Towards Al-Enabled Hardware Security:
Challenges and Opportunities

Hossein Sayadil, Mehrdad Aliasgaril, Furkan Aydin2, Seetal Potluri?,

Aydin Aysu?, Jack Edmonds®, Sara Tehranipoor?

Department of Computer Engineering and Computer Science, California State University, Long Beach, CA, USA
2Department of Electrical and Computer Engineering, North Carolina State University, NC, USA
3Department of Electrical and Computer Engineering, Santa Clara University, CA, USA
“Department of Computer Science and Electrical Engineering, West Virginia University, WV, USA

Abstract—Recent developments in Artificial Intelligence (AI)
and Machine Learning (ML), driven by a substantial increase in
the size of data in emerging computing systems, have led into
successful applications of such intelligent techniques in various
disciplines including security. Traditionally, integrity of data has
been protected with various security protocols at the software
level with the underlying hardware assumed to be secure. This
assumption however is no longer true with an increasing number
of attacks reported on the hardware. The emergence of new
security threats (e.g., malware, side-channel attacks, etc.) requires
patching/updating the software-based solutions that needs a vast
amount of memory and hardware resources. Therefore, the
security should be delegated to the underlying hardware, building
a bottom-up solution for securing computing devices rather than
treating it as an afterthought. This paper highlights the growing
role of AI/ML techniques in hardware and architecture security
field and provides insightful discussions on pressing challenges,
opportunities, and future directions of designing accurate and
efficient machine learning-based attacks and defense mechanisms
in response to emerging hardware security vulnerabilities in
modern computer systems and next generation of cryptosystems.

I. INTRODUCTION

For the past decades, cybersecurity has been at the forefront
of worldwide attention as a serious threat to the infrastructures
of information technology. Attackers are more driven and
equipped to compromise computational infrastructure, includ-
ing software and hardware systems. Recent developments have
demonstrated that attackers are able to breach systems and
carry out destructive actions by exploiting newly discovered
hardware vulnerabilities. Particularly, a computer system’s
security can be jeopardized at the hardware level by a variety of
attacks, such as running malicious programs (a.k.a. malware)
to infect the target host and/or deploying Side-Channel Attacks
(SCAs) to deduce the consent of users to share sensitive
information [1], [2], [3], [4], [5], [6], [7]. Malware and SCAs
are now important dangers to system security due to the
information technology industry’s rapid growth.

The prevalence of emerging computing platforms in the
embedded systems and Internet-of-Things (IoT) industries has
amplified the negative impact of new security vulnerabilities
[8]. Essentially, the proliferation of new malware and side-
channel attacks at the hardware level necessitates patching
or updating software-based malware detection solutions (such
as commercial anti-virus software), which is not practical
for emerging computing systems, especially in embedded
mobile and IoT devices [9]. The modern embedded systems,
which cover a wide range of applications, are commonly
resource-constrained, making it difficult to deploy the tradi-
tional software-based techniques used for detecting and con-
taining malware in general-purpose computing systems [10],

[11]. Moreover, most of these advanced analysis techniques
are architecture-dependent i.e., dependent on the underlying
hardware. Hence, this makes existing traditional software-
based detection techniques difficult to apply effectively to
emerging embedded computing devices.

The complexity of security attacks changes as quickly as
innovation and the expansion of information technology infras-
tructure, creating a never-ending arms race between security
defenses and attackers. A significant rise in the volume of
data in new computing systems has spurred recent advances
in Artificial Intelligence (AI), Machine Learning (ML), and
Deep Learning (DL) which have resulted in effective appli-
cations of these intelligent approaches in a variety of fields,
including security. A growing body of academic, commercial,
and governmental research is being done on Al-enabled hard-
ware security, which spans a variety of computing domains
including mobile platforms, embedded systems, IoT devices,
and high performance systems. Due to its capacity to keep up
with evolving threats, an important part of current research has
concentrated on the development and deployment of machine
learning approaches for hardware security.

In this paper, we present an in-depth analysis of recent
trends in Al-enabled hardware (cyber)security methods and
their challenges and opportunities, and further provide insights
on the future direction of this research area. In Section II, we
present recent trends and advances on application of machine
learning for hardware-assisted intrusion detection, and further
highlight the essential challenges and opportunities in the field.
Next, in Section III we present an overview of DL-enabled
side-channel attacks analysis in next-generation cryptosystems
along with its challenges and potential opportunities. Further-
more, Section IV provides implementation results of machine
learning-based side-channel attacks on AES-128 where we
present our findings for evaluation of the Advanced Encryption
Standard, particularly unmasked and masked AES-128 imple-
mented in software on microcontroller units and unmasked
AES-128 implemented in hardware on field-programmable
gate arrays (FPGASs), against machine learning-based side-
channel analysis. We expect that our work provides the foun-
dations for and facilitates future studies on exploring the
application of AI/ML techniques to cope with increasingly
complex cyber-attacks at the computer systems’ hardware level
in various application domains.

II. INTELLIGENT HARDWARE-ASSISTED INTRUSION

DETECTION: A RETROSPECTIVE AND LOOK AHEAD

In traditional intrusion detection techniques such as anti-
virus tools scanning and analyzing take a considerable amount
of time degrading the performance and speed of the computer

HPC events are collected from
the underlying processor

:%@3 =9

Benign

Malware

Malware Feature
- Extraction and
Benign Analysis

Applications (Malware/Benign) ML/DL classifier

Fig. 1: Process of hardware-assisted malware detection using ML/DL.

system. In addition, the analysis of malware samples and the
construction of rules/patterns for recognizing the unknown
malware is often error-prone, making the manual heuristic
analysis of applications limited [12]. Behavior-based detection
also increases the number of false positives, blocking harmless
programs from working and restricting the normal operation of
the system [13], [14]. Therefore, to overcome the drawbacks
of conventional intrusion detection methods, researchers have
shifted their attention towards benefiting the power of AI/ML
techniques and realizing the potential of hardware-related in-
formation for distinguishing malicious programs from benign.

A. Hardware Performance Counters for Security

Performance Monitoring Unit (PMU), a logical part of
modern microprocessors, is in charge of tracking and measur-
ing numerous performance-related events that are derived from
Hardware Performance Counter (HPC) registers. HPCs are
essentially a group of special-purpose registers included into
contemporary microprocessors to record the trace of hardware-
related events like executed instructions, cache misses, or
incorrectly anticipated branching for an active program [1],
[4], [15]. HPCs are programmed to issue an interrupt when a
counter overflows or even be set to start the counter from the
desired value. HPCs are easily programmable and found their
ways in various processor platforms from high-performance to
low power embedded processors, [oT, and biomedical devices.

As a result, hardware-assisted intrusion detection using un-
derlying hardware related information (e.g., application logs)
and ML/DL techniques has emerged as a promising solution
for improving upon the software-based solutions and reducing
the latency of detection process with small cost and no hard-
ware redesign effort [1], [4], [16]. Figure 1 shows the general
process of employing ML/DL applied on low-level hardware
events for distinguishing intrusion (e.g., malware) from benign
applications. Hardware detectors offer fast real-time detection,
efficient resource utilization, and invulnerability from getting
infected by attackers, which make them suitable for mitigating
newer threats. Machine learning-based detectors using HPC
data can be implemented in microprocessor hardware with
significantly low overhead as compared to the software-based
methods, as detection inside the hardware is very fast (few
clock cycles). Such methods will not only allow to capture the
malcode pattern more rapidly, it may also be feasible to deploy
the computing system on end hosts [4], [11].

