution matrix 

A.1. Employee compensation 

To construct the income distribution matrix for wages and salaries, we first collected data from the BLS Occupational Employment 
Statistics (OES) (BLS, 2019a). The two main matrices we use are the Occupation-Industry Employment matrix and the Occupation- 
Industry Wage matrix. The industries are disaggregated at 4-digit NAICS level, and the occupation categories follow the 6-digit 
Standard Occupational Classification. For each occupation type of a given industry, BLS OES data report not only the annual 
average (mean) wages, but also wage rate in percentiles (10, 25, 50, 75, 90). One limitation of this data set was that the minimum and 
maximum wage percentiles are 10 and 90, respectively, and hence it does not readily provide information on the wage rate for the 
highest and lowest earners. In order to deal with this limitation, we estimated annual wage rates for an extended set of percentiles (1, 5, 
20, 40, 60, 80, 95, 99) using linear interpolations following the methodology developed by Rose et al. (2012) and Prager (2013). 

After we calculated the annual employee compensation by sector and occupation for each percentile (1, 5, 20, 40, 60, 80, 95, or 99), 
we multiply it by the number of employees in each percentile interval of this occupation in this sector to obtain the total employee 
compensations by percentile. Next, the total employee compensations by percentile and sector are allocated to the relevant household 
income brackets. The OES sectors are also mapped to the TERM CGE model sectors. Finally, we used the estimate of Total Employee 
Compensations in California in 2018, which was $1.346 trillion, as the control total to re-balance the entire Employee Compensation 
matrix we constructed. 

A.2. Proprietors’ income 

The distribution of proprietors’ income across sectors and income brackets is calculated based on IMPLAN data. In addition, 
IMPLAN also provides data on the amount of proprietors’ income generated in each sector. We apply the distribution percentages 
across the nine income brackets to the total proprietors’ income for each sector to obtain the distribution of proprietors’ income across 
income brackets for each sector. The underlying assumption is that the proportional distribution of proprietors’ income among the 
income brackets is the same across all sectors. Finally, we used the BEA estimate of total proprietors’ income in California in 2018, 
which was $249.7 billion, as the control total to re-balance the entire proprietors’ income matrix we constructed. 

A.3. Capital income 

IMPLAN also provides data on the distribution of the total Dividend Payments and Other Property Income (which mainly includes 
interest payments and rent income) across income brackets. In addition, IMPLAN also provides data on the amount of Other Property 
Income by sector. We first calculated the percentage distribution of Other Property Income across sectors, and then apply it to the total 
amounts of Dividend Payments and Other Property Income in each income bracket to obtain the distribution across sectors for each 
income bracket. The underlying assumption is that the proportional distribution of Dividend Payments and Other Property Income 
among the sectors is the same across all income brackets. Finally, we used the BEA estimate of total Dividends, Interest, and Rental 
Income in California in 2018, which was $538.3 billion, as the control total to re-balance the capital income matrix we constructed. 

A.4. Personal transfer receipts 

The final component of the personal income accounts is the personal transfer receipts (including social security benefits, medical 
benefits, veteran’s benefits, and unemployment insurance benefits). IMPLAN provides data on the distribution of federal, state and 
local government transfer payments to each household income bracket. Similar as for the other components of the personal income 
accounts, we used the BEA estimate of total Personal Current Transfer Receipts in California in 2018, which was $341.2 billion, as the 
control total to re-balance the transfer income matrix we constructed. (See Tables A1 and A2) 
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Table A1 
Multi-sector income distribution matrix for California, 2018. (millions of 2018$)  

Sector <10 k 10 
k–15 k 

15 k–25 
k 

25 k–35 
k 

35 k–50 
k 

50 k–75 
k 

75 
k–100 k 

100 
k–150 k 

>150 k Total 

01. Crops 17 158 3,284 4,056 1,648 1,497 1,991 1,606 6,194 20,451 
02. Poultry & Eggs 0 3 38 48 23 24 36 29 114 315 
03. Livestock 4 35 188 237 191 250 397 319 1,296 2,916 
04. Other Livestock 1 3 14 17 17 22 35 28 114 251 
05. Forestry, Fishing, & 

