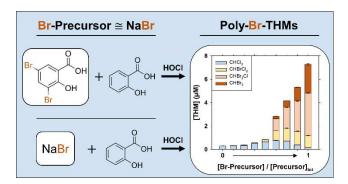
2	Impacts on trihalomethane formation					
3	Andrew W. Psoras ^{a†} , Seth W. McCoy b‡ , Keith P. Reber ^b ,					
4	Daniel L. McCurry ^c , and John D. Sivey*abd					
5						
6 7	^a Environmental Science & Studies Program, Towson University, Towson, Maryland, 21252, United States					
8	^b Department of Chemistry, Towson University, Towson, Maryland, 21252, United States					
9 10	^c Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States					
11 12	^d Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States					
13 14 15	[†] Present address: U.S. Geological Survey, Baltimore, Maryland 21228, United States					
16 17 18 19	[‡] Present address: Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, 89557, United States					
20	* Corresponding author: E-mail: jsivey@towson.edu; Phone: 1-410-704-6087					
21	Electronic supporting information (SI) available.					
22 23	Keywords: Water disinfection, halogenation, chlorine, bromine, aromatic compounds, reaction mechanisms, halogen substitution					

Ipso substitution of aromatic bromine in chlorinated waters:


ABSTRACT

Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C–Br bonds into C–Cl bonds was confirmed for several parabens and salicylates. Co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br⁻) generated polybrominated THMs, implicating ipso substitution. THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. THM molar yield from brominated precursors was enhanced by up to a factor of 20 relative to nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine-enrichment among DBPs in chlorinated waters.

SYNOPSIS

- In chlorinated water, ipso substitution is an underappreciated reaction pathway capable of influencing disinfection byproduct formation and speciation, including formation of trihalomethanes from parabens and salicylates.

TOC Art:

1. INTRODUCTION

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Activated aromatic mojeties react readily with electrophilic halogens in solutions of free chlorine and free bromine. 1-3 The resulting halogenated aromatic compounds are estimated to contribute two-thirds of the total organic halogen concentration in chlorinated waters and are potentially more significant drivers of developmental toxicity than halogenated aliphatic compounds.⁴ Hydroxy-substituted aromatic compounds are known precursors of the regulated disinfection byproduct (DBP) class trihalomethanes (THMs).5 Compounds studied for their THM formation potential span a range of humic and fulvic substances, 6,7 aliphatic compounds, and substituted alkyl and chlorophenols. THM formation from hydroxybenzenes is strongly influenced by the identity and position of substituents relative to the hydroxyl group, ostensibly determining the reactivity of ketone-containing ring fragments believed to be the primary precursors of THMs. (Scheme S1).9,10 Chlorinated phenols have been evaluated as THM precursors relative to their nonhalogenated analogues; trichloromethane molar yields varied substantially depending on the number and position of chlorine substituents on the phenolic ring.¹⁰ Prior studies of aromatic THM precursors have not, however, considered the impact of bromine substitution on THM yields and speciation. The greater reactivity of free bromine relative to free chlorine promotes bromination of aromatic compounds, even in the presence of excess free chlorine. 11 The resulting brominated DBPs are typically more genotoxic than their chlorinated counterparts.¹² Nevertheless, brominated aromatic compounds may be subject to further reactions, including ipso substitution, which involves the exchange of Br⁺ with Cl⁺ (Scheme 1).^{11,13-15} Despite its presence in the literature dating to 1903, ipso substitution appears scarcely with respect to DBP formation. 15 In 1988, the formation of dibrominated anilines and phenols was observed from the chlorination of para-bromoaniline and para-bromophenol, respectively. 14 A more recent study assessed substitutions of chloro-, bromo-, and iodo-substituted benzene, anisoles, and phenols in solutions of free chlorine and free bromine. 13 HOBr potentially released during ipso substitution could be rapidly reincorporated into DBP precursors. 16-18 Accordingly, contributions of HOBr liberated from brominated

aromatic compounds by ipso substitution may provide a mechanism by which the bromine-enrichment of DBPs can occur.

Scheme 1. Transformation of 3-Bromoethylparaben by **(1)** Electrophilic Aromatic Substitution, Yielding 3-Bromo-5-chloroethylparaben or **(2)** Ipso Substitution, Yielding 3-Chloroethylparaben.

$$\begin{array}{c} & & & \\ & &$$

The purpose of this study was to elucidate the influence of ipso substitution on the formation of THMs from two classes of aromatic micropollutants: parabens and salicylates. Parabens (*para*-hydroxybenzoate esters) have been widely employed as antimicrobial preservatives in pharmaceutical and personal care products (PPCPs). Parabens remain ubiquitous contaminants that have been detected in surface water, ^{19,20} wastewater, ^{21,24} and sediment. ²⁵ Increasing attention has been paid to the chlorination and bromination of methyl paraben^{26,27} and its halogenated products, ²⁸ which have been detected in rivers and swimming pools. ^{20,29} The potential for parabens to generate THMs upon reaction with free chlorine and free bromine has not been previously investigated. Salicylates were selected for study due to their structural similarity to parabens, previous detections in surface waters and wastewaters, well-characterized reactivity toward free chlorine and free bromine, and demonstrated ability to generate THMs. ^{16,30,32} Herein, eight ethylparabens and salicylates (**Table 1**) were reacted with solutions of free chlorine to (1) determine the THM yield of parabens and salicylates in the presence of free chlorine, (2) examine the effects of precursor halogenation on THM formation and distribution, (3) evaluate THM distribution from the ipso substitution of aromatic Br in Br-precursors relative to Br⁻ from NaBr, and (4) assess the influence of pH and chloride on THM formation in binary precursor systems.

Table 1. Structures, Names, and Abbreviations of Ethylparabens and Salicylic Acids Examined Herein

но	HO	Br O	CI O O
ethylparaben (EP)	3-chloroethylparaben (CEP)	3-bromoethylparaben (BEP)	3,5-dichloroethylparaben (DCEP)
Br O O O O O O O O O O O O O O O O O O O	3,5-dibromoethylparaben (DBEP)	oh oh salicylic acid (SA)	Br OH OH 3,5-dibromosalicylic acid (DBSA)

2. METHODS

A comprehensive list of reagents, standards, and their purities can be found in **Table S1** of the Supporting Information (**SI**). Most reagents were commercially available at high purities (>99%); 3-bromo-5-chloroethylparaben (BCEP) was synthesized from 3-chloroethylparaben (CEP) using molecular bromine (**Figure S1**). All aqueous solutions and standards were prepared in 18 M Ω ·cm ultrahigh-purity (UHP) water. Solutions of free chlorine were prepared daily from laboratory-grade sodium hypochlorite (6 wt%), standardized by UV-vis spectrophotometry.³³ Glassware used in halogenation experiments were pre-rinsed with NaOCl (~0.5 M) to ensure reaction vessels were chlorine-demand free.

