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Abstract—Healthcare systems have recently utilized the Inter-
net of Medical Things (IoMT) to assist intelligent data collection
and decision-making. However, the volume of malicious threats,
particularly new variants of malware attacks to the connected
medical devices and their connected system, has risen significantly
in recent years, which poses a critical threat to patients’ confi-
dential data and the safety of the healthcare systems. To address
the high complexity of conventional software-based detection
techniques, Hardware-supported Malware Detection (HMD) has
proved to be efficient for detecting malware at the processors’
micro-architecture level with the aid of Machine Learning (ML)
techniques applied to Hardware Performance Counter (HPC)
data. In this work, we examine the suitability of various standard
ML classifiers for zero-day malware detection on new data
streams in the real-world operation of IoMT devices and demon-
strate that such methods are not capable of detecting unknown
malware signatures with a high detection rate. In response, we
propose a hybrid and adaptive image-based framework based
on Deep Learning and Deep Reinforcement Learning (DRL) for
online hardware-assisted zero-day malware detection in IoMT
devices. Our proposed method dynamically selects the best DNN-
based malware detector at run-time customized for each device
from a pool of highly efficient models continuously trained
on all stream data. It first converts tabular hardware-based
data (HPC events) into small-size images and then leverages
a transfer learning technique to retrain and enhance the Deep
Neural Network (DNN) based model’s performance for unknown
malware detection. Multiple DNN models are trained on various
stream data continuously to form an inclusive model pool. Next, a
DRL-based agent constructed with two Multi-Layer Perceptrons
(MLPs) is trained (one acts as an Actor and another acts as
a Critic) to align the decision of selecting the most optimal
DNN model for highly accurate zero-day malware detection
at run-time using a limited number of hardware events. The
experimental results demonstrate that our proposed Al-enabled
method achieves 99% detection rate in both F1-score and AUC,
with only 0.01% false positive rate and 1% false negative rate.

Keywords—Hardware Performance Counters, IoT/IoMT, Deep
Learning, Reinforcement Learning, Zero-Day Malware Detection.

I. INTRODUCTION

Recent years have witnessed the growth of the Internet
of Things (IoT) devices with an expected annual growth rate
of more than 20% from 2022 to 2030 [1]. The capability to
connect edge devices and process data on the device or in fog
computing has enabled a broad range of applications for IoT
from smart grid and smart cities to smart healthcare systems
[2]. Internet of Medical Things (IoMT) is integrated with
traditional healthcare systems to provide real-time enhanced
healthcare service that has never been done before to patients,
and data collected from the IoMT devices are processed within
an edge cloud environment supporting healthcare providers
to make smarter, and more accurate decisions. Meanwhile,
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recent years have also seen a vast growth of new security
vulnerabilities making the IoMT systems accessible targets for
an increasing number of complicated cyber attacks [3], [4], [S],
[6], [7] ,[8]. With malicious software (a.k.a. malware) utiliza-
tion continuing to rise across different application domains,
the development of efficient malware detection techniques has
grown to be more crucial as they feature as an early protection
mechanism to guard the integrity and confidentiality of the
authenticated users’ data [9], [10], [11].

Due to inefficiency of software-based detection methods,
security should have been delegated to the systems’ hardware
level building a bottom-up solution rather than an afterthought
solution. Therefore, Hardware-Assisted Malware Detection
(HMD) methods [12], [13], [14], [15], [16] have emerged to
address the inefficiency of software-based solutions, including
static analysis, incompetence in detecting obfuscated attacks,
and excessive computational overheads on resource-limited
systems. Recent developments in the field of Artificial Intelli-
gence (Al) including Machine Learning (ML) and Deep Learn-
ing (DL) have been sparked by a huge increase in the volume
of data in modern computer systems, leading to applications
of these intelligent methodologies in a range of computing
fields, including security [10], [17], [18]. HMD methods have
demonstrated that malware can be differentiated from normal
programs by classifying anomalies using AI/ML techniques in
low-level microarchitectural feature spaces captured by Hard-
ware Performance Counters (HPCs) [12], [13], [14], [19]. With
Al-based protection countermeasures, the hardware systems
could analyze patterns of applications to proactively respond to
altering behavior at run-time and prevent conceivable attacks.