Hunting 
2 20 26 38 131 198 243 186 756 1,601 

06. Oil & Gas 9 45 54 75 207 353 550 441 1,581 3,315 
07. Coal 0 0 0 1 2 5 3 2 4 18 
08. Other Mining 4 10 15 62 213 465 294 216 311 1,589 
09. Biomass electricity 

generation 
1 6 7 10 25 41 67 60 208 426 

10–11. Coal-fired and Gas-fired 
electricity generation 

18 50 53 71 207 361 574 680 1,364 3,378 

12. Hydroelectricity generation 1 5 5 7 21 41 68 87 150 386 
13. Nuclear electricity 

generation 
5 14 15 21 62 116 186 242 399 1,061 

14. Renewable electricity 
generation 

10 27 29 38 105 161 249 236 703 1,558 

15. Electricity generation 5 15 16 21 61 105 165 192 399 979 
16. Natural gas distribution 8 23 25 45 170 516 904 1,634 1,080 4,404 
17. Water and sewage services 3 14 16 22 62 118 197 243 467 1,142 
18. Residential Construction 64 313 493 1,250 3,343 6,603 6,417 5,301 11,173 34,957 
19. Highway Construction 6 30 71 271 741 1,580 1,276 1,081 1,225 6,281 
20. Other Non-Residential 

Construction 
53 252 589 2,213 6,037 12,858 10,439 8,837 10,304 51,583 

21. Highway Maintenance 6 28 61 214 583 1,229 1,026 866 1,140 5,152 
22. Other Maintenance 24 116 254 903 2,456 5,190 4,308 3,638 4,680 21,569 
23. Food Processing 33 99 886 2,243 2,667 2,638 1,647 1,383 3,239 14,835 
24. Beverage & Tobacco 

Product Manufacturing 
13 49 225 662 1,100 1,341 1,023 769 1,811 6,992 

25. Textile & Textile Product 
Manufacturing 

1 4 93 180 180 145 84 83 150 920 

26. Apparel 2 10 373 554 294 311 283 313 509 2,649 
27. Leather & Allied Products 0 0 12 45 24 9 4 5 11 110 
28. Wood Product 

Manufacturing 
3 8 106 346 410 331 164 136 246 1,749 

29. Paper Mills 5 15 76 243 429 450 245 238 522 2,222 
30. Printing & Related Support 

Activities 
4 15 164 439 662 751 335 322 592 3,284 

31. Petroleum Refineries 61 169 178 238 651 1,003 1,602 1,270 4,216 9,388 
32. Other Petroleum & Coal 

Products 
3 8 9 12 33 58 98 83 217 521 

33. Chemicals 175 487 604 1,049 2,553 3,979 4,831 4,739 14,727 33,143 
34. Rubber & Plastics 7 21 174 549 703 678 415 428 839 3,815 
35. Non-Metallics 6 16 117 604 1,224 1,453 662 551 614 5,246 
36. Primary Metal 

Manufacturing 
2 2 35 177 279 260 120 100 87 1,063 

37. Fabricated Metal Product 19 58 310 1,372 2,419 3,204 1,444 1,292 2,416 12,535 
38. Agriculture Machinery 2 6 12 37 74 118 100 110 234 692 
39. Industrial Machinery 1 3 37 185 343 568 373 505 643 2,659 
40. Commercial Machinery 4 12 28 100 198 316 251 290 554 1,754 
41. Ventilation, Heating & Air- 

Conditioning 
1 4 9 31 62 100 81 92 181 563 

42. Metalworking Machinery 1 5 15 60 116 189 142 173 293 995 
43. Engines & Turbines 2 5 15 55 107 171 131 156 278 920 
44. Other General Purpose 

Machinery Manufacturing 
4 12 30 108 213 341 268 314 580 1,869 

45. Computers 97 267 471 1,217 2,759 4,942 5,905 10,644 20,764 47,064 
46. Computer Storage Devices 7 20 29 62 147 249 310 487 1,073 2,385 
47. Computer Terminals & 

Other Peripheral 
Equipment 

4 11 23 69 153 283 330 643 1,171 2,686 

48. Communications 
Equipment 

6 17 24 46 98 124 154 140 470 1,079 

(continued on next page) 
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Table A1 (continued ) 

