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A B S T R A C T 

We measure the small-scale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Surv e y Luminous 

Red Galaxy sample, corrected for fibre-collisions using P airwise Inv erse Probability weights, which give unbiased clustering 

measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function o v er the 

separation range 7 − 60 h 
−1 Mpc with a model based on the AEMULUS cosmological emulator to measure the growth rate of 

cosmic structure, parametrized by f σ 8 . We obtain a measurement of f σ 8 ( z = 0.737) = 0.408 ± 0.038, which is 1.4 σ lower than the 

value expected from 2018 Planck data for a flat � CDM model, and is more consistent with recent weak-lensing measurements. 

The level of precision achieved is 1.7 times better than more standard measurements made using only the large-scale modes of 

the same sample. We also fit to the data using the full range of scales 0 . 1 –60 h 
−1 Mpc modelled by the AEMULUS cosmological 

emulator and find a 4.5 σ tension in the amplitude of the halo velocity field with the Planck + � CDM model, driven by a mismatch 

on the non-linear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation 

Distribution model used in the emulator. Finally, we perform a robust analysis of possible sources of systematics, including the 

effects of redshift uncertainty and incompleteness due to target selection that were not included in previous analyses fitting to 

clustering measurements on small scales. 

Key words: galaxies: distances and redshifts – cosmological parameters – cosmology: observations – large-scale structure of 

Universe. 

1  I N T RO D U C T I O N  

Understanding the accelerating expansion of the Universe is one of 

the primary goals for modern physics e xperiments. Man y of these 

� E-mail: mj3chapman@uwaterloo.ca 

experiments aim to accomplish this through measuring the observed 

positions of galaxies in the Universe, which depend on the cosmolog- 

ical model in a number of ways. The intrinsic distribution of galaxies 

results from the growth of initial matter perturbations through gravity, 

giving a window to the early Univ erse. Howev er, the fundamental 

observables are the angular positions and redshifts of galaxies, while 

the intrinsic pattern is in comoving distances, so surveys are also 
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sensitive to the link between these two coordinates. This link depends 

on the relationship between separations in angles and redshifts and 

distances across and along the line of sight (los; Alcock & Paczynski 

1979 ), as well as on redshift-space distortions (Kaiser 1987 ). Because 

these depend on both cosmological expansion and the build-up of 

structure within the Universe, large galaxy surveys offer a unique 

opportunity to solve the question of the origin of the late acceleration 

of the expansion (Weinberg et al. 2013 ; Ferreira 2019 ). 

The growth of structure most clearly manifests on the observed 

galaxy distribution through Redshift Space Distortions (RSD; Kaiser 

1987 ). These are a consequence of the velocities of galaxies in a 

comoving frame distorting the los cosmological distances based on 

observed redshifts, and are sensitive to the growth rate of structure, 

which in turn depends on the strength of gravity. The strength of the 

RSD measurements depend on the parameter f σ 8 , which is commonly 

used to quantify the amplitude of the velocity power spectrum and 

provides a strong test of modifications to gravity (Guzzo et al. 2008 ; 

Song & Perci v al 2009 ). The development of large galaxy surveys 

dri ven by adv ances in multi-object spectrographs has resulted in 

recent renewed interest in RSD including measurements from the 

WiggleZ (Blake et al. 2011 ), 6dFGS (Beutler et al. 2012 ), SDSS-II 

(Samushia, Perci v al & Raccanelli 2012 ), SDSS-MGS (Howlett et al. 

2015 ), FastSound (Okumura et al. 2016 ), and VIPERS (Pezzotta 

et al. 2017 ) galaxy surv e ys. 

The best precision measurements to date come from the Baryon 

Oscillation Spectroscopic Surv e y (BOSS; Da wson et al. 2013 ), part 

of the third generation of the Sloan Digital Sky Survey (SDSS; 

Eisenstein et al. 2011 ). Using large-scale modes, BOSS has achieved 

the best precision of ∼6 per cent on the parameter combination f σ 8 

(Beutler et al. 2017 ; Grieb et al. 2017 ; S ́anchez et al. 2017 ; Satpathy 

et al. 2017 ). Note that these studies all measured RSD in the linear or 

quasi-linear regime, where proportionately small levels of non-linear 

modelling were required. 

In contrast, Reid et al. ( 2014 ) made a measurement of the 

amplitude of the RSD signal from an early BOSS galaxy sample, 

fitting to the monopole and quadrupole moments of the correlation 

function o v er scales 0.8 to 32 h 
−1 Mpc , obtaining a 2.5-per cent 

measurement of f σ 8 ( z = 0.57) = 0.450 ± 0.011. This demonstrates 

the increased precision available if RSD in the data can be accurately 

measured and modelled to small scales. The most accurate method 

to model small-scale clustering is to use N-body simulations, and 

this was the route taken by Reid et al. ( 2014 ). Ho we ver, without 

a simulation for each model to be tested (Reid et al. 2014 used 

three simulation sets at three very similar cosmologies), one has to 

extrapolate solutions to different cosmologies, which needs care. The 

most pernicious problem faced in the Reid et al. ( 2014 ) analysis was 

correcting the small-scale clustering in the data, which suffers from 

fibre-collisions, where hardware limitations mean that some galaxies 

are excluded from the catalogue due to having close neighbours. A 

similar method was recently applied to the BOSS LOWZ galaxies 

(Lange et al. 2022 ), and a study is in preparation for the CMASS 

sample (Zhai et al. 2022 ). 

The extended Baryon Oscillation Spectroscopic Survey (eBOSS; 

Dawson et al. 2016 ), part of the SDSS-IV experiment (Blanton 

et al. 2017 ) is the latest in a line of galaxy surv e ys done using 

the Sloan Telescope. This experiment was designed to make Baryon 

Acoustic Oscillations (BAO) and RSD measurements using three 

classes of galaxies used to directly trace the density field, together 

with a high redshift quasar sample (du Mas des Bourboux et al. 

2020 ) that allows Lyman- α forest measurements at redshifts z > 

2.1. We use the Luminous Red Galaxy (LRG) sample from Data 

Release 16 (Ahumada et al. 2020 ) to make RSD measurements 

at z ∼ 0.7 including small-scale information. Standard BAO and 

RSD measurements made with this sample on larger scales only are 

presented in Bautista et al. ( 2021 ), Gil-Mar ́ın et al. ( 2020 ), together 

with a test of their methodology using mock catalogues in Rossi et al. 

( 2021 ). At intermediate redshifts, eBOSS probes the Universe using 

samples of emission line galaxies (Tamone et al. 2020 ; de Mattia 

et al. 2021 ; Raichoor et al. 2021 ) and quasars (Lyke et al. 2020 ; 

Neveux et al. 2020 ; Ross et al. 2020 ; Smith et al. 2020 ; Hou et al. 

2021 ) as direct tracers of the density field lower redshifts. We do 

not analyse these data, focusing instead on the easier to model LRG 

sample. The cosmological interpretation of the BAO and RSD results 

from all eBOSS samples was presented in Alam et al. ( 2021 ). 

Pushing the modelling to include small scales in our analysis is 

made possible by two key advances in methodology since the Reid 

et al. ( 2014 ) analysis. First, we use the AEMULUS emulator (Zhai 

et al. 2019 ) to create accurate models of the redshift-space correlation 

function moments to small scales (see Section 3.3 ). To correct for 

fibre-collisions, we use the P airwise Inv erse Probability (PIP) method 

(Bianchi & Perci v al 2017 ; Perci v al & Bianchi 2017 ), as described 

in Section 3.2 . Together, these advances mean that we can now both 

make and model accurate clustering measurements from the eBOSS 

LRG sample, fitting the correlation function to small scales. 

Our paper is structured as follows: the eBOSS LRG sample is 

described in Section 2 , and the method for measuring and fitting the 

correlation functions in Section 3 . In Section 4 , we perform various 

tests of the method using mock catalogues. We present our results 

in Section 5 , and discuss their significance in Section 6 . Finally, we 

summarize our results in Section 7 . 

2  EBOSS  L R G  SAMPLE  

The eBOSS LRG target sample was selected (Prakash et al. 2016 ) 

from SDSS DR13 photometry (Albareti et al. 2017 ), together with in- 

frared observations from the WISE satellite (Lang, Hogg & Schlegel 

2016 ). LRG targets were selected o v er 7500 de g 2 , and observ ed using 

the BOSS spectrographs (Smee et al. 2013 ) mounted on the 2.5-m 

Sloan telescope (Gunn et al. 2006 ). 

In order to measure clustering we quantify the sample mask, de- 

tailing where we could observe galaxies, using the random catalogue 

with 50 times more points than galaxies as described in Ross et al. 

( 2020 ). Regions with bad photometric properties, that are close to 

higher priority targets, or near the centrepost region of the plates are 

masked, removing 17 per cent of the initial footprint. Redshifts for 

the randoms were sampled from those of the galaxies. 

Redshifts were measured from the resulting spectra using the 

REDR OCK algorithm. 1 REDR OCK fits the data with templates derived 

from principal component analysis of SDSS data, followed by a 

redshift refinement procedure that uses stellar population models. We 

are unable to obtain a reliable redshift estimate from many spectra 

(3.5 per cent on average across the survey), with a failure fraction with 

systematic angular variations. We therefore apply a weight w noz as 

described in Ross et al. ( 2020 ) to galaxies to remo v e these variations, 

calculated as a function of position of the fibre on the detector and 

the signal to noise of that set of observations. 

Systematic variations in the density of galaxies caused by varia- 

tions in the photometric data used for target selection are mitigated by 

applying weights w sys to the galaxies. These were computed using a 

multilinear regression on the observed relations between the angular 

o v erdensities of galaxies versus stellar density, seeing and galactic 

1 Available at github.com/desihub/redrock
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Figure 1. Redshift distribution of the eBOSS DR16 (red dash-dotted line), 

CMASS DR12 (blue dashed line), and the joint eBOSS + CMASS sample 

(black thick line, see Section 5.7 for details), optimized using w FKP weights. 

extinction. As we are interested primarily in small-scales, the exact 

correction is not important. Additional weights w FKP that optimize 

the signal, which varies because the density varies across the sample 

(Feldman, Kaiser & Peacock 1994 ), are also included (Fig. 1 ). 

A fibre could not be placed on 4 per cent of the LRG targets 

due to fibre-collisions: when a group of two or more galaxies are 

closer than 62 arcsec, they cannot all receive a fibre because of 

hardware limitations. We use PIP weights w 
PIP together with angular 

upweighting (Bianchi & Perci v al 2017 ; Perci v al & Bianchi 2017 ) 

to correct for this effect, as described in Mohammad et al. ( 2020 ), 

and Section 3.2 . The final combined weight applied to the galaxies 

is defined as w 
tot = w 

noz w 
sys w 

FKP , and we also use w 
PIP applied to 

pairs. 