B. Brief Summary of Prior Works

The work in [1] used supervised ML classifiers on collected
performance counters traces of both malware and benign pro-
grams and demonstrated that the running applications can be
categorized with high level of accuracy. The authors illustrated
the suitability of employing HPC information in detecting
malware at the Linux OS level such as Linux rootkits and
cache side-channel attacks on Intel and ARM processors. In a
different study, Tang et al. [17] further discussed the feasibility
of unsupervised learning that employs low-level HPCs features

for detecting return-oriented programming (ROP) and buffer
overflow attacks by finding anomalies in HPC information.

Authors in [15] is a recent work on HMD that deploys
machine learning algorithms applied on synthetic traces of
HPC features for detection of kernel-level rootkit attacks.
The paper achieved high prediction accuracy in detecting five
self-developed synthetic rootkits models. The research in [4]
proposed ensemble learning techniques based on AdaBoost
and Bagging to facilitate run-time hardware-assisted malware
detection and improved the performance of HMD by account-
ing for the impact of reducing the number of HPC features on
the performance of malware detectors to address the challenge
of limited availability of on-chip HPC registers. In addition,
a recent work in [16] proposed a two-stage machine learning-
based approach for run-time malware detection based on
variety of ML classifiers to detect and classify the malware
signature with high accuracy and efficiency.

The deployment of ML algorithms are further offered in
recent studies to accurately and efficiently detect the signature
of emerging microarchitectural side-channel attacks [7], [18],
[19], [20], [21]. ML-based microarchitectural SCAs detectors
that are also based on low-level events captured from pro-
cessors’ HPC registers have considered collecting hardware
events of victim applications (cryptographic application, e.g.
RSA, AES and etc.) and attack applications to build a large
dataset and apply ML/DL to build the detection system.

C. Application of ML for Hardware Intrusion Detection

Machine learning-based countermeasures often includes
different stages such as monitoring the application to profile
the HPC data, feature analysis, training, and testing the ML-
based detector using the collected features. The ML models
trained by low-level microarchitectural features continuously
learn by analyzing the HPCs data to identify the malicious
patterns and protect the processor architecture against possible
malware and side-channel attacks.

1) Feature Selection: Analysis of Key Events: Identifying
the prominent low-level features is an important step for
developing accurate ML-based countermeasures [4], [16], [22].
There exists numerous microarchitectural events with different
functionality available to collect from running programs in
modern microprocessors. Counting all possible features would
result in a high dimensional data which increases compu-
tational complexity and induces delay. Moreover, including
irrelevant features could reduce the accuracy of classifiers
[23], [24]. Two research questions are raised by this. Which
low-level features should be used first in order to identify
and categorize a certain type of malicious attack? Second,
how can data collection be feature reduced to save unneeded
computing overheads? Therefore, a minimal collection of
HPCs that can accurately reflect the malware or side-channel
attack application behavior is determined in order to execute
an efficient efficient ML-based security countermeasure to
identify security threats with low overhead. For effective run-
time detection in resource-limited systems (e.g. embedded
devices) which have limited number of HPC registers that can
be concurrently captured at run-time, feature selection even
plays a more important role in determining the minimal set
of critical HPCs to collect the required data in a single run
[4], [9], [15], [16]. There have been different feature selection
techniques that are dominant in prior ML-based detection work
such as correlation attribute evaluation, principle component

analysis (PCA), information gain ratio (IGR), and Fisher Score.
Selected HPC features are then used to train each ML-based
detector in which the classifier attempts to find a correlation
between the feature values and the application behavior to
predict the existence of malicious patterns (benign or attack).

2) Performance and Efficiency Evaluation: There are sev-
eral metrics that may be used in machine learning and statistics
to assess a prediction model’s performance in order to demon-
strate its robustness and accuracy. Table II provides a sum-
mary of the standard evaluation metrics used for performance
analysis of ML/DL-based security countermeasures utilized for
detection and classification activities.

In addition, recently Convolutional and Deep Neural Net-
work models have provided to be state-of-the-art across many
applications. However, CNNs and DNNs are characterized by
their large size which is not suitable for resource-constrained
embedded and IoT devices. There is a trade-off between the
accuracy and overhead of ML techniques and developers must
take it into account when they intend to integrate a ML-based
detector into the recourse-constrained devices, such as mobile
devices, IoT sensors, biomedical and low-power wearable
devices [11], [22]. Essentially, as highlighted in recent works
such as [4], [16], [22] hardware implementation overhead,
particularly area, latency (delay), and power consumption are
as critical as accuracy in the performance analysis of ML-
based security countermeasures. This is because ML classifiers
are chosen in real time based on cost efficiency, an especially
important consideration due to the limited resources of the
microprocessors found in today’s computing systems.

3) ML Techniques for Malware and SCAs Detection: To
categorize the unknown applications into either benign or
malicious software, the classification process can be divided
into two stages including training and testing. First, we need to
construct the classification model by training the ML classifiers
using the extracted data (the HPCs information) for malware
detection. The extracted features are then converted to vectors
in the training set. Both the feature vectors and the class label
of each sample (i.e., malicious or benign) are used as inputs
for a classification algorithm .

By analyzing the training file samples, the deployed ML
classification algorithm constructs a classifier capable of de-
tecting the patterns of malicious samples with some level of
accuracy and performance detection. Next, during the testing
stage, first the vectors of the new file samples are first extracted
using the same feature extraction techniques as in the training
phase. This unseen data then is fed to the trained classifier to
examine the detection rate of malware detection process. The
classifier attempts to classify the new file samples based on the
extracted feature vectors. Table I shows the ML classification
techniques where we briefly describe the machine learning
classification models that are typically used for hardware-
assisted intrusion detection.

D. Performance Monitoring Tools

In order to monitor applications behavior and collect
hardware-related events that assist in application performance
analysis and tuning various performance monitoring tools have
been used in prior works. These tools include Perf [25],
Pin [26], PAPI [27], Intel VTune [28], and Intel PCM [29].
All these tools are available for Linux systems while only
Intel VTune and Intel PCM are able to monitor HPCs in
Windows and macOS systems. Perf, PAPI, and Pin demand

some knowledge of command lines for users due to the
lack of GUI interface. Perf tool is a Linux-based low-level
performance monitoring tool that can instrument CPU perfor-
mance counters, tracepoints, kprobes, and uprobes (dynamic
tracing) [30]. Its monitoring granularity scales as least as 10ms
without customization. Pin tool collects various program’s
ISA-dependent features such as instruction mix, instruction-
level parallelism, register traffic, branch predictability, etc. to
examine the applications behavior [26].

Performance Application Programming Interface (PAPI)
[31] provides a cross-platform interface for monitoring hard-
ware performance counters on processors that are equipped
with specific registers for hardware events. To help with
discovering and resolving performance bottlenecks in running
programs for tweaking and debugging purposes, Intel has
developed a licensed-based tool called Vtune [28]. It can
record and show performance-related information. It offers a
robust GUI interface and supports a wide range of profiling,
including HPCs, call graphs, performance bottlenecks, and
hotspot hunting, in comparison to the previous tool. Last but
not least, PCM [29], [32] is the performance monitoring units
(PMU) implemented in Intel’s processors (e.g., Xeon, Atom,
and Xeon Phi) that help to monitor performance and energy-
related metrics in both Windows and Linux environments.
Compared to Perf and PAPI tools, Intel PCM supports both
core and uncore events monitoring in real-time.

