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ABSTRACT

We measure the small-scale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous
Red Galaxy sample, corrected for fibre-collisions using Pairwise Inverse Probability weights, which give unbiased clustering
measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function over the
separation range 7 — 60 2~ 'Mpc with a model based on the AEMULUS cosmological emulator to measure the growth rate of
cosmic structure, parametrized by fo g. We obtain a measurement of fo g(z = 0.737) = 0.408 £ 0.038, which is 1.4 lower than the
value expected from 2018 Planck data for a flat ACDM model, and is more consistent with recent weak-lensing measurements.
The level of precision achieved is 1.7 times better than more standard measurements made using only the large-scale modes of
the same sample. We also fit to the data using the full range of scales 0.1-60 #~'Mpc modelled by the AEMULUS cosmological
emulator and find a 4.5¢ tension in the amplitude of the halo velocity field with the Planck + ACDM model, driven by a mismatch
on the non-linear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation
Distribution model used in the emulator. Finally, we perform a robust analysis of possible sources of systematics, including the
effects of redshift uncertainty and incompleteness due to target selection that were not included in previous analyses fitting to
clustering measurements on small scales.

Key words: galaxies: distances and redshifts — cosmological parameters—cosmology: observations —large-scale structure of
Universe.

experiments aim to accomplish this through measuring the observed
positions of galaxies in the Universe, which depend on the cosmolog-
Understanding the accelerating expansion of the Universe is one of ical model in a number of ways. The intrinsic distribution of galaxies
the primary goals for modern physics experiments. Many of these results from the growth of initial matter perturbations through gravity,

giving a window to the early Universe. However, the fundamental

observables are the angular positions and redshifts of galaxies, while
* E-mail: mj3chapman@uwaterloo.ca the intrinsic pattern is in comoving distances, so surveys are also

1 INTRODUCTION

© 2022 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

€202 AeIN L0 Uo Josn jdeq s[eoipouad AQ 6286199/ L9/1/91G/aI0IE/SEIUW/ W09 dNO"D1WaPED.//:SA)Y WOy PAPEOjUMOQ



618 M. J. Chapman et al.

sensitive to the link between these two coordinates. This link depends
on the relationship between separations in angles and redshifts and
distances across and along the line of sight (los; Alcock & Paczynski
1979), as well as on redshift-space distortions (Kaiser 1987). Because
these depend on both cosmological expansion and the build-up of
structure within the Universe, large galaxy surveys offer a unique
opportunity to solve the question of the origin of the late acceleration
of the expansion (Weinberg et al. 2013; Ferreira 2019).

The growth of structure most clearly manifests on the observed
galaxy distribution through Redshift Space Distortions (RSD; Kaiser
1987). These are a consequence of the velocities of galaxies in a
comoving frame distorting the los cosmological distances based on
observed redshifts, and are sensitive to the growth rate of structure,
which in turn depends on the strength of gravity. The strength of the
RSD measurements depend on the parameter fo g, which is commonly
used to quantify the amplitude of the velocity power spectrum and
provides a strong test of modifications to gravity (Guzzo et al. 2008;
Song & Percival 2009). The development of large galaxy surveys
driven by advances in multi-object spectrographs has resulted in
recent renewed interest in RSD including measurements from the
WiggleZ (Blake et al. 2011), 6dFGS (Beutler et al. 2012), SDSS-II
(Samushia, Percival & Raccanelli 2012), SDSS-MGS (Howlett et al.
2015), FastSound (Okumura et al. 2016), and VIPERS (Pezzotta
et al. 2017) galaxy surveys.

The best precision measurements to date come from the Baryon
Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013), part
of the third generation of the Sloan Digital Sky Survey (SDSS;
Eisenstein et al. 2011). Using large-scale modes, BOSS has achieved
the best precision of ~6 per cent on the parameter combination fog
(Beutler et al. 2017; Grieb et al. 2017; Sanchez et al. 2017; Satpathy
et al. 2017). Note that these studies all measured RSD in the linear or
quasi-linear regime, where proportionately small levels of non-linear
modelling were required.

In contrast, Reid et al. (2014) made a measurement of the
amplitude of the RSD signal from an early BOSS galaxy sample,
fitting to the monopole and quadrupole moments of the correlation
function over scales 0.8 to 324~ 'Mpc, obtaining a 2.5-per cent
measurement of fog(z = 0.57) = 0.450 £ 0.011. This demonstrates
the increased precision available if RSD in the data can be accurately
measured and modelled to small scales. The most accurate method
to model small-scale clustering is to use N-body simulations, and
this was the route taken by Reid et al. (2014). However, without
a simulation for each model to be tested (Reid et al. 2014 used
three simulation sets at three very similar cosmologies), one has to
extrapolate solutions to different cosmologies, which needs care. The
most pernicious problem faced in the Reid et al. (2014) analysis was
correcting the small-scale clustering in the data, which suffers from
fibre-collisions, where hardware limitations mean that some galaxies
are excluded from the catalogue due to having close neighbours. A
similar method was recently applied to the BOSS LOWZ galaxies
(Lange et al. 2022), and a study is in preparation for the CMASS
sample (Zhai et al. 2022).

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016), part of the SDSS-IV experiment (Blanton
et al. 2017) is the latest in a line of galaxy surveys done using
the Sloan Telescope. This experiment was designed to make Baryon
Acoustic Oscillations (BAO) and RSD measurements using three
classes of galaxies used to directly trace the density field, together
with a high redshift quasar sample (du Mas des Bourboux et al.
2020) that allows Lyman-« forest measurements at redshifts z >
2.1. We use the Luminous Red Galaxy (LRG) sample from Data
Release 16 (Ahumada et al. 2020) to make RSD measurements
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at z ~ 0.7 including small-scale information. Standard BAO and
RSD measurements made with this sample on larger scales only are
presented in Bautista et al. (2021), Gil-Marin et al. (2020), together
with a test of their methodology using mock catalogues in Rossi et al.
(2021). At intermediate redshifts, eBOSS probes the Universe using
samples of emission line galaxies (Tamone et al. 2020; de Mattia
et al. 2021; Raichoor et al. 2021) and quasars (Lyke et al. 2020;
Neveux et al. 2020; Ross et al. 2020; Smith et al. 2020; Hou et al.
2021) as direct tracers of the density field lower redshifts. We do
not analyse these data, focusing instead on the easier to model LRG
sample. The cosmological interpretation of the BAO and RSD results
from all eBOSS samples was presented in Alam et al. (2021).

Pushing the modelling to include small scales in our analysis is
made possible by two key advances in methodology since the Reid
et al. (2014) analysis. First, we use the AEMULUS emulator (Zhai
etal. 2019) to create accurate models of the redshift-space correlation
function moments to small scales (see Section 3.3). To correct for
fibre-collisions, we use the Pairwise Inverse Probability (PIP) method
(Bianchi & Percival 2017; Percival & Bianchi 2017), as described
in Section 3.2. Together, these advances mean that we can now both
make and model accurate clustering measurements from the eBOSS
LRG sample, fitting the correlation function to small scales.

Our paper is structured as follows: the eBOSS LRG sample is
described in Section 2, and the method for measuring and fitting the
correlation functions in Section 3. In Section 4, we perform various
tests of the method using mock catalogues. We present our results
in Section 5, and discuss their significance in Section 6. Finally, we
summarize our results in Section 7.

2 EBOSS LRG SAMPLE

The eBOSS LRG target sample was selected (Prakash et al. 2016)
from SDSS DR13 photometry (Albareti et al. 2017), together with in-
frared observations from the WISE satellite (Lang, Hogg & Schlegel
2016). LRG targets were selected over 7500 deg?, and observed using
the BOSS spectrographs (Smee et al. 2013) mounted on the 2.5-m
Sloan telescope (Gunn et al. 2006).

In order to measure clustering we quantify the sample mask, de-
tailing where we could observe galaxies, using the random catalogue
with 50 times more points than galaxies as described in Ross et al.
(2020). Regions with bad photometric properties, that are close to
higher priority targets, or near the centrepost region of the plates are
masked, removing 17 per cent of the initial footprint. Redshifts for
the randoms were sampled from those of the galaxies.

Redshifts were measured from the resulting spectra using the
REDROCK algorithm.! REDROCK fits the data with templates derived
from principal component analysis of SDSS data, followed by a
redshift refinement procedure that uses stellar population models. We
are unable to obtain a reliable redshift estimate from many spectra
(3.5 per cent on average across the survey), with a failure fraction with
systematic angular variations. We therefore apply a weight wy,, as
described in Ross et al. (2020) to galaxies to remove these variations,
calculated as a function of position of the fibre on the detector and
the signal to noise of that set of observations.

Systematic variations in the density of galaxies caused by varia-
tions in the photometric data used for target selection are mitigated by
applying weights wyy to the galaxies. These were computed using a
multilinear regression on the observed relations between the angular
overdensities of galaxies versus stellar density, seeing and galactic

! Available at github.com/desihub/redrock
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Figure 1. Redshift distribution of the eBOSS DR16 (red dash-dotted line),
CMASS DR12 (blue dashed line), and the joint eBOSS + CMASS sample
(black thick line, see Section 5.7 for details), optimized using wpkp weights.

extinction. As we are interested primarily in small-scales, the exact
correction is not important. Additional weights wgkp that optimize
the signal, which varies because the density varies across the sample
(Feldman, Kaiser & Peacock 1994), are also included (Fig. 1).

A fibre could not be placed on 4 percent of the LRG targets
due to fibre-collisions: when a group of two or more galaxies are
closer than 62 arcsec, they cannot all receive a fibre because of
hardware limitations. We use PIP weights w"'" together with angular
upweighting (Bianchi & Percival 2017; Percival & Bianchi 2017)
to correct for this effect, as described in Mohammad et al. (2020),
and Section 3.2. The final combined weight applied to the galaxies
is defined as w'® = w"*w¥w P, and we also use w*™ applied to
pairs.

The eBOSS sample of LRGs overlaps in area and redshift range
with the high-redshift tail of the BOSS CMASS sample. Unlike many
other eBOSS analyses including the large-scale measurements of
BAO and RSD (Gil-Marin et al. 2020; Bautista et al. 2021), we do not
combine the eBOSS LRG sample with all the z > 0.6 BOSS CMASS
galaxies. We focus on the eBOSS sample to simplify the correction
of the small-scale fibre assignment: fibre assignment was performed
separately for BOSS and eBOSS using different configurations of
the SDSS tiling code.