2.1 Time course reactions

Time course reactions were performed with selected brominated ethylparabens to elucidate possible formation of ipso substitution products (i.e., replacement of Br with Cl). All halogenation reactions were performed in 40 mL amber glass vials containing a phosphate buffer (20 mM, pH 6.0 - 8.0). Free chlorine was added as NaOCl. To promote pseudo-first-order conditions, NaOCl was added such that the initial concentration of NaOCl was at least in 10-fold molar excess relative to the initial concentration of the parent paraben. Parent paraben ($20 \mu M$) was added as a methanolic spike such that the final methanolic content of the reactor was <0.5 vol%. Reactors were capped and shaken by hand for at least 10 s and maintained at

 $20.0\pm0.1~^{\circ}\text{C}$ in a circulating water bath. At predetermined time intervals designed to span approximately 2 reaction half-lives, 1.0 mL aliquots (minimum of 6 per reactor) were withdrawn and transferred to 2 mL HPLC sample vials pre-amended with at least a 40% molar excess of either sodium thiosulfate or 1,3,5-trimethoxybenzene (TMB) (i.e., [quencher] > 1.4[FAC]_{\circ}). HPLC sample vials were capped and shaken for 10 s. Volumes of added quencher were typically <30 μ L. Quenched samples were refrigerated at 4 °C and analyzed within 1 week via either an Agilent 1200 or 1260 series high-performance liquid chromatograph with a diode array detector (HPLC-DAD, see additional HPLC method details in the SI). EP transformation products were identified via retention-time matching with solutions of reference materials.

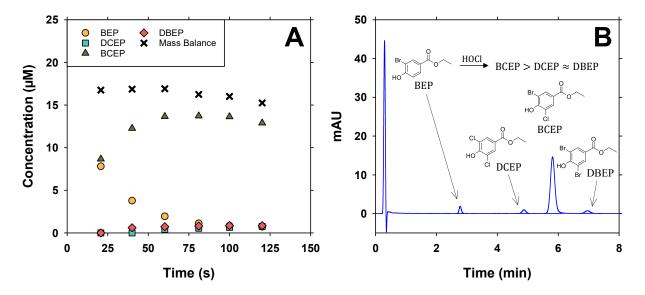
2.2 Haloform reactions

Haloform reactions were performed in volatile organic analysis (VOA) vials with PTFE-lined septa. Nominal concentrations of NaOCl, NaBr, and precursor organic compounds were verified gravimetrically for each reactor. For reactions controlling organic bromine, aliquots of methanolic stock solutions for each precursor organic compound ([precursor] $_{0}$ = 20 μ M) were added to a 40 mL vial followed by 40 mL of phosphate buffer solution (20 mM, pH = 8.00, [NaCl] = 1.0 mM, [NaNO $_{3}$] = 9.0 mM). For selected experiments, an aqueous stock of NaBr was added as the Br source instead of a brominated organic compound. The final methanolic content of each reactor was <1 vol%. At t = 0, NaOCl was spiked to reach 500 μ M, and the vial was capped and inverted several times. A 20 mL amber glass vial was then filled to headspace free with reaction solution and kept at 20.0±0.1 °C in a recirculating water bath for 24 h.

For varied NaCl reactions, [NaCl] + [NaNO₃] = 10 mM; NaCl and NaOCl were added prior to the parent compound to allow free chlorine species to equilibrate and to oxidize any Br⁻ present (e.g., as an impurity in NaCl).³³ To assess for trace Br⁻ as a contaminant of NaCl, 200 μ L aliquots of reaction solution were quenched with 1,3,5-trimethoxybenzene (TMB) and analyzed for 1-bromo-2,4,6-trimethoxybenzene (Br-TMB) via HPLC (see **SI**).^{33,34} In reaction solutions with the highest examined [NaCl] of 10 mM, Br⁻ was below the detection limit (0.03 μ M as Br-TMB).

2.3 Sample extraction, instrumental analysis, and quality assurance

After 24 h of incubation, four aliquots of reaction solution were transferred from each reactor to 8 mL vials pre-amended with ascorbic acid in 5-fold molar excess of [NaOCl]₀ and 1 mL MTBE containing 1,2-dibromopropane as an internal standard. Liquid-liquid extractions were performed by vortex mixing for 30 s; extraction efficiencies were within $100 \pm 5\%$ (n = 8). Extracted samples were refrigerated at 5 °C to promote phase separation, transferred via a glass, gas-tight syringe into 2 mL autosampler vials containing 150μ L glass inserts, stored at -20 °C, and analyzed within one week.


Extracts were analyzed using gas chromatography-mass spectrometry (GC-MS) with an Agilent 8890/5977 GC-MS in selected ion monitoring mode. Complete parameters for quantification of trihalomethanes by GC-MS are in the SI (**Table S2**). Blank samples were analyzed at least every 10 samples to verify the absence of carryover. Fresh aliquots of calibration standards were prepared for each sample batch, and calibration checks at the midpoint of the calibration range were analyzed at the middle and end of each analytical sequence.

3. RESULTS AND DISCUSSION

3.1 Detection of ipso substitution products

Reference materials were used to verify the formation of ipso substituted products during reactions of brominated ethylparabens with NaOCl. For example, chlorination of 3-bromoethylparaben (BEP) yielded 3,5-dichloroethylparaben (DCEP) and 3,5-dibromoethylparaben (DBEP) as minor products within 2 min (Figure 1). DCEP is the ipso substitution product. DBEP ostensibly results from the reaction of BEP with HOBr liberated via ipso substitution of another BEP molecule. Formation of DBEP from the chlorination of BEP demonstrates Br-enrichment of DBPs linked to ipso substitution. Ipso substitution products were also observed upon chlorination of BCEP (yielding DCEP, Figure S2) and DBEP (yielding BCEP, Figure

S3). At 50 mM ultrahigh-purity NaCl (99.99%), BEP formed up to 0.86 μM DBEP – more than could have been attributed to potential trace Br⁻ (<0.15 μM) originating from NaCl.