E. Challenges and Opportunities

In this section, we determine several research challenges of
hardware-assisted malware and side-channel attacks detection
using ML/DL algorithms.

1) Detection of Stealthy Malware: Stealthy attack is a type
of cyber security attack in which the malicious code is hidden
inside the benign application for performing harmful purposes
[33]. In real-world scenarios malware can also be embedded
in a benign application which makes the detection task more
challenging. Recent works [34], [35] have shown that that
embedded malware (a category of stealthy malware) is not
detected by standard ML models; hence, proposed a time-
series deep learning-based technique to detect embedded mal-
ware Given the importance of this area, there is still a critical
research demand for artificial intelligent based methods for
detecting various sophisticated stealthy cyber attacks including
advanced persistent threats (APT) in various computing do-
mains including high-performance, IoT, biomedical, and cloud.

2) Clear Architectural Implications of HPC Events: De-
spite the wide application of HPC registers for security,
obtaining a deep knowledge of micro-architectural features
interactions with the malware behavior, which is an essential
step for various types of security analysis, is a challenging
problem that makes the potential gains quickly diminish.
Hence, a serious concern to delve into in the area of Al-
enabled hardware intrusion detection would be lack of proper
explanation about the reasons that a specific set of features
enables to properly characterize the malicious traits of samples.

3) Validation of HPCs for Security Analysis: The chal-
lenges and limitations of using hardware performance counters
registers to train AI/ML models for security inferences need
to be considered. This is due to a reason that security analysis
was not the original intent for designing such registers in
modern CPUs. While modern microprocessors have continued
to increase in the peak performance and scalability, accurate

ML Classifier

TABLE I: Frequently used ML models for hardware-assisted malware and SCAs detection

) 1

Description

Bayesian Network (BN)

Probabilistic graphical model that aims to model conditional dependence and causation, by representing a set of variables and conditional
dependencies by edges in a directed graph.

BayesNet (BN), NaiveBayes
(NB)

Neural Network (NN)

Consists of units (neurons), arranged in layers, which convert an input vector into some output. Each unit takes an input, applies a (often
nonlinear) function to it, and then passes the output on to the next layer.

Multi-Layer Perceptron (MLP)

Decision Tree (DT)

Sequential models, known as “divide and conquer” algorithms, which logically combine a sequence of simple tests where a numerical
attribute is compared against a threshold value or against a set of possible values.

REPTree (RT), J48, PART

Rule-Based

ML models that identify, learn, and evolve a set of relational rules that collectively represent the knowledge captured by the system.

OneR, JRip

Linear Regression

A statistical model used to determine the extent to which there is a linear relationship between a dependent variable and one or more
independent variables.

simple linear regression, multi-
ple linear regression

Logistic Regression (LR)

A statistical method in which its goal is to find the best fitting model to describe the relationship between dependent variable (response or
outcome variable) and a set of independent (predictor or explanatory) variables.

Simple Logistic (SL),
Multinomial Logistic
Regression (MLR)

Ensemble Learning

A branch of ML which is used to improve the accuracy and performance of general ML classifiers by generating a set of base learners and
combining their outputs for final decision.

Boosting, Bagging, Random
Forest (RF)

Boosting One of the most commonly used ensemble learning in which each base classifier is trained on a weighted form of the training set in which ~ AdaBoost
the weights depend on the performance of the previous base classifier.

K Nearest Neighbor (KNN) A supervised classification algorithm that takes labeled points and uses them to learn how to classify other points by looking at the labeled KNN (k= 1,2,...),
points closest to that new point (nearest neighbors), and has those neighbors vote (the ”k” is the number of neighbors it checks).

Bagging An ensemble meta-estimator where a value like a mean is estimated from multiple random samples of training data which are drawn with ~ Bagging/Bootstrap

replacement. Each ML model is exploited to make a prediction and the results are averaged to give a more robust and generalized prediction.

Aggregation

TABLE II: Performance metrics for analyzing ML/DL models

Performance Metric Description
True Positive (T'P) Correct positive prediction
False Positive (F'P) Incorrect positive prediction
True Negative (T'N) Correct negative prediction
False Negative (F'N) Incorrect negative prediction
Specificity: True Negative Rate TNR=TN/(TN + FP)
False Positive Rate FPR=FP/(FP+TN)
Precision P=TP/(FP+TP)
Recall: True Positive Rate TPR=TP/(TP+ FN)
F measure (F score) Fmeasure =2 X (P x R)/(P + R)
Detection Accuracy ACC=(TP+TN)/(TP+FP+TN + FN)
Error Rate ERR=(FP+FN)/(P+N)
Area Under the Curve AUC = fol TPR(z)dz = ful P(A> 7(z))dz

performance monitoring remains an important issue as an
area of dissatisfaction between researchers and designers who
are interested in delivering a more realistic realization of the
interactions of hardware and software. As low-level features
frequently have ambiguous documentation and indefinite infer-
ence, an expert level of perception is necessary to accurately
execute the required applications (benign and malicious) on
the target processor, and capture the information from HPC
registers for further analysis [36], [37]. Hence, the researchers
studying in this domain are urged to attempt to validate and
verify their extracted hardware performance counter-assisted
information on different microprocessor architectures.

4) Assessing Offensive Machine Learning: Despite wide
applications in various domains, some recent researches sub-
stantiated that ML/DL brings new security challenges itself,
such as an adversarial attacks [38], [39], [40]. In particular, he
exposed vulnerabilities have indicated that the outcome of ML
classifiers can be modified or controlled by adding specially
crafted perturbations to the input data. There exists a few
studies on adversarial learning for hardware-based intrusion
detection. For instance, the work in [41] presented an adver-
sarial attack on the ML-based intrusion detection systems to
evade the security mechanism by injecting the perturbations
in the HPC traces by using an adversarial sample generator
application. On the defense side, the research in [42] proposed
a moving target defense (MTD)-based method in response
to the basic adversarial attack by developing multiple ML
classifiers trained on different sets of HPCs. Due to emergence
of these types of adversaries and vulnerabilities in ML/DL-
based detectors along with ever-growing complexity of attacks
and wide adoption of such mechanisms in different domains
(e.g., embedded, IoT, biomedical devices, etc.) it is neces-
sary to explore more extensible, generalized, and adaptable
adversary-resilient learning-based countermeasures to address
this important challenge across various application domains.

a) Training / Model Building

key,

- W)M Labels
;@ D (sub-keys)
keyne e RNa—
==

o -

Iny Sub-traces

In
In,

Deep Learning

Algorithm

b) Test/ Key Estimation

key =?
)\ Classifier .
- - =) Predicted
m Model Key
Power Sub-traces
traces

Fig. 2: Deep Learning-based side-channel analysis illustrating a)
training and b) testing phases [47].

III. LEARNING-BASED SIDE-CHANNEL ATTACKS

Side-channel attacks are superior to classical cryptanalysis
because of the additional leakages of the computing device
while interacting with the physical environment and their
strong correlation to the secret key. The possible side-channels
include timing, power [43], electromagnetic radiation [44],
temperature [45], or even sound [46]. Broadly speaking, SCAs
can be categorized as profiling-based and non-profiling based.
The most powerful amongst them is the class of profiling-based
side-channel attacks.