The eBOSS sample of LRGs o v erlaps in area and redshift range 

with the high-redshift tail of the BOSS CMASS sample. Unlike many 

other eBOSS analyses including the large-scale measurements of 

BAO and RSD (Gil-Mar ́ın et al. 2020 ; Bautista et al. 2021 ), we do not 

combine the eBOSS LRG sample with all the z > 0.6 BOSS CMASS 

galaxies. We focus on the eBOSS sample to simplify the correction 

of the small-scale fibre assignment: fibre assignment was performed 

separately for BOSS and eBOSS using different configurations of 

the SDSS tiling code. 

We define the ef fecti ve redshift of our sample as the weighted 

mean redshift of galaxy pairs 

z eff = 
� m>n w 

PIP 
mn w 

tot 
n w 

tot 
n ( z m + z n ) / 2 

� m>n w PIP 
mn w tot 

m w tot 
n 

, (1) 

where the indices m , n are o v er the objects in the data catalogue, and 

the description of the weights is given in Section 3.2 . Additionally, 

we only include galaxy pairs which have a separation between 

0 . 1 –60 h 
−1 Mpc , the scales used in our measurement. The ef fecti ve 

redshift we obtain for our sample is z = 0.737, and an ef fecti ve 

comoving volume of 1 . 28 Gpc 3 (Ross et al. 2020 ). 

3  M E T H O D S  

3.1 Measurements 

We measure and model the observed galaxy clustering in redshift 

space using the two-point correlation function as calculated using 

the least-bias and least-variance Landy–Szalay estimator (Landy & 

Szalay 1993 ) 

ξ ( s ) = 
D D ( s ) − 2 D R ( s ) 

RR ( s ) 
+ 1 , (2) 

with DD , DR, and RR being the data–data, data–random, and 

random–random pair counts at a given separation s . To reduce the 

impact of shot noise on the measured ξ from the random catalogue, 

we use a number of random points N = 50 times the number of 

galaxies in the DR16 sample. The difference in the number of 

galaxies and randoms is accounted for by normalizing the pair counts 

in equation ( 2 ) to the total number of distinct pairs. 

The modelling of the 3D correlation function in equation ( 2 ) is 

complicated by the large number of separation bins. Indeed, this 

requires a very large number of surv e y realizations to estimate 

the data covariance matrix. We follow the standard technique of 

compressing the information contained in the full 3D correlation 

function ξ ( s ) . In particular, we fit our model to the projected 

correlation function w p ( r p ) and the first two even multipole moments 

ξ � of the redshift space correlation function. 

The halo-occupation properties of a given sample affect its 

intrinsic clustering. Classically, this effect is modelled using the 

projected correlation function w p ( r p ) that is expected to be free of 

the apparent RSD effects. The projected correlation function w p ( r p ) 

is estimated through 

w p 

(

r p 
)

= 2 

∫ 
πmax 

0 

ξ s ( r p , π)d π, (3) 

where r p and π are the normal and parallel to the los components 

of the pair separation s . We limit the integral in equation ( 3 ) to 

a maximum los separation of πmax = 80 h 
−1 Mpc , matching the 

definiton in the model to be fitted to these data (Zhai et al. 2019 ). 

Redshift-space distortions change the apparent positions of targets 

in the radial direction with respect to those in real-space. RSD are 

classically measured and modelled in the multipole moments ξ � of 

the redshift-space correlation function ξ s ( r p , π ). Multipole moments 

ξ � are defined as 

ξ� ( s) = ( 2 � + 1 ) 

∫ 1 

0 

ξ s ( s, μ) L � ( μ)d μ, (4) 

with s = | s | and μ = π / s is the cosine of the angle between the 

los direction and the pair separation vector s and L � is the � -order 

Legendre polynomial. 

We bin r p and s in nine logarithmically spaced bins between 

0 . 1 –60 h 
−1 Mpc , matching the output of AEMULUS predictions for 

w p ( r p ) and ξ � , while the los separation π and μ are binned using 

linear bins of width 
 π = 1 h 
−1 Mpc and 
μ = 0.1. Given the 

discrete binning of different variables, we estimate the integrals in 

equations ( 3 ) and ( 4 ) as Riemann sums. 

3.2 PIP correction 

In eBOSS spectroscopic observations, fibre-collisions occur when- 

ever two targets are closer than θ ( fc ) = 62 ′′ on the sky. While a 

fraction of such collisions are resolved thanks to multiple passes 

of the instruments in small chunks of the surv e y, fibre-collisions in 

single passes remain unresolved and correlate with the underlying 

target density. If not properly corrected, missed targets due to fibre- 

collisions can systematically bias the measured two-point correlation 

function on small scales. In the large-scale analysis of the eBOSS 

LRG sample (Bautista et al. 2021 ) fibre-collisions are accounted for 

by means of the nearest-neighbour (NN) weighting that is quantified 

through the weight w cp . 
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In this work, we replace the standard NN correction for fibre- 

collisions with a more rigorous P airwise-Inv erse-Probability (PIP) 

weighting (see Bianchi & Perci v al 2017 , for a discussion about 

inverse-probability estimators). The PIP weights are assigned to pairs 

of objects in the targeted sample and quantify the probability, for 

any pair, of being targeted in a random realization of the survey 

targeting. Under the assumption that no pair has zero probability 

of being observed, applying the PIP weighting provides statistically 

unbiased estimates of the two-point correlation function. The selec- 

tion probabilities are characteristic of the particular fibre assignment 

algorithm used to select targets from a parent photometric sample 

for the spectroscopic follow-up. Therefore, these probabilities are 

extremely difficult to model analytically except for some simple 

targeting strategies. We infer the selection probabilities by generating 

multiple replicas of the surv e y target selection. Details on how 

these surv e y realizations are built are provided in Mohammad et al. 

( 2020 ). Given a set of survey realizations, the inverse probability, or 

equi v alently the PIP weight w mn , is simply the number of realizations 

in which a given pair could have been targeted divided by the number 

of times it was targeted. The individual-inverse-probability (IIP) w m 

are the single-object counterparts of the PIP weights, i.e. the inverse- 

probability for a given object m of being targeted in a random survey 

realization. 

PIP weighting assumes that all pairs have a non-zero chance of 

being observed. Ho we ver, in eBOSS pairs with separation smaller 

than the fibre-collision scale θ ( fc ) are missed in single-pass areas in all 

surv e y realizations. These pairs produce a systematic underestima- 

tion in the measured two-point correlation function. For the eBOSS 

LRG sample, the systematic bias is confined at transverse scales 

smaller than r ( fc ) p ∼ 0 . 7 h 
−1 Mpc in w p ( r p ) while it spreads to larger 

separations s in the multipole moments ξ � . Truncated multipoles ˆ ξ ( � ) 

were proposed in Reid et al. ( 2014 ) and Mohammad et al. ( 2016 ) 

to remo v e transv erse scales r p < r ( fc ) p from the measured multipole 

moments, resulting in a loss of information at scales smaller than 

r ( fc ) p . Alternatively, the angular up-weighting outlined in Percival & 

Bianchi ( 2017 ) can be used to de-bias the measurements at smaller 

scales. The angular up-weighting relies on the assumption that pairs 

missed due to fibre-collisions in the single pass of the instrument are 

statistically equi v alent to those targeted in the multiple-pass areas. 

The combined PIP and angular up-weighting (PIP + ANG) is 

D D ( � s ) = 

∑ 

� x m −� x n ≈� s 
� u m ·� u n ≈cos θ

w 
PIP 
mn w 

tot 
m w 

tot 
n ×

DD par ( θ ) 

D D 
PIP 
fib ( θ ) 

, 

D R ( � s ) = 

∑ 

� x m −� y n ≈� s 
� u m ·� v n ≈cos θ

w 
IIP 
m w 

tot 
m w 

tot 
n ×

DR par ( θ ) 

D R 
IIP 
fib ( θ ) 

, 

(5) 

where w 
tot = w 

sys w 
noz w 

FKP , and w 
PIP 
mn and w 

IIP 
m are PIP and IIP 

weights, respectively. The fractions on the right-hand side in equa- 

tion ( 5 ) are the angular weights for DD and DR pair counts. An 

e xtensiv e description of different terms in equation ( 5 ) is given in 

Mohammad et al. ( 2020 ). 

Mohammad et al. ( 2020 ) e xtensiv ely tested the effectiveness of the 

method of PIP + ANG weighting using a sample of 100 Ef fecti ve 

Zel’dovich mocks (EZmocks, Zhao et al. 2021 ) designed to match 

the eBOSS LRG sample. The mean of the corrected measurements 

was compared to the mean of the true clustering of the mocks for ξ 0 , 

ξ 2 , and w p o v er a separation range of 0 . 1 –100 h 
−1 Mpc (see figs 9 

and 12 of Mohammad et al. 2020 ). The PIP + ANG correction was 

able to reco v er the clustering of the parent sample to within 1 σ of 

the error on the mean at all measurement scales for ξ 0 , and ξ 2 and all 

scales of w p except for the fibre-collision scale, where the corrected 

measurements reco v ered the true clustering to within the error on 

a single mock. We can therefore be confident that the PIP + ANG 

correction to the eBOSS LRG sample produces unbiased results to 

within the statistical uncertainty of our sample on all scales. 

3.3 AEMULUS cosmological emulator 

We compare our measurements to the AEMULUS cosmological emula- 

tor (Zhai et al. 2019 ) predictions for ξ 0 , ξ 2 , and w p for a galaxy sample 

in a universe with variable cosmological and galaxy-halo connection 

parameters. The AEMULUS emulator applies Gaussian process based 

machine learning to a training set of 40 N -body simulations and 

that use a latin hypercube to optimally sample a wCDM parameter 

space spanning the approximate 4 σ range of the Planck (Planck 

Collaboration 2020b ) or WMAP (Hinshaw et al. 2013 ) results 

(DeRose et al. 2019 ). A halo occupation distribution model (HOD) 

is used to connect a galaxy sample to the dark matter haloes. 

Unlike some galaxy clustering analyses, our emulator does not model 

ξ 4 , since it is considerably noisier than ξ 0 and ξ 2 . The emulator 

prediction would likely be noise dominated for ξ 4 , and would require 

adding more training complexity without a commensurate increase in 

cosmological information. In their measurement of f σ 8 from small- 

scale clustering within the BOSS LOWZ sample, Lange et al. ( 2022 ) 

found that excluding ξ 4 from their analysis of ξ 0 and ξ 2 did not 

produce a significant change in the best-fitting value or uncertainty. 

