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ABSTRACT

Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore possible
influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes
(THMs) formed during water chlorination. Substoichiometric conversion of C—Br bonds into C—Cl bonds
was confirmed for several parabens and salicylates. Co-occurrence of (mono)brominated and
nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br) generated
polybrominated THMs, implicating ipso substitution. THM molar yield, bromine incorporation, and
bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those
observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free
chlorine followed by reincorporation of liberated HOBr into DBP precursors. THM molar yield from
brominated precursors was enhanced by up to a factor of 20 relative to nonhalogenated precursors. Trends
in THM molar yields and bromine incorporation differed between brominated parabens and brominated
salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure
of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso
substitution can play in promoting halogen exchange and bromine-enrichment among DBPs in chlorinated

waters.

SYNOPSIS
In chlorinated water, ipso substitution is an underappreciated reaction pathway capable of influencing
disinfection byproduct formation and speciation, including formation of trihalomethanes from parabens and

salicylates.
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1. INTRODUCTION

Activated aromatic moieties react readily with electrophilic halogens in solutions of free chlorine and
free bromine.!”® The resulting halogenated aromatic compounds are estimated to contribute two-thirds of
the total organic halogen concentration in chlorinated waters and are potentially more significant drivers of
developmental toxicity than halogenated aliphatic compounds.* Hydroxy-substituted aromatic compounds
are known precursors of the regulated disinfection byproduct (DBP) class trihalomethanes (THMs).
Compounds studied for their THM formation potential span a range of humic and fulvic substances,®’
aliphatic compounds,® and substituted alkyl and chlorophenols.® THM formation from hydroxybenzenes is
strongly influenced by the identity and position of substituents relative to the hydroxyl group, ostensibly
determining the reactivity of ketone-containing ring fragments believed to be the primary precursors of
THMs. (Scheme S1).%!°

Chlorinated phenols have been evaluated as THM precursors relative to their nonhalogenated
analogues; trichloromethane molar yields varied substantially depending on the number and position of
chlorine substituents on the phenolic ring.!® Prior studies of aromatic THM precursors have not, however,
considered the impact of bromine substitution on THM yields and speciation. The greater reactivity of free
bromine relative to free chlorine promotes bromination of aromatic compounds, even in the presence of
excess free chlorine.!! The resulting brominated DBPs are typically more genotoxic than their chlorinated
counterparts.!> Nevertheless, brominated aromatic compounds may be subject to further reactions,
including ipso substitution, which involves the exchange of Br" with CI" (Scheme 1).'"-13-13

Despite its presence in the literature dating to 1903, ipso substitution appears scarcely with respect to
DBP formation.!> In 1988, the formation of dibrominated anilines and phenols was observed from the
chlorination of para-bromoaniline and para-bromophenol, respectively.'* A more recent study assessed
substitutions of chloro-, bromo-, and iodo-substituted benzene, anisoles, and phenols in solutions of free
chlorine and free bromine.'* HOBr potentially released during ipso substitution could be rapidly

reincorporated into DBP precursors.!*!® Accordingly, contributions of HOBr liberated from brominated
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aromatic compounds by ipso substitution may provide a mechanism by which the bromine-enrichment of

DBPs can occur.

Scheme 1. Transformation of 3-Bromoethylparaben by (1) Electrophilic Aromatic Substitution, Yielding

3-Bromo-5-chloroethylparaben or (2) Ipso Substitution, Yielding 3-Chloroethylparaben.
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The purpose of this study was to elucidate the influence of ipso substitution on the formation of THMs

from two classes of aromatic micropollutants: parabens and salicylates. Parabens (para-hydroxybenzoate

esters) have been widely employed as antimicrobial preservatives in pharmaceutical and personal care

products (PPCPs). Parabens remain ubiquitous contaminants that have been detected in surface water,'*-*

21-24

wastewater, and sediment.” Increasing attention has been paid to the chlorination and bromination of