In this work, we address important challenges of hardware-
assisted cybersecurity in the context of malware detection in
emerging computing systems such as biomedical and IoMT
devices. IoT-related malware attacks are skyrocketing. In 2020,
among the 5.6 billion malware attacks detected by SonicWall
[20], 56.9 million came to IoT attacks, a 66% increase from a
year before, and this trend is predicted to grow even more in
the coming years. These malware attacks homes, government,
education, healthcare, and retail by finding vulnerabilities in
networks and applications to launch attacks. According to
[21], [22], 73% of healthcare providers currently use biomed-
ical equipment with a legacy OS, which are using outdated
technologies that are vulnerable to security. Attackers actively
exploit vulnerabilities executing system commands with root
privileges that deploy malware attacks, change file permission,
and connect with the attacker-controller server to perform more
malicious activities. When one device is infected, it could
quickly spread to other devices in the same IoMT network to
cause potential cybersecurity threats such as data interception

24th Int'l Symposium on Quality Electronic Design



or manipulation to further comprise the security of healthcare
services. These attacks can be expanded to critical life support
and medical devices used in healthcare systems [3], [4].

In addition, unknown (zero-day) types of malware attacks
are a major challenge to IoT devices [20]. A zero-day attack
is a type of serious cybersecurity threat that exploits software
security vulnerabilities that are undocumented in the training
database of the detection mechanism [23], [24] and therefore
is a long-standing challenge. Furthermore, existing ML-based
HMD strategies typically select the best model to defend
against intrusions, then periodically update the model to adapt
it to new data variants. Other studies have found that besides
adapting to data, we can also adapt to the model’s reaction to
data by training a run-time model selector to adaptively select
the best model for that data, which proves to be more efficient
because even a weak detector can contribute to unknown zero-
day malware detection during run-time [25]. There is a need of
a structured method to automate the malware detection process
in IoT/IoMT devices and adapt the detection model to the ever-
changing data and new zero-day malware types.

In this research, we propose a hybrid, intelligent, and
adaptive framework based on deep learning and reinforcement
learning techniques, referred to as DRL-HMD, for online
hardware-assisted zero-day malware detection in IoMT de-
vices. Today’s biomedical computing systems are equipped
with modern commercial microprocessors (e.g, Intel, ARM)
to process different programs [26], [27]. Therefore, instead
of expensive-to-implement, slow, static, and vulnerable anti-
virus mechanisms, to detect malicious software signature, in
this work we will propose a novel intelligent solution that
utilizes the patterns of low-level hardware features captured
by two hardware components including hardware performance
counters and embedded trace buffers registers in biomedical
devices’ processors. DRL-HMD first converts tabular hardware
performance counters data to small-size images, and leverages
transfer learning technique to train accurate Deep Neural
Network (DNN) based detectors. Multiple DNN models are
trained on various stream data continuously to form a model
pool. Then, DRL-HMD is followed by an effective value-
based deep reinforcement learning-guided decision-maker that
adaptively selects the best performing DNN model for de-
tecting unknown malware signatures in the newly generated
data stream from IoMT devices. In particular, DRL-HMD
formulates the hardware malware detection as an RL problem
by examining the ability of an autonomous agent in learning to
take optimal actions/decisions for online malware detection to
maximize a reward function while interacting with a stochastic
environment. The proposed defense mechanism is equipped
with a detection-sensitive selection model that takes into
account the detection rates of the F-measure and AUC of the
base DNN models and determines the best malware detector
at run-time.