AEMULUS allows for a flat wCDM described by seven parameters: 

�M , �b , σ 8 , h , n s , w, and N eff . For our analysis, we limit the 

cosmological parameter space by fixing N eff = 3.046 and w = −1, 

since these parameters are not well constrained by our measurements 

b ut ha ve been well measured by other probes, resulting in a five 

parameter flat � CDM cosmology. The HOD model used by the 

AEMULUS allocates a Poisson sampling of N ( M ) galaxies to haloes 

of mass M , split into central galaxies and satellites following 

〈 N ( M) 〉 = N cen ( M) + N sat ( M) , (6) 

N cen ( M) = 
f max 

2 

[

1 + erf 

(

log 10 M − log 10 M min 

σlog M 

)]

, (7) 

N sat ( M) = 

(

M 

M sat 

)α

exp 

(

−
M cut 

M 

)

N cen ( M) 

f max 
, (8) 

where the free parameters fit by the emulator are f max , σ log M , log M sat , 

α, log M cut . Briefly, σ log M defines the width of the transition from 

a mean occupation of 0–1 for centrals, M sat is the typical mass 

for haloes to host one satellite, α is the power-law index for the 

mass dependence of the satellite occupation, and M cut gives an 

exponential cutoff to the satellite occupation at low mass. M min sets 

the transition point of the central occupation, and is fixed in the 

emulator to match the number density of the sample. By matching 

the number density, we ensure the correct linear bias, thus reducing 

the de generac y between the HOD parameters and the growth rate in 

the correlation function measurements. Because of this choice, we 

do not use the number density as an observable in our analysis. f max 

is a new parameter that we add to AEMULUS to address a possible 

inconsistency between the model and data. eBOSS was targeted 

using colour and magnitude cuts (Prakash et al. 2016 ) so it is not a 

complete sample, whereas the HOD model assumes that all galaxies 

are included in the sample. This is especially concerning for eBOSS 

since targets were selected using a lower magnitude limit in the i band 

to a v oid o v erlap with the CMASS LRG sample (see fig. 1 of Zhai 

et al. 2017 ). f max controls the fraction of centrals that are included 

in the sample, i.e. a value of f max < 1 means that the very massive 
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haloes do not necessarily host a eBOSS LRG at the centre. While 

these targeting cuts would be expected to affect the completeness of 

both centrals and satellites, for satellites f max is completely degenerate 

with M 
−α
sat (see similar discussion in Lange et al. 2022 ). Since these 

HOD parameters are primarily nuisance parameters in our constraint 

of the growth rate, we do not apply f max to the satellites. In Section 4.2 , 

we perform a series of tests to determine the effect of excluding f max 

on the measured f σ 8 . 

The emulator also allows three additional parameters that control 

how galaxies are distributed in their host haloes: c vir , v bc , and v bs 

(labelled ηcon , ηvc , and ηversus in Zhai et al. 2019 ). c vir is the ratio 

between the concentration parameters of the satellites to the host halo 

where the halo is assumed to have a Navarro–Frenk–White (NFW) 

profile (Navarro, Frenk & White 1996 ). v bc and v bs are the velocity 

biases of centrals and satellites respectively, where σ gal = v gal σ halo 

and σ halo is the velocity dispersion of the halo calculated from its 

mass. Finally, the AEMULUS emulator uses a 15th parameter, γ f , 

which rescales all halo bulk velocities in the simulation. The galaxy 

velocity can therefore be thought of as the sum of two components: 

a component equal to the bulk motion of the host halo scaled by γ f , 

and a randomly directed component that depends on the halo mass 

through the velocity dispersion and that is scaled by either v bc or v bs 

for centrals and satellites, respectiv ely. F or a detailed description of 

the AEMULUS correlation function parameters see Zhai et al. ( 2019 ). 

See Section 3.7 for a description of how we treat these parameters in 

our fit. 

The original AEMULUS emulator was trained to match a BOSS 

CMASS-like sample at z = 0.57 and space density n = 

4.2 × 10 −4 [ h −1 Mpc] −3 . Ho we ver, our eBOSS sample is at an 

ef fecti ve redshift of z = 0.737 and peak number density of n = 

9 × 10 −5 . The difference in number density is particularly worrying, 

since a less dense sample will preferentially fill more massive haloes. 

The result will be a sample with a larger linear bias, which is 

degenerate with the growth rate in clustering measurements. In 

order to ensure an unbiased result, we rebuild the emulator from 

the original simulations, but using the z = 0.7 simulation time-slice 

and adjusting HOD parameters, especially M min , to match the eBOSS 

number density. The training ranges for the new emulator are given 

in Table 1 . 

3.4 Interpr eting gr owth rate measurements 

As shown in Reid et al. ( 2014 ), which used a similar parametrization 

to measure RSD from their simulations, in the linear regime a 

fractional change in γ f is proportional to a fractional change in f , 

such that f = γ f f � CDM , where f � CDM is the linear growth rate for a flat 

� CDM cosmology specified by the model parameters. Ho we ver, the 

link between the linear velocity power spectrum amplitude and the 

non-linear regime is possibly scale dependent i.e. a linear response 

on large scales might not necessarily lead to a linear response on 

small scales. γ f is introduced in the simulations as a scaling of all 

velocities by the same amount and so γ f also scales the non-linear 

velocities of haloes. In this case, γ f still provides a consistency test 

with the amplitude of the velocity field expected in a � CDM universe 

with the model cosmology, where γ f = 1 indicates agreement, but it 

no longer necessarily gives a pure rescaling of the linear growth rate. 

For models that do have such a linear response, then the measurement 

of γ f o v er the full range of scales can be used to constrain the linear 

gro wth rate. Ho we ver, as this is model dependent, we conserv ati vely 

separate the contributions of the linear and non-linear regime in 

presenting our results (as described in Section 4.1 ). 

Table 1. All model parameters divided into cosmological and HOD parame- 

ters, with the training range used by the AEMULUS emulator and the prior range 

used in the MCMC fit. Prior ranges were chosen to be slightly larger than 

the original training ranges, except where excluded by the physical meaning 

of the parameter, in order to be able to identify if the fit converges outside 

of the training range. The purpose of this extended range is only to more 

easily identify a prior dominated fit, since the emulator is not expected to 

produce accurate clustering outside of the training range. Instead, it would 

regress to the mean prediction. The exception is log M cut , where the prior 

excludes the lower part of training range since log M cut ceases to have any 

impact on the halo occupation if it is below log M min . This is the case for the 

eBOSS LRG sample, so log M cut is poorly constrained. Ho we ver, we found 

the chains tended to pile up at the lower end of the training range, which 

gave the misleading impression that the data strongly preferred the lowest 

possible value, although it had no effect on the cosmological constraints. For 

that reason, we set a more reasonable lower limit on log M sat for our sample. 

Parameter Training range Prior range 

�m [0.255, 0.353] [0.225, 0.375] 

�b h 
2 [0.039, 0.062] [0.005, 0.1] 

σ 8 [0.575, 0.964] [0.5, 1] 

h [0.612, 0.748] [0.58, 0.78] 

n s [0.928, 0.997] [0.8, 1.2] 

N eff [2.62, 4.28] 3.046 

w [–1.40, –0.57] –1 

log M sat [14.0, 16.0] [13.8, 16.2] 

α [0.2, 2.0] [0.1, 2.2] 

log M cut [10.0, 13.7] [11.5, 14] 

σ log M [0.1, 1.6] [0.08, 1.7] 

v bc [0, 0.7] [0, 0.85] 

v bs [0.2, 2.0] [0.1, 2.2] 

c vir [0.2, 2.0] [0.1, 2.2] 

γ f [0.5, 1.5] [0.25, 1.75] 

f max [0.1, 1] [0.1, 1] 

Although the AEMULUS code uses γ f to adjust the RSD amplitude 

in the model, the RSD are sensitive to the parameter combination 

f σ 8 . We therefore present our large-scale results in terms of f σ 8 = 

γ f f � CDM σ 8 , which is used in the remainder of the paper and the 

abstract. It is also important to note that we calculate f � CDM σ 8 from 

the model cosmology according to linear theory, rather than the 

value that would be obtained from the power spectrum on scales 

corresponding to 0 . 1 –60 h 
−1 Mpc . Thus, the value of f σ 8 we present 

is the value expected from linear theory for our model, and is directly 

comparable to measurements made on larger scales. Ho we ver, care 

should be taken when using the resulting measurements of f σ 8 to 

constrain models where the other parameters deviate significantly 

from flat � CDM and general relativity ( � CDM + GR, hereafter 

used interchangeably with � CDM). A problem inherent in many 

cosmological measurements and all previous RSD measurements 

is that one assumes various features of a particular model, here flat 

� CDM, in order to make the measurements. To test a different model, 

one should strictly have to perform a new fit including all properties 

of that model. This does not affect the validity of our measurement as 

a test of consistency with � CDM within the parameter space of the 

emulator, or as an indication of how the RSD measurements compare 

to those from other surv e ys. 

3.5 Co v ariance matrix 

Clustering measurements in different separation bins are correlated, 

and we need an estimate of the covariance matrix when fitting a 

model to the observations. Mock surv e ys, either based on the output 
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Figure 2. The footprint of the eBOSS LRG clustering catalogue with our jackknife regions. The blue points show the North Galactic Cap (NGC) observations, 

while the orange points show the South Galactic Cap (SGC) observations. It should be noted that the square jackknife regions all have approximately equal area 

on the sky, ho we ver due to the distortion of projecting a sphere on to a plane, the regions at larger declination appear wider in this plot. 

of N -body simulations or approximate methods, have been widely 

used to estimate the data covariance matrix. However, in order to 

work on small scales, we would need a large number of simulations 

that accurately reproduce the small-scale clustering – a difficult task. 

In order to generate a covariance matrix that reflects the small-scale 

clustering of our sample, we instead use jackknife sampling. We 

split our surv e y footprint into equal area squares on the sky using 

right ascension (RA) and declination (Dec.) cuts. This method relies 

on the clustering of the sample being uncorrelated with position 

in the surv e y. Furthermore, because we e xpect the co variance to 

follow a simple volume scaling, we remo v e the squares with the 

smallest occupation as determined from the random catalogue o v er 

the surv e y footprint, so that each region included will contribute 

approximately the same statistical weight to the sampling (Fig. 2 ). 

Since the measurements from each sample are normalized, it is not 

necessary that they contain identical numbers of objects, ho we ver 

selecting regions in this way reduces variance from regions at the 

edge of the surv e y which are only partially filled or have peculiar 

geometries. The missing area is included in the final calculation by 

means of a volume-weighted correction. 

For the objects in our data and random catalogues that are located 

within one of the 200 accepted regions, we store a region identifica- 

tion number. We then recalculate the monopole and quadrupole of 

the 3D correlation function and projected correlation function for this 

reduced sample 200 times, excluding one region from the calculation 

each time. We include the full PIP + ANG weighting scheme in these 

calculations, so that the variance in the PIP + ANG weights is 

included in the jackknife estimation. The covariance matrix is then 

estimated from this jackknife sampling using 

C i,j = 
n − 1 

n 

n 
∑ 

k 

(

ξi,k − ξ̄i 

) (

ξj,k − ξ̄j 

)

, (9) 

where the i , j indices are o v er the elements of the data vector, n = 200 

is the number of jackknife regions, and k is an index over the jackknife 

realizations. 

In order to more easily visualize the correlations between bins, we 

calculate the correlation matrix by 

R i,j = 
C i,j 

( C i,i C j,j ) 1 / 2 
. (10) 

The correlation matrix is highly diagonal, which is expected since 

we have a small number of widely separated bins, which are only 

expected to be weakly correlated. In order to reduce the noise 

in the off-diagonal terms, we smooth the correlation matrix using 

diagonally adjacent bins. Each off-diagonal element is assigned the 

average of itself and the two adjacent diagonal elements, excluding 

bins from other measurements. The result of this diagonal smoothing 

is shown in Fig. 3 . 