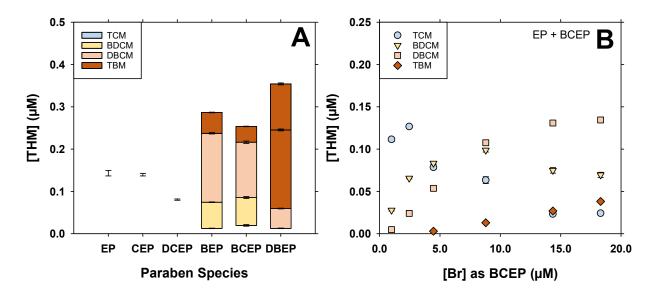
Figure 1. A) Example time course reaction of 20 μ M BEP with 200 μ M NaOCl; additional conditions: [NaNO₃] = 10 mM, [Na₃PO₄] = 20 mM, [NaCl] = 50 mM, pH = 6.99, and T = 20.0 °C. **B)** Sample HPLC-DAD chromatogram from the time course shown in frame A demonstrating formation of DCEP and DBEP from chlorination of BEP.

3.2 THM formation from ethylparabens

THM yield and speciation from the 24 h chlorination of each EP variant are shown in **Figure 2A**. THM molar yields (mol THM/mol EP variant) from ethylparabens ranged from 0.4% to 1.8% and were generally lower than those observed for other substituted phenols. EP, CEP, and DCEP produced only trichloromethane (TCM). THM yields from DCEP were 40% lower than yields from EP and CEP. The major pathway to TCM from EP may not require (or may be impeded by) chlorination of both carbons *ortho* to the hydroxyl group, which contrasts with previous observations of similar THM yields from phenol, 2-chlorophenol, and 2,4,6-dichlorophenol. A more modest decline in total THMs (TTHMs) was observed comparing BCEP to BEP, though DBEP produced overall more THMs than BEP (**Figure 2A**).

3.3 Formation of brominated THMs

Brominated THMs were detected whenever a brominated paraben served as the THM precursor


(**Figure 2A**). TTHMs from DBEP were approximately 24% greater than from BEP, indicating the bromination of both carbons *ortho* to the hydroxyl group does not impede THM formation in the same manner as when the *ortho* carbons are chlorinated. Polybrominated THM yields increased in the order BCEP < BEP < DBEP. Estimated yields of HOBr from ipso substitution of brominated ethylparabens are approximately $0.5 - 1.0 \mu M$ (**Figures 1, S2, S3**). Notably, [Br⁻] as low as $0.6 \mu M$ have been shown previously to impact THM speciation in chlorinated systems,³⁵

To investigate the influence of total added bromine, BCEP was varied as the source of bromine, with EP varied to maintain a uniform total added paraben concentration, [P]_{tot} = 20 μM (**Figure 2B**). As added bromine was increased, THM distribution shifted towards polybrominated THMs. Tribromomethane (TBM) was below quantification limits at [BCEP] < 5 μM, but dibromochloromethane (DBCM) was quantifiable at [BCEP] as low as 1 μM. To the best of our knowledge, the formation of polybrominated THMs via chlorination of a monobrominated aromatic compound (in the absence of added inorganic bromide) has not been previously reported. Ipso substitution and subsequent re-incorporation of Br⁺ into THM precursors may explain our results (**Scheme 1**).¹³ Evidence of ipso substitution has been observed in reactions of halogenated aromatics with free chlorine, yielding chlorinated compounds from iodinated precursors, and polybrominated and mixed-halogenated products from brominated precursors.^{13,14} Indeed, even 2,4,6-tribromophenol was detected after reactions of NaOCl with 2-bromophenol.¹³

3.4 THM relative yields with precursor mixtures

Experiments were conducted to determine how bromine source (organic bromine versus NaBr) influences THM formation. The sources of organic bromine included DBEP and 3,5-dibromosalicylate (DBSA). For the organic bromine systems, [dibrominated precursor] was varied while either [EP] or [SA] was adjusted to maintain equal organic carbon loadings (e.g., [EP]_{tot} = [DBEP]_o + [EP]_o = 20 μM, **Figure** 3). The maximum achievable range of total added bromine was 0 (100% EP or SA) to approximately 40 μM total bromine (100% DBEP or DBSA). Parallel experiments were conducted to achieve concentrations of added inorganic bromide (as NaBr) ranging from 0 to 40 μM, with [organic precursor]_{tot} fixed at 20 μM

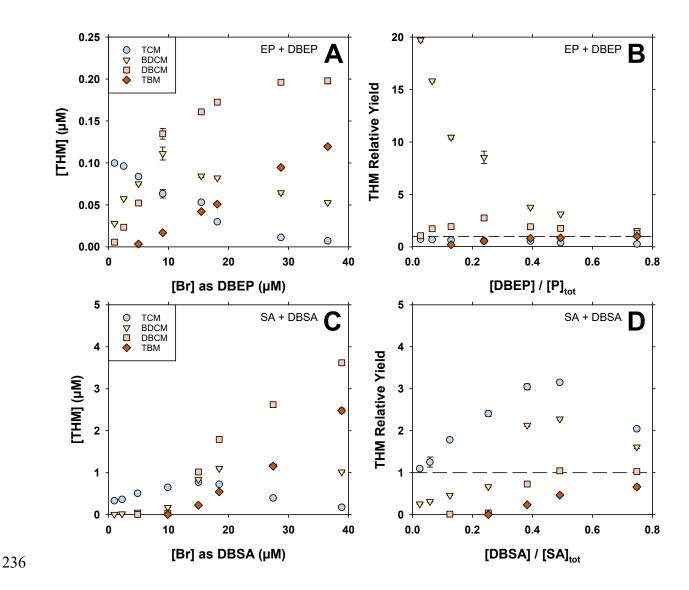
(**Figure S4**). All contributions to [organic precursor]_{tot} in varied [Br⁻] experiments were from either EP or SA only.

Figure 2. A) 24 h yields of THMs from each EP species (20 μ M initial paraben concentration). **B)** 24 h yields of THMs from EP + BCEP ([EP]_o + [BCEP]_o = 20 μ M) as a function of added Br as BCEP ([Br]_o = [BCEP]_o, accomplished by varying [BCEP]_o / [EP]_o. [NaOCl]_o = 500 μ M, [NaCl] = 1 mM, [NaNO₃] = 9 mM, pH = 8.18±0.02. Error estimates represent 95% confidence intervals and are smaller than symbols if not shown.

From 100% EP to 100% DBEP, [TTHMs] increased by a factor of 2.8 (**Figure 3A**). Greater concentrations of polybrominated THMs were formed at higher proportions of DBEP. The relative proportion of TCM to TTHMs decreased from 100% at 0 μM Br as DBEP to <2% at 40 μM Br as DBEP (**Figure 3A**). TBM increased linearly with increasing DBEP. Molar yields of each THM were determined from reactions with EP, SA, DBEP, and DBSA alone (i.e., reacted individually with NaOCl) and used to calculate THM relative yield in binary precursor systems using **Eq. 1**.