Furthermore, the DRL-based agent constructed with two
Multi-Layer Perceptrons (MLPs) is trained (that one acts as
an Actor and another acts as a Critic) to align the decision of
selecting the most optimistic DNN model during the run-time,
which enhances the system performance using a small number
of micro-architectural features captured at run-time by existing
HPCs. The adaptive DRL agent is trained based on the expe-
rience replay data (ERD) data with the guidance of the reward
policy of F1x AUC to select the most intelligent DNN model
that can detect malware and benign with higher performance.

From the DRL agent’s perspective, selecting the model with
the highest F'1x AUC' achieves its goal of reaching the highest
accumulated rewards. During the inference, zero-day test ERD
data are fed to the DRL agent, and the agent’s actions at each
time step are tracked so the malware classification metrics are
collected to evaluate the overall DRL-HMD system’s detection
performance. For a thorough analysis, eight classical and three
DNN-based models and one DRL agent are implemented and
their efficiencies are comprehensively analyzed across different
evaluation metrics for detecting unknown malware.

The remainder of this paper is organized as follows. Section
IT presents an overview of the proposed methodology. Section
III discusses the evaluation criteria and results analysis. Finally,
Section IV concludes this study.

II. PROPOSED METHODOLOGY

This section presents the overview of the proposed deep
learning and deep reinforcement learning-based approach for
accurate image-based zero-day malware detection in IoMT
devices. As depicted in Figure 1, first, the hardware events
are monitored using an effective performance evaluation tool.
Then, we analyze the collected HPC events to select the most
prominent events addressing the issue of run-time malware
detection using a limited number of HPC registers using a
heterogeneous ensemble feature fusion method [25]. Func-
tionality of different selection methods to determine the top
HPC events are combined, and the final top four features are
selected: L1-dcache-loads, node-stores, node-loads, and L1-
dcache-stores. Next, we first employ a two-stage deep learning
based approach introduced in [28] to embed tabular HPC data
to image data and to leverage transfer learning techniques on
ImageNet to boost up the detection accuracy for unknown zero-
day malware detection.

DNN-based models have shown a higher detection per-
formance over zero-day malware detection than classical ML
[28]. However, IoMT demands a highly effective cybersecu-
rity defender to all the stream data for different connected
devices, which makes it a more challenging issue. This is
because a minor miss-detection over a malicious activity could
pose a critical negative impact on patient’s medical records,
diagnoses, and proper treatments, which could cause a life or
death situation. To enhance the performance of the detection,
we train various DNN-based models on each stream data to
form a model pool with effective DNN models. To achieve
this goal, as shown in Figure 2 we train a deep reinforcement
learning-based agent called Advantage Actor Critic (A2C) [29]
to dynamically select the best model defender at run-time on a
new stream of data collected from the biomedical devices. The
DRL-based agent is then deployed to automate the process of
adaptively selecting a single best DNN defender at run-time
according to the new hardware-related data characteristics.

A. Experimental Setup

IoMT devices typically operate on a continuously basis,
in which the data from these devices are collected on a daily
continuous basis and accumulated after a period of time for
later analytic purposes. To study IoMT security, we simulate
the [oMT operational environment in our experiments in which
we split the whole time into four periods (%i,to,ts,t4,t5).
The data collected during ¢; and to are stream 1 data, and
the data collected during ¢, to t3 are stream 2 data. First
applications (benign and malware) are executed and profiled
on a computer system equipped with an Intel Xeon processor
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Fig. 1: Overview of the proposed methodology, Part 1: Two-stage image-based malware detection using DNN models to create a pool of

DNN-based detectors

that is widely used in biomedical applications in healthcare
systems. HPC events are collected using Perf tool available
under Linux at sampling time of 10ms. Also, applications
are run in a Linux Container (LXC) [30] which provides
access to actual hardware performance counters data instead
of emulating HPCs. Malware applications, collected from and
categorized by VirusShare and VirusTotal online repositories,
comprises nine types of malware including Worm, Virus,
Botnet, Ransomware, Spyware, Adware, Trojan, Rootkit, and
Backdoor. In our experiments, each stream data are split into
three sets: training, known test, and zero-day test. stream 1,
2, and 3 training data are for training and validation purposes
for ML and DNN models, then models are tested on both
known test and zero-day test datasets; stream 4 represents a
new data stream. We use its training dataset of stream 4 to
train the online adaptive decision maker (DRL-HMD), and we
use its known and zero-day testing datasets to test all models
including MLs, DNN models, and the DRL-HMD and report
the inference result.