In addition to the data error, we include the emulator error in the 

covariance matrix. The emulator error is calculated as a fractional 

error on each correlation function bin using a sample of test HOD 

parameter sets which are selected from the same parameter ranges 

as the training sample, but were not used in the training (Zhai et al. 

2019 ). The fractional error is converted to an absolute error, σ E , by 

multiplying by the correlation function measurements from the data. 

The total variance for each measurement bin is then calculated from 

σ 2 
T = σ 2 

D + σ 2 
E . In order to preserve the structure of the jackknife 

covariance matrix, we convert the smoothed correlation matrix back 

to the covariance matrix using C i,i = σ 2 
T ,i . The contributions of the 

data and emulator errors to the total error are shown in Fig. 4 . 

The data error is dominant in the region s < 5 h 
−1 Mpc for the 

monopole and projected correlation function, while the emulator 

error is comparable for s > 5 h 
−1 Mpc and across the full separation 

range of the quadrupole. 

We also correct the inverse covariance matrix according to Hartlap, 

Simon & Schneider ( 2007 ), using 

ˆ C 
−1 

= 
n − p − 2 

n − 1 
C 

−1 , (11) 

where n = 200 is the number of jackknife regions, and p = 

27 is the number of combined bins in our three measurements. 

Although n should properly be the number of completely independent 
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Figure 3. Comparison of the unsmoothed and smoothed correlation matrices. 

The upper diagonal elements correspond to the unsmoothed jackknife 

correlation matrix, while the lower diagonal elements show the result of 

our diagonal smoothing method. 

measurements (Eifler, Kilbinger & Schneider 2008 ; Krause et al. 

2013 ), we follow Reid et al. ( 2014 ) in using the number of regions, 

noting that this correction may therefore underestimate the true size 

of the ef fect. Ho we ver, this factor has very little effect on our final 

fit, as well as not changing the best-fitting value. 

3.6 AP scaling 

Although we fit the AEMULUS correlation function predictions 

directly to our measurements from the data, our results are still 

affected by the Alcock–Paczynski (AP) effect (Alcock & Paczynski 

1979 ), because we convert the data redshift to distance assuming a 

fixed fiducial cosmological model. We therefore need to scale the 

separations between model and data to account for the difference 

in comoving distance between our fiducial cosmology and the 

cosmology of the model. We apply the standard AP scaling from 

Bautista et al. ( 2021 ) to each model, first defining the perpendicular 

and parallel dilation factors 

α⊥ = 
D M ( z eff ) 

D 
fid 
M ( z eff ) 

, α‖ = 
D H ( z eff ) 

D 
fid 
H ( z eff ) 

, (12) 

where D M is the comoving angular diameter distance, D H is Hubble 

distance. We then scale the multipole moments of the correlation 

function as follows 

ξfid 
0 

(

r fid 
)

= ξ0 ( αr) + 
2 

5 
ε

[

3 ξ2 ( αr) + 
d ξ2 ( αr) 

d ln ( r) 

]

, (13) 

ξfid 
2 

(

r fid 
)

= 

(

1 + 
6 

7 
ε

)

ξ2 ( αr) + 2 ε
d ξ0 ( αr) 

d ln ( r) 
+ 

4 

7 
ε

d ξ2 ( αr) 

d ln ( r) 
. (14) 

where α = α
1 / 3 
‖ α

2 / 3 
⊥ and ε = ( α� / α⊥ ) 

1/3 − 1. Once we have shifted 

the model, we used a cubic spline interpolation to reco v er the model 

values at the fiducial separations used to calculate the data values. 

The projected correlation function was calculated similarly using 

the scaling 

w 
fid 
p 

(

r fid 
p 

)

= w p ( α⊥ r p ) . (15) 

The accuracy of this method depends, in part, on the width of the 

bins used due to the calculation of the deri v ati ve and the interpolation 

between points. In order to assess the importance of these factors, 

we perform an additional fit to the data without the AP correction. 

See Section 5.6 for details. 

3.7 Exploring the likelihood 

We assume our correlation function measurements are drawn from 

a multi v ariate Gaussian distribution, and use uniform priors for 

all model parameters, given in Table 1 . We explore the posterior 

surface for the fit between data and the AEMULUS correlation function 

predictions using a Markov chain Monte Carlo (MCMC) sampler 

within the Cobaya 2 framework (Torrado & Lewis 2021 ). We include 

the full AEMULUS HOD parameter space in our fit, ho we ver, we limit 

the wCDM cosmological parameter space by fixing N eff = 3.046 

and w = −1, since these parameters are not well constrained by our 

measurements but have been well measured by other probes. 

A concern for our small-scale analysis is that the separation range 

we use lacks a distinctive feature with a known scale to constrain 

the cosmological parameters, such as the BAO bump in large- 

scale analyses. Consequently, we consider a number of additional 

cosmological priors in order to set an accurate cosmology for our 

analyses. To begin with, we apply a uniform prior on the cosmological 

parameters based on the distance in 7D cosmological parameter 

space between the chain point and the cosmologies of the AEMULUS 

simulations used to train the emulator. If the distance is abo v e a 

certain threshold the proposed step is forbidden, thus restricting the 

parameter space to the region which is well sampled by the training 

data, rather than the full uniform prior range given in Table 1 . In 

practice, the main impact of the training prior is to add the restriction 

σ 8 > 0.65, since there is only one training cosmology with σ 8 below 

that range. 

We also consider jointly fitting our data with the Planck 2018 

TT,TE,EE and lensing likelihoods (Planck Collaboration 2020a , c ) 

using the CAMB cosmological Boltzmann code (Lewis, Challinor & 

Lasenby 2000 ; Howlett et al. 2012 ), which constrain the cosmolog- 

ical parameters that control the shape of the power spectrum. It is 

important to note that γ f is treated as a free parameter in addition 

to the standard cosmological parameters, and is only constrained by 

RSD as measured from the eBOSS data. In effect, it represents a 

consistency check between the large-scale structure and CMB data: 

if these are consistent, we expect that γ f is close to one. We further 

consider three cases of the joint eBOSS and Planck fit. The first is a 

simple joint fit, where all of the cosmological parameters, including 

σ 8 , and jointly fit by both the eBOSS clustering measurements 

through AEMULUS and the Planck likelihoods, while the HOD 

parameters and γ f are fit solely by the clustering measurements. The 

second is similar, except we explicitly account for the slight redshift 

offset between the emulator ( z = 0.7) and the data ( z = 0.737). The 

emulator takes all cosmological parameters at z = 0, so the shape of 

the linear power spectrum will be identical between the cosmology 

described by the Planck likelihoods and the emulator, ho we ver there 

will be a difference in amplitude due to the slight redshift offset. 

2 Cobaya, a co de for bay esian a nalysis in cosmology, is the PYTHON successor 

to CosmoMC. Users are able to use the same MCMC sampler as CosmoMC 

(Lewis & Bridle 2002 ; Lewis 2013 ) in a PYTHON framework, while allowing 

access to likelihoods from many major cosmological datasets. The sampler 

is tailored for parameter spaces with a speed hierarchy and implements the 

‘fast dragging’ procedure described in Neal ( 2005 ). See https://cobaya.readt 

hedocs.io for details. 
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Figure 4. The contributions of the data error calculated through jackknife sampling (green), the emulator error (orange), and total error (blue), for the monopole, 

quadrupole, and projected correlation function (left- to right-hand panel). 

Therefore, we adjust the value of σ 8 given to AEMULUS as follows 

σ8 ,Aem = σ8 ( z = 0) ×
D( z = 0 . 737) 

D( z = 0) 
×

D( z = 0) 

D( z = 0 . 7) 
. (16) 

This makes sure that the normalization of the AEMULUS output 

matches that expected at z = 0.737 in the cosmology being tested: 

the first ratio corrects from z = 0 to 0.737 in the cosmology being 

tested, and the second ratio corrects from z = 0.7 to 0, where the 

normalization is defined by AEMULUS . Thirdly, we consider a joint 

fit where the Planck likelihoods are used to constrain all of the 

cosmological parameters except for σ 8 , which is fit solely by the 

clustering data. We test the robustness of our results to the inclusion 

of the training prior and the Planck likelihoods through these three 

methods in Section 5.3 . Based on the results of these tests we use the 

training prior but not the Planck likelihoods for our fiducial analysis. 

4  RO BU STNESS  A N D  SYSTEMATIC  E R RO R  

C H E C K S  

In this section, we explore the robustness of our model in general and 

to several possible sources of systematic error in particular. We begin 

by assessing the impact of non-linear velocities on our measurements, 

and what information is included from different scales. We then 

perform a general check of our method by fitting to measurements 

made on a mock catalogue. Finally, we check the impact of the two 

possible discrepancies between our model and the data, the effects of 

galaxy selection on the completeness of the HOD model, and redshift 

uncertainty. 

4.1 Contribution of non-linear velocities 

In Section 3.4 , we introduced the key parameter of our measurement, 

γ f , and described its significance on linear and non-linear scales. In 

order to identify the transition between these regimes, we examine 

how the emulator prediction changes for various values of γ f , shown 

in Fig. 5 . For the three largest bins, varying γ f produces an almost 

constant relative change in the monopole, with a larger growth rate 

giving a larger clustering amplitude, as expected from linear theory. 

In the middle three bins, the effect on the monopole changes signs as 

the quasi-linear regime transitions to the non-linear regime, where the 

random virial motions of the haloes begin to dominate and increasing 

γ f , which rescales all halo v elocities, be gins to damp the clustering. 

In the three smallest bins, the effect of γ f on the monopole begins 

to decrease as the one-halo term begins to dominate. Because γ f 

affects only the halo velocities, and in our HOD formalism, we 

do not assign galaxies based on subhalos, varying γ f has no effect 

on the one-halo term. Moti v ated by this result, we divide our nine 

measurement bins into three groups of three bins, with individual 

ranges of 0 . 1 –0 . 8 h 
−1 Mpc , 0 . 8 –7 h 

−1 Mpc , and 7 –60 h 
−1 Mpc . These 

three ranges correspond roughly to the strongly non-linear regime 

where the one-halo term is dominant, the transition between the 

non-linear and quasi-linear regimes, and the quasi-linear regime. 

We therefore restrict our measurement of f σ 8 to the quasi-linear 

regime, where γ f can be interpreted as a rescaling of the linear 

growth rate. For measurements performed over the full separation 

range, we instead use γ f as a test of � CDM, where a deviation from 

γ f = 1 indicates that the velocity field of the data as parametrized 

by our emulator model is in disagreement with the expectation from 

� CDM. 