Relative yield =
$$\frac{[THM]_{binary \, system}}{\sum([precursor] \times THM \, yield_{precursor \, only})}$$
 [1]

Relative yields of each THM for 100% EP ([DBEP]/[P]_{tot} = 0) and 100% DBEP ([DBEP]/[P]_{tot} = 1) were, by definition, equal to 1. Applications of **Eq. 1** assumed THM yields from EP and DBEP were constant; relative yields different than 1 indicated interactions between precursors in mixed systems. Relative yields of TCM decreased from 0.70 to 0.27 as [DBEP]/[P]_{tot} increased from 0.03 to 0.75, indicating the TCM


yields decrease with added organic bromine (**Figure 3B**). Notably, at [DBEP]/[P]_{tot} of 0.03, [BDCM] was nearly 20 times higher than predicted by data from single-precursor systems. DBCM relative yield reached a maximum of 2.76 at [DBEP]/[P]_{tot} of 0.25. Both maxima in BDCM and DBCM relative yields occurred while EP was the dominant paraben in the mixture, suggesting a synergistic effect in the binary precursor systems. THM yields in experiments with added NaBr (**Figure S4A**) were similar to those observed in reactions with only DBEP as the source of bromine (**Figure 3A**), suggesting that DBEP and NaBr as bromine sources have similar effects on THM profiles.

3.5 Parallel experiments with salicylates

For the SA + DBSA system, [TTHMs] were <1 μ M from 0 to 20 μ M added bromine but increased to a maximum of approximately 8 μ M [TTHMs] at 40 μ M added bromine (**Figure 3C**). TTHM molar yield from the chlorination of DBSA was over 18 times higher than molar yields from EP or DBEP. With no added bromine, 20 μ M SA produced comparable [TTHMs] (molar yield of 1.5%) to EP (0.9%). DBCM generated from chlorination of SA steadily increased with added bromine irrespective of source (DBSA or NaBr) (**Figure 3C, S5B**). TBM increased linearly with added [Br] but was below limits of quantification at [Br] < 10 μ M. In contrast, TBM was quantifiable at [Br] \geq 5 μ M from NaBr or DBEP when parabens served as precursors.

In contrast with the paraben system, [TCM] yield was enhanced by increased proportions of DBSA relative to total SA (**Figure 3D**). Added bromine (as DBSA) ostensibly enhanced THM yield overall, including TCM. Enhanced THM formation as a function of added Br⁻ has been observed in previous studies;³⁶ organic bromine subject to ipso substitution could have presented similar effects.

Of the brominated THMs, only BDCM showed relative yields substantially greater than 1.0 in the SA system, reaching a maximum of 2.2. The maximum BDCM relative yield of approximately 2.2 at 20 μ M added [Br] from SA+DBSA was in stark contrast with the relative yield of 20 (2000%) from EP+DBEP at 1 μ M [Br]. Differences in precursor structure are likely the driver of the disparity between THM yield and speciation from parabens and salicylates. THMs have been postulated to form primarily from aromatic

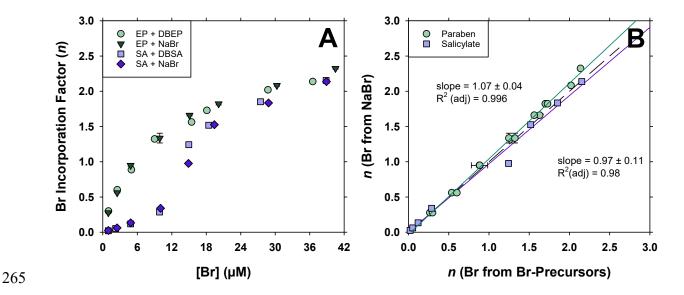
Figure 3. A) [THM] distribution from parabens as a function of added [Br] as DBEP from 1 to 40 μM. **B)** [THM] yields relative to those calculated from experimental THM molar yields of EP and DBEP (when reacted individually with NaOCl) as a function of the DBEP fraction of total parabens. **C)** [THM] distribution from salicylates as a function of added [Br] as DBSA from 1 to 40 μM. **D)** Measured [THM] relative to calculated [THM] from SA and DBSA (when reacted individually with NaOCl) as a function of DBSA fraction of total salicylates. Dashed lines represent relative yield of 1 for reference. **A)**, **B)** pH = 8.18 ± 0.02 , [P]_{tot} = [EP] + [DBEP] **C)**, **D)** pH = 8.15 ± 0.03 , [SA]_{tot} = [SA] + [DBSA]. All frames: [P]_{tot} = [SA]_{tot} = 20 μM, [NaOCl]_o = 500 μM, [NaCl] = 1 mM, [NaNO₃] = 9 mM, 24 h chlorine contact time. Error estimates represent 95% confidence intervals and are smaller than symbols if not shown.

carbons *ortho* to a hydroxyl group.³⁷⁻⁴⁰ For parabens, both carbons *ortho* to the hydroxyl group can be readily halogenated. For SA, one such carbon is substituted with a carboxylate group. Decarboxylation reactions in chlorinated systems have been reported for some hydroxybenzenes but not for salicylic acid.³⁹

Accordingly, the degree of bromine substitution observed in THMs from parabens may not be possible from SA at added bromine $<15 \mu M$.

3.6 Bromine incorporation

To further assess Br-THM speciation, bromine incorporation factor (n) was calculated using Eq. 2.36,41


$$n = \frac{[BDCM] + 2[DBCM] + 3[TBM]}{[TTHM]}$$
 [2]

Bromine incorporation represents the relative concentration of Br-THMs normalized to TTHMs and can possess a maximum value of 3, representing 100% TBM. Bromine incorporation values were calculated for each data set independently (EP+DBEP, EP+NaBr, SA+DBSA, SA+NaBr). THM bromine incorporation from EP increased with increasing [Br], with a maximum value of 2.3 occurring at the highest added [Br] (Figure 4A). In the salicylate system, bromine incorporation also increased with added bromine to a maximum value of 2.15. THM bromine incorporation from parabens generally exceeded that of salicylates throughout the range tested, though the difference was greatest at low [Br] (Figure 4A). While both precursors reached similar bromine incorporation maxima (representing primarily TBM), the maximum [TTHMs] from salicylates exceeded parabens by a factor of approximately 20.

Figure 4B depicts a bromine incorporation cross-correlation between reactions amended with NaBr as the bromine source and reactions amended with organic bromine (Br-Precursors) as the bromine source. For both ethylparabens and salicylates as precursors, THM bromine incorporation from NaBr and from organic bromine were strongly correlated (adjusted $R^2 \ge 0.98$, Figure 4B). These results imply that THM bromine incorporation depended on the quantity of bromine added, not on the bromine source or on the degree of precursor bromination. The slopes of both cross-correlations were near unity, suggesting that bromine liberation by free chlorine is efficient for brominated parabens and salicylates.