B. Threat Model

Data generated from IoMT devices in the edge cloud is
different than data gathered and stored in the centralized cloud.
IoMT devices generate data on an incremental basis, while
centralized data are gathered together from all sources at all
times into one pile of data. We can specify the generated
data from a period as one batch of data, which we call a
stream of data. Such a period can be one day, one week,
or one month depending on how much data are needed for
different use cases. For training the ML/DL/DRL models, we
need to have some quantity of data, meanwhile, the model is
updated at a reasonable frequency. We observe IoMT stream
data has several characteristics: 1) the quantity of stream data is
much less than centralized data, 2) according to recent studies,
IoT/IoMT data are more likely to contain new variants of data
and unknown malware types than previous stream data, due
to the fast-growing IoT devices available to use, and the cy-
bersecurity vulnerabilities of these devices, 3) different [oMT
devices” HPC data may have similar or different feature spaces.

In this paper, we mimic the medial edge cloud operations in
which we have five [oMT devices that have similar feature
distribution, and generated data stream in four time periods.
From all of the data we have, we randomly divide it into
five devices, and each device’s data are further divided into
four streams with the same ratio. We select one device to
experiment with and report our experiment results.

To model the zero-day malware threat type in our exper-
iments, among all nine malware types in each stream, we
held out all four types of malware from rootkit, backdoor,
virus, and ransomware as the target zero-day test data. These
four types of malware are not presented in the training and
known test datasets, thus, the zero-day malware set is unknown
from the training dataset. For benign, we held out 30% of
all benign data of each stream data aside as a zero-day test
benign dataset. We kept both malware and benign aside to
imitate the zero-day testing in real-world scenarios where
the malware is undocumented in the training database of the
detection mechanism. The rest of the five types of malware
including trojan, spyware, botnet, worm, and adware as well
as the rest of benign samples are considered for training and
known test purposes for each stream, and we randomly split
them into 70% for training and 30% for known testing. The
difference between the known-test and zero-day-test in our
experiments is that the known-test data contains the same
malware types as the training dataset but with different unseen
data and the zero-day-test data contains different malware
types from the training dataset that are considered as new
unknown attacks. After data are split, we relabel all types of
malware as malware and leave benign as benign. Notably, our
DRL-HMD framework uses the same datasets during training,
known-test, and zero-day test same as all classifiers. Also,
classical ML models use the tabular format data, and DRL-
HMD employs the image data converted from corresponding
HPC-based tabular data in training the DL-based model. In
training/testing the DRL model, we use the known-test dataset
at each stream to generate the experience replay dataset for
training and use the zero-day test data to create the experience
replay dataset to test the DRL agent. Note that across all the



ML, DL, and DRL models, the three datasets are consistent
for each stream, but the data are randomly selected and each
stream’s data contain substantially different malware types.

C. Overview of DRL-HMD Framework

Our proposed framework, DRL-HMD, contains two parts:
the first part is a two-stage deep learning-based malware
detection method that produces a pool of highly effective
DNN-based detectors. After that, an intelligent and salable
deep reinforcement learning-based agent is trained to select the
best DNN detector during run-time from the pool of detectors
to defend against the newly generated unknown edge stream
data. The general overview of the DRL-HMD is depicted in
Figure 1 and Figure 2. As shown in Figure 1, during the
first part of the DRL-HMD, tabular hardware events (HPCs)
data (that are monitored from the underlying processor) are
converted to image formatted data using an effective 2D
embedding algorithm [28], [31]. Then, we investigate the state-
of-art ResNet model architecture [32] and transfer learning
over the data of ImageNet, which consists of 1,000 categories
with a total of 1.3 million training images, 50,000 validation
images, and 100,000 testing images. We use ResNetl8 as a
base architecture with customized last fully connected layer
and the SoftMax function retrained the whole model over
three HPC data streams generated from the IoMT device.
The pre-trained model on ImageNet has already learned to
recognize patterns from millions of generic images. While we
feed our malware and benign embedded images, the transferred
model applies the pattern recognition of images and continues
learning the high-level feature difference between malware and
benign. Use of transfer learning saves training time, boosts
test accuracy over new biomedical device’s stream data, and is
more generalized towards the IoMT hardware features domain.