4.2 Galaxy selection and the HOD model 

As described in Section 3.3 , we add an additional parameter f max to 

the emulator compared to previous uses that controls the maximum 

occupation fraction of central galaxies in the HOD framework, in 

order to address the incompleteness of the eBOSS LRG sample 

due to target selection. We test the necessity of this addition 

and the effect on the clustering using a series of HOD mock 

galaxy catalogues. We constructed these mocks from the Uchuu 3 

simulation. Briefly, Uchuu is a (2000 h 
−1 Mpc ) 3 , 12800 3 particle 

simulation using the Planck2015 cosmology and a mass resolution of 

m p = 3 . 27 × 10 8 h 
−1 M 
. We construct the mocks from the z = 0.7 

slice, using the halotools 4 (Hearin et al. 2017 ) PYTHON package 

and an HOD parametrization identical to that outlined in Section 3.3 . 

We constructed mocks using σ log M , log M sat , α, and log M cut from 

five randomly selected test HOD parameter sets in AEMULUS , with 

log M min tuned to give n = 1 × 10 −4 . The AEMULUS test HOD sets 

are themselves randomly selected from the uniform training range 

given in Table 1 , but were not used in training the emulator. In all 

mocks, we kept the additional parameters v bc = 0, v bs = 1, c vir = 

1, and γ f = 1 fixed to their simplest, no scaling values. For each of 

the five HOD parameter sets, we then constructed five mocks with 

f max = [0.2, 0.4, 0.6, 0.8, 1.0], for a total of 25 mocks. 

We fit these 25 HOD mocks using two emulators: one matching 

the original AEMULUS HOD model that is equi v alent to fixing f max = 

3 http://skiesanduniver ses.or g/Simulations/Uchuu/
4 https:// halotools.readthedocs.io/en/ latest/ 
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Figure 5. The effect on the emulator prediction of varying γ f for the monopole (left-hand panel), quadrupole (centre hand panel), and projected correlation 

function (right-hand panel). All other parameters are kept fixed at reasonable values for the baseline eBOSS fit. Upper panels: Direct comparison of the 

predictions, ranging from low γ f (blue) to high γ f (red). Lower panels: Relative difference to the γ f = 1 prediction. 

Figure 6. Performance of emulators with fixed or variable f max on HOD mocks constructed with varying f max . The left-hand panel shows the results from an 

emulator built with the original AEMULUS parameter set, which is equi v alent to f max = 1. The right-hand panel shows the results from the emulator used in our 

analysis with variable f max . Both emulators were built to match the eBOSS redshift and number density. The horizontal line shows the expected value of γ f used 

to construct the mocks. Points are shifted slightly along the x -axis to a v oid o v erlap. 

1, and the full emulator with variable f max . Both emulators were 

built to match the eBOSS redshift and number density, as described 

in Section 3.3 . The γ f constraints on the HOD mocks from both 

emulators are shown in Fig. 6 , where the expected value is γ f = 1 

by the construction of the mocks. It should be noted that all of the 

mocks were constructed using the same halo catalogue from a single 

simulation box at a particular cosmology, so it is unsurprising that 

the constraints do not scatter evenly above and below γ f = 1, since 

they are not fully independent. The key points to notice are that the 

variable f max emulator is able to reco v er the e xpected value of γ f 

within the uncertainty o v er the full f max range, and shows no trend in 

f max . Conv ersely, the fix ed f max emulator shows a clear bias in γ f for 

f max ≤ 0.6. This result matches what we would theoretically expect 

for model which o v erestimates the f max value of the sample. If the 

mismatch is small, there is not a significant change in the galaxy bias 

of the sample, ho we ver if f max is significantly overestimated then the 

model prediction has a larger galaxy bias, b , than the sample, which 

is compensated by a lower growth rate since the amplitude of the 

linear clustering scales as fb 2 . 

4.3 Redshift uncertainty 

Another area of concern where the emulation based model may not 

accurately reflect the data is the effect of redshift uncertainties. As 

shown in Fig. 2 of Ross et al. ( 2020 ), the eBOSS LRG sample has 

a redshift uncertainty that is well approximated by a Gaussian with 

mean μ = 1 . 3 km s −1 and standard deviation σ = 91 . 8 km s −1 . 

On average, this means that each redshift is wrong by an absolute 

offset of 65 . 6 km s −1 . To first order this gives a Gaussian random 

velocity shift for all targets, which acts to damp the clustering of the 

multipoles on small scales. The parameters v bc and v bs , which control 

the velocity dispersion of centrals and satellites, respectively, should 

be able to mimic much of this effect in the model without affecting 

the constraints on other parameters. Ho we ver, since γ f scales all 
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Figure 7. A histogram of the shifts in the measured cosmological parameters 

for 25 HOD mocks with and without a random velocity dispersion matching 

the eBOSS redshift uncertainty. Blue bars show the shift in γ f measured o v er 

the full separation range, and orange bars show the shift in f σ 8 measured 

from the quasi-linear scales only. The x -axis shows the difference between 

the value measured for the mock with a random velocity dispersion ( zerr ) 

and the value measured from the same mock without the additional velocity 

dispersion, divided by the uncertainty of the measurement from the zerr 

mock. Coloured dashed lines show the mean shift for each case. For the fit 

o v er 0 . 1 –60 h −1 Mpc , including a random velocity dispersion not represented 

in the model increased the measured value of γ f for all 25 mocks, with a 

mean shift slightly larger than half of the statistical uncertainty . Conversely , 

for the fit o v er 7 –60 h −1 Mpc , the shifts from including a random velocity 

dispersion scatter around 0, with a mean shift that is negligible compared to 

the statistical error. 

halo velocities in the simulation, on non-linear scales where the halo 

velocities are virialized, γ f has a similar effect on the clustering 

as the redshift uncertainty, v bc and v bs . In addition, v bc and v bs are 

both calculated by scaling the virial dispersion of the host halo, so 

the galaxy velocities derived in the model have a mass dependence 

which is not reflected in the redshift uncertainty. The result is that the 

redshift uncertainty may bias the reco v ered value of γ f on non-linear 

scales, with an unmodelled redshift uncertainty giving a larger than 

expected value of γ f . 

We test the effect of the redshift uncertainty on the γ f and f σ 8 

constraints using a second set of HOD mocks, constructed in the 

same way as those described in Section 4.2 . We selected 25 new 

AEMULUS test HOD parameter sets and generated HOD catalogues 

using halotools . We then calculated the clustering with and 

without a random velocity shift along the los drawn from a Gaussian 

with mean μ = 1 . 3 km s −1 and standard deviation σ = 91 . 8 km s −1 . 

The change in the measured values of γ f from the full separation 

range and f σ 8 from the quasi-linear scales only (matching the method 

used for our baseline results) due to the inclusion of the random 

velocity shift are shown in Fig. 7 . For all 25 mocks, including a 

random velocity shift increased the value of γ f measured from the 

full separation range, with an average shift slightly greater than half 

the statistical uncertainty. The larger value of γ f measured due to 

the random velocity shift matches our theoretical expectation for the 

de generac y between γ f and the redshift uncertainty on non-linear 

scales, and the magnitude of the shift indicates that the redshift 

uncertainty is a significant concern when fitting to the non-linear 

scales. On the other hand, the shifts in the measured value of f σ 8 

scatter around 0, with a mean shift o v er an order of magnitude 

smaller than the statistical uncertainty. This result also agrees with 

what is expected for our model, since on quasi-linear scales the 

redshift uncertainty is not degenerate with a change in γ f , and instead 

will change only v bc and v bs . Therefore, the redshift uncertainty is 

not a concern for our value of f σ 8 measured from the quasi-linear 

scales. 

There are several barriers to including a correction for the redshift 

uncertainty in the model. Most significantly, the redshift uncertainty 

grows with redshift (see fig. 6 of Bolton et al. 2012 for BOSS redshift 

evolution), while the emulator is constructed from catalogues at a 

single redshift slice. The evolution with redshift is also important 

because the eBOSS LRG targeting cuts were made using the apparent 

magnitudes of the targets, so properties of the sample such as the 

mean mass will also evolve weakly with redshift and correlate with 

the growth of the redshift uncertainty. The result is that including the 

redshift uncertainty in the model may not be as simple as drawing 

from a uniform velocity shift, and would require more detailed testing 

and corrections. The effect of redshift uncertainty could instead be 

included as an additional systematic error or shift in our measured 

v alues. Ho we ver, it is important to note that for every mock tested, 

the inclusion of redshift uncertainty (without it being present in the 

model) increased the measured value of γ f , because on the non- 

linear scales where the redshift uncertainty is the most significant, it 

is degenerate with the larger random motions of the haloes provided 

by a larger value of γ f . In Section 5 , we consistently measure values 

of γ f that are below the value expected from � CDM + Planck2018, 

so the presence of redshift uncertainty is actually expected to increase 

this tension rather than lowering it. We therefore take the conserv ati ve 

approach of excluding a shift in our measurements due to the redshift 

uncertainty, even though it would be expected to increase the tension 

shown by our measurements, and leave a complete treatment of the 

redshift uncertainty to future work. 

4.4 SHAM mocks 

We test the robustness of our model and analysis pipeline using 

a subhalo abundance matching (SHAM) mock generated from the 

Uchuu simulation. By using a SHAM mock rather than a HOD mock, 

we remo v e the dependence on the specific galaxy-halo connection 

model used in our analysis, providing the best approximation to a 

model independent test. If our analysis is able to correctly reco v er 

the expected value of γ f = 1 for the SHAM mock, then we can 

be confident it will be able to match the data, even if there are 

deviations from the specific functional form of the galaxy–halo 

connection model described in Section 3.3 . We use the z = 0.7 

slice of the simulation to construct a SHAM mock using the peak 

halo velocity, V peak , with a scatter of 0.2 dex, and a number density of 

n = 1 × 10 −4 in order to match the eBOSS LRG number density and 

redshift. 

The result of our fit to the SHAM mock is shown in Fig. 8 . The 

primary purpose of the Uchuu SHAM mock test is to assess the 

robustness of the cosmological parameter reco v ery using our HOD 

based emulator, so we have only included the parameters which have 

the greatest impact on the γ f constraint. The constraints on all of 

the cosmological parameters are in good agreement with the known 

values from the simulation, and the 1D marginalized constraint on 

γ f is γ f = 0.964 ± 0.049, which agrees to within 1 −σ with the 

kno wn v alue of γ f = 1 for the mock. All well constrained HOD 

parameters converge within the training parameter space indicating 

that the emulator is able to accurately model the clustering of the 

mock, despite the mock being constructed using a different galaxy–

halo connection. This result shows that are analysis pipeline and 

model provide robust constraints on the growth rate. 
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Figure 8. Two dimensional and one dimensional marginalized constraints 

of the key parameters from the fit to an Uchuu SHAM mock matching the 

eBOSS LRG number density and redshift. Dotted lines show the values of 

the cosmological parameters from the simulation. 

5  RESULTS  

In this section, we present the results of our fit to the small-scale 

LRG clustering. We also investigate the robustness of our results by 

testing the inclusion of additional constraints on the cosmological 

parameters, examining how the constraints change depending on 

which scales and measurements are included in the analysis, the effect 

of covariance matrix smoothing on the measured parameters, and 

consistency with the constraints from a combined CMASS + eBOSS 

sample. 