Profiling-based attacks use two steps: the adversary first
procures a copy of the target device and uses it to create
templates that characterize the physical leakage for different
key combinations; and subsequently, it performs a key recovery
using template matching and analysis on the target device.
However, it is computationally impossible to exhaustively
create a dictionary of all templates due to the sheer complexity
of the key search space. As a result, although profiling-
based attacks are superior to their non-profiling based SCA
counterparts, they can suffer a loss in accuracy with an increase
in the cipher size. This motivates the development of more
advanced techniques that can intelligently prune the search
space and improve key decryption accuracy.

The idea of creating templates matches the idea of cre-
ating labels during supervised classification, thus motivating
researchers to explore the powerful ML or Deep Learning
(DL) techniques for profiled-based SCA. Figure 2 outlines the
method of such profiled attacks. The adversary profiles the
device using different keys and inputs during the training phase
and builds a DL-based classifier. The adversary can then use
this classifier in the field to estimate the secret key by correctly

OomLOBoDL

100 |~

Number of Papers

Loomi W
2015 2016 2017 2018 2019 2020 2021
Year
Fig. 3: Distribution and number of papers on machine learning and
deep learning-based side-channel analysis. The Cambrian explosion
of learning-based approaches is also visible in the context of side-
channel analysis.

labeling traces with an unknown key.

In recent years, there has been tremendous growth in the
creation, analysis, and successful deployment of a wide variety
of powerful DL algorithms on various challenging problems in-
cluding image recognition, natural language processing, DNA
sequencing, etc. [48]. This has impacted SCA research too—
indeed, there is a significant body of existing work [49] that
has the utilization of a rich collection of supervised and
unsupervised learning algorithms. Figure 3 quantifies these
numbers based on our findings on Google Scholar and further
splits them into ML vs. DL in terms of the learning techniques
being used.

The key advantages of ML or DL-based approaches over
the conventional techniques are threefold. First, learning-
based techniques can automatically explore and apply suitable
pre-processing techniques on obtained side-channel traces—
whether these techniques are “good enough” is obviously a
separate discussion which we will discuss below. But such
pre-processing techniques can be useful if there is a mismatch
between obtained/profiled traces vs. the test traces that can
happen either naturally, due to aging, voltage or temperature
variations, or due to an employed defense. Second, the target
device may not be the same as the profiled devices. In such so-
called cross-device attacks, ML can automatically generalize
at a higher dimension if the learning process is capable. Third,
and arguably most importantly, there are far fewer side-channel
experts compared to ML/DL experts. Therefore, ML/DL-based
attacks allow re-purposing the existing ML infrastructures and
expertise towards SCA.

A. Brief Summary of Prior Works

A survey of published works on ML-based SCA prior to
the application of DL is already available in prior work [49].
We will summarize some key papers here and refer interested
readers to the extended survey paper for a more thorough
analysis. Maghrebi et al. proposed the first application of
DL in general and convolutional neural networks (CNNs) in
particular for profiled SCA [50]. Earlier papers used multilayer
perceptrons (MLPs), but since they do not report the number of
hidden layers or this number is set to one, those works are gen-
erally not considered DL-based SCA in the hardware security
community [51]. The first application of the non-profiling DL-
based SCA is proposed in [52]. In [53], the authors proposed
for the first time the application of reinforcement learning to

—)
=
=]
(]
o :sample Input Hidden Output
. : neuron Layer Layers Layer

Fig. 4: Deep Learning-based classifier (Deep Neural Network) taking
samples of power trace as inputs to the input-layer and providing the
label-probabilities as outputs of the output-layer [67].

select model hyperparameters for DL-based SCA. Carbone et
al. were the first to consider DL-based profiling SCA [54]
in the context of public-key implementations. The first works
in the direction of SCA and AI/DNN explainability aimed at
interpreting neural network decisions by using heatmapping
techniques [55], and the first step in this direction uses the
Singular Vector Canonical Correlation Analysis tool to explain
what neural networks learn while training on different side-
channel datasets [56].

B. DL-based SCAs

Traditional machine learning approaches such as support
vector machines and random forests have advantages over
DPA and TA [57], [58]. However, with the improvements in
available compute power, there has been a surge in using
DL-based SCA techniques to attack cryptographic devices.
Figure 2 outlines the method of such profiled attacks. During
the training phase, the adversary profiles the device using
different keys and inputs and builds a DL-based classifier. The
adversary can then use this classifier in the field to estimate
the secret key. DL techniques manage to filter and align traces
automatically, which was normally dealt with by specialized
methods known only to side-channel experts. Previous work
has shown how different DL techniques can be used to extend
and enhance SCA [59], [60], [61], [62], [63], [64], [65].

1) Neural Network Classification: The objective of a clas-
sifier is to predict one of K discrete-classes Cy, where k =
1,2,..., K, given some input vector x. Figure 4 shows how a
DL-based classifier can be used by an adversary to determine
the secret key, where x corresponds to power traces and Cj
refers to sub-keys, which are used to create a DL model to
attack the device.

Neural networks (NNs) consist of multiple layers, namely
an input layer, an output layer, and hidden layers. The class of
NNs with multiple hidden layers are referred to as deep neural
networks (DNNGs). The different layers consist of neurons with
activation functions, which tend to be the rectified linear unit
(ReLU) to capture the non-linearity [66].

The dimensions of the input layer vary with the dimension
of the input data, e.g., the number of time steps in a power
trace. The output layer consists of K neurons, one each for
the K discrete prediction classes. The number of hidden layers
and the neurons per hidden layer varies based on the task that
the model has to perform and are considered hyper-parameters.
For instance, to capture complex features for image recognition
tasks, we might want to increase the hidden layers and neurons
in them. However, increasing the layers and neurons may lead
to over-fitting on the training set and thus we need to strike a
careful balance.

C. Challenges and Opportunities in Al-Enabled SCAs

We summarize the key challenges and the opportunities for
the use of learning techniques in the context of SCA.

1) Challenge #1: Curse of Dimensionality: Although ML-
based techniques have been proposed in the past, the high
dimensional data makes it exponentially more difficult to learn
a classifier that generalizes well on unseen examples, a chal-
lenge that is also known as the curse of dimensionality [68].
The curse of dimensionality limits the practical applicability
of many linear regressive and classification-based ML models.
Advanced ML classifiers like SVMs reduce the dimension by
first defining basis functions that are centered on the training
data points and then selecting a subset of these during a
non-linear optimized training. However, the number of basis
functions in SVMs is often still relatively large and typically
increases with the size of the training set [68]. Neural networks
solve this challenge by using a fixed number of parametric
basis functions, where the parameters are adapted during
training. Unlike SVMs, NNs involve nonconvex optimization
during training, which is costly but worth investing in during
the training phase to obtain a compact model that is fast at
processing new data [68].

The initial works in DL-based SCA [50] have used MLP
but it has multiple limitations including high guessing en-
tropy [69] and high accuracy degradation (up to 74.8%) in
cross-device settings [70]. This has led to the development
and application of more powerful DL techniques to SCA,
including supervised ones like CNNs, semi-supervised ones
like recurrent neural networks (RNNs), and unsupervised ones
like long short term networks (LSTMs).