In part 2 of DRL-HMD as shown in Figure 2, a deep
reinforcement learning agent called Advantage Actor Critic
(A2C) [29] is trained to learn from a reward policy and
adaptively select the best DNN model at run-time from the
model pool for unknown malware detection based on the new
data stream generated from the IoMT devices. Figure 3 depicts
the architecture of the A2C model used in DRL-HMD and its
agent interacting with the model pool and DRL environment.
As the agent takes actions and moves through the environment,
it learns to map the observed state of the environment to
two possible outputs: 1) recommended action output from the
Actor, which is a probability value for each DNN detector
in the action space to maximize the reward from the state,
where the reward is the mapping between state and the action
according to the defined reward policy in the DRL environment
at the current time step; 2) estimated reward produced from
the Critic, which is a sum of all rewards expected to receive in
the future state. Actor and Critic learn to perform their tasks,
such that recommended actions from the Actor maximize the
total rewards for all steps. We use two Multi-Layer Perceptron
(MLP) in A2C, that the Critic contains five layers with
three hidden layers (32*16*16), and the Actor is a four-layer
MLP containing two hidden layers with 32 and 16 hidden
nodes. The input layer contains the dimension of action space,
and the output layer contains one action result. We use the
Sparse Categorical Cross Entropy loss function with Adaptive
Moment Estimation (Adam) optimization algorithms for the
Actor and the Mean Squared Error loss function for the Critic.

D. DRL Environment

We customize the DRL-HMD’s environment based on
OpenAI’s Gym [33]. OpenAl Gym is an open-source interface
that provides RL environments for researchers to develop and
benchmark new algorithms. It also offers a structured interface
for customizing the RL environment. Our DRL environment
contains several important elements including the reward pol-
icy 7, state space S, action space A, and the step function of
mapping state to action according to the reward policy.

Algorithm 1 Process of Part 2 in DRL-HMD

Pre-process experience replay data for stream 4; > See Section II-D1
Initialize DRL agent parameters: discount factor -y, learning rate for Actor
and Critic, and update interval;

Initialize state S, reward policy m=F1*AUC;

Let d < selected malware detector;

Let DN N < DNN model;

while training of RL system do

Agent reads state s¢;

Actor predicts on state s¢, receives probabilities of all actions;

Agent selects the action with the highest probability;

Agent receives reward r; and new state s¢41;

Critic predicts future rewards based on current action;

Agent computes advantage value to evaluate how good is the action;
Compute Actor loss value;

Computer Critic loss value;

Compute and apply gradients to update Actor and Critic networks
weights;

end

while Inference of RL system do
for zero-day test data: 0 — n do
Import trained Actor model;
Agent reads state s¢;
Agent predict all actions’ probabilities;
Agent assigns the best d; to defend, gets y; = (a¢|st);
if y, == y¢ true label then
increment detection rate;

record selected detector dy;
else
end

calculate DRL system detection metrics (F1, Accuracy, AUC, etc) for all
test data.