3.7 THM molar yield and bromine recovery

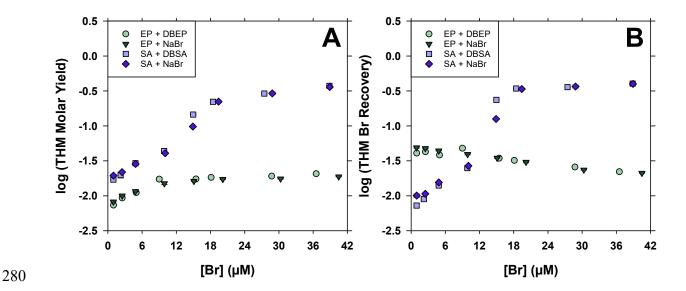

TTHM molar yields were calculated as moles of THMs produced per mole of organic precursor (**Figure 5A**). At the highest level of added bromine as DBSA or NaBr, the maximum TTHM molar yield

Figure 4. A) THM bromine incorporation factor (*n*, Eq. 2) as a function of added Br as organic Br (DBEP or DBSA) or inorganic Br⁻. **B)** Cross-correlation of THM *n* values: Br added from NaBr as a function of Br added from organic Br-precursors. Paraben data include DBEP and BCEP data; salicylate data were from DBSA only. Error estimates represent 95% confidence intervals and are smaller than symbols if not shown.

of the salicylate system was over 10-times greater than that of the paraben system (37.5% and. 2.1%, respectively). The TTHM molar yield from both precursors increased with added bromine (as organic bromine or NaBr), though the total increase was greater from salicylate (22-fold) than from parabens (2.8-fold). For salicylates, the 20-fold increase in TTHM molar yield when comparing SA (1.7%) to DBSA (37.5%) is noteworthy and exceeds previously reported increases in TCM molar yield resulting from the halogenation of phenol (2% TCM molar yield) relative to 2-chlorophenol (10%) and 3-chlorophenol (32%). Bromide-enhanced yields of THM have been attributed to superior nucleofugality (leaving group ability) of brominated relative to chlorinated methyl carbanions. To our knowledge, such enhancements in THM molar yield resulting from the pre-bromination of a precursor have not previously been reported.

Bromine recovery as THMs was calculated as the quotient of total Br-THMs ([BDCM] + 2[DBCM] + 3[TBM]) divided by the total concentration of Br added to the system. Bromine recovery as Br-THMs

Figure 5. A) Log of THM molar yield (mol THMs per mol precursor) and **B)** log of bromine recovery as THMs of ethylparaben (EP) and salicylate (SA) as a function of added bromine either as NaBr, DBEP, or DBSA (see legend). Bromine recovery was the total [Br] present as THMs calculated as [BDCM] + 2[DBCM] + 3[TBM] relative to added [Br] either as a precursor or NaBr. Error estimates represent 95% confidence intervals and are smaller than symbols if not shown.

[Br] to total precursor concentration greater than 0.5. Over the range of added [Br], bromine recovery as THMs from paraben precursors declined by a factor of 2 while bromine recovery as THMs increased by a factor of nearly 50 (**Figure 5B**). Precursors that readily undergo ring cleavage such as parabens may present less evidence of ipso substitution if aromaticity is required for substitution to occur. ⁴² However, at added [Br] less than 10 μ M, bromine recovery as THMs from parabens exceeded that of salicylates. The average bromine recovery from paraben precursors was 4.4% from 1 – 10 μ M added [Br], while salicylate precursors had an average bromine recovery of 1.5% over the same range.

Regioselectivity may influence Br-THM yields from salicylates. At pH 8, bromination of salicylic acid para to the hydroxyl group proceeds ~3 times faster than bromination ortho to the hydroxyl group. ¹⁶ If THM formation occurs primarily from positions ortho to the hydroxyl substituent, regioselectivity of halogenation favoring the *para* position may limit bromine recovery from salicylate as THMs. The inflection points in bromine recovery (**Figure 5B**) and THM bromine incorporation (**Figure 4A**) may have represented a critical concentration of added Br where the bromination rate for THM active sites in salicylic

acid became competitive with that of free chlorine.

Each level of [Br] from BCEP, DBEP, and DBSA was paired with the approximately equivalent [Br] level from EP+NaBr or SA+NaBr, and paired t-tests were performed for each metric: [THM], [TTHM], THM bromine incorporation, THM molar yield, and THM bromine recovery (**Table 2**).⁴³ With the exception of bromine incorporation for BCEP paired with EP+NaBr, all pairs of metrics were not significantly different at the 95% confidence level (**Table 2**). For BCEP, the presence of an initial chlorine atom *ortho* to the hydroxyl group may have affected bromine incorporation in THMs relative to EP+NaBr. For the remaining 23 metrics, THM yield and distribution between organic bromine from parabens or salicylates by ipso substitution and by oxidation of NaBr were not significantly different (p > 0.05).

Table 2. Associated p Values from Paired Student's t-Tests Evaluating THM Concentrations, Bromine Incorporation (*n*), Bromine Recovery (Br Rec.), and THM Molar Yield When Br Originated from Brominated Organic Precursors Compared to When Br Originated from NaBr.^a

Br Source	[TCM]	[BDCM]	[DBCM]	[TBM]	[TTHM]	n	Br Rec.	Molar Yield
ВСЕР	0.067	0.32	0.42	0.070	0.12	0.064	0.033^{b}	0.11
DBEP	0.10	0.68	0.28	0.25	0.21	0.95	0.081	0.69
DBSA	0.10	0.83	0.81	0.81	0.50	0.76	0.43	0.38

^a BCEP = 3-bromo-5-chloroethylparaben (6 data points); DBEP = 3,5-dibromoethylparaben (8 data points); DBSA = 3,5-dibromosalicylic acid (8 data points).