2) Challenge #2: Extending Beyond AES: The large major-
ity of the existing learning-based attacks have focused on the
AES. While AES is an important target, it is definitely not the
only one. Moreover, AES implementations by default allow
an adversary to collect as many traces as desired, limiting
the impact of increasing the attack’s capability by a few
percentages. By contrast, there are other applications using
other cryptographic tools that can fundamentally limit the
number of observable test traces.

One such use case is the key-exchange protocols that limit
the adversary to a single measurement trace. Our work has
shown that learning-based approaches [47], [67] can outper-
form classical solutions [71], [72], [73] in the context of
single-trace attacks. These works have, furthermore, extended
the analysis to next-generation cryptosystems including lattice-
based cryptography.

3) Opportunity #1: Leveraging the Developments in AI/ML:
AI/ML research is still rapidly evolving in various aspects.
These create an opportunity to advance learning-based SCA.
In particular, the data augmentation approaches, explainability,
fairness, and methods to accelerate the learning process with
fewer data are among the important things that are under
constant improvement. Likewise, the new types of learning
methods or network topologies improve the success rate.
Naturally, the advances in this sub-domain will improve the
side-channel research. But the improvement is non-trivial
and requires domain expertise in both side-channels and ML
theory. Workshops targeting this particular sub-field could help
bolster the capabilities of the hardware security community.

4) Opportunity #2: Cross-Device Attacks: Cross-device
attacks are arguably where the learning-based approaches shine
given the generalizability properties of ML. Of particular

importance is the heterogeneous attacks [74] where the learn-
ing can generalize across different devices—for example, the
training can occur on a 16-bit architecture and the attack can
execute on a 32-bit architecture from a different vendor with a
different ISA. These types of attacks can be critical for military
applications where the target device may be unique that is
not available in the commercial space. The limits of these
cross-device attacks and their comparison with non-profiling
learning-based approaches are largely unknown. Therefore,
there are research opportunities in this direction.

IV. MACHINE-LEARNING BASED SCA ON AES-128

All cryptographic algorithms, while ideally mathematically
secure, are almost certain to have flaws when implemented
in hardware, and an important question is whether or not
the effort required to break them is worth the reward an
attacker would gain in doing so. Attempting to break them
non-maliciously allows us to gain a sense of this trade-off and
decide whether or not a method of data protection will be
secure enough for a proposed use case, along with potentially
resulting in the future development and implementation of
preventative countermeasures to various forms of attack.

While we hope that our research will provide new insights
and paths forward regarding machine learning-based side-
channel analysis (MLSCA), we are certainly not the first to
have investigated this topic. Many prior publications on it
exist including [75], [76], [77], and [78]. In this section, we
present our findings of an evaluation of the Advanced Encryp-
tion Standard, particularly unmasked and masked AES-128
implemented in software on a pair of STM32F415 microcon-
troller units (MCUs) and unmasked AES-128 implemented in
hardware on a pair of Artix-7 XC7A100T field-programmable
gate arrays (FPGAs), against machine learning-based side-
channel analysis (MLSCA). 12 machine learning classifiers
were used in combination with a side-channel leakage model
in the context of different scenarios involving targets and keys.

A. Methodology

The following section discusses the steps we took to
perform our evaluation of the MLSCA resistance of AES-
128 implemented on the STM32F415 MCUs and XC7A100T
FPGAs. We start with a description of our test setup followed
by a discussion of our procedure, the machine learning models
used, and finally the rank metric.

1) Experimental Setup: To begin, we first needed to col-
lect power consumption data associated with encryptions per-
formed by the two targets of each device type. More specifi-
cally, we measured the voltage across a shunt resistor inserted
in the power supply rail of a target with the help of a CW1173
ChipWhisperer-Lite. As stated on their site, “The ChipWhis-
perer® ecosystem presents the first open-source, low-cost
solution to expose weaknesses in embedded systems all around
us” [79]. The ChipWhisperer-Lite essentially operates like an
oscilloscope, while also allowing for communication between a
laptop and a target board using an open-source Python package
for control. Our evaluation setup consists of a MacBook Pro,
ChipWhisperer-Lite, two STM32F415 MCUs capable of being
mounted on a CW308 UFO Board to facilitate connections,
and two XC7A100T FPGAs can be seen in Figures 5 and 6. On
the software side, we used Python packages including but not
limited to the ChipWhisperer, Keras/TensorFlow, Scikit-learn,
NumPy, Pandas, and Matplotlib libraries in combination with a
Jupyter Notebook to carry out our data processing and analysis.

Fig. 5: Evaluation setup with a MacBook Pro, ChipWhisperer-Lite,
and STM32F415 targets with a CW308 UFO Board.

ChipWhisperer-Lite

Fig. 6: Evaluation setup with a MacBook Pro, ChipWhisperer-Lite,
and XC7A100T targets.

For each device type (MCU and FPGA), we performed an
evaluation of four scenarios: profiling one target and key and
attacking the same target with the same key, profiling one
target and key and attacking the same target with a different
key, profiling one target and key and attacking a different
target with the same key, and profiling one target and key
and attacking a different target with a different key.

2) STM32F415 MCU and XC7A100T FPGA Evaluation
Procedures: Beginning with a standard unmasked software
implementation of AES-128, we downloaded the program to
the first of our two MCUs and triggered a series of encryptions
in order to capture enough power consumption traces for the
profiling set for our machine learning classifiers. We decided
to collect 60,000 traces consisting of 2,000 samples each,
corresponding to 60,000 different encryptions of randomly
generated 128-bit plaintext with a static 128-bit key. Through
trial and error, 2,000 samples turned out to be enough to
capture the operation of interest to us in the first round of
encryption. We also collected four additional sets of 10,000
traces each to serve as our attack sets. The first two of these
four sets were collected from the same target that was profiled,
with one set of encryptions using the same key that was used in
the profiling set and the other using a different key. The second
two attack sets were collected from the second STM32F415
MCU, with one set again using the same key that was profiled
on the first target and the second using a different key. This
same general process was used when collecting traces for
datasets associated with a masked software implementation
of AES-128 on the STM32F415 MCUs. We saved the total
100,000 collected traces for each implementation along with
the associated 128-bit key, plaintext, and ciphertext values from
each encryption for later analysis.

After collecting our datasets for the evaluation, we then
applied a side-channel leakage model to the profiling set
in an attempt to determine which samples in our collected

traces may correspond to the processing of an operation of
interest to us as attackers. For attacking both the unmasked and
masked software implementations of AES-128 on the MCUs,
the operation of interest to us was the “substitute bytes” or
S-box operation in the first round. Only a few operations
occur prior to this in the encryption process - those being
the generation of the round keys derived from the original key
and an “add round key” operation that consists of an XOR
between the bytes of the zeroth round key (or the key itself)
and the input plaintext. It’s been shown prior to us that the
power consumption corresponding to the processing of the S-
box operation may be correlated to its output values and that
if you’re able to predict what those values are, it’s possible to
work backward to the secret key used. This is assuming that
as an attacker you kept track of what random plaintext you
used for each encryption, as there is only one value out of
256 possible values for the first key byte that when XORed
with the first plaintext byte will result in the predicted first
output byte of the S-box operation and so forth. A quick for
loop can be used to figure out what the value is for each of
the 16 key bytes.