We define the effective redshift of our sample as the weighted
mean redshift of galaxy pairs

Zin W W W (T + 20)/2 "

PIP,tot,,tot
Zm>” wmn u)m wn

Zeff =

where the indices m, n are over the objects in the data catalogue, and
the description of the weights is given in Section 3.2. Additionally,
we only include galaxy pairs which have a separation between
0.1-60 h~'Mpc, the scales used in our measurement. The effective
redshift we obtain for our sample is z = 0.737, and an effective
comoving volume of 1.28 Gpc? (Ross et al. 2020).

3 METHODS

3.1 Measurements

We measure and model the observed galaxy clustering in redshift
space using the two-point correlation function as calculated using
the least-bias and least-variance Landy—Szalay estimator (Landy &

Szalay 1993)

g(s)zw_,_l’ 2)

RR (s)

with DD, DR, and RR being the data—data, data-random, and
random-random pair counts at a given separation s. To reduce the
impact of shot noise on the measured & from the random catalogue,
we use a number of random points N = 50 times the number of
galaxies in the DR16 sample. The difference in the number of
galaxies and randoms is accounted for by normalizing the pair counts
in equation (2) to the total number of distinct pairs.

The modelling of the 3D correlation function in equation (2) is
complicated by the large number of separation bins. Indeed, this
requires a very large number of survey realizations to estimate
the data covariance matrix. We follow the standard technique of
compressing the information contained in the full 3D correlation
function & (s). In particular, we fit our model to the projected
correlation function w,(r,) and the first two even multipole moments
&, of the redshift space correlation function.

The halo-occupation properties of a given sample affect its
intrinsic clustering. Classically, this effect is modelled using the
projected correlation function w(r,) that is expected to be free of
the apparent RSD effects. The projected correlation function w),(r,)
is estimated through

w, (ry) =2 /0 mxés(rp,ﬂ)dn, 3)

where r, and 7 are the normal and parallel to the los components
of the pair separation s. We limit the integral in equation (3) to
a maximum los separation of 7r,,x = 80 h*'Mpc, matching the
definiton in the model to be fitted to these data (Zhai et al. 2019).

Redshift-space distortions change the apparent positions of targets
in the radial direction with respect to those in real-space. RSD are
classically measured and modelled in the multipole moments &, of
the redshift-space correlation function &*(7,,, 7). Multipole moments
&, are defined as

1
E(s) = 2L+ 1) / £ (5, 1) Lo(u)dpe, @
0

with s = |s| and p = /s is the cosine of the angle between the
los direction and the pair separation vector s and L, is the £-order
Legendre polynomial.

We bin 7, and s in nine logarithmically spaced bins between
0.1-60 h~'Mpc, matching the output of AEMULUS predictions for
w,(r,) and &,, while the los separation 7 and p are binned using
linear bins of width A7t = 14A"'Mpc and Ap = 0.1. Given the
discrete binning of different variables, we estimate the integrals in
equations (3) and (4) as Riemann sums.

3.2 PIP correction

In eBOSS spectroscopic observations, fibre-collisions occur when-
ever two targets are closer than 8% = 62" on the sky. While a
fraction of such collisions are resolved thanks to multiple passes
of the instruments in small chunks of the survey, fibre-collisions in
single passes remain unresolved and correlate with the underlying
target density. If not properly corrected, missed targets due to fibre-
collisions can systematically bias the measured two-point correlation
function on small scales. In the large-scale analysis of the eBOSS
LRG sample (Bautista et al. 2021) fibre-collisions are accounted for
by means of the nearest-neighbour (NN) weighting that is quantified
through the weight w.

MNRAS 516, 617-635 (2022)
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In this work, we replace the standard NN correction for fibre-
collisions with a more rigorous Pairwise-Inverse-Probability (PIP)
weighting (see Bianchi & Percival 2017, for a discussion about
inverse-probability estimators). The PIP weights are assigned to pairs
of objects in the targeted sample and quantify the probability, for
any pair, of being targeted in a random realization of the survey
targeting. Under the assumption that no pair has zero probability
of being observed, applying the PIP weighting provides statistically
unbiased estimates of the two-point correlation function. The selec-
tion probabilities are characteristic of the particular fibre assignment
algorithm used to select targets from a parent photometric sample
for the spectroscopic follow-up. Therefore, these probabilities are
extremely difficult to model analytically except for some simple
targeting strategies. We infer the selection probabilities by generating
multiple replicas of the survey target selection. Details on how
these survey realizations are built are provided in Mohammad et al.
(2020). Given a set of survey realizations, the inverse probability, or
equivalently the PIP weight w,,,,, is simply the number of realizations
in which a given pair could have been targeted divided by the number
of times it was targeted. The individual-inverse-probability (IIP) w,,
are the single-object counterparts of the PIP weights, i.e. the inverse-
probability for a given object m of being targeted in a random survey
realization.

PIP weighting assumes that all pairs have a non-zero chance of
being observed. However, in eBOSS pairs with separation smaller
than the fibre-collision scale 6 are missed in single-pass areas in all
survey realizations. These pairs produce a systematic underestima-
tion in the measured two-point correlation function. For the eBOSS
LRG sample, the systematic bias is confined at transverse scales
smaller than r}fc) ~ 0.7 h~"Mpc in w),(r,) while it spreads to larger
separations s in the multipole moments £ . Truncated multipoles &©
were proposed in Reid et al. (2014) and Mohammad et al. (2016)
to remove transverse scales r, < rgc) from the measured multipole
moments, resulting in a loss of information at scales smaller than
r;,fc). Alternatively, the angular up-weighting outlined in Percival &
Bianchi (2017) can be used to de-bias the measurements at smaller
scales. The angular up-weighting relies on the assumption that pairs
missed due to fibre-collisions in the single pass of the instrument are
statistically equivalent to those targeted in the multiple-pass areas.
The combined PIP and angular up-weighting (PIP + ANG) is

- D Dy (9)
DD(5) = E whPplotytet 5 71211, ,
L= D Dg,, (9)
XmXn S
Up Uy ~COS O DR (9) (5)
s IIP . tot_  tot par
DR(S) = § Wi Wy, Wy~ X WP(@) ’
42”’7;”%5 fib
Uiy -Up Ac0s 6
where w' = wYw"*wP and WP and w® are PIP and IIP

weights, respectively. The fractions on the right-hand side in equa-
tion (5) are the angular weights for DD and DR pair counts. An
extensive description of different terms in equation (5) is given in
Mohammad et al. (2020).

Mohammad et al. (2020) extensively tested the effectiveness of the
method of PIP + ANG weighting using a sample of 100 Effective
Zel’dovich mocks (EZmocks, Zhao et al. 2021) designed to match
the eBOSS LRG sample. The mean of the corrected measurements
was compared to the mean of the true clustering of the mocks for &,
&5, and w, over a separation range of 0.1-100 h~'Mpc (see figs 9
and 12 of Mohammad et al. 2020). The PIP 4+ ANG correction was
able to recover the clustering of the parent sample to within 1o of
the error on the mean at all measurement scales for &g, and &, and all
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scales of w,, except for the fibre-collision scale, where the corrected
measurements recovered the true clustering to within the error on
a single mock. We can therefore be confident that the PIP + ANG
correction to the eBOSS LRG sample produces unbiased results to
within the statistical uncertainty of our sample on all scales.

3.3 AEMULUS cosmological emulator

‘We compare our measurements to the AEMULUS cosmological emula-
tor (Zhai etal. 2019) predictions for €, &,, and w), for a galaxy sample
in a universe with variable cosmological and galaxy-halo connection
parameters. The AEMULUS emulator applies Gaussian process based
machine learning to a training set of 40 N-body simulations and
that use a latin hypercube to optimally sample a wCDM parameter
space spanning the approximate 40 range of the Planck (Planck
Collaboration 2020b) or WMAP (Hinshaw et al. 2013) results
(DeRose et al. 2019). A halo occupation distribution model (HOD)
is used to connect a galaxy sample to the dark matter haloes.
Unlike some galaxy clustering analyses, our emulator does not model
&4, since it is considerably noisier than &y and &,. The emulator
prediction would likely be noise dominated for &4, and would require
adding more training complexity without a commensurate increase in
cosmological information. In their measurement of fog from small-
scale clustering within the BOSS LOWZ sample, Lange et al. (2022)
found that excluding &, from their analysis of &y and &, did not
produce a significant change in the best-fitting value or uncertainty.

AEMULUS allows for a flat wCDM described by seven parameters:
Q. Qp, 03, h, ng, w, and Neg. For our analysis, we limit the
cosmological parameter space by fixing Neg = 3.046 and w = —1,
since these parameters are not well constrained by our measurements
but have been well measured by other probes, resulting in a five
parameter flat ACDM cosmology. The HOD model used by the
AEMULUS allocates a Poisson sampling of N(M) galaxies to haloes
of mass M, split into central galaxies and satellites following

<N(M)> = Ncen(M) + Nsal(M)’ (6)

Neen(M) = T [1 Ferf <1°g1° M = logyy M‘“‘“)] , )
2 Olog M

Neon— (M) Meu\ Neeo(M) q

sat(M) = Msa[) exp (—7 K’ (8)

where the free parameters fit by the emulator are finax, 0'1og m> 10g My,
a, log M. Briefly, o4 defines the width of the transition from
a mean occupation of 0-1 for centrals, My, is the typical mass
for haloes to host one satellite, « is the power-law index for the
mass dependence of the satellite occupation, and M, gives an
exponential cutoff to the satellite occupation at low mass. M, sets
the transition point of the central occupation, and is fixed in the
emulator to match the number density of the sample. By matching
the number density, we ensure the correct linear bias, thus reducing
the degeneracy between the HOD parameters and the growth rate in
the correlation function measurements. Because of this choice, we
do not use the number density as an observable in our analysis. fiax
is a new parameter that we add to AEMULUS to address a possible
inconsistency between the model and data. eBOSS was targeted
using colour and magnitude cuts (Prakash et al. 2016) so it is not a
complete sample, whereas the HOD model assumes that all galaxies
are included in the sample. This is especially concerning for eBOSS
since targets were selected using a lower magnitude limit in the i band
to avoid overlap with the CMASS LRG sample (see fig. 1 of Zhai
et al. 2017). fmax controls the fraction of centrals that are included
in the sample, i.e. a value of f,.,x < 1 means that the very massive
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haloes do not necessarily host a e BOSS LRG at the centre. While
these targeting cuts would be expected to affect the completeness of
both centrals and satellites, for satellites fi,ax is completely degenerate
with Mg (see similar discussion in Lange et al. 2022). Since these
HOD parameters are primarily nuisance parameters in our constraint
of the growth rate, we do not apply fiax to the satellites. In Section 4.2,
we perform a series of tests to determine the effect of excluding fi.x
on the measured fog.