3.8 Effects of [Cl-] and pH

No appreciable change in THM formation from ethylparabens was observed at pH 8 from 2 to 10 mM of added NaCl (**Figure S5A**). However, [THMs] increased over the same [Cl⁻] range at pH 6 when DBEP only or DBEP+EP served as precursors (**Figures S5B, S5C**), potentially implicating Cl₂ as a reactive species capable of promoting THM formation. ^{16,35,44-46} Under these conditions, [Cl₂] is proportional to both [H⁺] and [Cl⁻]. ⁴⁷ Aromatic halogenation was not rate-limiting for THM formation from phenols. ¹⁰ Thus, increased free halogen reactivity ostensibly contributes to other, subsequent halogenation steps requisite for THM formation. THM distribution shifted from primarily brominated at pH 8 to primarily chlorinated

^b Indicates statistically significant difference (p < 0.05) between Br originating from BCEP compared to Br originating from NaBr.

at pH 6 for EP+DBEP mixtures, consistent with the participation of hydroxide as a nucleophile in ipso substitution to abstract Br⁺ (**Scheme 1**) and/or the weaker acidity of HOBr (p K_a = 8.8) relative to HOCl (p K_a = 7.5). THM bromine recovery increased linearly as a function of [Cl⁻] (**Figure S5D**). The slope for EP+DBEP was greater than twice that of DBEP alone, indicating that Br-THM formation from ipso substitution may be enhanced by larger proportions of more reactive chlorine species relative to HOCl (e.g., Cl₂), or by more reactive bromine species from liberated free bromine relative to HOBr (e.g., BrCl).⁴⁷

4. ENVIRONMENTAL SIGNIFICANCE

Our results indicate that ipso substitution can influence the transformations and fate of parabens and salicylates in chlorinated water. Our findings also demonstrate that bromination of these aromatic compounds prior to subsequent reactions with free chlorine may enhance THM molar yields by up to a factor of 20. This effect was more pronounced for salicylates than for parabens. Consequently, elevated [Br-] in source waters may result in a disproportionate increase in THMs beyond simply shifting THM speciation toward increased bromine incorporation. For the compounds examined herein, aromatic bromine proved to be comparably reactive as Br- in generating brominated THMs. Ipso substitution could conceivably impact the speciation of other DBPs beyond THMs. Bromine-enrichment of DBPs associated with ipso substitution may increase the toxicity of chlorinated drinking water and wastewater via a reaction mechanism that is generally overlooked in the environmental literature. The extent to which ipso substitution influences the formation of DBPs other than halogenated parabens, halogenated salicylates, and THMs merits future investigation. Formation of ipso substitution products was observed within 25 s at 20 °C (Figure 1A), suggesting that ipso substitution is likely to be relevant on timescales of water disinfection. Effects of temperature on such reactions merit future study. The possible role of radical intermediates in such reactions also warrants future study.

Interestingly, THM molar yield was not correlated with bromine incorporation or bromine recovery as THMs. At lower, environmentally relevant concentrations of added Br $(1 - 2 \mu M, \text{ surface waters}; 8 \mu M, \text{ desalinated seawater})$, 51 TTHM molar yield was on average 2.5 times higher from salicylates than parabens.

However, THM bromine recovery from parabens was several times higher than salicylates at the same [Br], irrespective of source. Therefore, for systems containing trace [Br], a precursor's THM molar yield may not be an adequate predictor of the overall toxicity of resulting DBPs. ⁵⁰ Compounds with lower THM molar yields but a greater propensity for bromine incorporation could contribute more significantly to TTHMs (by mass) and may also contribute disproportionately towards the resulting toxicity of disinfected waters relative to those with higher molar yields and lower bromine incorporation.

Investigations of THM formation in systems containing Br⁻ have historically challenged researchers' attempts to predict the distribution and degree of bromination in the resulting products. ^{35,36,52,53} Our work highlights the pertinence of ipso substitution with respect to these challenges and reinforce Traynham's comments to chemists in 1983: "Omission of ipso substitutions from discussions of aromatic substitution reactions is, at best, misleading about the kinds of products that might be formed."⁵⁴

ASSOCIATED CONTENT

Supporting Information. List of abbreviations, structures, reagent information, synthesis details of 3-bromo-5-chloroethylparaben, instrumental methods, and supplemental THM data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

- *Corresponding Author*
- **John D. Sivey** Department of Chemistry, Towson University, Towson, Maryland, 21252,
- 356 United States; orcid.org/0000-0002-0472-7747; Phone: (410) 704-6087; Email:
- jsivey@towson.edu.
- 358 Authors
- 359 Andrew W. Psoras, Environmental Science & Studies Program, Towson University, Towson,
- 360 Maryland, 21252, United States; orcid.org/0000-0002-1779-5079

- 361 Seth W. McCoy, Department of Chemistry, Towson University, Towson, Maryland, 21252,
- 362 United States; orcid.org/0000-0001-5716-5066
- 363 Keith P. Reber, Department of Chemistry, Towson University, Towson, Maryland, 21252, United
- 364 States; orcid.org/0000-0003-0407-9281
- Daniel L. McCurry, Department of Civil and Environmental Engineering, University of Southern
- California, Los Angeles, California 90089, United States; orcid.org/0000-0002-5599-2540
- 367 Notes
- 368 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

- The authors acknowledge funding from Towson University's Fisher College of Science and Mathematics
- 371 (to A.W.P.), the U.S. National Science Foundation (CHE-2003578 to J.D.S. and K.P.R., CHE-2003472 to
- D.L.M., CBET-1651536 to J.D.S.), and The Camille & Henry Dreyfus Foundation (TH-20-021 to J.D.S.).

373 **REFERENCES**

374

- 1. Criquet, J.; Rodriguez, E. M.; Allard, S.; Wellauer, S.; Salhi, E.; Joll, C. A.; von Gunten, U. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts electrophilic aromatic substitution and oxidation. *Water Res.* **2015**, *85*, 476-486. DOI: 10.1016/j.watres.2015.08.051
- 2. Deborde, M.; von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment kinetics and mechanisms: A critical review. *Water Res.* **2008**, *42* (1), 13-51. DOI: 10.1016/j.watres.2007.07.025
- 381 3. Heeb, M. B.; Criquet, J.; Zimmermann-Steffens, S. G.; von Gunten, U. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds a critical review. *Water Res.* **2014**, *48*, 15-42. DOI: 10.1016/j.watres.2013.08.030
- Han, J.; Zhang, X.; Jiang, J.; Li, W. How much of the total organic halogen and developmental toxicity of chlorinated drinking water might be attributed to aromatic halogenated DBPs? *Environ. Sci. Technol.* 2021, 55 (9), 5906-5916. DOI: 10.1021/acs.est.0c08565
- 5. Liang, L.; Singer, P. C. Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. *Environ. Sci. Technol.* **2003**, *37* (13), 2920-2928. DOI: 10.1021/es026230q
- 6. Gallard, H.; von Gunten, U. Chlorination of natural organic matter: Kinetics of chlorination and of THM formation. *Water Res.* **2002**, *36* (1), 65-74. DOI: 10.1016/S0043-1354(01)00187-7
- 7. Kristiana, I.; Gallard, H.; Joll, C.; Croué, J.-P. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates. *Water Res.* **2009**, *43* (17), 4177-4186. DOI: 10.1016/j.watres.2009.06.044