For evaluating the FPGAs, we collected the same number
of traces for our profiling and attack sets as we did for the
MCUs, but only 100 samples were captured per trace, as the
hardware implementation of AES-128 ran significantly faster.

B. Evaluation Metric - Rank

The method we used to determine whether or not a machine
learning classifier was successful in predicting the key we were
looking for was by using a metric known in the side-channel
analysis research community as “rank” or “byte rank.” As
stated previously for our MCU evaluation, the training and
test sets for the 16 bytes were labeled with the correct S-box
output bytes for each encryption, but the accuracy of correct
prediction based on a single trace was found to be unreliable.
Rather, the predictions from many traces needed to be taken
into account in order to have a fighting chance of determining
the correct key.

In the case of a byte, there are 256 values it can take, so
we asked our machine learning classifiers to return an array
of 256 probabilities corresponding to each of the potential
S-box output values (0-255). Then, we looped over all of
the traces’ returned probability arrays, and for each one, we
determined what key byte value was associated with each of
the possible S-box values using the plaintext associated with
each trace. Once we figured out what S-box value probability
was associated with each of the 256 possible key byte values,
we added the probabilities to an array of sums corresponding
to key byte value probabilities. As we looped over all of the
traces’ probability arrays and continued to add up probabilities,
we hoped (as an attacker) that eventually the key byte with the
highest total value after summing up all probabilities would be
the correct one. We also kept track of where the correct value
stood in relation to the 255 incorrect values over the course of
this process. That way we could plot how its rank changed over
time, and how many trace predictions it took before reaching
the top rank or highest likelihood. In our case, we chose 0 to
represent the highest rank and 255 for the lowest.

C. Results

The following section discusses what we found in per-
forming our evaluation of the MLSCA resistance of AES-128
implemented on the STM32F415 and XC7A100T.

Classifier Rank Comparison for the STM32F415 and XC7A100T
Unmasked Software AES-128 (MCU) Masked Software AES-128 (MCU)] L I AES-128 (FPGA)
Machine Learning Classifier Average Number of Attack Traces to Rank 0 Number of Attack Traces to Rank 0 Average Number of Attack Traces to Rank 0
SD&SK | SD&DK | DD&SK | DD&DK | SD&SK | SD&DK | DD&SK | DD&DK | SD&SK | SD&DK | DD & SK | DD & DK
AdaBoost 69 49 10 12 8 N/A 9 N/A N/A N/A N/A N/A
Convolutional Neural Network 83 83 7 8 13 N/A 17 N/A 304 573 414 585
Decision Tree 90 105 40 28 31 N/A 44 N/A N/A N/A N/A N/A
Gaussian Naive Bayes 88 129 15 13 20 N/A 37 N/A 449 583 527 712
K-Nearest Neighbors 8 7 4 N/A 7 N/A 1484 1849 1161 3147
Linear Discriminant Analysis 118 136 6 4 8 N/A 19 N/A 251 508 312 524
Logistic Regression 109 98 6 5 7 N/A 15 N/A 249 505 312 522
Long Short-Term Memory Network 15 13 5 7 N/A 11 N/A 283 448 293 472
Multilayer Perceptron Network 110 133 12 8 11 N/A 26 N/A 574 996 594 1695
Restricted Boltzmann Machine 156 149 48 57 38 N/A 41 N/A N/A N/A N/A N/A
Random Forest 33 52 25 24 30 N/A 36 N/A N/A N/A N/A N/A
Support Vector Machine 7 9 5 4 4 N/A 16 N/A 314 612 316 672

Fig. 7: Average byte rank 0 convergence for classifiers with 20,000 profiling and 1,000 attack traces for the MCUs and 60,000 profiling and
10,000 attack traces for the FPGAs (SD = same device/target that was profiled, SK = same key that was profiled, DD = different device/target

than what was profiled, DK = different key than what was profiled).

1) Unmasked Software AES-128 on the STM32F415: To
begin with the unmasked software implementation of AES-
128 on the MCUs, we found that in all four attack scenarios
previously discussed (involving two targets and two keys), we
were able to recover the full encryption key with all 12 of our
chosen machine learning classifiers in combination with a first-
round S-box leakage model. The classifiers were easily able to
do this with little to no tuning, rendering this combination of
device and AES variant very vulnerable to this form of attack.

2) Masked Software AES-128 on the STM32F415: Con-
cerning the masked software implementation, we found that
in two out of the four attack scenarios, the machine learning
classifiers in combination with the same leakage model were
again easily able to recover the secret key. However, in the two
scenarios involving a different attack key than the profiling key,
all classifiers failed at predicting it. In rare cases we were able
to recover partial keys, but never the full 16 bytes. Given that
these two scenarios (attacking the same target that was profiled
with a different key and attacking a different target than what
was profiled with a different key) are likely the most realistic
scenarios out of the four, we think that masking can indeed be
an effective countermeasure against MLSCA.

3) Unmasked Hardware AES-128 on the XC7A100T: For
the unmasked hardware implementation of AES-128 on the
FPGAs, we found that we were able to reliably predict full
encryption keys with 8 out of 12 of the machine learning
classifiers, with a caveat. We were unable to recover bytes
0, 4, 8, and 12 when using a separately trained classifier to
predict each of the 16 bytes in the two scenarios involving
different profiling and attack keys for the FPGA. Interestingly,
these four bytes make up the first column of the AES state
array. Why exactly this is the case, we are not entirely sure
at the time of writing this paper, but future investigation may
reveal the reason. In any case, we found a way around this
issue from an attacking standpoint and discovered that if we
used a single model that was able to predict its corresponding
byte successfully to predict the other 15 bytes as well, we were
in fact able to predict the full key reliably with the 8 successful
classifiers. This showed that training separate models for each
byte was not actually necessary and that in a case like this
it could potentially hinder the attack. While using a single
model to predict all bytes, in general, led to an increase in the
number of traces required in the prediction stage (calculating
rank) for the 15 bytes it was not trained on, it was still a faster
evaluation process overall, as 15 out of the 16 machine learning

classifiers that previously consumed training time were no
longer relevant.

4) Classifier Comparison: In terms of how the 12 machine
learning classifiers compared to each other performance-wise,
the table in Figure 7 displays the average number of attack
traces required per byte before reaching a rank of O for all 12
classifiers in the various scenarios. It should be noted that for
the results in the STM32F415 table, we used reduced profiling
and attack sets (20,000 and 1,000 traces, respectively). These
tables should not be considered an end-all for determining
which classifier is the best for MLSCA in general, as how
well a classifier performs can vary depending on the situation.
Take the K-nearest neighbors classifier for instance, which
was one of the best for the MCUs and the worst for the
FPGAs. This being said, in the context of evaluating AES-128
on the STM32F415, our long short-term memory, K-nearest
neighbors, and support vector machine classifiers tended to
require the least number of traces to rank the correct key
byte values as most probable, and for the XC7A100T, our
convolutional neural network, linear discriminant analysis,
logistic regression, long short-term memory, and support vec-
tor machine classifiers were all very comparable. The SVM
classifier did however take considerably longer to run than
any of the others, so while it did tend to produce a low-
rank convergence, it wasn’t nearly as time-efficient as the rest.
It should also be noted that the ensemble/tree-based machine
learning algorithms failed in predicting keys for the FPGAs,
along with our restricted Boltzmann machine classifier.