5.1 Headline results 

We fit the eBOSS LRG monopole, quadrupole, and projected corre- 

lation function o v er scales 0 . 1 < r < 60 h 
−1 Mpc using the Cobaya 

MCMC sampler. We restrict the cosmological parameter space using 

the AEMULUS training prior described in Section 3.7 , but do not 

include an y e xternal data. We obtain a value of γ f = 0.767 ± 0.052, 

4.5 σ below what would be expected in a � CDM + GR universe. 

The 1D and 2D likelihood contours of the full parameter set are 

shown in Fig. 9 . All well constrained parameters are within the 

prior ranges described in Table 1 , and the parameters that are most 

impactful for our results, �m , σ 8 , v bc , and γ f , all show roughly 

Gaussian constraints. The best-fitting values of the cosmological 

parameters other than γ f are consistent with recent measurements 

from the Planck Collaboration (Planck Collaboration 2020b ). The 

best-fit model prediction is plotted relative to the data in Fig. 10 , 

showing reasonable agreement within the measurement uncertainty 

on all scales. The best-fitting prediction has χ2 = 14.1, with 14 

degrees of freedom and 27 data points, indicating a good fit. In 

addition, we consider a fit o v er only the quasi-linear scales of our 

measurements, 7 –60 h 
−1 Mpc as described in Section 4.1 , from which 

we obtain a value of f σ 8 ( z = 0.737) = 0.408 ± 0.038. This value 

is 1.4 σ below what is expected from the 2018 Planck data for a flat 

� CDM universe, and is a factor of 1.7 improvement in statistical 

error o v er the more standard large-scale analysis of the same data 

set. See Section 5.4 for more details. 

5.2 Testing the quasi-linear scales for o v erfitting 

One concern for our fit to the quasi-linear scales is that by reducing 

the separation range to 7 –60 h 
−1 Mpc , we are fitting nine data points 

with a 14 free parameter model. Ho we ver, it is important to note that 

many of the HOD parameters have a negligible effect on these scales. 

In particular, the three parameters that control the satellite occupation 

(log M sat , α, log M cut ) and the three parameters that control the 

positions of galaxies in the haloes ( v bc , v bs , c vir ) hav e v ery little 

impact and are almost entirely constrained by the 0 . 1 –7 h 
−1 Mpc 

bins. Therefore, while there are 14 free parameters in the model, 

only eight are significant when fitting to the nine bins of the quasi- 

linear scales. While this provides a theoretical explanation for why 

the quasi-linear scales will not be o v erfit, our fit o v er the scales 

7 –60 h 
−1 Mpc has a minimum χ2 = 0.36 (Table 2 ), indicating that the 

small scale HOD parameters may still be causing some o v erfitting. 

To test if this o v erfitting affects our results, we perform additional 

fits o v er the 7 –60 h 
−1 Mpc separation range with the predominantly 

small scale HOD parameters fixed to their best-fitting values from 

the fit o v er the full 0 . 1 –60 h 
−1 Mpc separation range. In the first 

additional fit we keep the six parameters listed abo v e fix ed, leaving 

eight parameters ( �m , �b h 
2 , σ 8 , h , n s , σ log M , γ f , f max ) free. In the 

second fit, we also keep σ log M and f max fixed to their best-fitting values 

from the full fit, allowing only the six cosmological parameters to 

vary. The γ f constraints from these fits are shown in Table 2 and 

Fig. 11 . The results of both fits show that reducing the parameter 

space increases the precision of the γ f constraint without significantly 

shifting the central value, while increasing the minimum χ2 . We 

conclude that allowing the small scale HOD parameters to be free 

does lead to the quasi-linear scales being o v erfit, ho we ver, it does 

not bias our cosmological constraints and instead only increases 

the uncertainty. Fixing these HOD parameters would increase the 

precision of our measurement from the quasi-linear scales, but it 

would also introduce an indirect dependence on the non-linear scales. 

We therefore take the conserv ati ve choice of using the measurement 

with all 14 parameters free as our baseline result. Ho we ver, this 

test does show the value of including the non-linear scales in a 

measurement of the linear growth rate. 

5.3 Testing the impact of the cosmological priors 

We consider a number of prior constraints on the cosmological 

parameters, as described in Section 3.7 . The three most significant 

cases are a uniform prior as described in Table 1 , a uniform prior 

that restricts the cosmological parameters to be within the volume 

that is well sampled by the training simulations, and a joint fit with 

Planck2018 likelihoods with a scaled value of σ 8 to account for the 

redshift difference between the data and the model. The constraints 

on the key parameters for these three prior choices are shown in 

Fig. 12 . The parameter that is most significantly impacted by the 

prior choice is σ 8 , with all three methods giving consistent values 

but with large differences in precision. However, the constraint on 

f σ 8 is almost unchanged for all prior choices. This result clearly 

shows the robustness of the f σ 8 fit from the data, and demonstrates 

the freedom of the model where changes in σ 8 can be balanced by 

γ f . It is also important to note that because the uncertainty on f σ 8 

is dominated by the uncertainty of γ f that the training prior and the 

joint fit with Planck achieve almost the same precision on f σ 8 , despite 
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Figure 9. One dimensional and two dimensional contours of the parameters used in our baseline fit, as well as the derived constraints on γ f f σ 8 . 

having comparable constraints on γ f but a significant difference in 

precision on σ 8 . 

The effect of the three treatments of σ 8 for the joint Planck fit 

described in Section 3.7 can be found in Table 2 . Using the same 

value of σ 8 for the Planck chains and model, scaling to account 

for the redshift offset, or excluding the Planck constraints on σ 8 all 

gi ve consistent v alues for the gro wth rate, again demonstrating the 

robustness of the fit. 

5.4 Testing the dependence on the data fitted 

In order to test the consistency of the constraint on γ f from the 

different regimes described in Section 4.1 , we fit to the full non- 

linear regime (0 . 1 –7 h 
−1 Mpc ), the weakly non-linear and quasi- 

linear regimes (0 . 8 –60 h 
−1 Mpc ), and the quasi-linear regime only 

(7 –60 h 
−1 Mpc ). One dimensional and two dimensional contours in 

the v bc − γ f parameter space for these three fits are shown in the left- 

hand panel of Fig. 13 . There is little variation in the other parameters 

between these fits to dif ferent scales, ho we ver some important insight 

is gained from e xamining the v bc − γ f de generac y since both 

parameters have a similar effect on the clustering in the non-linear 

regime. The fits to smaller scales yield larger and more precise values 

of v bc , while obtaining smaller and less precise constraints on γ f . The 

full fit to all scales is located at the intersection in v bc − γ f space 

of the small and larger scale fits. The result is that there is mild 

tension between the constraints on small and large scales, although 

the significance when considering the combined uncertainty is less 
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Figure 10. Comparison of the best-fitting model predictions to the data several fit to the eBOSS LRG sample for the monopole (left-hand panel), quadrupole 

(centre panel) and projected correlation function (right-hand panel). Upper panels: the baseline fit (blue), fixed γ f = 1 fit (orange), and v bc = 0 fit (green), 

with the data and measurement uncertainty (black). Lower panels: The difference between the best-fitting models and the data divided by the measurement 

uncertainty. The 1 − σ region is shown in grey. 

Table 2. γ f constraints with statistical errors calculated from the width of 

the 1D marginalized posterior and χ2 values for the fits used in our analysis. 

N P gives the number of free model parameters in the fit and N D gives the 

number of data points. ∗The eBOSS + Planck18 runs jointly fit 5 of the 14 

parameters with Planck, so they are not fully independent. 

Run γ f N P N D χ2 

0 . 1 –60 h −1 Mpc 0.767 ± 0.052 14 27 14.1 

0 . 1 –7 h −1 Mpc 0.71 ± 0.14 14 18 7.8 

0 . 8 –60 h −1 Mpc 0.783 ± 0.066 14 18 4.2 

7 –60 h −1 Mpc 0.854 ± 0.083 14 9 0.36 

7 –60 h −1 Mpc , eight parameters 0.821 ± 0.064 8 9 0.74 

7 –60 h −1 Mpc , six parameters 0.802 ± 0.050 6 9 1.8 

ξ0 + ξ2 0.819 ± 0.073 14 18 5.0 

ξ0 + w p 0.65 ± 0.11 14 18 5.4 

γ f = 1 1 13 27 28.0 

v bc = 0 0.958 ± 0.088 13 27 22.5 

f max = 1 0.764 ± 0.051 13 27 16.6 

Unsmoothed covariance matrix 0.767 ± 0.052 14 27 14.3 

Scaled mock covariance matrix 0.766 ± 0.059 14 27 12.0 

No training prior 0.85 ± 0.12 14 27 12.1 

eBOSS + Planck18 0.784 ± 0.048 14 ∗ 27 18.5 

eBOSS + Planck18 scaled σ 8 0.798 ± 0.047 14 ∗ 27 19.1 

eBOSS + Planck18 free σ 8 0.766 ± 0.053 14 ∗ 27 18.0 

No AP scaling 0.772 ± 0.053 14 27 14.5 

than 1 − σ . It is worth recalling that since γ f rescales all halo 

velocities in the simulation, in the linear regime it can be used to 

derive a constraint on the linear growth rate f σ 8 , in the non-linear it 

also enhances the effects of non-linear growth. So the fit to the small- 

scales is really a consistency check between the data and model with 

� CDM, and these results showing that there is a strong tension which 

is most significant in the non-linear regime. 

The fit to the quasi-linear scales only does not show the same 

de generac y between v bc and γ f since they no longer have the same 

effect on the clustering, and is broadly consistent with any value of 

Figure 11. γ f constraints from all the runs listed in Table 2 . The blue point 

shows the baseline fit to the full separation range, extended by the blue dashed 

line for comparison to other points. The red point shows the fit to the quasi- 

linear scales only. The black dashed line shows γ f = 1 for comparison, the 

value expected if the amplitude of the halo velocity field matches the � CDM 

expectation. 

v bc since it ceases to be impactful on such large scales. Ho we ver, 

the large scale fit is still able to reco v er a relativ ely tight constraint 

on γ f that can be compared directly to the linear growth rate, giving 

a measurement f σ 8 = 0.408 ± 0.038, which is 1.4 σ lower than the 

value expected from the 2018 Planck data for a flat � CDM model. 

We also examine the effect of excluding certain measurements 

from the fit. In the right-hand panel of Fig. 13 , we show the constraints 

in v bc − γ f parameter space from the joint fit to only the monopole and 
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Figure 12. One dimensional and two dimensional contours of the key 

fit parameters for the fit to the eBOSS LRG sample with no additional 

cosmological constraints (orange), restricted by the AEMULUS training prior 

(blue), and jointly fit with the Planck2018 likelihoods (green). 

projected correlation function, and the joint fit to the multipoles only. 

The multipole only fit is less sensitive to the degeneracy between v bc 

and γ f , but prefers a smaller value of v bc and larger γ f compared to the 

full fit. On the other hand, the joint fit of the monopole and projected 

correlation function, which contain similar clustering information but 

are sensitive and insensitive to the effects of RSD respectively, prefer 

a non-zero value of v bc with much greater confidence, compensated 

by a low but less well constrained value of γ f . As with the fits to 

different scales, the full fit lies in the o v erlap re gion produced by the 

dif ferent sensiti vities of these measurements. 