en

Algorithm 1 shows the DRL-based pipeline for part 2 in
DRL-HMD as depicted in Figure 2. State S consists of one
set of experience replay data pre-processed as an output of
the model pool and embedded images for training and testing
the DRL agent. It contains each 2D image generated from
each row of four HPCs data, the predictions (correct/incorrect
predictions) from the DNN detectors, and each detector’s
detection metrics (F1, AUC). The state space (S) corresponds
to the three ResNet-based detectors regarding their experience
replay data. Action Space A is a set of three detectors available
to the DRL agent. Each action corresponds to one of the three
pre-trained ResNet-based malware detectors in the model pool.
During the operation of [oMT, the number of action spaces can
grow as many as per design according to the complexity of the
IoMT environment. Various actions for each piece of data will
result in different consequences for getting a reward or not, and
how many rewards the agent can receive. After being trained,
the DRL agent is inclined to select the detector d; that receives
the highest rewards among the action space during run-time.

Reward Policy 7 is a pre-defined rule that maps s; it at,
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where s, is a state from experience replay data, a; is the best
action from the three detectors receiving the maximum reward
according to the reward policy. For highly effective detection
performance, we define the reward policy as F'1 x AUC, to
ensure that the DRL agent takes action on the most inclusive
performing detector with the highest detection rate at each
time step. The reward policy based on F'1 * AUC leads the
agent selecting the detector with the highest F-measure and
AUC among all correct-predicted models at time step t. In
return, the agent receives the next state s;y; and the reward
r¢. The process continues until it reaches the terminal state.
In our environment, we use a one-step update that each time
step receives one piece of experience replay data rather than
a batch of multiple data. We consider each piece of the data
independent and the DRL agent obtains a reward that only
directly affects the value of the current state-action pair. The
value of other state action pairs is affected indirectly through
the update of the rewards [29].

1) Experience Replay Data: To simulate the interaction
between the DRL agent and environment, DRL-HMD uses an

algorithm defined to collect all possible outcomes for different
malware detectors as the experience replay data. The presented
pipeline reads each state, goes through each classifier for each
state, and records the model detection performance (F1, AUC).
Then, we collect all the experience replay datasets from stream
4 for both known-test data (train RL) and zero-day data (test
RL). As mentioned earlier, we consider three dataset partitions
including train, known-test, and zero-day test. The training
dataset is used to train and validate the DNN detectors. The
known-test dataset is a dataset that is set aside during the initial
dataset split and is used to train the DRL agent. In this setting,
we train the DRL agent such that each branch of the DNN
detector has not seen the data before so that the DRL agent
can learn from the new dataset. Once the DRL agent is well-
trained, the zero-day test data is used to examine the RL agent
in an unseen DRL environment. This is because the zero-day
test dataset contains new malware types and new benign data,
and both malware and benign data are never seen by either the
DNN detectors or the DRL agent.

E. Online Inference

We evaluated DRL-HMD on 1) the sum of rewards, and 2)
the RL system’s malware detection rate and its benchmark with
all ML and DNN models. Figure 2 (right bottom) further shows
a case study for the inference and evaluation process. As seen,
first each row of the four zero-day test HPCs is embedded
into a 2D image, then it runs through the three DNN-based
detectors in different branches to perform predictions. Among
all three models, any model which predicts the sampled HPCs
correctly is eligible to receive a reward from the environment.
If all DNN models predict wrongly, the system assigns the
detector with the highest F'1x AUC' value with a small portion
of a full reward to guide the DRL agent that if all detectors
fail, the detector with the highest overall F'1 x AUC rate is
the action to take. We assigned a 0.1 reward, which is much
lower than the full reward of 1 when the prediction is correct.
In many situations, multiple DNN models perform a correct



prediction in which the DRL system grants the DNN model
with the highest F'1 x AUC with receiving one reward, while
other models receive zero rewards. The selected detector is
then recorded one by one for all test data until the adaptive
branching selection through the RL system is complete. Lastly,
to evaluate the effectiveness of the DRL system, we use the
recorded selection of malware detector at each time step to
reproduce the defending process to obtain the detection result.
We first load the DNN model selected by the DRL system at
each time step and feed with the same row of four HPCs data
to the model to run prediction. We record each prediction for
all test data and calculate the DRL system’s detection metrics.