2627 and its halogenated products,?® which have been detected in rivers and swimming

methyl paraben
pools.?*? The potential for parabens to generate THMs upon reaction with free chlorine and free bromine
has not been previously investigated. Salicylates were selected for study due to their structural similarity to
parabens, previous detections in surface waters and wastewaters, well-characterized reactivity toward free

chlorine and free bromine, and demonstrated ability to generate THMs,'6-30-32

Herein, eight ethylparabens
and salicylates (Table 1) were reacted with solutions of free chlorine to (1) determine the THM yield of
parabens and salicylates in the presence of free chlorine, (2) examine the effects of precursor halogenation
on THM formation and distribution, (3) evaluate THM distribution from the ipso substitution of aromatic

Br in Br-precursors relative to Br- from NaBr, and (4) assess the influence of pH and chloride on THM

formation in binary precursor systems.
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Table 1. Structures, Names, and Abbreviations of Ethylparabens and Salicylic Acids Examined Herein

o}
fo) (0] o} cl
/©)ko/\ C|j©)ko/\ BI’D)\O/\ ]@)LO/\
HO
HO HO HO al
ethylparaben 3-chloroethylparaben 3-bromoethylparaben 3,5-dichloroethylparaben
(EP) (CEP) (BEP) (DCEP)
(0] 0 %
Br. O/\ Br. O/\ 0 Br. OH
HO HO @OH OH
Cl Br OH Br
3-bromo-5- 3,5-dibromoethylparaben salicylic acid 3,5-dibromosalicylic acid
chloroethylparaben (DBEP) (SA) (DBSA)
(BCEP)
2. METHODS

A comprehensive list of reagents, standards, and their purities can be found in Table S1 of the
Supporting Information (SI). Most reagents were commercially available at high purities (>99%); 3-bromo-
S-chloroethylparaben (BCEP) was synthesized from 3-chloroethylparaben (CEP) using molecular bromine
(Figure S1). All aqueous solutions and standards were prepared in 18 MQ-cm ultrahigh-purity (UHP)
water. Solutions of free chlorine were prepared daily from laboratory-grade sodium hypochlorite (6 wt%),
standardized by UV-vis spectrophotometry.>* Glassware used in halogenation experiments were pre-rinsed

with NaOCl (~0.5 M) to ensure reaction vessels were chlorine-demand free.

2.1 Time course reactions
Time course reactions were performed with selected brominated ethylparabens to elucidate possible
formation of ipso substitution products (i.e., replacement of Br with CI). All halogenation reactions were

performed in 40 mL amber glass vials containing a phosphate buffer (20 mM, pH 6.0 - 8.0). Free chlorine

was added as NaOCI. To promote pseudo-first-order conditions, NaOCl was added such that the initial
concentration of NaOCI was at least in 10-fold molar excess relative to the initial concentration of the parent
paraben. Parent paraben (20 uM) was added as a methanolic spike such that the final methanolic content of

the reactor was <0.5 vol%. Reactors were capped and shaken by hand for at least 10 s and maintained at
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20.0£0.1 °C in a circulating water bath. At predetermined time intervals designed to span approximately 2
reaction half-lives, 1.0 mL aliquots (minimum of 6 per reactor) were withdrawn and transferred to 2 mL
HPLC sample vials pre-amended with at least a 40% molar excess of either sodium thiosulfate or 1,3,5-
trimethoxybenzene (TMB) (i.e., [quencher] > 1.4[FAC],). HPLC sample vials were capped and shaken for
10 s. Volumes of added quencher were typically <30 puL. Quenched samples were refrigerated at 4 °C and
analyzed within 1 week via either an Agilent 1200 or 1260 series high-performance liquid chromatograph
with a diode array detector (HPLC-DAD, see additional HPLC method details in the SI). EP transformation

products were identified via retention-time matching with solutions of reference materials.