V. CONCLUSION

For the past years, given the rising amount of documented
attacks on the hardware, the presumption of secure hardware
is no longer valid. The requirement to patch/update software-
based solutions due to the advent of new security threats
(such as malware, side-channel attacks, etc.) necessitates a
significant amount of memory and hardware resources. As a
result, rather than considering security as an afterthought, it
should be entrusted to the underlying hardware when designing
a bottom-up approach to safeguarding computer systems. Re-
search advancements have shown that hardware systems enable
a swift analysis of applications’ trends and learn from them
with the use of intelligent machine learning-based security
countermeasures, allowing them to successfully avoid future
attacks and respond pro-actively to changing behavior in real-
time. This work emphasizes the expanding role of AI/ML
techniques in hardware and architecture security and offers

insightful discussions on urgent challenges, opportunities, and
future directions of developing precise and effective machine
learning-based attacks and defense mechanisms in response
to emerging hardware security vulnerabilities in contemporary
computer systems and next-generation cryptosystems.

VI. ACKNOWLEDGMENT

This work is supported in part by the National Science Foun-
dation under Award No. 2139034, and upon work supported
in part by the National Science Foundation under Grant No.
CNS #16-2137283 - Center for Advanced Electronics through
Machine Learning (CAEML) and its industry members.

[4]

[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in ISCA’13. ACM, 2013, pp. 559-570.

P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1-19.

M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium (USENIX Security 18), Baltimore,
MD, Aug. 2018, pp. 973-990.

H. Sayadi et al., “Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification,”
in DAC’18, 2018, pp. 1-6.

A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky, “Hor-
izontal Side-channel Vulnerabilities of Post-Quantum Key Exchange
Protocols,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2018, pp. 81-88.

F. Regazzoni et al., “Machine learning and hardware security: Chal-
lenges and opportunities -invited talk-,” in IEEE/ACM International
Conference On Computer Aided Design, ICCAD 2020, San Diego, CA,
USA, November 2-5, 2020. 1EEE, 2020, pp. 141:1-141:6.

H. Wang et al., “Hybrid-shield: Accurate and efficient cross-layer
countermeasure for run-time detection and mitigation of cache-based
side-channel attacks,” in ICCAD 20, ser. ICCAD ’20, 2020.

A. Mosenia and N. K. Jha, “A comprehensive study of security of
internet-of-things,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 4, pp. 586-602, Oct 2017.

H. Sayadi, H. Makrani, O. Randive, S. M. P D, S. Rafatirad, and
H. Homayoun, “Customized machine learning-based hardware-assisted
malware detection in embedded devices,” The 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications (IEEE TrustCom-18), 2018.

G. Kornaros, “Hardware-assisted machine learning in resource-
constrained iot environments for security: Review and future prospec-
tive,” IEEE Access, 2022.

S. M. P. Dinakarrao et al., “Lightweight node-level malware detection
and network-level malware confinement in iot networks,” in DATE’19,
March 2019, pp. 776-781.

Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on
malware detection using data mining techniques,” ACM Computing
Surveys, vol. 50, no. 3, pp. 1-40, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3101309.3073559

M. Schmall, “Heuristic techniques in av solutions: An overview,’
in https://www.symantec.com/connect/articles/heuristic-techniques-av-
solutions-overview, 2002.

Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey
on heuristic malware detection techniques,” in The 5th Conference on
Information and Knowledge Technology, May 2013, pp. 113-120.

B. Singh et al., “On the detection of kernel-level rootkits using hardware
performance counters,” in ASTACCS’17, 2017, pp. 483-493.

H. Sayadi er al., “2smart: A two-stage machine learning-based ap-
proach for run-time specialized hardware-assisted malware detection,”
in DATE’19, March 2019, pp. 728-733.

A. Tang et al., “Unsupervised anomaly-based malware detection using
hardware features,” in RAID’14. Springer, 2014, pp. 109-129.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]
(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118-140.

M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Ap-
plied Soft Computing, vol. 49, pp. 1162-1174, 2016.

M. Mushtagq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, “Whisper: A tool for run-time detection of side-channel
attacks,” IEEE Access, vol. 8, pp. 83 871-83900, 2020.

M. Mushtaq et al., “Nights-watch: A cache-based side-channel intrusion
detector using hardware performance counters,” in Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2018, p. 1.

Y. Gao et al., “Adaptive-hmd: Accurate and cost-efficient machine
learning-driven malware detection using microarchitectural events,” in
IOLTS’21. IEEE, 2021, pp. 1-7.

H. Liu et al., Feature selection for knowledge discovery and data
mining. Springer Science & Business Media, 2012, vol. 454.

L. Yu et al., “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proceedings of the 20th interna-
tional conference on machine learning (ICML-03), 2003, pp. 856-863.

“Intel performance monitoring unit,” in https://software.intel.com/en-
us/articles/intel-performance-counter-monitor.

V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “Pin: a binary
instrumentation tool for computer architecture research and education,”
in Proceedings of the 2004 workshop on Computer architecture edu-
cation: held in conjunction with the 31st International Symposium on
Computer Architecture, 2004, pp. 22—es.

P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department
of defense HPCMP users group conference, vol. 710, 1999.

J. Reinders, “Vtune performance analyzer essentials,” Intel Press, 2005.

T. Willhalm, R. Dementiev, and P. Fay, “Intel performance
counter monitor-a better way to measure cpu utilization,”
Dosegljivo: https://software. intel. com/en-us/articles/intelperformance-
countermonitor-a-better-way-to-measure-cpu-utilization.[Dostopano:
September 2014], 2012.

https://perf.wiki.kernel.org/index.php, last accessed: 20-Feb-2019.

K. London, S. Moore, P. Mucci, K. Seymour, and R. Luczak, “The
papi cross-platform interface to hardware performance counters,” in
Department of Defense Users’ Group Conference Proceedings, 2001,
pp. 18-21.

T. Willhalm, R. Dementiev, and P. Fay, “Intel® performance
counter monitor - a better way to measure cpu utilization,”
https://software.intel.com/content/www/us/en/develop/articles/intel-
performance-counter-monitor.html, 2017.

S. J. Stolfo et al., “Towards stealthy malware detection,” in Malware
Detection. Boston, MA: Springer US, 2007, pp. 231-249.

H. Sayadi et al., ““Stealthminer: Specialized time series machine learning
for run-time stealthy malware detection based on microarchitectural
features,” in GLSVLSI’20, 2020, p. 175-180.

H. Sayadi, Y. Gao, H. Mohammadi Makrani, J. Lin, P. C. Costa,
S. Rafatirad, and H. Homayoun, “Towards accurate run-time hardware-
assisted stealthy malware detection: a lightweight, yet effective time
series cnn-based approach,” Cryptography, vol. 5, no. 4, p. 28, 2021.

S. Das et al., “Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security,” in /EEE SP, 2019, pp. 20-38.

B. Zhou et al., “Hardware performance counters can detect malware:
Myth or fact?” in ASIACCS’18, 2018, pp. 457-468.

O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in 2019 IEEE Security and Privacy Workshops
(SPW). 1EEE, 2019, pp. 8-14.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS
P), 2016, pp. 372-387.

Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in 5th International

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. [Online]. Available: https://openreview.net/forum?id=Sys6GJqxl

S. M. P. Dinakarrao et al., “Adversarial attack on microarchitectural
events based malware detectors,” in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1-6.