The emulator also allows three additional parameters that control
how galaxies are distributed in their host haloes: cyi;, Vpe, and vpg
(labelled Ncons Nve, and Nyersys 1IN Zhai et al. 2019). ¢y, is the ratio
between the concentration parameters of the satellites to the host halo
where the halo is assumed to have a Navarro—Frenk—White (NFW)
profile (Navarro, Frenk & White 1996). vy, and vy are the velocity
biases of centrals and satellites respectively, where 0 43 = Vga10 halo
and oy, 18 the velocity dispersion of the halo calculated from its
mass. Finally, the AEMULUS emulator uses a 15th parameter, y/,
which rescales all halo bulk velocities in the simulation. The galaxy
velocity can therefore be thought of as the sum of two components:
a component equal to the bulk motion of the host halo scaled by y,
and a randomly directed component that depends on the halo mass
through the velocity dispersion and that is scaled by either vy Or vpg
for centrals and satellites, respectively. For a detailed description of
the AEMULUS correlation function parameters see Zhai et al. (2019).
See Section 3.7 for a description of how we treat these parameters in
our fit.

The original AEMULUS emulator was trained to match a BOSS
CMASS-like sample at z = 0.57 and space density n =
4.2 x 107*[h~'"Mpc] . However, our eBOSS sample is at an
effective redshift of z = 0.737 and peak number density of n =
9 x 1073, The difference in number density is particularly worrying,
since a less dense sample will preferentially fill more massive haloes.
The result will be a sample with a larger linear bias, which is
degenerate with the growth rate in clustering measurements. In
order to ensure an unbiased result, we rebuild the emulator from
the original simulations, but using the z = 0.7 simulation time-slice
and adjusting HOD parameters, especially M,i,, to match the eBOSS
number density. The training ranges for the new emulator are given
in Table 1.

3.4 Interpreting growth rate measurements

As shown in Reid et al. (2014), which used a similar parametrization
to measure RSD from their simulations, in the linear regime a
fractional change in y is proportional to a fractional change in f,
such that f = y ffacom, where fxcpwm is the linear growth rate for a flat
ACDM cosmology specified by the model parameters. However, the
link between the linear velocity power spectrum amplitude and the
non-linear regime is possibly scale dependent i.e. a linear response
on large scales might not necessarily lead to a linear response on
small scales. y is introduced in the simulations as a scaling of all
velocities by the same amount and so y also scales the non-linear
velocities of haloes. In this case, y/ still provides a consistency test
with the amplitude of the velocity field expected in a ACDM universe
with the model cosmology, where y; = I indicates agreement, but it
no longer necessarily gives a pure rescaling of the linear growth rate.
For models that do have such a linear response, then the measurement
of y over the full range of scales can be used to constrain the linear
growth rate. However, as this is model dependent, we conservatively
separate the contributions of the linear and non-linear regime in
presenting our results (as described in Section 4.1).

Table 1. All model parameters divided into cosmological and HOD parame-
ters, with the training range used by the AEMULUS emulator and the prior range
used in the MCMC fit. Prior ranges were chosen to be slightly larger than
the original training ranges, except where excluded by the physical meaning
of the parameter, in order to be able to identify if the fit converges outside
of the training range. The purpose of this extended range is only to more
easily identify a prior dominated fit, since the emulator is not expected to
produce accurate clustering outside of the training range. Instead, it would
regress to the mean prediction. The exception is log My, where the prior
excludes the lower part of training range since log M ceases to have any
impact on the halo occupation if it is below 10g Myin. This is the case for the
eBOSS LRG sample, so log M is poorly constrained. However, we found
the chains tended to pile up at the lower end of the training range, which
gave the misleading impression that the data strongly preferred the lowest
possible value, although it had no effect on the cosmological constraints. For
that reason, we set a more reasonable lower limit on log M, for our sample.

Parameter Training range Prior range
Q2 [0.255, 0.353] [0.225, 0.375]
Quh? [0.039, 0.062] [0.005, 0.1]
og [0.575, 0.964] [0.5, 1]

h [0.612, 0.748] [0.58, 0.78]
ng [0.928, 0.997] [0.8,1.2]
Nett [2.62, 4.28] 3.046

w [-1.40,-0.57] -1

log Msa [14.0, 16.0] [13.8,16.2]
a [0.2,2.0] [0.1,2.2]
log My [10.0, 13.7] [11.5,14]
OlogM [0.1, 1.6] [0.08, 1.7]
Upe [0,0.7] [0, 0.85]
Ups [0.2,2.0] [0.1,2.2]
Cvir [0.2,2.0] [0.1,2.2]
vr [0.5,1.5] [0.25, 1.75]
Smax [0.1, 1] [0.1, 1]

Although the AEMULUS code uses y to adjust the RSD amplitude
in the model, the RSD are sensitive to the parameter combination
fos. We therefore present our large-scale results in terms of fog =
Yfacomos, which is used in the remainder of the paper and the
abstract. It is also important to note that we calculate fycpmos from
the model cosmology according to linear theory, rather than the
value that would be obtained from the power spectrum on scales
corresponding to 0.1-60 h~!'Mpc. Thus, the value of fog we present
is the value expected from linear theory for our model, and is directly
comparable to measurements made on larger scales. However, care
should be taken when using the resulting measurements of fog to
constrain models where the other parameters deviate significantly
from flat ACDM and general relativity (ACDM + GR, hereafter
used interchangeably with ACDM). A problem inherent in many
cosmological measurements and all previous RSD measurements
is that one assumes various features of a particular model, here flat
ACDM, in order to make the measurements. To test a different model,
one should strictly have to perform a new fit including all properties
of that model. This does not affect the validity of our measurement as
a test of consistency with ACDM within the parameter space of the
emulator, or as an indication of how the RSD measurements compare
to those from other surveys.

3.5 Covariance matrix

Clustering measurements in different separation bins are correlated,
and we need an estimate of the covariance matrix when fitting a
model to the observations. Mock surveys, either based on the output
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Figure 2. The footprint of the eBOSS LRG clustering catalogue with our jackknife regions. The blue points show the North Galactic Cap (NGC) observations,
while the orange points show the South Galactic Cap (SGC) observations. It should be noted that the square jackknife regions all have approximately equal area
on the sky, however due to the distortion of projecting a sphere on to a plane, the regions at larger declination appear wider in this plot.

of N-body simulations or approximate methods, have been widely
used to estimate the data covariance matrix. However, in order to
work on small scales, we would need a large number of simulations
that accurately reproduce the small-scale clustering — a difficult task.
In order to generate a covariance matrix that reflects the small-scale
clustering of our sample, we instead use jackknife sampling. We
split our survey footprint into equal area squares on the sky using
right ascension (RA) and declination (Dec.) cuts. This method relies
on the clustering of the sample being uncorrelated with position
in the survey. Furthermore, because we expect the covariance to
follow a simple volume scaling, we remove the squares with the
smallest occupation as determined from the random catalogue over
the survey footprint, so that each region included will contribute
approximately the same statistical weight to the sampling (Fig. 2).
Since the measurements from each sample are normalized, it is not
necessary that they contain identical numbers of objects, however
selecting regions in this way reduces variance from regions at the
edge of the survey which are only partially filled or have peculiar
geometries. The missing area is included in the final calculation by
means of a volume-weighted correction.

For the objects in our data and random catalogues that are located
within one of the 200 accepted regions, we store a region identifica-
tion number. We then recalculate the monopole and quadrupole of
the 3D correlation function and projected correlation function for this
reduced sample 200 times, excluding one region from the calculation
each time. We include the full PIP+-ANG weighting scheme in these
calculations, so that the variance in the PIP + ANG weights is
included in the jackknife estimation. The covariance matrix is then
estimated from this jackknife sampling using

—1< _ _
" Z (Eix—&) (Ex— &), ©)

k

C,'J =

where the 7, j indices are over the elements of the data vector, n = 200
is the number of jackknife regions, and & is an index over the jackknife
realizations.
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In order to more easily visualize the correlations between bins, we
calculate the correlation matrix by

Clnl

R j=—"1 . 10
5] (Ci,icj,j)l/z ( )

The correlation matrix is highly diagonal, which is expected since
we have a small number of widely separated bins, which are only
expected to be weakly correlated. In order to reduce the noise
in the off-diagonal terms, we smooth the correlation matrix using
diagonally adjacent bins. Each off-diagonal element is assigned the
average of itself and the two adjacent diagonal elements, excluding
bins from other measurements. The result of this diagonal smoothing
is shown in Fig. 3.

In addition to the data error, we include the emulator error in the
covariance matrix. The emulator error is calculated as a fractional
error on each correlation function bin using a sample of test HOD
parameter sets which are selected from the same parameter ranges
as the training sample, but were not used in the training (Zhai et al.
2019). The fractional error is converted to an absolute error, o g, by
multiplying by the correlation function measurements from the data.
The total variance for each measurement bin is then calculated from
0} =0} + o} In order to preserve the structure of the jackknife
covariance matrix, we convert the smoothed correlation matrix back
to the covariance matrix using C;; = o ;. The contributions of the
data and emulator errors to the total error are shown in Fig. 4.
The data error is dominant in the region s < 5h~'Mpc for the
monopole and projected correlation function, while the emulator
error is comparable for s > 5/ ~'"Mpc and across the full separation
range of the quadrupole.

‘We also correct the inverse covariance matrix according to Hartlap,
Simon & Schneider (2007), using
6‘71 — wc—', (11)

n—1
where n = 200 is the number of jackknife regions, and p =
27 is the number of combined bins in our three measurements.
Although 7 should properly be the number of completely independent
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Figure 3. Comparison of the unsmoothed and smoothed correlation matrices.
The upper diagonal elements correspond to the unsmoothed jackknife
correlation matrix, while the lower diagonal elements show the result of
our diagonal smoothing method.

measurements (Eifler, Kilbinger & Schneider 2008; Krause et al.
2013), we follow Reid et al. (2014) in using the number of regions,
noting that this correction may therefore underestimate the true size
of the effect. However, this factor has very little effect on our final
fit, as well as not changing the best-fitting value.