2.2 Haloform reactions

Haloform reactions were performed in volatile organic analysis (VOA) vials with PTFE-lined septa.
Nominal concentrations of NaOCl, NaBr, and precursor organic compounds were verified gravimetrically
for each reactor. For reactions controlling organic bromine, aliquots of methanolic stock solutions for each
precursor organic compound ([precursor], = 20 uM) were added to a 40 mL vial followed by 40 mL of
phosphate buffer solution (20 mM, pH = 8.00, [NaCl] = 1.0 mM, [NaNOs] = 9.0 mM). For selected
experiments, an aqueous stock of NaBr was added as the Br source instead of a brominated organic
compound. The final methanolic content of each reactor was <1 vol%. Att= 0, NaOCl was spiked to reach
500 puM, and the vial was capped and inverted several times. A 20 mL amber glass vial was then filled to
headspace free with reaction solution and kept at 20.0+0.1 °C in a recirculating water bath for 24 h.

For varied NaCl reactions, [NaCl] + [NaNOs3] = 10 mM; NaCl and NaOCI were added prior to the
parent compound to allow free chlorine species to equilibrate and to oxidize any Br~ present (e.g., as an
impurity in NaCl).** To assess for trace Br~ as a contaminant of NaCl, 200 pL aliquots of reaction solution
were quenched with 1,3,5-trimethoyxybenzene (TMB) and analyzed for 1-bromo-2,4,6-trimethoxybenzene
(Br-TMB) via HPLC (see SI).>*** In reaction solutions with the highest examined [NaCl] of 10 mM, Br~

was below the detection limit (0.03 pM as Br-TMB).
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2.3 Sample extraction, instrumental analysis, and quality assurance

After 24 h of incubation, four aliquots of reaction solution were transferred from each reactor to 8 mL
vials pre-amended with ascorbic acid in 5-fold molar excess of [NaOCl]o and 1 mL. MTBE containing 1,2-
dibromopropane as an internal standard. Liquid-liquid extractions were performed by vortex mixing for 30
s; extraction efficiencies were within 100 £ 5% (n = 8). Extracted samples were refrigerated at 5 °C to
promote phase separation, transferred via a glass, gas-tight syringe into 2 mL autosampler vials containing
150 uL glass inserts, stored at =20 °C, and analyzed within one week.

Extracts were analyzed using gas chromatography-mass spectrometry (GC-MS) with an Agilent
8890/5977 GC-MS in selected ion monitoring mode. Complete parameters for quantification of
trihalomethanes by GC-MS are in the SI (Table S2). Blank samples were analyzed at least every 10 samples
to verify the absence of carryover. Fresh aliquots of calibration standards were prepared for each sample
batch, and calibration checks at the midpoint of the calibration range were analyzed at the middle and end

of each analytical sequence.

3. RESULTS AND DISCUSSION

3.1 Detection of ipso substitution products

Reference materials were used to verify the formation of ipso substituted products during reactions of
brominated ethylparabens with NaOCI. For example, chlorination of 3-bromoethylparaben (BEP) yielded
3,5-dichloroethylparaben (DCEP) and 3,5-dibromoethylparaben (DBEP) as minor products within 2 min
(Figure 1). DCEP is the ipso substitution product. DBEP ostensibly results from the reaction of BEP with
HOBE liberated via ipso substitution of another BEP molecule. Formation of DBEP from the chlorination
of BEP demonstrates Br-enrichment of DBPs linked to ipso substitution. Ipso substitution products were

also observed upon chlorination of BCEP (yielding DCEP, Figure S2) and DBEP (yielding BCEP, Figure
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S3). At 50 mM ultrahigh-purity NaCl (99.99%), BEP formed up to 0.86 uM DBEP — more than could have

been attributed to potential trace Br™ (<0.15 uM) originating from NacCl.
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Figure 1. A) Example time course reaction of 20 puM BEP with 200 uM NaOCl; additional conditions:
[NaNOs] = 10 mM, [Na3;PO4] = 20 mM, [NaCl] = 50 mM, pH = 6.99, and T = 20.0 °C. B) Sample HPLC-
DAD chromatogram from the time course shown in frame A demonstrating formation of DCEP and DBEP
from chlorination of BEP.
3.2 THM formation from ethylparabens