5.5 Testing the dependence on the co v ariance matrix 

We test the robustness of our covariance matrix smoothing by 

fitting to the unsmoothed covariance matrix and a scaled version 

of the covariance matrix estimated from 1000 EZmocks. These 

mocks are constructed to match the clustering of the eBOSS DR16 

samples on mildly non-linear and linear scales, but are not matched 

on small-scales, where the mocks e xhibit v ery different clustering 

from the data. EZmocks are based on a Gaussian random field 

in a 5 h 
−3 Gpc 3 box and an initial power spectrum and geometry 

of a flat � CDM cosmology with parameters �m = 0.307115, 

�b = 0.048206, h = 0.6777, σ 8 = 0.8225, n s = 0.9611. Matter 

particles are displaced from their initial to final positions using 

the Zel’dovich approximation. Tracer bias relation is calibrated to 

match the observed clustering of the target sample in the eBOSS 

DR16 data. The linear component of the redshift-space distortions is 

imprinted using Zel’dovich approximation while the non-linear term 

is modelled through an isotropic Gaussian motion. Mocks are then 

trimmed to match the geometry and radial selection function of the 

eBOSS DR16 LRG catalogue. The unscaled mock covariance matrix 

displays a similar correlation structure to the covariance matrix 

calculated from applying jackknife to the data, ho we ver because the 

clustering of the mocks on scales below ∼ 1 h 
−1 Mpc is significantly 

lower than the data, the mock covariance matrix underestimates the 

variance on those scales. To bring the mock covariance matrix into 

better agreement we calculate the correlation matrix from the mocks, 

and then convert the correlation matrix to the covariance matrix by 

scaling the original diagonal values of the mock covariance matrix 

according to 

σ
M,s 
i,i = σM 

i,i 

ξD 
i 

ξ̄M 
i 

, (17) 

where ξD is the correlation function from the data and ξ̄M is the 

mean correlation function from the 1000 EZmocks. This scaling 

preserves the original correlation structure and σ ( ξ )/ ξ ratio of the 

mock covariance matrix, but adjusts for the higher clustering of the 

data. Ho we ver, this method results in a very large variance for the 

quadrupole bins because the the mean quadrupole of the mocks goes 

to 0 on small scales. In order to prevent this artificial inflation of the 

quadrupole bins, we instead use σ
M,s 
i,i = σD 

i,i for the quadrupole. 

The results of the fits using this scaled mock covariance matrix and 

the original unsmoothed jackknife covariance are shown in Table 2 . 

The constraints in both cases are nearly identical to our baseline fit 

using the smoothed jackknife covariance matrix, indicating that our 

analysis is robust to the choice of covariance matrix. 

5.6 Testing the dependence on AP correction 

We test the dependence of our result on the AP correction by running 

a full fit excluding the AP correction. The constraint on γ f from this 

fit can be seen in Table 2 and Fig. 11 . Excluding the AP correction 

has a negligible effect on the constraint on γ f and slightly increases 

the best-fitting χ2 . We therefore conclude that any uncertainty in the 

AP correction due to the large bin width and approximate calculation 

will not have a significant effect on our cosmological constraints. 

5.7 Including the BOSS CMASS data 

We test the reliability of our fit using a combined CMASS + eBOSS 

sample in the redshift range 0.6 ≤ z ≤ 0.8. In particular, in our 

analysis we use the CMASS sample from the DR12 data release. The 

CMASS DR12 catalogue co v ers an area of 9376 de g 2 o v er a redshift 

range of 0.4 < z < 0.8 (Reid et al. 2016 ) with a target density of 

99 . 5 deg −2 . The target selection is calibrated to provide a sample of 

galaxies with approximately constant stellar mass o v er the spanned 

redshift range. We refer the reader to Reid et al. ( 2016 ) for a detailed 

description of the target selection and properties for CMASS sample. 

In order to perform a joint measurement of the two-point correlation 

function using the eBOSS and CMASS catalogues, we restrict the 

two samples (and the corresponding random catalogues) only to the 

area of the sky where they overlap and to the redshift range of 0.6 

< z < 0.8. The redshift distributions of the two samples as well as 

their joint distribution are shown in Fig. 1 . 

The advantage of this sample is that it is more complete due to 

the complimentary nature of the CMASS and eBOSS colour cuts. 

Ho we ver, the inclusion of the additional CMASS objects skews the 

redshift distribution of the sample, which is not ideal for an HOD- 

based analysis where the galaxy–halo connection parameters are 

implicitly assumed to be the same across the full redshift range of 

the sample, and several are dependent on the density of galaxies. 

As such, we use our combined CMASS + eBOSS measurement to 

provide a consistency check with our fit, particularly our assumption 

that the target selection of eBOSS does not affect our measurement, 

but we continue to use the eBOSS only constraint as our fiducial 

measurement. 
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Figure 13. Two dimensional and one dimensional marginalized constraints on v bc and γ f for fits to different scales and measurements. Left-hand panel: 

constraints from the three largest separation bins (orange), six largest separation bins (green), six smallest separation bins (red), and all nine separation bins 

(blue) for all three measurements. The dotted line shows γ f = 1, the value expected if the amplitude of the halo velocity field matches the expectation from 

� CDM. Right-hand panel: constraints from the joint fit to the monopole and projected correlation function (orange), monopole and quadrupole (green), and all 

three measurements (blue). 

To correct fibre-collisions in the CMASS sample, we use a mod- 

ified version of the NN upweighting with completeness correction, 

designated CP, as described in section 2.3 of Mohammad et al. 

( 2020 ), and the standard angular upweighting method described in 

Section 3.2 . For the eBOSS LRG sample, the CP correction was 

found to perform similarly to the PIP only result on all scales of w p , 

ξ 0 , and ξ 2 (see figs 15 and 18 of Mohammad et al. 2020 ). Given 

the similarities in sample type and targeting between CMASS and 

eBOSS, it is reasonable to expect a similar result for CMASS. When 

combined with angular upweighting, any systematic bias is expected 

to be below the statistical uncertainty of the measurement. Since 

our primary goal in analyzing the combined CMASS + eBOSS 

sample is as a consistency check, this correction is sufficient for our 

purposes. 

Fig. 14 shows the result of our fit compared to the eBOSS 

only fit in the most important parameters of our analysis for 

both the full emulator range and the quasi-linear scales only. The 

CMASS + eBOSS measurement is consistent with the eBOSS 

only measurement in all parameters, although there is a greater 

preference for larger f max values, as expected. It is interesting to 

note that in the fit o v er the full emulator range the inclusion 

of the CMASS data does not affect our γ f constraint, including 

not reducing the 1D marginalized uncertainty. Ho we ver, there are 

several reasons why including additional data may not reduce 1D 

marginalized constraints. First, the additional data may reduce the 

allowed parameter space in 14 dimensions without affecting the 1D 

constraints on a specific parameter. Additionally, the uncertainty in 

our measurement is limited by the emulator accuracy in several bins, 

notably the quadrupole and the large scale bins of the monopole and 

w p , so a reduction of measurement uncertainty in these bins will 

not be reflected in the fit. Finally, the constraint on γ f seems to rely 

on the complimentary constraining of different scales and probes 

on parameter combinations such as v bc and γ f (Fig. 13 ). The fit to 

CMASS + eBOSS has slightly less tension between the small and 

large scales than the eBOSS only measurement, so the o v erlap re gion 

remains the same size even though the uncertainty from separated 

scales has been reduced. This can be seen in the fit to the quasi- 

linear scales, where the combined CMASS + eBOSS sample gives 

a constraint of f σ 8 = 0.384 ± 0.036. This constraint is consistent 

with the eBOSS only measurement from the quasi-linear scales, but 

because it is slightly lower, it is in less tension with the fit o v er the 

full separation range. 

6  DI SCUSSI ON  

6.1 Comparison to other measurements 

We compare our result to other measurements of f σ 8 from galaxy 

clustering surv e ys in Fig. 15 . Taken as a whole sample, there is 

clearly good consistency with the � CDM prediction. For the eBOSS 

LRGs, Bautista et al. ( 2021 ) analyzed pairs with separations between 

25 –130 h 
−1 Mpc , and obtained measurements of f σ 8 = 0.446 ± 0.066 

and 0.420 ± 0.065 depending on the RSD model used in the analysis 

(see Table B1 of Bautista et al. 2021 ). Our measurement is consistent 

with these results at around the 1 − σ level, but has a factor of 1.7 

impro v ement in the statistical error. Our measurement also continues 

the trend of galaxy clustering measurements of f σ 8 falling slightly 

below the prediction from observations of the CMB. 

In Fig. 15 , we also compare our results to other attempts to measure 

f σ 8 on small scales. Reid et al. ( 2014 ) used a similar parametrization 

as our analysis to measure f σ 8 from the small-scale clustering of 

the BOSS CMASS sample, and achieved the highest precision to 

date. Ho we ver, due to the difficulty of modelling the non-linear 

regime Reid et al. ( 2014 ) used a fixed cosmology, which has been 

shown by Zhai et al. ( 2019 ) to significantly reduce the uncertainty. 

Conversely, Lange et al. ( 2022 ) use a novel modelling method in 

their analysis of the BOSS LOWZ sample that does not require an 

emulator. It should also be noted that their model does not include 
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Figure 14. Two dimensional and one dimensional marginalized constraints of the key parameters of our fit for our fiducial eBOSS measurement (blue) and 

combined CMASS + eBOSS sample (orange). The two plots show (a) the fit o v er the full emulator range, and (b) the fit to the quasi-linear scales only. 