3.6 AP scaling

Although we fit the AEMULUS correlation function predictions
directly to our measurements from the data, our results are still
affected by the Alcock—Paczynski (AP) effect (Alcock & Paczynski
1979), because we convert the data redshift to distance assuming a
fixed fiducial cosmological model. We therefore need to scale the
separations between model and data to account for the difference
in comoving distance between our fiducial cosmology and the
cosmology of the model. We apply the standard AP scaling from
Bautista et al. (2021) to each model, first defining the perpendicular
and parallel dilation factors

_ Du(zerr) _ Du(zew)
D (zer) DM (zerr)
where Dy, is the comoving angular diameter distance, Dy is Hubble

distance. We then scale the multipole moments of the correlation
function as follows

o N o) (12)

2 d
fd () = gy(ar) + 2e [&szmr) + e (13)
6 d 4 d
2ﬁd (rﬁd) = (l + ?e> &(ar) + 2¢ j(l)r(l((xrr)) + 7€ fflg?rr)). (14)

where o = al}ﬁaiﬂ and € = (aj/a;)"® — 1. Once we have shifted

the model, we used a cubic spline interpolation to recover the model
values at the fiducial separations used to calculate the data values.

The projected correlation function was calculated similarly using
the scaling

wid () = w,(@iry). (15)

The accuracy of this method depends, in part, on the width of the
bins used due to the calculation of the derivative and the interpolation

between points. In order to assess the importance of these factors,
we perform an additional fit to the data without the AP correction.
See Section 5.6 for details.

3.7 Exploring the likelihood

We assume our correlation function measurements are drawn from
a multivariate Gaussian distribution, and use uniform priors for
all model parameters, given in Table 1. We explore the posterior
surface for the fit between data and the AEMULUS correlation function
predictions using a Markov chain Monte Carlo (MCMC) sampler
within the Cobaya? framework (Torrado & Lewis 2021). We include
the full AEMULUS HOD parameter space in our fit, however, we limit
the wCDM cosmological parameter space by fixing Neg = 3.046
and w = —1, since these parameters are not well constrained by our
measurements but have been well measured by other probes.

A concern for our small-scale analysis is that the separation range
we use lacks a distinctive feature with a known scale to constrain
the cosmological parameters, such as the BAO bump in large-
scale analyses. Consequently, we consider a number of additional
cosmological priors in order to set an accurate cosmology for our
analyses. To begin with, we apply a uniform prior on the cosmological
parameters based on the distance in 7D cosmological parameter
space between the chain point and the cosmologies of the AEMULUS
simulations used to train the emulator. If the distance is above a
certain threshold the proposed step is forbidden, thus restricting the
parameter space to the region which is well sampled by the training
data, rather than the full uniform prior range given in Table 1. In
practice, the main impact of the training prior is to add the restriction
og > 0.65, since there is only one training cosmology with og below
that range.

We also consider jointly fitting our data with the Planck 2018
TT,TE.EE and lensing likelihoods (Planck Collaboration 2020a, c¢)
using the CAMB cosmological Boltzmann code (Lewis, Challinor &
Lasenby 2000; Howlett et al. 2012), which constrain the cosmolog-
ical parameters that control the shape of the power spectrum. It is
important to note that y; is treated as a free parameter in addition
to the standard cosmological parameters, and is only constrained by
RSD as measured from the eBOSS data. In effect, it represents a
consistency check between the large-scale structure and CMB data:
if these are consistent, we expect that y is close to one. We further
consider three cases of the joint eBOSS and Planck fit. The first is a
simple joint fit, where all of the cosmological parameters, including
o, and jointly fit by both the eBOSS clustering measurements
through AEMULUS and the Planck likelihoods, while the HOD
parameters and y are fit solely by the clustering measurements. The
second is similar, except we explicitly account for the slight redshift
offset between the emulator (z = 0.7) and the data (z = 0.737). The
emulator takes all cosmological parameters at z = 0, so the shape of
the linear power spectrum will be identical between the cosmology
described by the Planck likelihoods and the emulator, however there
will be a difference in amplitude due to the slight redshift offset.

2Cobaya, a code for bayesian analysis in cosmology, is the PYTHON successor
to CosmoMC. Users are able to use the same MCMC sampler as CosmoMC
(Lewis & Bridle 2002; Lewis 2013) in a PYTHON framework, while allowing
access to likelihoods from many major cosmological datasets. The sampler
is tailored for parameter spaces with a speed hierarchy and implements the
‘fast dragging’ procedure described in Neal (2005). See https://cobaya.readt
hedocs.io for details.

MNRAS 516, 617-635 (2022)

€20z K 1.0 uo Jasn jdaq sfedipouad Ad 6286799/ 19/1/91.S/0101E/SeIUL/W0d dNo diwspeoe)/:Sdjjy WoJj POPEoUMOQ



624 M. J. Chapman et al.

1071 -

alwp) | wp

,_.

o
~
A

100 4 —— Data
—— Emulator
100 -
— Total
& W
S 1014 =
© 5]
10—1 u
1072 4
10° 10!
s [h"*Mpc]

10°

s [h~*Mpc]

10° 10t

rp [h™Mpc]

10!

Figure 4. The contributions of the data error calculated through jackknife sampling (green), the emulator error (orange), and total error (blue), for the monopole,

quadrupole, and projected correlation function (left- to right-hand panel).

Therefore, we adjust the value of o'g given to AEMULUS as follows

D(z=0737) D(z=0)
D(z =0) D(z=0.7)"

This makes sure that the normalization of the AEMULUS output
matches that expected at z = 0.737 in the cosmology being tested:
the first ratio corrects from z = 0 to 0.737 in the cosmology being
tested, and the second ratio corrects from z = 0.7 to 0, where the
normalization is defined by AEMULUS. Thirdly, we consider a joint
fit where the Planck likelihoods are used to constrain all of the
cosmological parameters except for og, which is fit solely by the
clustering data. We test the robustness of our results to the inclusion
of the training prior and the Planck likelihoods through these three
methods in Section 5.3. Based on the results of these tests we use the
training prior but not the Planck likelihoods for our fiducial analysis.

08, Aem = 03(z = 0) X (16)

4 ROBUSTNESS AND SYSTEMATIC ERROR
CHECKS

In this section, we explore the robustness of our model in general and
to several possible sources of systematic error in particular. We begin
by assessing the impact of non-linear velocities on our measurements,
and what information is included from different scales. We then
perform a general check of our method by fitting to measurements
made on a mock catalogue. Finally, we check the impact of the two
possible discrepancies between our model and the data, the effects of
galaxy selection on the completeness of the HOD model, and redshift
uncertainty.

4.1 Contribution of non-linear velocities

In Section 3.4, we introduced the key parameter of our measurement,
s> and described its significance on linear and non-linear scales. In
order to identify the transition between these regimes, we examine
how the emulator prediction changes for various values of y, shown
in Fig. 5. For the three largest bins, varying y, produces an almost
constant relative change in the monopole, with a larger growth rate
giving a larger clustering amplitude, as expected from linear theory.
In the middle three bins, the effect on the monopole changes signs as
the quasi-linear regime transitions to the non-linear regime, where the
random virial motions of the haloes begin to dominate and increasing
v» which rescales all halo velocities, begins to damp the clustering.
In the three smallest bins, the effect of y; on the monopole begins
to decrease as the one-halo term begins to dominate. Because yy
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affects only the halo velocities, and in our HOD formalism, we
do not assign galaxies based on subhalos, varying y, has no effect
on the one-halo term. Motivated by this result, we divide our nine
measurement bins into three groups of three bins, with individual
ranges of 0.1-0.8 2~'Mpc, 0.8-7 h~'Mpc, and 7-60 2 ~'"Mpc. These
three ranges correspond roughly to the strongly non-linear regime
where the one-halo term is dominant, the transition between the
non-linear and quasi-linear regimes, and the quasi-linear regime.
We therefore restrict our measurement of fog to the quasi-linear
regime, where y; can be interpreted as a rescaling of the linear
growth rate. For measurements performed over the full separation
range, we instead use y as a test of ACDM, where a deviation from
yr = 1 indicates that the velocity field of the data as parametrized
by our emulator model is in disagreement with the expectation from
ACDM.

4.2 Galaxy selection and the HOD model

As described in Section 3.3, we add an additional parameter f;,,x to
the emulator compared to previous uses that controls the maximum
occupation fraction of central galaxies in the HOD framework, in
order to address the incompleteness of the eBOSS LRG sample
due to target selection. We test the necessity of this addition
and the effect on the clustering using a series of HOD mock
galaxy catalogues. We constructed these mocks from the Uchuu®
simulation. Briefly, Uchuu is a (2000 2~'"Mpc)?, 12800° particle
simulation using the Planck2015 cosmology and a mass resolution of
m, = 3.27 x 108 h~' M. We construct the mocks from the z = 0.7
slice, using the halotools®* (Hearin et al. 2017) PYTHON package
and an HOD parametrization identical to that outlined in Section 3.3.
We constructed mocks using o644, 10g My, o, and log M from
five randomly selected test HOD parameter sets in AEMULUS, with
log Miyir tuned to give n = 1 x 10~*. The AEMULUS test HOD sets
are themselves randomly selected from the uniform training range
given in Table 1, but were not used in training the emulator. In all
mocks, we kept the additional parameters vy, = 0, vps = 1, ¢yir =
1, and y; = 1 fixed to their simplest, no scaling values. For each of
the five HOD parameter sets, we then constructed five mocks with
Jfmax = [0.2, 0.4, 0.6, 0.8, 1.0], for a total of 25 mocks.

We fit these 25 HOD mocks using two emulators: one matching
the original AEMULUS HOD model that is equivalent to fixing fi.x =

3http://skiesanduniverses.org/Simulations/Uchuu/
“https://halotools.readthedocs.io/en/latest/
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Figure 5. The effect on the emulator prediction of varying y for the monopole (left-hand panel), quadrupole (centre hand panel), and projected correlation
function (right-hand panel). All other parameters are kept fixed at reasonable values for the baseline eBOSS fit. Upper panels: Direct comparison of the

predictions, ranging from low y (blue) to high y (red). Lower panels: Relative difference to the y s = 1 prediction.
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Figure 6. Performance of emulators with fixed or variable fiax on HOD mocks constructed with varying fiax. The left-hand panel shows the results from an
emulator built with the original AEMULUS parameter set, which is equivalent to finax = 1. The right-hand panel shows the results from the emulator used in our
analysis with variable fyax. Both emulators were built to match the eBOSS redshift and number density. The horizontal line shows the expected value of y;used
to construct the mocks. Points are shifted slightly along the x-axis to avoid overlap.