Sector <10 k 10 
k–15 k 

15 k–25 
k 

25 k–35 
k 

35 k–50 
k 

50 k–75 
k 

75 
k–100 k 

100 
k–150 k 

>150 k Total 

49. Miscellaneous Electronic 
Equipment 

27 73 103 200 423 536 666 606 2,028 4,661 

50. Semiconductors & Related 
Devices 

32 87 116 212 464 593 759 664 2,339 5,266 

51. Electronic Instruments 8 21 28 53 115 146 184 164 565 1,284 
52. Household Equipment, 

Appliances, and 
Component Manufacturing 

4 12 20 42 84 105 123 121 366 878 

53. Motor Vehicle and Parts 
Manufacturing 

12 37 59 186 362 616 663 796 1,625 4,354 

54. Aerospace Producr & Parts 
Manufacturing 

18 50 131 609 1,087 1,955 1,878 2,612 3,978 12,319 

55. Railroad Rolling Stock 
Manufacturing 

0 0 1 6 10 18 16 24 32 106 

56. Ship & Boat Building 0 1 7 42 71 133 120 183 228 786 
57. Other Transport Equipment 

Manufacturing 
1 2 4 16 29 51 50 67 110 327 

58. Furniture & Related 
Product Manufacturing 

2 9 150 472 598 558 294 240 470 2,793 

59. Miscellaneous 
Manufacturing 

21 59 206 745 1,279 1,839 1,383 1,820 3,275 10,626 

60. Wholesale Trade 168 537 1,748 5,980 10,434 13,799 11,650 11,277 22,705 78,298 
61. Air Transport 23 67 98 314 829 2,083 813 784 4,286 9,299 
62. Rail Transport 2 6 7 9 61 319 230 166 175 976 
63. Water Transport 5 16 37 41 115 205 214 164 448 1,247 
64. Truck Transport 8 115 386 2,608 5,022 8,940 2,091 1,838 5,006 26,014 
65. Transit and Ground 

Passenger Transport 
7 36 160 736 1,212 889 452 343 1,259 5,093 

66. Pipelines 0 2 2 4 18 41 55 56 64 242 
67. Other Transportation 21 88 361 1,373 2,277 3,818 2,519 1,502 3,403 15,363 
68. Warehousing 8 26 454 1,817 2,880 2,892 927 511 823 10,339 
69. Retail Trade 109 543 14,099 23,812 21,508 14,635 9,874 8,232 20,770 113,580 
70. Publishing Industries 89 249 310 543 1,434 2,787 3,740 5,547 12,041 26,741 
71. Motion Picture & Sound 

Recording Industry 
193 533 930 1,390 2,957 4,521 5,995 5,889 16,264 38,672 

72. Broadcasting 58 369 494 767 2,001 3,113 4,806 4,202 14,064 29,875 
73. Telecommunications 146 406 478 805 2,334 5,356 6,795 5,959 11,769 34,047 
74. Information Services 4 10 29 97 400 1,141 1,937 4,477 7,487 15,581 
75. Data Processing Services 1 5 14 60 170 584 940 2,190 3,658 7,623 
76. Finance & Banking 232 672 1,152 3,683 8,878 15,548 15,050 17,851 41,160 104,226 
77. Real Estate 807 2,622 3,951 7,169 15,264 19,639 25,482 20,864 72,803 168,600 
78. Rental & Leasing Services 30 127 361 709 1,381 1,705 1,607 1,309 4,214 11,443 
79. Lessors of Nonfinancial 

Intangible Assets 
67 189 199 258 700 967 1,434 1,060 4,668 9,541 

80. Professional, Scientific, 
Technical, Administrative, 
& Support Services 

286 1,331 6,431 18,112 28,506 44,173 43,096 66,401 114,559 322,896 

81. Waste management 
Services 

8 23 117 359 822 1,105 896 358 741 4,430 

82. Education Services 13 74 1,302 8,120 17,375 27,838 26,785 31,787 14,526 127,820 
83. Health Care & Social 

Assistance 
86 445 11,087 19,316 30,097 34,633 25,394 43,896 50,932 215,886 

84. Arts, Entertainment & 
Recreation 

51 245 2,247 3,488 3,576 4,256 3,990 3,121 9,099 30,074 

85. Accommodations 21 70 1,450 3,291 3,051 2,130 1,168 941 1,973 14,095 
86. Eating & Drinking Places 71 276 14,388 20,236 8,741 5,122 3,578 2,267 8,540 63,220 
87. Other Services − 1 317 2,809 5,868 6,821 8,652 7,475 6,237 15,669 53,847 
88. Owner-Occupied Dwellings 461 1,265 1,317 1,674 4,570 6,220 9,175 6,561 29,850 61,094 
89. Government Enterprises 35 95 142 365 1,202 2,820 3,175 3,939 3,259 15,033 
90. State & Local Government 9,229 24,878 15,481 13,834 23,560 34,338 34,865 36,254 29,481 221,919 
91. Federal Government 15,277 41,406 25,560 20,684 31,027 34,537 31,426 20,617 50,210 270,743 
Total 28,343 79,882 117,735 190,410 277,948 371,097 344,198 375,087 691,027 2,475,727  
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Table A2 
Total personal income distribution coefficient matrix, 2018.  