- Dickenson, E. R. V.; Summers, R. S.; Croué, J.-P.; Gallard, H. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic β-dicarbonyl acid model compounds.
 Environ. Sci. Technol. 2008, 42 (9), 3226-3233. DOI: 10.1021/es0711866
- Boyce, S. D.; Hornig, J. F. Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. *Environ. Sci. Technol.* 1983, 17 (4), 202-211.
 DOI: 10.1021/es00110a005
- 401 10. Gallard, H.; von Gunten, U. Chlorination of phenols: Kinetics and formation of chloroform. *Environ.* 402 *Sci. Technol.* **2002**, *36* (5), 884-890. DOI: 10.1021/es010076a
- 403 11. Schammel, M. H.; Martin-Culet, K. R.; Taggart, G. A.; Sivey, J. D. Structural effects on the bromination rate and selectivity of alkylbenzenes and alkoxybenzenes in aqueous solution. *Phys. Chem. Chem. Phys.* **2021**, *23* (31), 16594-16610. DOI: 10.1039/D1CP02422A
- 406 12. Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; DeMarini, D. M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:
 408 A review and roadmap for research. *Mutat. Res. Rev. Mutat. Res.* 2007, 636 (1), 178-242. DOI: 10.1016/j.mrrev.2007.09.001
- 410 13. Detenchuk, E. A.; Mazur, D. M.; Latkin, T. B.; Lebedev, A. T. Halogen substitution reactions of halobenzenes during water disinfection. *Chemosphere* **2022**, 295, 133866. DOI: 10.1016/j.chemosphere.2022.133866
- 413 14. Hwang, S.-C.; Larson, R. A.; Snoeyink, V. L. Organic bromine as a source of electrophilic bromine in aqueous chlorination reactions. *Chemosphere* **1988**, *17* (7), 1337-1342. DOI: 10.1016/0045-6535(88)90086-0
- 15. Traynham, J. G. Ipso substitution in free-radical aromatic substitution reactions. *Chem. Rev.* **1979**, *79* (4), 323-330. DOI: 10.1021/cr60320a002
- Ho. Broadwater, M. A.; Swanson, T. L.; Sivey, J. D. Emerging investigators series: Comparing the inherent reactivity of often-overlooked aqueous chlorinating and brominating agents toward salicylic acid. *Environ. Sci.: Water Res. Technol.* 2018, 4 (3), 369-384. DOI: 10.1039/C7EW00491E
- 421 17. Sivey, J. D.; Arey, J. S.; Tentscher, P. R.; Roberts, A. L. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine. *Environ. Sci. Technol.* 423 **2013**, 47 (3), 1330-1338. DOI: 10.1021/es302730h
- 424 18. Sivey, J. D.; Bickley, M. A.; Victor, D. A. Contributions of BrCl, Br₂, BrOCl, Br₂O, and HOBr to regiospecific bromination rates of anisole and bromoanisoles in aqueous solution. *Environ. Sci.* 426 *Technol.* **2015**, 49 (8), 4937-4945. DOI: 10.1021/acs.est.5b00205
- 427 19. Renz, L.; Volz, C.; Michanowicz, D.; Ferrar, K.; Christian, C.; Lenzner, D.; El-Hefnawy, T. A study 428 of parabens and bisphenol A in surface water and fish brain tissue from the Greater Pittsburgh Area. 429 *Ecotoxicology* **2013**, *22* (4), 632-641. DOI: 10.1007/s10646-013-1054-0
- 430 20. Terasaki, M.; Takemura, Y.; Makino, M. Paraben-chlorinated derivatives in river waters. *Environ. Chem. Lett.* **2012**, *10* (4), 401-406. DOI: 10.1007/s10311-012-0367-1
- 432 21. Canosa, P.; Rodríguez, I.; Rubí, E.; Bollaín, M. H.; Cela, R. Optimisation of a solid-phase microextraction method for the determination of parabens in water samples at the low ng per litre level.

 434 *J. Chromatogr. A* **2006**, *1124* (1), 3-10. DOI: 10.1016/j.chroma.2006.03.045
- 435 22. González-Mariño, I.; Quintana, J. B.; Rodríguez, I.; Cela, R. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). *Water Res.* **2011**, *45* (20), 6770-6780. DOI: 10.1016/j.watres.2011.10.027
- 439 23. Haman, C.; Dauchy, X.; Rosin, C.; Munoz, J.-F. Occurrence, fate and behavior of parabens in aquatic environments: A review. *Water Res.* **2015**, *68*, 1-11. DOI: 10.1016/j.watres.2014.09.030
- 24. Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. *J. Hazard. Mater.* **2015**, *300*, 29-38. DOI: 10.1016/j.jhazmat.2015.06.060

- 25. Zhao, X.; Zheng, Y.; Hu, S.; Qiu, W.; Jiang, J.; Gao, C.; Xiong, J.; Lu, H.; Quan, F. Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective. *J. Hazard. Mater.* **2021**, *411*, 125047. DOI: 10.1016/j.jhazmat.2021.125047
- 447 26. Abdallah, P.; Dossier-Berne, F.; Karpel Vel Leitner, N.; Deborde, M. Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling. *Environ. Sci. Pollut. Res.* **2021**, 449 28 (24), 31256-31267. DOI: 10.1007/s11356-020-11503-7
- 450 27. Yoom, H.; Shin, J.; Ra, J.; Son, H.; Ryu, D.; Kim, C.; Lee, Y. Transformation of methylparaben 451 during water chlorination: Effects of bromide and dissolved organic matter on reaction kinetics and 452 transformation pathways. Sci. **Total** Environ. 2018, 634. 677-686. DOI: 453 10.1016/j.scitotenv.2018.03.330
- 28. Canosa, P.; Rodríguez, I.; Rubí, E.; Negreira, N.; Cela, R. Formation of halogenated by-products of parabens in chlorinated water. *Anal. Chim. Acta* **2006**, *575* (1), 106-113. DOI: 10.1016/j.aca.2006.05.068
- 457 29. Terasaki, M.; Makino, M. Determination of chlorinated by-products of parabens in swimming pool water. *Int. J. Environ. Anal. Chem.* **2008**, *88* (13), 911-922. DOI: 10.1080/03067310802272663
- 30. Bulloch, D. N.; Nelson, E. D.; Carr, S. A.; Wissman, C. R.; Armstrong, J. L.; Schlenk, D.; Larive,
 C. K. Occurrence of halogenated transformation products of selected pharmaceuticals and personal care
 products in secondary and tertiary treated wastewaters from Southern California. *Environ. Sci. Technol.* 2015, 49 (4), 2044-2051. DOI: 10.1021/es504565n
- 463 31. Lee, H.-B.; Peart, T. E.; Svoboda, M. L. Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography—mass spectrometry. *J. Chromatogr. A.* **2005**, *1094* (1), 122-129. DOI: 10.1016/j.chroma.2005.07.070