THM yield and speciation from the 24 h chlorination of each EP variant are shown in Figure 2A.
THM molar yields (mol THM/mol EP variant) from ethylparabens ranged from 0.4% to 1.8% and were
generally lower than those observed for other substituted phenols.!® EP, CEP, and DCEP produced only
trichloromethane (TCM). THM yields from DCEP were 40% lower than yields from EP and CEP. The
major pathway to TCM from EP may not require (or may be impeded by) chlorination of both carbons
ortho to the hydroxyl group, which contrasts with previous observations of similar THM yields from

phenol, 2-chlorophenol, and 2,4,6-dichlorophenol.'® A more modest decline in total THMs (TTHMs) was

observed comparing BCEP to BEP, though DBEP produced overall more THMs than BEP (Figure 2A).

3.3 Formation of brominated THMs

Brominated THMs were detected whenever a brominated paraben served as the THM precursor
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(Figure 2A). TTHMs from DBEP were approximately 24% greater than from BEP, indicating the
bromination of both carbons ortho to the hydroxyl group does not impede THM formation in the same
manner as when the ortho carbons are chlorinated. Polybrominated THM yields increased in the order
BCEP < BEP < DBEP. Estimated yields of HOBr from ipso substitution of brominated ethylparabens are
approximately 0.5 — 1.0 uM (Figures 1, S2, S3). Notably, [Br] as low as 0.6 pM have been shown
previously to impact THM speciation in chlorinated systems,*

To investigate the influence of total added bromine, BCEP was varied as the source of bromine, with
EP varied to maintain a uniform total added paraben concentration, [P]w:= 20 uM (Figure 2B). As added
bromine was increased, THM distribution shifted towards polybrominated THMs. Tribromomethane
(TBM) was below quantification limits at [BCEP] < 5 pM, but dibromochloromethane (DBCM) was
quantifiable at [BCEP] as low as 1 uM. To the best of our knowledge, the formation of polybrominated
THMSs via chlorination of a monobrominated aromatic compound (in the absence of added inorganic
bromide) has not been previously reported. Ipso substitution and subsequent re-incorporation of Br* into
THM precursors may explain our results (Scheme 1)."* Evidence of ipso substitution has been observed in
reactions of halogenated aromatics with free chlorine, yielding chlorinated compounds from iodinated
precursors, and polybrominated and mixed-halogenated products from brominated precursors.'>!* Indeed,

even 2,4,6-tribromophenol was detected after reactions of NaOCl with 2-bromophenol."

3.4 THM relative yields with precursor mixtures

Experiments were conducted to determine how bromine source (organic bromine versus NaBr)
influences THM formation. The sources of organic bromine included DBEP and 3,5-dibromosalicylate
(DBSA). For the organic bromine systems, [dibrominated precursor] was varied while either [EP] or [SA]
was adjusted to maintain equal organic carbon loadings (e.g., [EP]wc = [DBEP], + [EP], = 20 uM, Figure
3). The maximum achievable range of total added bromine was 0 (100% EP or SA) to approximately 40
UM total bromine (100% DBEP or DBSA). Parallel experiments were conducted to achieve concentrations

of added inorganic bromide (as NaBr) ranging from 0 to 40 uM, with [organic precursor] fixed at 20 uM

10
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(Figure S4). All contributions to [organic precursor]i: in varied [Br ] experiments were from either EP or

SA only.
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Figure 2. A) 24 h yields of THMs from each EP species (20 uM initial paraben concentration). B) 24 h
yields of THMs from EP + BCEP ([EP], + [BCEP], =20 uM) as a function of added Br as BCEP ([Br],
= [BCEP],, accomplished by varying [BCEP], / [EP],. [NaOCl], = 500 uM, [NaCl] = 1 mM, [NaNOs]
=9 mM, pH = 8.18+0.02. Error estimates represent 95% confidence intervals and are smaller than
symbols if not shown.