Sector <10 k 10 
k–15 k 

15 
k–25 k 

25 
k–35 k 

35 
k–50 k 

50 
k–75 k 

75 
k–100 k 

100 
k–150 k 

>150 
k 

Total 

01. Crops 0.001 0.008 0.161 0.198 0.081 0.073 0.097 0.079 0.303 1.000 
02. Poultry & Eggs 0.001 0.009 0.122 0.151 0.073 0.077 0.113 0.092 0.361 1.000 
03. Livestock 0.001 0.012 0.065 0.081 0.066 0.086 0.136 0.109 0.444 1.000 
04. Other Livestock 0.002 0.013 0.054 0.069 0.067 0.089 0.140 0.110 0.456 1.000 
05. Forestry, Fishing, & Hunting 0.002 0.013 0.016 0.023 0.082 0.124 0.152 0.116 0.472 1.000 
06. Oil & Gas 0.003 0.013 0.016 0.023 0.063 0.107 0.166 0.133 0.477 1.000 
07. Coal 0.003 0.008 0.011 0.037 0.123 0.260 0.179 0.133 0.247 1.000 
08. Other Mining 0.002 0.006 0.009 0.039 0.134 0.292 0.185 0.136 0.195 1.000 
09. Biomass electricity generation 0.003 0.014 0.017 0.023 0.060 0.095 0.158 0.142 0.488 1.000 
10–11. Coal-fired and Gas-fired electricity 

generation 
0.005 0.015 0.016 0.021 0.061 0.107 0.170 0.201 0.404 1.000 

12. Hydroelectricity generation 0.004 0.012 0.014 0.019 0.056 0.106 0.175 0.225 0.390 1.000 
13. Nuclear electricity generation 0.005 0.014 0.014 0.020 0.058 0.109 0.175 0.228 0.376 1.000 
14. Renewable electricity generation 0.006 0.018 0.019 0.024 0.068 0.103 0.160 0.151 0.452 1.000 
17. Electricity distribution 0.006 0.015 0.016 0.022 0.063 0.107 0.169 0.196 0.408 1.000 
16. Natural gas distribution 0.002 0.005 0.006 0.010 0.039 0.117 0.205 0.371 0.245 1.000 
17. Water and sewage services 0.003 0.012 0.014 0.019 0.054 0.103 0.173 0.213 0.409 1.000 
18. Residential Construction 0.002 0.009 0.014 0.036 0.096 0.189 0.184 0.152 0.320 1.000 
19. Highway Construction 0.001 0.005 0.011 0.043 0.118 0.252 0.203 0.172 0.195 1.000 
20. Other Non-Residential Construction 0.001 0.005 0.011 0.043 0.117 0.249 0.202 0.171 0.200 1.000 
21. Highway Maintenance 0.001 0.006 0.012 0.042 0.113 0.238 0.199 0.168 0.221 1.000 
22. Other Maintenance 0.001 0.005 0.012 0.042 0.114 0.241 0.200 0.169 0.217 1.000 
23. Food Processing 0.002 0.007 0.060 0.151 0.180 0.178 0.111 0.093 0.218 1.000 
24. Beverage & Tobacco Product 