468

- 32. Huang, K.; Shah, A. D. Role of tertiary amines in enhancing trihalomethane and haloacetic acid formation during chlorination of aromatic compounds and a natural organic matter extract. *Environ. Sci.: Water Res. Technol.* **2018**, *4* (5), 663-679. DOI: 10.1039/C7EW00439G
- 33. Dias, R. P.; Schammel, M. H.; Reber, K. P.; Sivey, J. D. Applications of 1,3,5-trimethoxybenzene as a derivatizing agent for quantifying free chlorine, free bromine, bromamines, and bromide in aqueous systems. *Anal. Methods* **2019**, *11* (43), 5521-5532. DOI: 10.1039/C9AY01443H
- 473 34. Lau, S. S.; Dias, R. P.; Martin-Culet, K. R.; Race, N. A.; Schammel, M. H.; Reber, K. P.; Roberts, A. L.; Sivey, J. D. 1,3,5-Trimethoxybenzene (TMB) as a new quencher for preserving redox-labile disinfection byproducts and for quantifying free chlorine and free bromine. *Environ. Sci.: Water Res. Technol.* **2018**, *4* (7), 926-941. DOI: 10.1039/C8EW00062J
- 35. Navalon, S.; Alvaro, M.; Garcia, H. Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl⁻ and Br⁻ on trihalomethane formation potential. *Water Res.* **2008**, *42* (14), 3990-4000. DOI: 10.1016/j.watres.2008.07.011
- 480 36. Symons, J. M.; Krasner, S. W.; Simms, L. A.; Sclimenti, M. Measurement of THM and precursor concentrations revisited: The effect of bromide ion. *J. Am. Water Works Assoc.* **1993**, *85* (1), 51-62. DOI: 10.1002/j.1551-8833.1993.tb05921.x
- 483 37. Larson, R. A.; Weber, E. J., *Reaction Mechanisms in Environmental Organic Chemistry*. Lewis Publishers: New York, NY, 1994. p. 286-292.
- 485 38. Rook, J. J. Chlorination reactions of fulvic acids in natural waters. *Environ. Sci. Technol.* **1977**, *11* (5), 478-482. DOI: 10.1021/es60128a014
- 487 39. Larson, R. A.; Rockwell, A. L. Chloroform and chlorophenol production by decarboxylation of natural acids during aqueous chlorination. *Environ. Sci. Technol.* **1979,** 13 (3), 325-329. DOI: 10.1021/es60151a014
- 490 40. Arnold, W. A.; Bolotin, J.; Gunten, U. v.; Hofstetter, T. B. Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis. *Environ.* 492 *Sci. Technol.* **2008**, *42* (21), 7778-7785. DOI: 10.1021/es800399a

- 493 41. Gould, J. P.; Fitchhorn, L. E.; Urheim, E., Formation of brominated trihalomethanes: Extent and kinetics. In *Water chlorination: Environmental impact and health effects*, Jolley, R. L.; Brungs, W. A.; Cotruvo, J. A.; Cumming, R. B.; Mattice, J. S.; Jacobs, V. A., Eds. Ann Arbor Sci. Publ.: Ann Arbor, 496 497 4983; Vol. 4, p 297.
- 497 42. Zhang, Z.; Prasse, C. Chlorination of para-substituted phenols: Formation of α, β-unsaturated C4-498 dialdehydes and C4-dicarboxylic acids. *J. Environ. Sci.* **2022,** 117, 197-208. DOI: 499 10.1016/j.jes.2022.04.029
- 43. Harris, D. C., *Quantitative Chemical Analysis*. 9th ed.; W. H. Freeman: New York, NY, 2015.

505

506

- 501 44. Lau, S. S.; Abraham, S. M.; Roberts, A. L. Chlorination revisited: Does Cl⁻ serve as a catalyst in the chlorination of phenols? *Environ. Sci. Technol.* **2016,** 50 (24), 13291-13298. DOI: 10.1021/acs.est.6b03539
 - 45. Sivey, J. D.; McCullough, C. E.; Roberts, A. L. Chlorine monoxide (Cl₂O) and molecular chlorine (Cl₂) as active chlorinating agents in reaction of dimethenamid with aqueous free chlorine. *Environ. Sci. Technol.* **2010**, *44* (9), 3357-3362. DOI: 10.1021/es9038903
- 507 46. E, Y.; Bai, H.; Lian, L.; Li, J.; Blatchley, E. R. Effect of chloride on the formation of volatile disinfection byproducts in chlorinated swimming pools. *Water Res.* **2016**, *105*, 413-420. DOI: 10.1016/j.watres.2016.09.018
- 47. Rose, M. R.; Lau, S. S.; Prasse, C.; Sivey, J. D. Exotic electrophiles in chlorinated and chloraminated water: When conventional kinetic models and reaction pathways fall short. *Environ. Sci. Technol. Lett.* **2020,** 7 (6), 360-370. DOI: 10.1021/acs.estlett.0c00259
- 48. Richardson, S. D.; Thruston, A. D.; Caughran, T. V.; Chen, P. H.; Collette, T. W.; Floyd, T. L.; Schenck, K. M.; Lykins, B. W.; Sun, G.-r.; Majetich, G. Identification of new drinking water disinfection byproducts formed in the presence of bromide. *Environ. Sci. Technol.* **1999**, *33* (19), 3378-3383. DOI: 10.1021/es9900297
- 49. Li, X.-F.; Mitch, W. A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities. *Environ. Sci. Technol.* **2018**, *52* (4), 1681-1689. DOI: 10.1021/acs.est.7b05440
- 520 50. Sawade, E.; Fabris, R.; Humpage, A.; Drikas, M. Effect of increasing bromide concentration on toxicity in treated drinking water. *J. Water Health* **2015**, *14* (2), 183-191. DOI: 10.2166/wh.2015.127
- 51. Agus, E.; Voutchkov, N.; Sedlak, D. L. Disinfection by-products and their potential impact on the quality of water produced by desalination systems: A literature review. *Desalination* **2009**, *237* (1), 214-237. DOI: 10.1016/j.desal.2007.11.059
- 525 52. Chang, E. E.; Lin, Y. P.; Chiang, P. C. Effects of bromide on the formation of THMs and HAAs. *Chemosphere* **2001**, *43* (8), 1029-1034. DOI: 10.1016/S0045-6535(00)00210-1
- 527 53. Cowman, G. A.; Singer, P. C. Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances. *Environ. Sci. Technol.* **1996**, *30* (1), 16-24. DOI: 10.1021/es9406905
- 530 54. Traynham, J. G. Aromatic substitution reactions: when you've said ortho, meta, and para you haven't said it all. *J. Chem. Educ* **1983**, *60* (11), 937. DOI: 10.1021/ed060p937