From 100% EP to 100% DBEP, [TTHMs] increased by a factor of 2.8 (Figure 3A). Greater
concentrations of polybrominated THMs were formed at higher proportions of DBEP. The relative
proportion of TCM to TTHMs decreased from 100% at 0 uM Br as DBEP to <2% at 40 uM Br as DBEP
(Figure 3A). TBM increased linearly with increasing DBEP. Molar yields of each THM were determined
from reactions with EP, SA, DBEP, and DBSA alone (i.e., reacted individually with NaOCI) and used to

calculate THM relative yield in binary precursor systems using Eq. 1.

[THM]binary system [1]
Y ([precursor] x THM yieldprecursor only)

Relative yield =

Relative yields of each THM for 100% EP ([DBEP]/[P]it = 0) and 100% DBEP ([DBEP]/[P]w: = 1) were,
by definition, equal to 1. Applications of Eq. 1 assumed THM yields from EP and DBEP were constant;
relative yields different than 1 indicated interactions between precursors in mixed systems. Relative yields

of TCM decreased from 0.70 to 0.27 as [DBEP]/[P]w: increased from 0.03 to 0.75, indicating the TCM

11
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yields decrease with added organic bromine (Figure 3B). Notably, at [DBEP]/[P]w: of 0.03, [BDCM] was
nearly 20 times higher than predicted by data from single-precursor systems. DBCM relative yield reached
a maximum of 2.76 at [DBEP]/[P].w: of 0.25. Both maxima in BDCM and DBCM relative yields occurred
while EP was the dominant paraben in the mixture, suggesting a synergistic effect in the binary precursor
systems. THM yields in experiments with added NaBr (Figure S4A) were similar to those observed in
reactions with only DBEP as the source of bromine (Figure 3A), suggesting that DBEP and NaBr as

bromine sources have similar effects on THM profiles.

3.5 Parallel experiments with salicylates

For the SA + DBSA system, [TTHMs] were <1 pM from 0 to 20 uM added bromine but increased to
a maximum of approximately 8 uM [TTHMs] at 40 uM added bromine (Figure 3C). TTHM molar yield
from the chlorination of DBSA was over 18 times higher than molar yields from EP or DBEP. With no
added bromine, 20 pM SA produced comparable [TTHMs] (molar yield of 1.5%) to EP (0.9%). DBCM
generated from chlorination of SA steadily increased with added bromine irrespective of source (DBSA or
NaBr) (Figure 3C, S5B). TBM increased linearly with added [Br] but was below limits of quantification
at [Br] < 10 uM. In contrast, TBM was quantifiable at [Br] > 5 uM from NaBr or DBEP when parabens
served as precursors.

In contrast with the paraben system, [TCM] yield was enhanced by increased proportions of DBSA
relative to total SA (Figure 3D). Added bromine (as DBSA) ostensibly enhanced THM yield overall,
including TCM. Enhanced THM formation as a function of added Br~ has been observed in previous
studies;*® organic bromine subject to ipso substitution could have presented similar effects.

Of the brominated THMs, only BDCM showed relative yields substantially greater than 1.0 in the SA
system, reaching a maximum of 2.2. The maximum BDCM relative yield of approximately 2.2 at 20 pM
added [Br] from SA+DBSA was in stark contrast with the relative yield of 20 (2000%) from EP+DBEP at
1 uM [Br]. Differences in precursor structure are likely the driver of the disparity between THM yield and

speciation from parabens and salicylates. THMs have been postulated to form primarily from aromatic