1, and the full emulator with variable f,,x. Both emulators were
built to match the eBOSS redshift and number density, as described
in Section 3.3. The y, constraints on the HOD mocks from both
emulators are shown in Fig. 6, where the expected value is yy = 1
by the construction of the mocks. It should be noted that all of the
mocks were constructed using the same halo catalogue from a single
simulation box at a particular cosmology, so it is unsurprising that
the constraints do not scatter evenly above and below y; = 1, since
they are not fully independent. The key points to notice are that the
variable fi, emulator is able to recover the expected value of y;
within the uncertainty over the full f,,,, range, and shows no trend in
Jfmax. Conversely, the fixed fi.x emulator shows a clear bias in y; for
Jfmax < 0.6. This result matches what we would theoretically expect
for model which overestimates the fi.x value of the sample. If the
mismatch is small, there is not a significant change in the galaxy bias
of the sample, however if f.x is significantly overestimated then the
model prediction has a larger galaxy bias, b, than the sample, which

is compensated by a lower growth rate since the amplitude of the
linear clustering scales as fb.

4.3 Redshift uncertainty

Another area of concern where the emulation based model may not
accurately reflect the data is the effect of redshift uncertainties. As
shown in Fig. 2 of Ross et al. (2020), the e BOSS LRG sample has
a redshift uncertainty that is well approximated by a Gaussian with
mean u = 1.3 km s~! and standard deviation o = 91.8 km s~
On average, this means that each redshift is wrong by an absolute
offset of 65.6 km s~'. To first order this gives a Gaussian random
velocity shift for all targets, which acts to damp the clustering of the
multipoles on small scales. The parameters vy and vy,s, which control
the velocity dispersion of centrals and satellites, respectively, should
be able to mimic much of this effect in the model without affecting
the constraints on other parameters. However, since y; scales all
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Figure 7. A histogram of the shifts in the measured cosmological parameters
for 25 HOD mocks with and without a random velocity dispersion matching
the eBOSS redshift uncertainty. Blue bars show the shift in 'y measured over
the full separation range, and orange bars show the shift in fog measured
from the quasi-linear scales only. The x-axis shows the difference between
the value measured for the mock with a random velocity dispersion (zerr)
and the value measured from the same mock without the additional velocity
dispersion, divided by the uncertainty of the measurement from the zerr
mock. Coloured dashed lines show the mean shift for each case. For the fit
over 0.1-60 A~ 'Mpc, including a random velocity dispersion not represented
in the model increased the measured value of yy for all 25 mocks, with a
mean shift slightly larger than half of the statistical uncertainty. Conversely,
for the fit over 7-60 A~'Mpc, the shifts from including a random velocity
dispersion scatter around 0, with a mean shift that is negligible compared to
the statistical error.

halo velocities in the simulation, on non-linear scales where the halo
velocities are virialized, y; has a similar effect on the clustering
as the redshift uncertainty, vy, and vys. In addition, v, and vy are
both calculated by scaling the virial dispersion of the host halo, so
the galaxy velocities derived in the model have a mass dependence
which is not reflected in the redshift uncertainty. The result is that the
redshift uncertainty may bias the recovered value of y; on non-linear
scales, with an unmodelled redshift uncertainty giving a larger than
expected value of yy.

We test the effect of the redshift uncertainty on the y, and fog
constraints using a second set of HOD mocks, constructed in the
same way as those described in Section 4.2. We selected 25 new
AEMULUS test HOD parameter sets and generated HOD catalogues
using halotools. We then calculated the clustering with and
without a random velocity shift along the los drawn from a Gaussian
with mean y = 1.3 km s~! and standard deviation o = 91.8 kms™.
The change in the measured values of y; from the full separation
range and fog from the quasi-linear scales only (matching the method
used for our baseline results) due to the inclusion of the random
velocity shift are shown in Fig. 7. For all 25 mocks, including a
random velocity shift increased the value of y; measured from the
full separation range, with an average shift slightly greater than half
the statistical uncertainty. The larger value of y; measured due to
the random velocity shift matches our theoretical expectation for the
degeneracy between y; and the redshift uncertainty on non-linear
scales, and the magnitude of the shift indicates that the redshift
uncertainty is a significant concern when fitting to the non-linear
scales. On the other hand, the shifts in the measured value of fog
scatter around 0, with a mean shift over an order of magnitude
smaller than the statistical uncertainty. This result also agrees with
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what is expected for our model, since on quasi-linear scales the
redshift uncertainty is not degenerate with a change in y, and instead
will change only vy, and vy. Therefore, the redshift uncertainty is
not a concern for our value of fog measured from the quasi-linear
scales.

There are several barriers to including a correction for the redshift
uncertainty in the model. Most significantly, the redshift uncertainty
grows with redshift (see fig. 6 of Bolton et al. 2012 for BOSS redshift
evolution), while the emulator is constructed from catalogues at a
single redshift slice. The evolution with redshift is also important
because the eBOSS LRG targeting cuts were made using the apparent
magnitudes of the targets, so properties of the sample such as the
mean mass will also evolve weakly with redshift and correlate with
the growth of the redshift uncertainty. The result is that including the
redshift uncertainty in the model may not be as simple as drawing
from a uniform velocity shift, and would require more detailed testing
and corrections. The effect of redshift uncertainty could instead be
included as an additional systematic error or shift in our measured
values. However, it is important to note that for every mock tested,
the inclusion of redshift uncertainty (without it being present in the
model) increased the measured value of y, because on the non-
linear scales where the redshift uncertainty is the most significant, it
is degenerate with the larger random motions of the haloes provided
by a larger value of y . In Section 5, we consistently measure values
of y that are below the value expected from ACDM + Planck2018,
so the presence of redshift uncertainty is actually expected to increase
this tension rather than lowering it. We therefore take the conservative
approach of excluding a shift in our measurements due to the redshift
uncertainty, even though it would be expected to increase the tension
shown by our measurements, and leave a complete treatment of the
redshift uncertainty to future work.

4.4 SHAM mocks

We test the robustness of our model and analysis pipeline using
a subhalo abundance matching (SHAM) mock generated from the
Uchuu simulation. By using a SHAM mock rather than a HOD mock,
we remove the dependence on the specific galaxy-halo connection
model used in our analysis, providing the best approximation to a
model independent test. If our analysis is able to correctly recover
the expected value of y, = 1 for the SHAM mock, then we can
be confident it will be able to match the data, even if there are
deviations from the specific functional form of the galaxy—halo
connection model described in Section 3.3. We use the z = 0.7
slice of the simulation to construct a SHAM mock using the peak
halo velocity, Ve, With a scatter of 0.2 dex, and a number density of
n=1 x 10~* in order to match the eBOSS LRG number density and
redshift.

The result of our fit to the SHAM mock is shown in Fig. 8. The
primary purpose of the Uchuu SHAM mock test is to assess the
robustness of the cosmological parameter recovery using our HOD
based emulator, so we have only included the parameters which have
the greatest impact on the y; constraint. The constraints on all of
the cosmological parameters are in good agreement with the known
values from the simulation, and the 1D marginalized constraint on
vris yr = 0964 £ 0.049, which agrees to within 1—o with the
known value of yy = 1 for the mock. All well constrained HOD
parameters converge within the training parameter space indicating
that the emulator is able to accurately model the clustering of the
mock, despite the mock being constructed using a different galaxy—
halo connection. This result shows that are analysis pipeline and
model provide robust constraints on the growth rate.
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Figure 8. Two dimensional and one dimensional marginalized constraints
of the key parameters from the fit to an Uchuu SHAM mock matching the
eBOSS LRG number density and redshift. Dotted lines show the values of
the cosmological parameters from the simulation.

5 RESULTS

In this section, we present the results of our fit to the small-scale
LRG clustering. We also investigate the robustness of our results by
testing the inclusion of additional constraints on the cosmological
parameters, examining how the constraints change depending on
which scales and measurements are included in the analysis, the effect
of covariance matrix smoothing on the measured parameters, and
consistency with the constraints from a combined CMASS + eBOSS
sample.

5.1 Headline results

We fit the eBOSS LRG monopole, quadrupole, and projected corre-
lation function over scales 0.1 < r < 60 2~'Mpc using the Cobaya
MCMC sampler. We restrict the cosmological parameter space using
the AEMULUS training prior described in Section 3.7, but do not
include any external data. We obtain a value of y, = 0.767 4 0.052,
4.50 below what would be expected in a ACDM + GR universe.
The 1D and 2D likelihood contours of the full parameter set are
shown in Fig. 9. All well constrained parameters are within the
prior ranges described in Table 1, and the parameters that are most
impactful for our results, €2, 03, vy, and yy, all show roughly
Gaussian constraints. The best-fitting values of the cosmological
parameters other than y, are consistent with recent measurements
from the Planck Collaboration (Planck Collaboration 2020b). The
best-fit model prediction is plotted relative to the data in Fig. 10,
showing reasonable agreement within the measurement uncertainty
on all scales. The best-fitting prediction has x2 = 14.1, with 14
degrees of freedom and 27 data points, indicating a good fit. In
addition, we consider a fit over only the quasi-linear scales of our
measurements, 7—60 7! Mpc as described in Section 4.1, from which
we obtain a value of fog(z = 0.737) = 0.408 £ 0.038. This value
is 1.40 below what is expected from the 2018 Planck data for a flat
ACDM universe, and is a factor of 1.7 improvement in statistical

error over the more standard large-scale analysis of the same data
set. See Section 5.4 for more details.

5.2 Testing the quasi-linear scales for overfitting

One concern for our fit to the quasi-linear scales is that by reducing
the separation range to 7-60 2 ~'Mpc, we are fitting nine data points
with a 14 free parameter model. However, it is important to note that
many of the HOD parameters have a negligible effect on these scales.
In particular, the three parameters that control the satellite occupation
(log Mgy, o, logMy) and the three parameters that control the
positions of galaxies in the haloes (vpe, Vb, Cvir) have very little
impact and are almost entirely constrained by the 0.1-7 2~'Mpc
bins. Therefore, while there are 14 free parameters in the model,
only eight are significant when fitting to the nine bins of the quasi-
linear scales. While this provides a theoretical explanation for why
the quasi-linear scales will not be overfit, our fit over the scales
7-60 h~'Mpc has a minimum x> = 0.36 (Table2), indicating that the
small scale HOD parameters may still be causing some overfitting.