III. EXPERIMENTAL RESULTS AND EVALUATION

This section presents the experimental results and evalua-
tion of the proposed intelligent malware detection method. We
use F-Measure (F1-score) and Area Under the Curve (AUC)
metrics to evaluate the performance of the models. F-Measure
in ML is interpreted as a weighted average of the precision and
recall. F-measure is a more comprehensive evaluation metric
over accuracy (percentage of correctly classified samples) since
it takes both the precision and the recall into consideration.
In addition, AUC is another important evaluation metric for
checking any ML model’s performance at various threshold
settings that demonstrates how effectively a classification
model can differentiate between various classes.
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1) All Models’ Evaluation: Figure 4 shows the F-Measure
results of DNN and various classical ML classifiers (used for
HMD with 4 HPC features) for both known and unknown
malware detection. As observed, the performance of all models
drops when used for recognizing zero-day malware with a few
algorithms with relatively lower drops. For example, DNN-
based ResNet18 drops only 1%, Random Forest and Decision
Tree drop 8%, and BaggedDT drops 5%. Other weaker ML
models such as SGD, Logistic Regression, and Ridge Classifier
drop significantly by more than 30% when examined by the
unknown (zero-day) test data such that the trained machine
learning classifiers have never seen the malware variants. This
significant performance reduction highlights the challenge of
detecting unknown malware in IoMT devices, and calls for an
adaptive and generalized zero-day malware detection method
during run-time to combat such growing cybersecurity threats.
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To accurately detect malware, the defending model needs
to have a lower false positive rate (FPR) which wrongly
identifies benign applications as malware. Our study shows that
a stronger detector tends to have a lower FPR, while a weaker
detector shows higher FPR to wrongfully identify benign as
malware. As shown in Figure 5, our proposed detector DNN-
based ResNetl8 can achieve 2% FPR in known malware
detection task, however, its FPR only increases 1% when
detecting unknown zero-day malware. The Random Forest-
based detector has 14% FPR in known tests but it increases
to 30% FPR when detecting zero-day malware. The weaker
ML models like SGD, Logistic Regression, Ridge Classifier,
and SVM have a high FPR even in known tests with 24%,
24%, 24%, and 28% respectively, and when used for detecting
unknown zero-day malware, their FPR increases significantly
at 91%, 80%, 78%, and 54%. It can be concluded that to
detect malware accurately, the ability to differentiate complex
malware and new variants is an important factor to measure
the high performance and robustness of the detector.

2) DRL-HMD Evaluation: Table I reports the performance
results of the proposed DRL-HMD benchmarked with ML
and DNN-based malware detectors. We trained the ML-based
detectors on stream 1 data, train three different DNN models on
stream 1, stream 2, and stream 3 data respectively, and train
the deep reinforcement learning-based A2C agent on stream
4 known test data. All of the models are tested on stream
4 unseen zero-day test dataset. Stream 4 data represents a
new [oMT data stream newly generated from the biomedical
computing device that is used to represent challenging zero-
day data characteristics.

As the results indicate, our proposed DRL-HMD method
outperforms a single best model of DNN detectors and tradi-
tional ML detector such as Random Forest and Decision Tree.
DRL-HMD is the strongest classifier among all tested models
and achieves Fl-score and AUC of 98.6% and 99.35% on the
unknown dataset, respectively, outperforming the regular best
DNN-model by 5%, and RF classifier by 24% in F-measure.
The proposed DRL-HMD method also offers only 0.01% false
positive rate and 1% false negative rate for zero-day malware
detection on randomly partitioned new stream data, which
contains more challenging unknown malware variants. The
proposed method enhances the system performance by 5% in
F-measure as compared to any single best DNN model despite
using a small number of hardware events that are captured at
run-time by existing hardware performance counter registers.