Figure 15. f σ 8 measurements from various SDSS samples. The blue points show the results of the standard large-scale analyses from the SDSS MGS (Howlett 

et al. 2015 ), BOSS galaxies (Alam et al. 2017 ), CMASS + eBOSS LRGs, eBOSS LRGs (Bautista et al. 2021 ), eBOSS ELGs (de Mattia et al. 2021 ), and eBOSS 

quasars (Neveux et al. 2020 ). Our small-scale analysis of the eBOSS LRGs using only the quasi-linear regimes is shown in red. Empty coloured points show 

the results of small-scale analyses from the BOSS LOWZ sample (Lange et al. 2022 , green) and BOSS CMASS sample (Reid et al. 2014 , yellow) that included 

non-linear scales in the analysis. The black line shows the expected value of f σ 8 for a flat � CDM universe with the best-fitting Planck2018 cosmology. The 

large-scale eBOSS LRG result is shifted in the x -axis to a v oid o v erlap with the small-scale result from this work. 

an equi v alent of our γ f parameter that allo ws the linear gro wth rate 

to change independently of the � CDM cosmology. Both of these 

analyses have split in linear and non-linear regimes differently than 

our analysis, which significantly affects the claimed uncertainty. By 

restricting our measurement of f σ 8 to only the quasi-linear scales, 

our uncertainty increases by a factor of ∼1.5 compared to our fit 

o v er the full 0 . 1 –60 h 
−1 Mpc separation range, ho we ver, we can be 

confident that what we are measuring is purely the linear growth 

rate, and so can be directly compared to other more standard large- 

scale measurements. As shown in Sections 5.1 and 5.4 , using the full 

separation range significantly increases the tension with the result 

expect for � CDM, with the non-linear scales in greater disagreement 

with the expected value than the quasi-linear scales, however it is no 

longer clear if this tension arises from a discrepancy in the linear 

growth rate or a difference in the non-linear velocity field measured 

in the data using the emulator model. 
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It is interesting to note that Lange et al. ( 2022 ) found a similar de- 

pendence on the measurement scales, with smaller scales preferring 

a smaller value of f σ 8 . Lange et al. ( 2022 ) also found that adding 

the projected correlation function to their fiducial measurement 

of the monopole, quadrupole, and hexadecapole reduced the best- 

fitting value of their lower redshift sample by 1 − σ , but did 

not significantly affect the measurement from their higher redshift 

sample. Differences between the two analysis methods mean it 

is expected that there would be some variation in the impact of 

the different measurements and scales between our results. This is 

particularly true since Lange et al. ( 2022 ) do not include a parameter 

comparable to our γ f , given the importance of w p in breaking the v bc 

− γ f de generac y in our analysis. 

6.2 Galaxy–halo connection parameters 

The parameter found to be most degenerate with our γ f constraint 

is v bc , the scaling of the velocity dispersion of centrals in the HOD 

framework (Fig. 9 ). A lower value of v bc corresponds to a larger γ f , 

as expected in the non-linear regime since both parameters increase 

the observ ed v elocity dispersion of galaxies (see Section 4.3 ). Our 

fit o v er the full 0 . 1 –60 h 
−1 Mpc separation range strongly prefers a 

non-zero v bc and low γ f . However, our fit to the quasi-linear regime 

finds no discernible de generac y between v bc and γ f and reco v ers 

both a relatively large value of γ f and non-zero value of v bc , although 

the constraint on v bc is weak to the small impact it has on those 

scales (Fig. 13 ). This result indicates that the de generac y between 

v bc and f σ 8 may illustrate the degree to which the non-linear scales 

affect the o v erall constraint. Lange et al. ( 2022 ) also find a strong 

de generac y between the velocity scaling of central galaxies and 

their constraint on f σ 8 , with their higher redshift sample yielding 

v bc > 0 and low f σ 8 compared to the � CDM prediction. Reid et al. 

( 2014 ) elected to fix the velocity of centrals to match that of the host 

halo, and find closer agreement with the � CDM expectation, which 

we also find when using a fixed v bc = 0. v bc > 0 indicates that a 

central galaxy is in motion relative to the centre of the host halo, 

either because the central galaxy is oscillating in the potential or 

because the system is not fully relaxed. Understanding the physical 

processes that would lead to this effect, especially if the process is 

redshift dependent, will be important for future analyses. 

We also investigate the dependence of our measurement on the f max 

parameter. Due to the strong de generac y between σ log M and f max , our 

fit to the data is broadly consistent with a wide range of values for 

f max between 0.2 and 1, ho we ver there is a large peak at f max = 0.25. 

A lo w v alue of f max is not surprising for the eBOSS sample gi ven the 

magnitude and colour cuts made when selecting the target sample, 

particularly since the highest magnitude objects were remo v ed. We 

do not find a de generac y with f σ 8 , so the lack of constraint on σ log M 

and f max is not expected to bias our measurement. 

Numerical simulations have shown that the clustering of dark 

matter haloes can depend on properties other than halo mass, a.k.a 

halo assembly bias (Sheth & Tormen 2004 ; Gao, Springel & White 

2005 ; Harker et al. 2006 ; Wechsler et al. 2006 ; Obuljen, Dalal & 

Perci v al 2019 ). This bias can propagate into the distribution of 

galaxies that live in these haloes and thus introduce additional bias 

in the clustering measurement. In the analysis of BOSS galaxies 

o v er a wider redshift range Zhai et al. ( 2022 ), we enhance the basic 

HOD approach used here with an assembly bias model depending 

on the environment of dark matter haloes. Although the results of 

that analysis imply the mild existence of assembly bias, there is a 

negligible impact on the cosmological constraint and measurement 

of structure growth rate. Therefore, we exclude explicit modelling of 

assembly bias in this paper. 

6.3 Comparison to tension from lensing sur v eys 

It is interesting to note that we obtain a lower value of f σ 8 than 

expected from Planck measurements, given the current σ 8 -tension 

between Planck and weak lensing surv e ys and the low amplitude 

of the g alaxy–g alaxy lensing amplitude measured using the BOSS 

CMASS sample by Leauthaud et al. ( 2017 ), since both tensions 

could be resolved by a lo wer v alue of σ 8 than that measured by 

Planck. To see approximately how our result might relate to this 

tension, we compare the constraints on S 8 = σ 8 ( �M /0.3) 0.5 for 

the DES Y1 results (Abbott et al. 2018 ), Planck 2018 (Planck 

Collaboration 2020b ), and our results (Fig. 16 ). The left-hand panel 

shows our measurement using the full separation range, while the 

right-hand panel shows our measurement from the quasi-linear scales 

only. Our constraint, shown as the blue contour, is consistent with 

both the DES Y1 and Planck results in both cases. Ho we ver, it is 

important to note that our low value of f σ 8 comes almost entirely 

from γ f < 1, which reduces the magnitude of peculiar velocities 

in the simulation without affecting the amplitude of fluctuations, 

σ 8 . If the low value of f σ 8 we measure was due to the value 

of σ 8 instead then the constraint would shift down the S 8 axis, 

shown as a green contour. For our measurement from the quasi- 

linear scales this shift maintains consistency with both DES Y1 and 

Planck 2018, ho we ver for our fit to all scales this shift puts the 

green constraint in tension with the Planck results, and in more mild 

disagreement with the DES results. This result may indicate that the 

increased tension we find from the non-linear scales may be caused 

by an issue with the HOD model, rather than a purely cosmological 

tension. 

6.4 Emulator robustness and potential impro v ements 

We have performed rigorous tests of the emulator performance (see 

Section 4 ), and found that the model performs well when fit to 

an independent simulation and galaxy–halo connection prescription. 

We also find that a model that assumes all central galaxies are 

observed leads to a systematic bias in the recovered cosmological 

parameters if the actual fractional occupation of centrals is lower 

than 0.6. We correct this bias by adding the parameter f max to 

the emulator, and verify that the full emulator gives an unbiased 

measurement for 0.2 < f max < 1.0. We also identify the redshift 

uncertainty as a source of systematic bias on non-linear scales, 

with a redshift uncertainty missing from the model leading to an 

offset in γ f to larger values by more than half of the statistical 

error for the eBOSS sample. This is a significant concern for 

future small-scale analyses, and will require careful attention due 

to the difficulties in implementing a redshift dependent effect in 

a model constructed at a single redshift. The redshift uncertainty 

has also been found to scale with redshift, so it will be an even 

greater concern for future large surv e ys at high redshift such as 

DESI (DESI Collaboration 2016a , b ) and Euclid (Laureijs et al. 

2011 ). 

Our measurement of the clustering within the eBOSS LRG 

sample also meets or exceeds the emulator precision in several 

of the measurement bins (see Fig. 4 ), showing the importance of 

improving the model precision for future surv e ys. This must be 

balanced against ensuring there are sufficient bins to yield a well 

defined fit, given the number of model parameters (see Section 5.2 ). 

Finally, careful attention must be given to the non-linear scales, and 

identifying what information can be used to constrain the linear 

growth rate. A key aspect includes ensuring the performance of the 

HOD model on these scales, and investigating the effect of baryonic 

physics. 
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Figure 16. Two dimensional and one dimensional marginalized constraints on �m and S 8 from our analysis (blue), the Dark Energy Surv e y (DES) year 1 

results (Abbott et al. 2018 ) (orange) and Planck 2018 results (Planck Collaboration 2020a , c ) (red). Since our low value of f σ 8 mostly comes from γ f , we also 

plot γ f S 8 (green) for our fit, which shows the constraint we would have if the low value of f σ 8 came entirely from the σ 8 value. Left-hand panel: results of our 

full fit to all scales. Right-hand panel: results from only the quasi-linear scales used to constrain the linear growth rate. 

7  SUMMARY  

We have measured the growth rate of structure from the small-scale 

clustering of the eBOSS LRG sample corrected by PIP weights 

and modelled using the AEMULUS cosmological emulator. Using 

the quasi-linear scales of our measurement range, we obtain a 

measurement of f σ 8 ( z = 0.737) = 0.408 ± 0.038, which is 1.4 σ

lower than the value expected from 2018 Planck data for a flat 

� CDM model. Our measurement is a significant impro v ement o v er 

more standard measurements made using only the large-scale modes, 

achie ving a le vel of precision that is 1.7 times better than the large- 

scale analysis of the same sample. Using the full separation range 

of our measurement, we find a 4.5 σ tension in the amplitude of 

the halo velocity field with the expectation for a � CDM universe. 

This tension is driven by the non-linear scales of our analysis and 

so may not be well modelled by a change in the linear growth rate, 

but may instead reflect a breakdown in the HOD model used in the 

emulator. 

We perform a robust check of possible sources of systematic error 

not included in previous analyses. We find that using a model that 

assumes all central galaxies are observed leads to a systematic bias if 

the actual occupation of centrals is lower; a fractional occupation of 

f max ≤ 0.6. We also investigate the effect of redshift uncertainty, and 

find that the presence of a velocity shift from redshift uncertainty 

in the data that is not included in the model results in a higher 

measurement of γ f with an offset of ∼0.5 σ , where σ is the typical 

statistical error. This effect is caused by the de generac y between the 

increased velocity dispersion due to the redshift uncertainty and the 

random motions of the haloes in the non-linear regime. Lastly, we 

inv estigate the consistenc y between the non-linear and quasi-linear 

scales of our analysis. While we find them to be consistent within the 

statistical error, there is a trend to lower γ f on non-linear scales, which 

increases the tension with the expectation from � CDM for the fit 

to all scales. This result highlights the importance of distinguishing 

between results obtained from the linear scales and thus directly 

constraining the linear growth rate f σ 8 , and those that include non- 

linear scales and may have a non-linear dependence on the linear 

growth rate together with a dependence on other factors. 

While our results are consistent with the expectation from Planck 

2018 parameter constraints, we are also consistent with recent weak 

lensing results giving a low value of S 8 , particularly if our low value 

of f σ 8 was driven by an adjustment to σ 8 . In light of these lensing 

results and the mild disagreement we find with Planck expectations, 

extending this type of analysis to future surv e ys including DESI 

and Euclid will be an important area of future research. With 

considerably larger samples and probing a different redshift range, 

the impro v ement in precision from moving to smaller scales will be 

key to achieving optimal constraints and identifying or rejecting a 

tension in the growth rate of cosmic structure. 
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