To test if this overfitting affects our results, we perform additional
fits over the 7-60 2~ 'Mpc separation range with the predominantly
small scale HOD parameters fixed to their best-fitting values from
the fit over the full 0.1-60 ~'Mpc separation range. In the first
additional fit we keep the six parameters listed above fixed, leaving
eight parameters (£2,,, Quh2, g, h, ny, OlogM» Vs> fmax) free. In the
second fit, we also keep 0'jog 1 and finax fixed to their best-fitting values
from the full fit, allowing only the six cosmological parameters to
vary. The y; constraints from these fits are shown in Table 2 and
Fig. 11. The results of both fits show that reducing the parameter
space increases the precision of the y s constraint without significantly
shifting the central value, while increasing the minimum x2. We
conclude that allowing the small scale HOD parameters to be free
does lead to the quasi-linear scales being overfit, however, it does
not bias our cosmological constraints and instead only increases
the uncertainty. Fixing these HOD parameters would increase the
precision of our measurement from the quasi-linear scales, but it
would also introduce an indirect dependence on the non-linear scales.
We therefore take the conservative choice of using the measurement
with all 14 parameters free as our baseline result. However, this
test does show the value of including the non-linear scales in a
measurement of the linear growth rate.

5.3 Testing the impact of the cosmological priors

We consider a number of prior constraints on the cosmological
parameters, as described in Section 3.7. The three most significant
cases are a uniform prior as described in Table 1, a uniform prior
that restricts the cosmological parameters to be within the volume
that is well sampled by the training simulations, and a joint fit with
Planck2018 likelihoods with a scaled value of g to account for the
redshift difference between the data and the model. The constraints
on the key parameters for these three prior choices are shown in
Fig. 12. The parameter that is most significantly impacted by the
prior choice is og, with all three methods giving consistent values
but with large differences in precision. However, the constraint on
fos is almost unchanged for all prior choices. This result clearly
shows the robustness of the fog fit from the data, and demonstrates
the freedom of the model where changes in og can be balanced by
vy It is also important to note that because the uncertainty on fog
is dominated by the uncertainty of y that the training prior and the
joint fit with Planck achieve almost the same precision on fo g, despite
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Figure 9. One dimensional and two dimensional contours of the parameters used in our baseline fit, as well as the derived constraints on y fog.

having comparable constraints on y but a significant difference in
precision on og.

The effect of the three treatments of og for the joint Planck fit
described in Section 3.7 can be found in Table 2. Using the same
value of og for the Planck chains and model, scaling to account
for the redshift offset, or excluding the Planck constraints on og all
give consistent values for the growth rate, again demonstrating the
robustness of the fit.

5.4 Testing the dependence on the data fitted

In order to test the consistency of the constraint on y, from the
different regimes described in Section 4.1, we fit to the full non-

MNRAS 516, 617-635 (2022)

linear regime (0.1-7 ~'Mpc), the weakly non-linear and quasi-
linear regimes (0.8-60 2~'Mpc), and the quasi-linear regime only
(7-60 h~'"Mpc). One dimensional and two dimensional contours in
the vy, — Yy parameter space for these three fits are shown in the left-
hand panel of Fig. 13. There is little variation in the other parameters
between these fits to different scales, however some important insight
is gained from examining the vy, — y; degeneracy since both
parameters have a similar effect on the clustering in the non-linear
regime. The fits to smaller scales yield larger and more precise values
of vy, while obtaining smaller and less precise constraints on y . The
full fit to all scales is located at the intersection in vy, — y; space
of the small and larger scale fits. The result is that there is mild
tension between the constraints on small and large scales, although
the significance when considering the combined uncertainty is less
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Table 2. y/ constraints with statistical errors calculated from the width of
the 1D marginalized posterior and x 2 values for the fits used in our analysis.
Np gives the number of free model parameters in the fit and Np gives the
number of data points. ¥*The eBOSS + Planck18 runs jointly fit 5 of the 14
parameters with Planck, so they are not fully independent.

Run Vr Np Np X

0.1-60 h~'Mpc 0.767 £+ 0.052 14 27 14.1
0.1-7 h~"Mpc 0.71 £ 0.14 14 18 7.8
0.8-60 2~ 'Mpc 0.783 + 0.066 14 18 42
7-60 h~'Mpc 0.854 £+ 0.083 14 9 0.36
7-60 h~'Mpc, eight parameters  0.821 + 0.064 8 9 0.74
7-60 h~'Mpc, six parameters 0.802 £ 0.050 6 9 1.8

§ot+&2 0.819 £ 0.073 14 18 5.0
&0+ wp 0.65 £0.11 14 18 5.4

vr=1 1 13 27 280
Vpe =0 0.958 + 0.088 13 27 225
Snax =1 0.764 + 0.051 13 27 16.6

Unsmoothed covariance matrix ~ 0.767 £ 0.052 14 27 14.3
Scaled mock covariance matrix ~ 0.766 % 0.059 14 27 12.0

0.85 £0.12 14 27 12.1
0.784 £ 0.048 14 27 18.5
0.798 £ 0.047 14 27 19.1
0.766 £ 0.053 14 27 18.0

0.772 £ 0.053 14 27 14.5

No training prior

eBOSS + Planck18

eBOSS + Planck18 scaled og
eBOSS + Planck18 free og

No AP scaling

than 1 — o. It is worth recalling that since y, rescales all halo
velocities in the simulation, in the linear regime it can be used to
derive a constraint on the linear growth rate fog, in the non-linear it
also enhances the effects of non-linear growth. So the fit to the small-
scales is really a consistency check between the data and model with
ACDM, and these results showing that there is a strong tension which
is most significant in the non-linear regime.

The fit to the quasi-linear scales only does not show the same
degeneracy between vy and y since they no longer have the same
effect on the clustering, and is broadly consistent with any value of

0.1 - 60h~*Mpc
0.1-7h"Mpc

0.8 - 60h~'Mpc !

7 — 60h~'Mpc |—e—
7-60h~Mpc, N, =8
7-60h"Mpc, N,=6
§ot&2

Eo+wp

yr=1

Vpe =0

fmax =1 —

Unsmoothed CM —e
Scaled mock CM

No training prior
eBOSS+Planck18
Planck18 scaled og
Planck18 free og

No AP scaling

Figure 11. y constraints from all the runs listed in Table 2. The blue point
shows the baseline fit to the full separation range, extended by the blue dashed
line for comparison to other points. The red point shows the fit to the quasi-
linear scales only. The black dashed line shows y = 1 for comparison, the
value expected if the amplitude of the halo velocity field matches the ACDM
expectation.

Vpe since it ceases to be impactful on such large scales. However,
the large scale fit is still able to recover a relatively tight constraint
on y that can be compared directly to the linear growth rate, giving
a measurement fog = 0.408 £ 0.038, which is 1.40 lower than the
value expected from the 2018 Planck data for a flat ACDM model.
We also examine the effect of excluding certain measurements
from the fit. In the right-hand panel of Fig. 13, we show the constraints
in vy — ygparameter space from the joint fit to only the monopole and
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Figure 12. One dimensional and two dimensional contours of the key
fit parameters for the fit to the eBOSS LRG sample with no additional
cosmological constraints (orange), restricted by the AEMULUS training prior
(blue), and jointly fit with the Planck2018 likelihoods (green).

projected correlation function, and the joint fit to the multipoles only.
The multipole only fit is less sensitive to the degeneracy between vy,
and y, but prefers a smaller value of vy, and larger ycompared to the
full fit. On the other hand, the joint fit of the monopole and projected
correlation function, which contain similar clustering information but
are sensitive and insensitive to the effects of RSD respectively, prefer
a non-zero value of v,. with much greater confidence, compensated
by a low but less well constrained value of y;. As with the fits to
different scales, the full fit lies in the overlap region produced by the
different sensitivities of these measurements.

5.5 Testing the dependence on the covariance matrix

We test the robustness of our covariance matrix smoothing by
fitting to the unsmoothed covariance matrix and a scaled version
of the covariance matrix estimated from 1000 EZmocks. These
mocks are constructed to match the clustering of the eBOSS DR16
samples on mildly non-linear and linear scales, but are not matched
on small-scales, where the mocks exhibit very different clustering
from the data. EZmocks are based on a Gaussian random field
in a 5h3Gpc® box and an initial power spectrum and geometry
of a flat ACDM cosmology with parameters €2,, = 0.307115,
2, = 0.0482006, h = 0.6777, 03 = 0.8225, n, = 0.9611. Matter
particles are displaced from their initial to final positions using
the Zel’dovich approximation. Tracer bias relation is calibrated to
match the observed clustering of the target sample in the eBOSS
DR16 data. The linear component of the redshift-space distortions is
imprinted using Zel’dovich approximation while the non-linear term
is modelled through an isotropic Gaussian motion. Mocks are then
trimmed to match the geometry and radial selection function of the
eBOSS DR16 LRG catalogue. The unscaled mock covariance matrix
displays a similar correlation structure to the covariance matrix
calculated from applying jackknife to the data, however because the
clustering of the mocks on scales below ~ 1 2~'Mpc is significantly
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lower than the data, the mock covariance matrix underestimates the
variance on those scales. To bring the mock covariance matrix into
better agreement we calculate the correlation matrix from the mocks,
and then convert the correlation matrix to the covariance matrix by
scaling the original diagonal values of the mock covariance matrix
according to

an

where £ is the correlation function from the data and £ is the
mean correlation function from the 1000 EZmocks. This scaling
preserves the original correlation structure and o (&)/€ ratio of the
mock covariance matrix, but adjusts for the higher clustering of the
data. However, this method results in a very large variance for the
quadrupole bins because the the mean quadrupole of the mocks goes
to 0 on small scales. In order to prevent this artificial inflation of the
quadrupole bins, we instead use ai’f- = al.lj for the quadrupole.

The results of the fits using this scaled mock covariance matrix and
the original unsmoothed jackknife covariance are shown in Table 2.
The constraints in both cases are nearly identical to our baseline fit
using the smoothed jackknife covariance matrix, indicating that our
analysis is robust to the choice of covariance matrix.

5.6 Testing the dependence on AP correction

We test the dependence of our result on the AP correction by running
a full fit excluding the AP correction. The constraint on y from this
fit can be seen in Table 2 and Fig. 11. Excluding the AP correction
has a negligible effect on the constraint on y; and slightly increases
the best-fitting x 2. We therefore conclude that any uncertainty in the
AP correction due to the large bin width and approximate calculation
will not have a significant effect on our cosmological constraints.

5.7 Including the BOSS CMASS data

We test the reliability of our fit using a combined CMASS + eBOSS
sample in the redshift range 0.6 < z < 0.8. In particular, in our
analysis we use the CMASS sample from the DR12 data release. The
CMASS DR12 catalogue covers an area of 9376 deg” over a redshift
range of 0.4 < z < 0.8 (Reid et al. 2016) with a target density of
99.5 deg~2. The target selection is calibrated to provide a sample of
galaxies with approximately constant stellar mass over the spanned
redshift range. We refer the reader to Reid et al. (2016) for a detailed
description of the target selection and properties for CMASS sample.
In order to perform a joint measurement of the two-point correlation
function using the eBOSS and CMASS catalogues, we restrict the
two samples (and the corresponding random catalogues) only to the
area of the sky where they overlap and to the redshift range of 0.6
< z < 0.8. The redshift distributions of the two samples as well as
their joint distribution are shown in Fig. 1.