12
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Figure 3. A) [THM] distribution from parabens as a function of added [Br] as DBEP from 1 to 40 uM.
B) [THM] yields relative to those calculated from experimental THM molar yields of EP and DBEP
(when reacted individually with NaOCI) as a function of the DBEP fraction of total parabens. C) [THM]
distribution from salicylates as a function of added [Br] as DBSA from 1 to 40 pM. D) Measured [THM]
relative to calculated [THM] from SA and DBSA (when reacted individually with NaOCl) as a function
of DBSA fraction of total salicylates. Dashed lines represent relative yield of 1 for reference. A), B) pH
= 8.18 £ 0.02, [P]iot = [EP] + [DBEP] C), D) pH = 8.15 + 0.03, [SAJiot = [SA] + [DBSA]. All frames:
[Pliot = [SA]tot = 20 uM, [NaOCl], = 500 uM, [NaCl] = 1 mM, [NaNO;] = 9 mM, 24 h chlorine contact
time. Error estimates represent 95% confidence intervals and are smaller than symbols if not shown.

carbons ortho to a hydroxyl group.’”*® For parabens, both carbons ortho to the hydroxyl group can be
readily halogenated. For SA, one such carbon is substituted with a carboxylate group. Decarboxylation

reactions in chlorinated systems have been reported for some hydroxybenzenes but not for salicylic acid.*
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Accordingly, the degree of bromine substitution observed in THMs from parabens may not be possible

from SA at added bromine <15 pM.

3.6 Bromine incorporation

To further assess Br-THM speciation, bromine incorporation factor (7) was calculated using Eq. 2.3%4!

_ [BDCM] + 2[DBCM] + 3[TBM]
n= [TTHM] 2]

Bromine incorporation represents the relative concentration of Br-THMs normalized to TTHMs and can
possess a maximum value of 3, representing 100% TBM. Bromine incorporation values were calculated
for each data set independently (EP+DBEP, EP+NaBr, SA+DBSA, SA+NaBr). THM bromine
incorporation from EP increased with increasing [Br], with a maximum value of 2.3 occurring at the highest
added [Br] (Figure 4A). In the salicylate system, bromine incorporation also increased with added bromine
to a maximum value of 2.15. THM bromine incorporation from parabens generally exceeded that of
salicylates throughout the range tested, though the difference was greatest at low [Br] (Figure 4A). While
both precursors reached similar bromine incorporation maxima (representing primarily TBM), the
maximum [TTHMs] from salicylates exceeded parabens by a factor of approximately 20.

Figure 4B depicts a bromine incorporation cross-correlation between reactions amended with NaBr
as the bromine source and reactions amended with organic bromine (Br-Precursors) as the bromine source.
For both ethylparabens and salicylates as precursors, THM bromine incorporation from NaBr and from
organic bromine were strongly correlated (adjusted R? > 0.98, Figure 4B). These results imply that THM
bromine incorporation depended on the quantity of bromine added, not on the bromine source or on the
degree of precursor bromination. The slopes of both cross-correlations were near unity, suggesting that

bromine liberation by free chlorine is efficient for brominated parabens and salicylates.

3.7 THM molar yield and bromine recovery
TTHM molar yields were calculated as moles of THMs produced per mole of organic precursor

(Figure 5A). At the highest level of added bromine as DBSA or NaBr, the maximum TTHM molar yield
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Figure 4. A) THM bromine incorporation factor (n, Eq. 2) as a function of added Br as organic Br
(DBEP or DBSA) or inorganic Br™. B) Cross-correlation of THM #n values: Br added from NaBr as a
function of Br added from organic Br-precursors. Paraben data include DBEP and BCEP data; salicylate
data were from DBSA only. Error estimates represent 95% confidence intervals and are smaller than
symbols if not shown.

of the salicylate system was over 10-times greater than that of the paraben system (37.5% and. 2.1%,
respectively). The TTHM molar yield from both precursors increased with added bromine (as organic
bromine or NaBr), though the total increase was greater from salicylate (22-fold) than from parabens (2.8-
fold). For salicylates, the 20-fold increase in TTHM molar yield when comparing SA (1.7%) to DBSA
(37.5%) is noteworthy and exceeds previously reported increases in TCM molar yield resulting from the
halogenation of phenol (2% TCM molar yield) relative to 2-chlorophenol (10%) and 3-chlorophenol
(32%).%° Bromide-enhanced yields of THM have been attributed to superior nucleofugality (leaving group
ability) of brominated relative to chlorinated methyl carbanions.?> To our knowledge, such enhancements
in THM molar yield resulting from the pre-bromination of a precursor have not previously been reported.
Bromine recovery as THMs was calculated as the quotient of total Br-THMs ([BDCM] + 2[DBCM]
+ 3[TBM]) divided by the total concentration of Br added to the system. Bromine recovery as Br-THMs
derived from salicylates increased with added bromine as organic bromine or NaBr (Figure 5B). The