Manufacturing 
0.002 0.007 0.032 0.095 0.157 0.192 0.146 0.110 0.259 1.000 

25. Textile & Textile Product 
Manufacturing 

0.001 0.004 0.101 0.196 0.196 0.158 0.091 0.090 0.163 1.000 

26. Apparel 0.001 0.004 0.141 0.209 0.111 0.118 0.107 0.118 0.192 1.000 
27. Leather & Allied Products 0.000 0.000 0.108 0.413 0.218 0.082 0.034 0.045 0.099 1.000 
28. Wood Product Manufacturing 0.002 0.004 0.060 0.198 0.234 0.189 0.094 0.078 0.141 1.000 
29. Paper Mills 0.002 0.007 0.034 0.109 0.193 0.203 0.110 0.107 0.235 1.000 
30. Printing & Related Support Activities 0.001 0.004 0.050 0.134 0.202 0.229 0.102 0.098 0.180 1.000 
31. Petroleum Refineries 0.007 0.018 0.019 0.025 0.069 0.107 0.171 0.135 0.449 1.000 
32. Other Petroleum & Coal Products 0.005 0.015 0.017 0.023 0.064 0.111 0.188 0.160 0.416 1.000 
33. Chemicals 0.005 0.015 0.018 0.032 0.077 0.120 0.146 0.143 0.444 1.000 
34. Rubber & Plastics 0.002 0.006 0.046 0.144 0.184 0.178 0.109 0.112 0.220 1.000 
35. Non-Metallics 0.001 0.003 0.022 0.115 0.233 0.277 0.126 0.105 0.117 1.000 
36. Primary Metal Manufacturing 0.002 0.002 0.033 0.166 0.263 0.244 0.113 0.094 0.082 1.000 
37. Fabricated Metal Product 0.001 0.005 0.025 0.109 0.193 0.256 0.115 0.103 0.193 1.000 
38. Agriculture Machinery 0.003 0.008 0.017 0.053 0.108 0.170 0.144 0.159 0.338 1.000 
39. Industrial Machinery 0.000 0.001 0.014 0.070 0.129 0.214 0.140 0.190 0.242 1.000 
40. Commercial Machinery 0.002 0.007 0.016 0.057 0.113 0.180 0.143 0.166 0.316 1.000 
41. Ventilation, Heating & Air-Conditioning 0.002 0.007 0.016 0.056 0.111 0.177 0.144 0.164 0.322 1.000 
42. Metalworking Machinery 0.001 0.005 0.015 0.061 0.117 0.190 0.143 0.174 0.295 1.000 
43. Engines & Turbines 0.002 0.006 0.016 0.059 0.116 0.186 0.143 0.170 0.302 1.000 
44. Other General Purpose Machinery 

Manufacturing 
0.002 0.006 0.016 0.058 0.114 0.183 0.143 0.168 0.310 1.000 

45. Computers 0.002 0.006 0.010 0.026 0.059 0.105 0.125 0.226 0.441 1.000 
46. Computer Storage Devices 0.003 0.008 0.012 0.026 0.062 0.104 0.130 0.204 0.450 1.000 
47. Computer Terminals & Other Peripheral 

Equipment 
0.001 0.004 0.009 0.026 0.057 0.105 0.123 0.239 0.436 1.000 

48. Communications Equipment 0.006 0.016 0.022 0.043 0.091 0.115 0.143 0.130 0.435 1.000 
49. Miscellaneous Electronic Equipment 0.006 0.016 0.022 0.043 0.091 0.115 0.143 0.130 0.435 1.000 
50. Semiconductors & Related Devices 0.006 0.017 0.022 0.040 0.088 0.113 0.144 0.126 0.444 1.000 
51. Electronic Instruments 0.006 0.016 0.022 0.041 0.089 0.114 0.144 0.128 0.440 1.000 
52. Household Equipment, Appliances, and 

Component Manufacturing 
0.005 0.014 0.022 0.048 0.096 0.119 0.140 0.138 0.417 1.000 

53. Motor Vehicle and Parts Manufacturing 0.003 0.008 0.014 0.043 0.083 0.141 0.152 0.183 0.373 1.000 
54. Aerospace Product & Parts 

Manufacturing 
0.001 0.004 0.011 0.049 0.088 0.159 0.152 0.212 0.323 1.000 

55. Railroad Rolling Stock Manufacturing 0.001 0.002 0.009 0.052 0.090 0.165 0.153 0.224 0.305 1.000 
56. Ship & Boat Building 0.000 0.001 0.008 0.054 0.091 0.170 0.153 0.232 0.291 1.000 
57. Other Transportation Equipment 

Manufacturing 
0.002 0.005 0.011 0.048 0.087 0.155 0.152 0.205 0.335 1.000 

58. Furniture & Related Producr 
manufacturing 

0.001 0.003 0.054 0.169 0.214 0.200 0.105 0.086 0.168 1.000 

59. Miscellaneous Manufacturing 0.002 0.006 0.019 0.070 0.120 0.173 0.130 0.171 0.308 1.000 

(continued on next page) 
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Appendix B. Functionality loss and recovery at POLA/POLB 

Table B1 presents the percentage functionality loss in five different categories of cargo-handling terminals at Port of Los Angeles 
and Port of Long Beach on the selected key days after the strike of the earthquake until the recovery to 100% functionality. 