The advantage of this sample is that it is more complete due to
the complimentary nature of the CMASS and eBOSS colour cuts.
However, the inclusion of the additional CMASS objects skews the
redshift distribution of the sample, which is not ideal for an HOD-
based analysis where the galaxy—halo connection parameters are
implicitly assumed to be the same across the full redshift range of
the sample, and several are dependent on the density of galaxies.
As such, we use our combined CMASS + eBOSS measurement to
provide a consistency check with our fit, particularly our assumption
that the target selection of eBOSS does not affect our measurement,
but we continue to use the eBOSS only constraint as our fiducial
measurement.
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Figure 13. Two dimensional and one dimensional marginalized constraints on vp. and y for fits to different scales and measurements. Left-hand panel:
constraints from the three largest separation bins (orange), six largest separation bins (green), six smallest separation bins (red), and all nine separation bins
(blue) for all three measurements. The dotted line shows y = 1, the value expected if the amplitude of the halo velocity field matches the expectation from
ACDM. Right-hand panel: constraints from the joint fit to the monopole and projected correlation function (orange), monopole and quadrupole (green), and all

three measurements (blue).

To correct fibre-collisions in the CMASS sample, we use a mod-
ified version of the NN upweighting with completeness correction,
designated CP, as described in section 2.3 of Mohammad et al.
(2020), and the standard angular upweighting method described in
Section 3.2. For the eBOSS LRG sample, the CP correction was
found to perform similarly to the PIP only result on all scales of w,,
&p, and &, (see figs 15 and 18 of Mohammad et al. 2020). Given
the similarities in sample type and targeting between CMASS and
eBOSS, it is reasonable to expect a similar result for CMASS. When
combined with angular upweighting, any systematic bias is expected
to be below the statistical uncertainty of the measurement. Since
our primary goal in analyzing the combined CMASS + eBOSS
sample is as a consistency check, this correction is sufficient for our
purposes.

Fig. 14 shows the result of our fit compared to the eBOSS
only fit in the most important parameters of our analysis for
both the full emulator range and the quasi-linear scales only. The
CMASS + eBOSS measurement is consistent with the eBOSS
only measurement in all parameters, although there is a greater
preference for larger fi.x values, as expected. It is interesting to
note that in the fit over the full emulator range the inclusion
of the CMASS data does not affect our y, constraint, including
not reducing the 1D marginalized uncertainty. However, there are
several reasons why including additional data may not reduce 1D
marginalized constraints. First, the additional data may reduce the
allowed parameter space in 14 dimensions without affecting the 1D
constraints on a specific parameter. Additionally, the uncertainty in
our measurement is limited by the emulator accuracy in several bins,
notably the quadrupole and the large scale bins of the monopole and
w,, so a reduction of measurement uncertainty in these bins will
not be reflected in the fit. Finally, the constraint on y; seems to rely
on the complimentary constraining of different scales and probes
on parameter combinations such as vy, and yy (Fig. 13). The fit to
CMASS + eBOSS has slightly less tension between the small and

large scales than the eBOSS only measurement, so the overlap region
remains the same size even though the uncertainty from separated
scales has been reduced. This can be seen in the fit to the quasi-
linear scales, where the combined CMASS + eBOSS sample gives
a constraint of fog = 0.384 4 0.036. This constraint is consistent
with the eBOSS only measurement from the quasi-linear scales, but
because it is slightly lower, it is in less tension with the fit over the
full separation range.

6 DISCUSSION

6.1 Comparison to other measurements

We compare our result to other measurements of fog from galaxy
clustering surveys in Fig. 15. Taken as a whole sample, there is
clearly good consistency with the ACDM prediction. For the eBOSS
LRGs, Bautista et al. (2021) analyzed pairs with separations between
25-130 A~ '"Mpc, and obtained measurements of fog = 0.446 4 0.066
and 0.420 £ 0.065 depending on the RSD model used in the analysis
(see Table B1 of Bautista et al. 2021). Our measurement is consistent
with these results at around the 1 — o level, but has a factor of 1.7
improvement in the statistical error. Our measurement also continues
the trend of galaxy clustering measurements of fog falling slightly
below the prediction from observations of the CMB.

In Fig. 15, we also compare our results to other attempts to measure
fos on small scales. Reid et al. (2014) used a similar parametrization
as our analysis to measure fog from the small-scale clustering of
the BOSS CMASS sample, and achieved the highest precision to
date. However, due to the difficulty of modelling the non-linear
regime Reid et al. (2014) used a fixed cosmology, which has been
shown by Zhai et al. (2019) to significantly reduce the uncertainty.
Conversely, Lange et al. (2022) use a novel modelling method in
their analysis of the BOSS LOWZ sample that does not require an
emulator. It should also be noted that their model does not include
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Figure 15. fog measurements from various SDSS samples. The blue points show the results of the standard large-scale analyses from the SDSS MGS (Howlett
etal. 2015), BOSS galaxies (Alam et al. 2017), CMASS + eBOSS LRGs, eBOSS LRGs (Bautista et al. 2021), e BOSS ELGs (de Mattia et al. 2021), and eBOSS
quasars (Neveux et al. 2020). Our small-scale analysis of the eBOSS LRGs using only the quasi-linear regimes is shown in red. Empty coloured points show
the results of small-scale analyses from the BOSS LOWZ sample (Lange et al. 2022, green) and BOSS CMASS sample (Reid et al. 2014, yellow) that included
non-linear scales in the analysis. The black line shows the expected value of fog for a flat ACDM universe with the best-fitting Planck2018 cosmology. The
large-scale eBOSS LRG result is shifted in the x-axis to avoid overlap with the small-scale result from this work.

an equivalent of our y parameter that allows the linear growth rate
to change independently of the ACDM cosmology. Both of these
analyses have split in linear and non-linear regimes differently than
our analysis, which significantly affects the claimed uncertainty. By
restricting our measurement of fog to only the quasi-linear scales,
our uncertainty increases by a factor of ~1.5 compared to our fit
over the full 0.1-60 2~'Mpc separation range, however, we can be
confident that what we are measuring is purely the linear growth
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rate, and so can be directly compared to other more standard large-
scale measurements. As shown in Sections 5.1 and 5.4, using the full
separation range significantly increases the tension with the result
expect for ACDM, with the non-linear scales in greater disagreement
with the expected value than the quasi-linear scales, however it is no
longer clear if this tension arises from a discrepancy in the linear
growth rate or a difference in the non-linear velocity field measured
in the data using the emulator model.
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It is interesting to note that Lange et al. (2022) found a similar de-
pendence on the measurement scales, with smaller scales preferring
a smaller value of fog. Lange et al. (2022) also found that adding
the projected correlation function to their fiducial measurement
of the monopole, quadrupole, and hexadecapole reduced the best-
fitting value of their lower redshift sample by 1 — o, but did
not significantly affect the measurement from their higher redshift
sample. Differences between the two analysis methods mean it
is expected that there would be some variation in the impact of
the different measurements and scales between our results. This is
particularly true since Lange et al. (2022) do not include a parameter
comparable to our y, given the importance of w, in breaking the vy,
— vy degeneracy in our analysis.

6.2 Galaxy-halo connection parameters

The parameter found to be most degenerate with our y; constraint
is vy, the scaling of the velocity dispersion of centrals in the HOD
framework (Fig. 9). A lower value of vy, corresponds to a larger yy,
as expected in the non-linear regime since both parameters increase
the observed velocity dispersion of galaxies (see Section 4.3). Our
fit over the full 0.1-60 ~~'Mpc separation range strongly prefers a
non-zero vy and low yz. However, our fit to the quasi-linear regime
finds no discernible degeneracy between v, and y, and recovers
both a relatively large value of y; and non-zero value of vy, although
the constraint on vy, is weak to the small impact it has on those
scales (Fig. 13). This result indicates that the degeneracy between
vhe and fo'g may illustrate the degree to which the non-linear scales
affect the overall constraint. Lange et al. (2022) also find a strong
degeneracy between the velocity scaling of central galaxies and
their constraint on fog, with their higher redshift sample yielding
Ve > 0 and low fog compared to the ACDM prediction. Reid et al.
(2014) elected to fix the velocity of centrals to match that of the host
halo, and find closer agreement with the ACDM expectation, which
we also find when using a fixed vy = 0. vy > 0 indicates that a
central galaxy is in motion relative to the centre of the host halo,
either because the central galaxy is oscillating in the potential or
because the system is not fully relaxed. Understanding the physical
processes that would lead to this effect, especially if the process is
redshift dependent, will be important for future analyses.

We also investigate the dependence of our measurement on the fiax
parameter. Due to the strong degeneracy between ojog 37 and finax, our
fit to the data is broadly consistent with a wide range of values for
Jmax between 0.2 and 1, however there is a large peak at fi,, = 0.25.
A low value of fi,.x is not surprising for the eBOSS sample given the
magnitude and colour cuts made when selecting the target sample,
particularly since the highest magnitude objects were removed. We
do not find a degeneracy with fog, so the lack of constraint on oo
and fi,y 18 not expected to bias our measurement.

Numerical simulations have shown that the clustering of dark
matter haloes can depend on properties other than halo mass, a.k.a
halo assembly bias (Sheth & Tormen 2004; Gao, Springel & White
2005; Harker et al. 2006; Wechsler et al. 2006; Obuljen, Dalal &
Percival 2019). This bias can propagate into the distribution of
galaxies that live in these haloes and thus introduce additional bias
in the clustering measurement. In the analysis of BOSS galaxies
over a wider redshift range Zhai et al. (2022), we enhance the basic
HOD approach used here with an assembly bias model depending
on the environment of dark matter haloes. Although the results of
that analysis imply the mild existence of assembly bias, there is a
negligible impact on the cosmological constraint and measurement
of structure growth rate. Therefore, we exclude explicit modelling of
assembly bias in this paper.