inflection point where bromine recovery from salicylate began to increase corresponded to ratios of added
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Figure 5. A) Log of THM molar yield (mol THMs per mol precursor) and B) log of bromine recovery
as THM s of ethylparaben (EP) and salicylate (SA) as a function of added bromine either as NaBr, DBEP,
or DBSA (see legend). Bromine recovery was the total [Br] present as THMs calculated as [BDCM] +
2[DBCM] + 3[TBM] relative to added [Br] either as a precursor or NaBr. Error estimates represent 95%
confidence intervals and are smaller than symbols if not shown.

[Br] to total precursor concentration greater than 0.5. Over the range of added [Br], bromine recovery as
THMSs from paraben precursors declined by a factor of 2 while bromine recovery as THMs increased by a
factor of nearly 50 (Figure 5B). Precursors that readily undergo ring cleavage such as parabens may present
less evidence of ipso substitution if aromaticity is required for substitution to occur.*> However, at added
[Br] less than 10 uM, bromine recovery as THMs from parabens exceeded that of salicylates. The average
bromine recovery from paraben precursors was 4.4% from 1 — 10 uM added [Br], while salicylate
precursors had an average bromine recovery of 1.5% over the same range.

Regioselectivity may influence Br-THM yields from salicylates. At pH 8, bromination of salicylic acid
para to the hydroxyl group proceeds ~3 times faster than bromination ortho to the hydroxyl group.'® If THM
formation occurs primarily from positions ortho to the hydroxyl substituent, regioselectivity of
halogenation favoring the para position may limit bromine recovery from salicylate as THMs. The
inflection points in bromine recovery (Figure 5B) and THM bromine incorporation (Figure 4A) may have

represented a critical concentration of added Br where the bromination rate for THM active sites in salicylic
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acid became competitive with that of free chlorine.

Each level of [Br] from BCEP, DBEP, and DBSA was paired with the approximately equivalent [Br]
level from EP+NaBr or SA+NaBr, and paired t-tests were performed for each metric: [THM], [TTHM],
THM bromine incorporation, THM molar yield, and THM bromine recovery (Table 2).** With the
exception of bromine incorporation for BCEP paired with EP+NaBr, all pairs of metrics were not
significantly different at the 95% confidence level (Table 2). For BCEP, the presence of an initial chlorine
atom ortho to the hydroxyl group may have affected bromine incorporation in THMs relative to EP+NaBr.
For the remaining 23 metrics, THM yield and distribution between organic bromine from parabens or
salicylates by ipso substitution and by oxidation of NaBr were not significantly different (p > 0.05).

Table 2. Associated p Values from Paired Student’s t-Tests Evaluating THM Concentrations,

Bromine Incorporation (7), Bromine Recovery (Br Rec.), and THM Molar Yield When Br
Originated from Brominated Organic Precursors Compared to When Br Originated from NaBr.”

g;urce [TCM] [BDCM] [DBCM] [TBM] [TTHM] =x EZC‘ 1;/[1‘;1;‘;
BCEP 0.067 032 0.42 0070  0.12 0064  0.033" 0.11
DBEP  0.10 0.68 0.28 0.25 0.21 0.95 0.081  0.69
DBSA  0.10 0.83 0.81 0.81 0.50 0.76 043 038

“ BCEP = 3-bromo-5-chloroethylparaben (6 data points); DBEP = 3,5-dibromoethylparaben (8 data
points); DBSA = 3,5-dibromosalicylic acid (8 data points).

b Indicates statistically significant difference (p < 0.05) between Br originating from BCEP compared to
Br originating from NaBr.