In Figure 6 we illustrate the training speed in episode
rewards (left) and the sum of rewards (right) for training
the A2C agent used in DRL-HMD for the design criteria



TABLE I: Performance results of different ML-based, DNN-based
detectors, and DRL-HMD for zero-day malware detection

[ Model | ACC [ F1 [ AUC | FPR | FNR |
DRL-HMD (This work) 0.99 0.99 0.99 0.0001 0.01
ResNetl 0.94 0.90 0.91 0.09 0.05
ResNet2 0.92 0.87 0.89 0.07 0.08
ResNet3 0.96 0.94 0.95 0.07 0.02
RandomForest 0.92 0.75 0.78 0.30 0.03
DecisionTree 0.88 0.66 0.69 0.30 0.08
SGD 0.79 0.12 0.22 0.91 0.07
Logistic Regression 0.82 0.26 0.37 0.80 0.06
RidgeClassifier 0.80 0.26 0.33 0.78 0.09
SVM 0.78 0.41 0.46 0.54 0.15
BaggedDT 0.91 0.72 0.75 0.33 0.04
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Fig. 6: Learning speed (left) and Sum of Rewards (right) of the Deep-
RL agent in part 2 of DRL-HMD. Both analysis are based on the
design criteria of F'1x AUC

(also called reward policy) of F'1 x AUC. As seen, the agent
gradually learns and reaches stable rewards after episode 7.
As discussed before, reward policy guides the agent to learn
to make decisions on its action at each step to achieve the
goal of the most accumulated rewards in all training episodes.
When the agent learns from its living environment (data
and reward policy), its episode rewards tend to be stabilized
and converged. The accumulated rewards grow steadily along
the training process. Since the agent has learned from the
training experience replay data, when it is time for online
inference, the agent can apply the learned knowledge toward
the reward policy to select the most optimized DNN model for
the zero-day test malware detection to achieve the same goal
of getting the most accumulated rewards along all test data.
Since the reward policy reflects the most accurate detection
performance, the proposed deep reinforcement learning-guided
decision maker can increase the malware detection rate even
on zero-day test data.

Furthermore, Table II shows the latency overhead of using
the proposed deep reinforcement learning agent for online
inference and adaptive malware detection. Since DRL-HMD
selects the most optimal model from the model pool during
run-time as the defender, the overall latency is around 0.117
seconds which includes the overhead for the DNN ResNet18
model to perform inference plus the overhead for the Deep-RL
agent to complete the inference process. Moreover, adding the
Deep-RL agent only adds an overhead of a total size of 49 KB
(22 KB for the Actor, 27 KB for the Critic) on top of each
ML-based detection model.

IV. CONCLUSION
In this work, we propose DRL-HMD, a hybrid intelligent
image-based framework based on Deep Learning and Deep
Reinforcement Learning (DRL) for securing IoMT devices
against zero-day malware at the hardware level. The proposed

TABLE II: Overhead analysis

[ Phase ]| Tasks [ Latency (s) | Total Latency (s) |
I processing ERD* 0.009
Training Train DRL agent 0.218 0.227
processing ERD* 0.009
Inference DRL agent’s online inference 0.108 0.117

*ERD refers to Experience Replay Data, which is the processed
data used in reinforcement learning environment for training and
inference of Deep-RL agent.

Al-enabled detection method dynamically chooses the best
DNN defender from a pool of highly effective models con-
tinuously trained on all stream data according to the current
malware and benign data captured from IoMT devices and
each model’s performance as a response to the current data’s
characteristics. DRL-HMD first converts tabular hardware-
based data (HPC events) into small-size images and then
leverages a transfer learning technique to retrain and enhance
the Deep Neural Network (DNN) based model’s performance
for unknown malware detection. Next, it trains and deploys
a DRL agent to adaptively select the best DNN model for
detecting unknown malware with high detection rate. The
results indicate that our novel framework obtains a superior
detection performance (99% in both Fl-score and AUC) for
recognizing unknown malware using a limited number of
hardware events facilitating an accurate and adaptive zero-day
malware detection at the processor hardware level.
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