A. P. Kuruvila, S. Kundu, and K. Basu, “Defending hardware-based
malware detectors against adversarial attacks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40,
no. 9, pp. 1727-1739, 2021.

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in cryptology—-CRYPTO’99. Springer, 1999, pp. 789-789.

J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming and Security. Springer Berlin Heidelberg, 2001, pp. 200-
210.

M. A. Islam, S. Ren, and A. Wierman, “Exploiting a thermal side chan-
nel for power attacks in multi-tenant data centers,” in ACM Conference
on Computer and Communications Security, 2017, p. 1079-1094.

D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” J.
Cryptol., vol. 30, no. 2, pp. 392-443, 2017.

F. Aydin, P. Kashyap, S. Potluri, P. Franzon, and A. Aysu, “Deepar-
sca: Breaking parallel architectures of lattice cryptography via learn-
ing based side-channel attacks,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation, A. Orailoglu, M. Jung, and
M. Reichenbach, Eds. Cham: Springer International Publishing, 2020,
pp- 262-280.

Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nat., vol.
521, no. 7553, pp. 436-444, 2015.

B. Hettwer, S. Gehrer, and T. Giineysu, “Applications of machine
learning techniques in side-channel attacks: a survey,” J. Cryptogr. Eng.,
vol. 10, no. 2, pp. 135-162, 2020.

H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic im-
plementations using deep learning techniques,” in SPACE, ser. Lecture
Notes in Computer Science, C. Carlet, M. A. Hasan, and V. Saraswat,
Eds., vol. 10076. Springer, 2016, pp. 3-26.

“Sok: Deep learning-based physical side-channel analysis,” in IACR
Cryptol. ePrint Arch., 2021, p. 1092.

B. Timon, “Non-profiled deep learning-based side-channel attacks with

sensitivity analysis,” IJACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, no. 2, p. 107-131, Feb. 2019.

J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel analy-
sis,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2021, no. 3, p. 677-707, Jul. 2021.

M. Carbone, V. Conin, M.-A. Cornélie, F. Dassance, G. Dufresne,
C. Dumas, E. Prouff, and A. Venelli, “Deep learning to evaluate secure
rsa implementations,” IJACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, no. 2, p. 132-161, Feb. 2019.

B. Hettwer, S. Gehrer, and T. Giineysu, “Deep neural network attribution
methods for leakage analysis and symmetric key recovery,” in Selected
Areas in Cryptography — SAC 2019, K. G. Paterson and D. Stebila, Eds.
Cham: Springer International Publishing, 2020, pp. 645-666.

M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singu-
lar vector canonical correlation analysis for deep learning dynamics and
interpretability,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 6078-6087.

A. Heuser and M. Zohner, “Intelligent Machine Homicide,” in Con-
structive Side-Channel Analysis and Secure Design. Springer, 2012,
pp. 249-264.

L. Lerman, G. Bontempi, and O. Markowitch, “Power Analysis Attack:
An Approach Based on Machine Learning,” International Journal of
Applied Cryptography, vol. 3, no. 2, pp. 97-115, Jun. 2014.

R. Gilmore, N. Hanley, and M. O’Neill, “Neural Network based
Attack on a Masked Implementation of AES,” in IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2015,
pp. 106-111.

J. Kim, S. Picek, A. Heuser, S. Bhasin,
“Make Some Noise. Unleashing the Power

and A. Hanjalic,
of Convolutional

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

(751

[76]

[(77]

(78]

(791

Neural Networks for Profiled Side-channel Analysis,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2019, no. 3, pp. 148-179, 2019. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8292

H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking Cryptographic Im-
plementations Using Deep Learning Techniques,” in Security, Privacy,
and Applied Cryptography Engineering (SPACE), 2016, pp. 3-26.

S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic,
and N. Mentens, “Side-channel Analysis and Machine Learning: A
Practical Perspective,” in International Joint Conference on Neural
Networks (IJCNN), 2017, pp. 4095-4102.

E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas, “Study of
Deep Learning Techniques for Side-Channel Analysis and Introduction
to ASCAD Database,” IACR Cryptology ePrint Archive, vol. 2018,
p- 53, 2018. [Online]. Available: http://eprint.iacr.org/2018/053

B. Timon, “Non-Profiled Deep Learning-based Side-Channel attacks
with Sensitivity Analysis,” JACR Transactions on Cryptographic Hard-
ware and Embedded Systems, vol. 2019, no. 2, pp. 107-131, 2019.

S. G. B. Hettwer, T. Horn and T. Giineysu, “Encoding Power Traces
as Images for Efficient Side-Channel Analysis,” in IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2020,
pp. 1-10.

V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in International Conference on International
Conference on Machine Learning (ICML). PMLR, 2010, pp. 807-
814.

P. Kashyap, F. Aydin, S. Potluri, P. D. Franzon, and A. Aysu, ‘“2deep:
Enhancing side-channel attacks on lattice-based key-exchange via 2-
d deep learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1217-1229, 2021.

C. M. Bishop, Pattern recognition and machine learning, 5th Edition,
ser. Information science and statistics. Springer, 2007.

E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas, “Study of
deep learning techniques for side-channel analysis and introduction to
ASCAD database,” IACR Cryptol. ePrint Arch., vol. 2018, p. 53, 2018.

K. Ramezanpour, P. Ampadu, and W. Diehl, “Scaul: Power side-channel
analysis with unsupervised learning,” IEEE Transactions on Computers,
vol. 69, no. 11, pp. 1626-1638, 2020.

F. Aydin, E. Karabulut, S. Potluri, E. Alkim, and A. Aysu, “Reveal:
Single-trace side-channel leakage of the seal homomorphic encryption
library,” in 2022 Design, Automation Test in Europe Conference
Exhibition (DATE), 2022, pp. 1527-1532.

F. Aydin, A. Aysu, M. Tiwari, A. Gerstlauer, and M. Orshansky, “Hor-
izontal side-channel vulnerabilities of post-quantum key exchange and
encapsulation protocols,” ACM Trans. Embed. Comput. Syst., vol. 20,
no. 6, oct 2021.

A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky,
“Horizontal side-channel vulnerabilities of post-quantum key exchange
protocols,” in 2018 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), 2018, pp. 81-88.

F. Zhang, B. Shao, G. Xu, B. Yang, Z. Yang, Z. Qin, and K. Ren, “From
homogeneous to heterogeneous: Leveraging deep learning based power
analysis across devices,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1-6.

H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in International Con-
ference on Security, Privacy, and Applied Cryptography Engineering.
Springer, 2016, pp. 3-26.

H. Maghrebi, “Deep learning based side channel attacks in practice.”
IACR Cryptol. ePrint Arch., vol. 2019, p. 578, 2019.

B. Sonmez, A. A. Sarikaya, and $. Bahtiyar, “Machine learning based
side channel selection for time-driven cache attacks on aes,” in 2019
4th International Conference on Computer Science and Engineering
(UBMK). 1EEE, 2019, pp. 1-5.

R. Benadjila et al., “Study of deep learning techniques for side-channel
analysis and introduction to ascad database,” ANSSI, France & CEA,
LETI, MINATEC Campus, France. Online verfiigbar unter https://eprint.
iacr. org/2018/053. pdf, zuletzt gepriift am, vol. 22, p. 2018, 2018.

“Chipwhisperer.” [Online]. Available:
https://www.newae.com/chipwhisperer