Table A2 (continued ) 

Sector <10 k 10 
k–15 k 

15 
k–25 k 

25 
k–35 k 

35 
k–50 k 

50 
k–75 k 

75 
k–100 k 

100 
k–150 k 

>150 
k 

Total 

60. Wholesale Trade 0.002 0.007 0.022 0.076 0.133 0.176 0.149 0.144 0.290 1.000 
61. Air Transport 0.002 0.007 0.011 0.034 0.089 0.224 0.087 0.084 0.461 1.000 
62. Rail Transport 0.002 0.006 0.007 0.009 0.062 0.327 0.236 0.171 0.179 1.000 
63. Waste Transport 0.004 0.013 0.030 0.033 0.093 0.164 0.172 0.132 0.360 1.000 
64. Truck Transport 0.000 0.004 0.015 0.100 0.193 0.344 0.080 0.071 0.192 1.000 
65. Transit and Ground Passenger 

Transport 
0.001 0.007 0.031 0.144 0.238 0.175 0.089 0.067 0.247 1.000 

66. Pipelines 0.001 0.006 0.010 0.016 0.076 0.170 0.228 0.229 0.264 1.000 
67. Other Transportation 0.001 0.006 0.023 0.089 0.148 0.249 0.164 0.098 0.222 1.000 
68. Warehousing 0.001 0.002 0.044 0.176 0.279 0.280 0.090 0.049 0.080 1.000 
69. Retail Trade 0.001 0.005 0.124 0.210 0.189 0.129 0.087 0.072 0.183 1.000 
70. Publishing Industries 0.003 0.009 0.012 0.020 0.054 0.104 0.140 0.207 0.450 1.000 
71. Motion Picture & Sound Recording 

Industry 
0.005 0.014 0.024 0.036 0.076 0.117 0.155 0.152 0.421 1.000 

72. Broadcasting 0.002 0.012 0.017 0.026 0.067 0.104 0.161 0.141 0.471 1.000 
73. Telecommunications 0.004 0.012 0.014 0.024 0.069 0.157 0.200 0.175 0.346 1.000 
74. Information Services 0.000 0.001 0.002 0.006 0.026 0.073 0.124 0.287 0.481 1.000 
75. Data Processing Services 0.000 0.001 0.002 0.008 0.022 0.077 0.123 0.287 0.480 1.000 
76. Finance & Banking 0.002 0.006 0.011 0.035 0.085 0.149 0.144 0.171 0.395 1.000 
77. Real Estate 0.005 0.016 0.023 0.043 0.091 0.116 0.151 0.124 0.432 1.000 
78. Rental & Leasing Services 0.003 0.011 0.032 0.062 0.121 0.149 0.140 0.114 0.368 1.000 
79. Lessors of Nonfinancial Intangible 

Assets 
0.007 0.020 0.021 0.027 0.073 0.101 0.150 0.111 0.489 1.000 

80. Professional, Scientific, Technical, 
Administrative, & Support Service 

0.001 0.004 0.020 0.056 0.088 0.137 0.133 0.206 0.355 1.000 

81. Waste Management Services 0.002 0.005 0.026 0.081 0.186 0.249 0.202 0.081 0.167 1.000 
82. Education Services 0.000 0.001 0.010 0.064 0.136 0.218 0.210 0.249 0.114 1.000 
83. Health Care & Social Assistance 0.000 0.002 0.051 0.089 0.139 0.160 0.118 0.203 0.236 1.000 
84. Arts, Entertainment & Recreation 0.002 0.008 0.075 0.116 0.119 0.142 0.133 0.104 0.303 1.000 
85. Accommodations 0.001 0.005 0.103 0.234 0.216 0.151 0.083 0.067 0.140 1.000 
86. Eating & Drinking Places 0.001 0.004 0.228 0.320 0.138 0.081 0.057 0.036 0.135 1.000 
87. Other Services 0.000 0.006 0.052 0.109 0.127 0.161 0.139 0.116 0.291 1.000 
88. Owner-Occupied Dwellings 0.008 0.021 0.022 0.027 0.075 0.102 0.150 0.107 0.489 1.000 
89. Government Enterprises 0.002 0.006 0.009 0.024 0.080 0.188 0.211 0.262 0.217 1.000 
90. State & Local Government 0.042 0.112 0.070 0.062 0.106 0.155 0.157 0.163 0.133 1.000 
91. Federal Government 0.056 0.153 0.094 0.076 0.115 0.128 0.116 0.076 0.185 1.000 
Total 0.011 0.032 0.048 0.077 0.112 0.150 0.139 0.152 0.279 1.000  

Table B1 
Percentage of port functionality and recovery estimates for different cargo-handling terminals.  