3.8 Effects of [C]'] and pH

No appreciable change in THM formation from ethylparabens was observed at pH 8 from 2 to 10 mM
of added NaCl (Figure S5A). However, [THMs] increased over the same [Cl~] range at pH 6 when DBEP
only or DBEP+EP served as precursors (Figures S5B, S5C), potentially implicating Cl, as a reactive
species capable of promoting THM formation.!®3344-46 Under these conditions, [Cl,] is proportional to both
[H] and [CI'].¥ Aromatic halogenation was not rate-limiting for THM formation from phenols.'® Thus,
increased free halogen reactivity ostensibly contributes to other, subsequent halogenation steps requisite

for THM formation. THM distribution shifted from primarily brominated at pH 8 to primarily chlorinated
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at pH 6 for EP+DBEP mixtures, consistent with the participation of hydroxide as a nucleophile in ipso
substitution to abstract Br” (Scheme 1) and/or the weaker acidity of HOBr (pK,= 8.8) relative to HOCI
(pKa=17.5). THM bromine recovery increased linearly as a function of [Cl] (Figure S5D). The slope for
EP+DBEP was greater than twice that of DBEP alone, indicating that Br-THM formation from ipso
substitution may be enhanced by larger proportions of more reactive chlorine species relative to HOCI (e.g.,

Cl,), or by more reactive bromine species from liberated free bromine relative to HOBr (e.g., BrCl).%

4. ENVIRONMENTAL SIGNIFICANCE

Our results indicate that ipso substitution can influence the transformations and fate of parabens and
salicylates in chlorinated water. Our findings also demonstrate that bromination of these aromatic
compounds prior to subsequent reactions with free chlorine may enhance THM molar yields by up to a
factor of 20. This effect was more pronounced for salicylates than for parabens. Consequently, elevated
[Br] in source waters may result in a disproportionate increase in THMs beyond simply shifting THM
speciation toward increased bromine incorporation. For the compounds examined herein, aromatic bromine
proved to be comparably reactive as Br~ in generating brominated THMs. Ipso substitution could
conceivably impact the speciation of other DBPs beyond THMs.* Bromine-enrichment of DBPs associated
with ipso substitution may increase the toxicity of chlorinated drinking water and wastewater** via a
reaction mechanism that is generally overlooked in the environmental literature.''* The extent to which
ipso substitution influences the formation of DBPs other than halogenated parabens, halogenated
salicylates, and THMs merits future investigation. Formation of ipso substitution products was observed
within 25 s at 20 °C (Figure 1A), suggesting that ipso substitution is likely to be relevant on timescales of
water disinfection. Effects of temperature on such reactions merit future study. The possible role of radical
intermediates in such reactions also warrants future study.

Interestingly, THM molar yield was not correlated with bromine incorporation or bromine recovery as

THMSs. At lower, environmentally relevant concentrations of added Br (1 — 2 uM, surface waters; 8 uM,

desalinated seawater),! TTHM molar yield was on average 2.5 times higher from salicylates than parabens.
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However, THM bromine recovery from parabens was several times higher than salicylates at the same [Br],
irrespective of source. Therefore, for systems containing trace [Br], a precursor’s THM molar yield may
not be an adequate predictor of the overall toxicity of resulting DBPs.>* Compounds with lower THM molar
yields but a greater propensity for bromine incorporation could contribute more significantly to TTHMs
(by mass) and may also contribute disproportionately towards the resulting toxicity of disinfected waters
relative to those with higher molar yields and lower bromine incorporation.

Investigations of THM formation in systems containing Br~ have historically challenged researchers’
attempts to predict the distribution and degree of bromination in the resulting products.®>**%3 Qur work
highlights the pertinence of ipso substitution with respect to these challenges and reinforce Traynham’s
comments to chemists in 1983: “Omission of ipso substitutions from discussions of aromatic substitution

reactions is, at best, misleading about the kinds of products that might be formed.”>*
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