Port of Los Angeles        

Facilities Day 1 Day 3 Day 7 Day 14 Day 30 Day 90 Day 150 

Container Terminals 51.57 66.47 71.96 72.96 75.74 87.19 100.00 
Breakbulk 51.40 66.30 71.80 72.80 75.60 87.10 100.00 
Dry Bulk 52.00 66.90 72.40 73.40 76.10 87.40 100.00 
Liquid Bulk 51.48 66.38 71.86 72.88 75.64 87.14 100.00 
Automobiles 53.40 68.25 73.70 74.70 77.30 88.20 100.00 
Port of Long Beach        

Facilities Day 1 Day 3 Day 7 Day 14 Day 30 Day 90 Day 150 

Container Terminals 59.73 74.03 79.22 80.05 82.16 91.04 100.00 
Breakbulk 60.00 74.26 79.41 80.21 82.32 91.15 100.00 
Dry Bulk 58.91 73.34 78.54 79.39 81.56 90.72 100.00 
Liquid Bulk 58.38 72.82 78.06 78.88 81.14 90.48 100.00 
Automobiles 60.70 74.90 80.00 80.80 82.80 91.40 100.00  
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Appendix C. General building damage and recovery time 

See Table C1. 

Table C1 
General building damage for LA metro region.  

TERM Sector # Short names % Building & Content Loss Average Recovery Time (Days) % Capital Input Destruction on an Annual Basis 

1 Crops 2.87% 60 0.47% 
2 PoultryEggs 
3 Livestock 
4 OthLivestock 
5 ForestFrsHnt 
6 OilGas 5.07% 211 2.93% 
7 Coal 
8 OtherMining 
9 BiomassGen 4.09% 251 2.81% 
10 CoalsGen 
11 GasGen 
12 HydroGen 
13 NuclearGen 
14 RenewGen 
15 ElecDist 
16 NatGasDist 
17 WaterSewage 
18 ResidConstrt 3.37% 164 1.51% 
19 OthConstruct 
20 HwyBrdgCons 
21 OthMaintain 
22 MRstreets 
23 FoodProc 5.29% 211 3.05% 
24 BevTobManu 
25 Textiles 4.85% 211 2.80% 
26 Apparels 4.81% 211 2.78% 
27 LeathFtwr 
28 WoodProds 4.85% 211 2.80% 
29 PulpPaperPbd 
30 Printing 4.81% 211 2.78% 
31 PetrolRefine 5.29% 211 3.05% 
32 OthPetrolCl 
33 Chemicals 
34 RubPlastic 4.81% 211 2.78% 
35 NonMetMinPrd 5.07% 211 2.93% 
36 PrimMetals 
37 FabriMetals 4.85% 211 2.80% 
38 AgriMachinry 
39 IndustrMach 
40 CommrcMach 
41 AirConHeat 
42 MetalWkMach 
43 TurbnEngine 
44 OtherMach 
45 Computers 6.21% 266 4.53% 
46 CmptrStorage 
47 ComptrTrmEtc 
48 CommunicEqp 4.81% 211 2.78% 
49 MscElctEqp 
50 Semicondctr 
51 ElecInstrmnt 
52 HholdEqp 
53 MVPManu 4.85% 211 2.80% 
54 AerospaceMan 
55 RlrdCars 
56 ShipsBoats 
57 OthTrnEqp 
58 Furniture 4.81% 211 2.78% 
59 MiscManuf 
60 WholesaleTr 4.68% 217 2.78% 
61 AirTrans 4.09% 251 2.81% 
62 RailTrans 

(continued on next page) 
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Appendix D. Detailed income distribution impact results 

See Tables D1-D4. 

Table C1 (continued ) 

TERM Sector # Short names % Building & Content Loss Average Recovery Time (Days) % Capital Input Destruction on an Annual Basis 

63 WaterTrans 
64 TruckTrans 4.68% 217 2.78% 
65 GrdPassTrans 4.09% 251 2.81% 
66 Pipeline 
67 OthTransprt 4.85% 211 2.80% 
68 Warehousing 4.68% 217 2.78% 
69 RetailTr 4.22% 217 2.51% 
70 Publishing 4.81% 211 2.78% 
71 MovieSound 4.09% 251 2.81% 
72 BroadcastSrv 4.51% 186 2.30% 
73 Telecomm 
74 InfoSvce 4.09% 251 2.81% 
75 DataProcScv 
76 FinancBank 3.92% 219 2.36% 
77 RealEstate 4.09% 251 2.81% 
78 RentLease 
79 AssetLessors 
80 PrfSciTchSrv 
81 WasteMgmt 4.54% 259 3.22% 
82 Education 3.12% 223 1.91% 
83 HealthSocAs 3.91% 249 2.63% 
84 ArtsRecreat 4.51% 186 2.30% 
85 Accommodatn 3.47% 247 2.35% 
86 EatDrinkPlce 4.51% 186 2.30% 
87 OthService 4.07% 217 2.42% 
88 GovEnterprs 
89 StaLocGov 4.54% 259 3.22% 
90 OwnOccDwell 4.08% 238 2.69% 
91 FedGovt 
92 Holiday 4.51% 186 2.30% 
93 FgnHol 
94 ExpTour 
95 ExpEdu 3.12% 223 1.91% 
96 WT_EXP 4.09% 251 2.81% 
97 AT_EXP  

Table D1 
Baseline income distribution and income changes in the port disruption simulation for the LA metro region (in millions 2019 dollars).  

Income 
Bracket 

Income Distribution Income Changes relative to Baseline 
(M $) 

Income Changes relative to Baseline 
(%) 

Baseline Port Disruption 
Base Case 

Port Disruption 
Resilience Case 

Port Disruption 
Base Case 

Port Disruption 
Resilience Case 

Port Disruption 
Base Case 

Port Disruption 
Resilience Case 

<10 k  3,474.1  3,470.5  3,472.2  − 3.64  − 1.87  − 0.1048%  − 0.0539% 
10–15 k  9,993.2  9,981.3  9,987.6  − 11.96  − 5.58  − 0.1196%  − 0.0558% 
15–25 k  20,527.7  20,461.1  20,511.8  − 66.55  − 15.90  − 0.3242%  − 0.0775% 
25–35 k  37,426.9  37,290.4  37,392.5  − 136.49  − 34.40  − 0.3647%  − 0.0919% 
35–50 k  56,675.1  56,495.4  56,620.7  − 179.67  − 54.38  − 0.3170%  − 0.0960% 
50–75 k  77,908.2  77,686.9  77,838.1  − 221.32  − 70.11  − 0.2841%  − 0.0900% 
75–100 k  74,636.7  74,459.5  74,573.8  − 177.17  − 62.89  − 0.2374%  − 0.0843% 
100–150 k  80,606.5  80,413.0  80,541.8  − 193.49  − 64.71  − 0.2400%  − 0.0803% 
150 k+ 164,409.6  164,042.7  164,261.3  − 366.88  − 148.22  − 0.2231%  − 0.0902% 
Total  525,658.0  524,300.8  525,199.9  − 1,357.16  − 458.05  − 0.2582%  − 0.0871%  

D. Wei et al.                                                                                                                                                                                                            



Transportation Research Part D 106 (2022) 103236

25

References 

Alexander, D., 2013. Resilience and Disaster Risk Reduction: An Etymological Journey. Nat. Hazards Earth Syst. Sci. 13 (11), 2707–2716. 
Zhou, L., Chen, Z., 2021. Are CGE models reliable for disaster impact analyses? Econ. Syst. Res. 33 (1), 20–46. 
Applied Technology Council (ATC). 1985. ATC-13 Earthquake Damage Evaluation Data for California. ATC, Redwood City, CA. https://www.atcouncil.org/pdfs/ 

atc13.pdf. 
Asakura, Y., 2007. Requirements for transport network flow models used in reliability analysis. Int. J. Crit. Infrastruct. 3, 287–300. 
Ashrafi, Z., Shahraki, H., Bachmann, C., 2017. Quantifying the Criticality of Highway Infrastructure for Freight Transportation. Transp. Res. Rec. 2610, 10–18. 

Table D2 
Baseline income distribution and income changes in the transportation cost increase simulation for the LA metro region (in millions 2019 dollars).  
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Cost Increase 
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Table D3 
Baseline income distribution and income changes in the general building damages simulation for the LA metro region (in millions 2019 dollars).  

Income 
Bracket 

Income Distribution Income Changes relative to Baseline (M 
$) 

Income Changes relative to Baseline 
(%) 

Baseline Building 
Damage Base 
Case 

Building Damage 
Resilience Case 

Building 
Damage Base 
Case 

Building Damage 
Resilience Case 

Building 
Damage Base 
Case 

Building Damage 
Resilience Case 
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Baseline income distribution and income changes in the combined disruptions/damages simulations for the LA metro region (in millions 2019 
dollars).  

Income 
Bracket 

Income Distribution Income Changes relative to Baseline 
(M $) 

Income Changes relative to Baseline 
(%) 

Baseline Combined 
Simulation Base 
Case 

Combined 
Simulation 
Resilience Case 

Combined 
Simulation Base 
Case 

Combined 
Simulation 
Resilience Case 

Combined 
Simulation Base 
Case 

Combined 
Simulation 
Resilience Case 
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