6.3 Comparison to tension from lensing surveys

It is interesting to note that we obtain a lower value of fog than
expected from Planck measurements, given the current o g-tension
between Planck and weak lensing surveys and the low amplitude
of the galaxy—galaxy lensing amplitude measured using the BOSS
CMASS sample by Leauthaud et al. (2017), since both tensions
could be resolved by a lower value of og than that measured by
Planck. To see approximately how our result might relate to this
tension, we compare the constraints on Sy = o0g(£2,/0.3)*> for
the DES Y1 results (Abbott et al. 2018), Planck 2018 (Planck
Collaboration 2020b), and our results (Fig. 16). The left-hand panel
shows our measurement using the full separation range, while the
right-hand panel shows our measurement from the quasi-linear scales
only. Our constraint, shown as the blue contour, is consistent with
both the DES Y1 and Planck results in both cases. However, it is
important to note that our low value of fog comes almost entirely
from y; < 1, which reduces the magnitude of peculiar velocities
in the simulation without affecting the amplitude of fluctuations,
og. If the low value of fog we measure was due to the value
of og instead then the constraint would shift down the Sg axis,
shown as a green contour. For our measurement from the quasi-
linear scales this shift maintains consistency with both DES Y1 and
Planck 2018, however for our fit to all scales this shift puts the
green constraint in tension with the Planck results, and in more mild
disagreement with the DES results. This result may indicate that the
increased tension we find from the non-linear scales may be caused
by an issue with the HOD model, rather than a purely cosmological
tension.

6.4 Emulator robustness and potential improvements

We have performed rigorous tests of the emulator performance (see
Section 4), and found that the model performs well when fit to
an independent simulation and galaxy—halo connection prescription.
We also find that a model that assumes all central galaxies are
observed leads to a systematic bias in the recovered cosmological
parameters if the actual fractional occupation of centrals is lower
than 0.6. We correct this bias by adding the parameter fi.x to
the emulator, and verify that the full emulator gives an unbiased
measurement for 0.2 < fin.x < 1.0. We also identify the redshift
uncertainty as a source of systematic bias on non-linear scales,
with a redshift uncertainty missing from the model leading to an
offset in y, to larger values by more than half of the statistical
error for the eBOSS sample. This is a significant concern for
future small-scale analyses, and will require careful attention due
to the difficulties in implementing a redshift dependent effect in
a model constructed at a single redshift. The redshift uncertainty
has also been found to scale with redshift, so it will be an even
greater concern for future large surveys at high redshift such as
DESI (DESI Collaboration 2016a, b) and Euclid (Laureijs et al.
2011).

Our measurement of the clustering within the eBOSS LRG
sample also meets or exceeds the emulator precision in several
of the measurement bins (see Fig. 4), showing the importance of
improving the model precision for future surveys. This must be
balanced against ensuring there are sufficient bins to yield a well
defined fit, given the number of model parameters (see Section 5.2).
Finally, careful attention must be given to the non-linear scales, and
identifying what information can be used to constrain the linear
growth rate. A key aspect includes ensuring the performance of the
HOD model on these scales, and investigating the effect of baryonic
physics.
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Figure 16. Two dimensional and one dimensional marginalized constraints on €2, and Sg from our analysis (blue), the Dark Energy Survey (DES) year 1
results (Abbott et al. 2018) (orange) and Planck 2018 results (Planck Collaboration 2020a, c) (red). Since our low value of fog mostly comes from y, we also
plot y /S (green) for our fit, which shows the constraint we would have if the low value of fo'g came entirely from the o'g value. Left-hand panel: results of our
full fit to all scales. Right-hand panel: results from only the quasi-linear scales used to constrain the linear growth rate.

7 SUMMARY

We have measured the growth rate of structure from the small-scale
clustering of the eBOSS LRG sample corrected by PIP weights
and modelled using the AEMULUS cosmological emulator. Using
the quasi-linear scales of our measurement range, we obtain a
measurement of fog(z = 0.737) = 0.408 £ 0.038, which is 1.40
lower than the value expected from 2018 Planck data for a flat
ACDM model. Our measurement is a significant improvement over
more standard measurements made using only the large-scale modes,
achieving a level of precision that is 1.7 times better than the large-
scale analysis of the same sample. Using the full separation range
of our measurement, we find a 4.50 tension in the amplitude of
the halo velocity field with the expectation for a ACDM universe.
This tension is driven by the non-linear scales of our analysis and
so may not be well modelled by a change in the linear growth rate,
but may instead reflect a breakdown in the HOD model used in the
emulator.

We perform a robust check of possible sources of systematic error
not included in previous analyses. We find that using a model that
assumes all central galaxies are observed leads to a systematic bias if
the actual occupation of centrals is lower; a fractional occupation of
Jfmax < 0.6. We also investigate the effect of redshift uncertainty, and
find that the presence of a velocity shift from redshift uncertainty
in the data that is not included in the model results in a higher
measurement of y, with an offset of ~0.5¢, where o is the typical
statistical error. This effect is caused by the degeneracy between the
increased velocity dispersion due to the redshift uncertainty and the
random motions of the haloes in the non-linear regime. Lastly, we
investigate the consistency between the non-linear and quasi-linear
scales of our analysis. While we find them to be consistent within the
statistical error, there is a trend to lower y yon non-linear scales, which
increases the tension with the expectation from ACDM for the fit
to all scales. This result highlights the importance of distinguishing
between results obtained from the linear scales and thus directly
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constraining the linear growth rate fo'g, and those that include non-
linear scales and may have a non-linear dependence on the linear
growth rate together with a dependence on other factors.

While our results are consistent with the expectation from Planck
2018 parameter constraints, we are also consistent with recent weak
lensing results giving a low value of Sg, particularly if our low value
of fog was driven by an adjustment to og. In light of these lensing
results and the mild disagreement we find with Planck expectations,
extending this type of analysis to future surveys including DESI
and Euclid will be an important area of future research. With
considerably larger samples and probing a different redshift range,
the improvement in precision from moving to smaller scales will be
key to achieving optimal constraints and identifying or rejecting a
tension in the growth rate of cosmic structure.

ACKNOWLEDGEMENTS

77 is supported in part by NASA grant 15-WFIRST15-0008,
Cosmology with the High Latitude Survey Roman Science Inves-
tigation Team (SIT). JLT acknowledges the support of NSF AAG
grant 2009291. MJC, FGM, ZZ, and WJP acknowledge financial
support from the Canadian Space Agency (CSA) and the Natural
Sciences and Engineering Research Council of Canada (NSERC).
GR acknowledges support from the National Research Foundation
of Korea (NRF) through Grants Nos 2017R1E1A1A01077508 and
2020R1A2C1005655 funded by the Korean Ministry of Education,
Science and Technology (MoEST).

Research at Perimeter Institute is supported, in part, by the
Government of Canada through the Department of Innovation,
Science and Economic Development Canada and by the Province
of Ontario through the Ministry of Colleges and Universities.

This research was enabled, in part, by the support provided by
Compute Ontario (www.computeontario.ca) and Compute Canada
(www.computecanada.ca).

€20z Ae L0 uo Josn 1deq s|eolpolad Aq 6286+99//19/1/91.5/l0IME/SEIU/WOO"dNO"0lWapede//:Sdny WOy papeojumoq



RSD from small-scale clustering of eBOSS LRGs 635

Funding for the Sloan Digital Sky Survey IV has been provided
by the Alfred P. Sloan Foundation, the U.S. Department of En-
ergy Office of Science, and the Participating Institutions. SDSS-
IV acknowledges support and resources from the Center for High
Performance Computing at the University of Utah. The SDSS
website is www.sdss.org. SDSS-1V is managed by the Astrophys-
ical Research Consortium for the Participating Institutions of the
SDSS Collaboration including the Brazilian Participation Group, the
Carnegie Institution for Science, Carnegie Mellon University, Center
for Astrophysics | Harvard & Smithsonian, the Chilean Participation
Group, the French Participation Group, Instituto de Astrofisica de
Canarias, The Johns Hopkins University, Kavli Institute for the
Physics and Mathematics of the Universe (IPMU) / University of
Tokyo, the Korean Participation Group, Lawrence Berkeley National
Laboratory, Leibniz Institut fiir Astrophysik Potsdam (AIP), Max-
Planck-Institut fiir Astronomie (MPIA Heidelberg), Max-Planck-
Institut fiir Astrophysik (MPA Garching), Max-Planck-Institut fiir
Extraterrestrische Physik (MPE), National Astronomical Observato-
ries of China, New Mexico State University, New York University,
University of Notre Dame, Observatdrio Nacional / MCTI, The Ohio
State University, Pennsylvania State University, Shanghai Astronom-
ical Observatory, United Kingdom Participation Group, Universidad
Nacional Auténoma de México, University of Arizona, University of
Colorado Boulder, University of Oxford, University of Portsmouth,
University of Utah, University of Virginia, University of Washington,
University of Wisconsin, Vanderbilt University, and Yale University.

DATA AVAILABILITY

The eBOSS galaxy and random catalogues are publicly available
at: https://data.sdss.org/sas/dr16/eboss/Iss/catalogs/DR16/ with a de-
scription here: https://www.sdss.org/dr16/spectro/lss/ We used the
AEMULUS emulator, which is available here: https://aemulusproje
ct.github.io, and the COBAYA package, which is available here:
https://github.com/CobayaSampler.

REFERENCES

Abbott T. M. C. et al., 2018, Phys. Rev. D, 98, 043526
Ahumada R. et al., 2020, ApJS, 249, 3

Alam S. et al., 2017, MNRAS, 470, 2617

Alam S. et al., 2021, Phys. Rev. D, 103, 083533

Albareti F. D. et al., 2017, ApJS, 233, 25

Alcock C., Paczynski B., 1979, Nature, 281, 358
Bautista J. E. et al., 2021, MNRAS, 500, 736

Beutler E. et al., 2012, MNRAS, 423, 3430

Beutler F. et al., 2017, MNRAS, 466, 2242

Bianchi D., Percival W. J., 2017, MNRAS, 472, 1106
Blake C. et al., 2011, MNRAS, 415, 2876

Blanton M. R. et al., 2017, ApJ, 154, 28

Bolton A. S. etal., 2012, AJ, 144, 144

Dawson K. S. et al., 2013, ApJ, 145, 10

Dawson K. S. et al., 2016, ApJ, 151, 44

de Mattia A. et al., 2021, MNRAS, 501, 5616

DeRose J. et al., 2019, ApJ, 875, 69

DESI Collaboration, 2016a, preprint (arXiv:1611.00036)
DESI Collaboration, 2016b, preprint (arXiv:1611.00037)
du Mas des Bourboux H. et al., 2020, ApJ, 901, 153
Eifler T., Kilbinger M., Schneider P., 2008, A&A, 482, 9
Eisenstein D. J. et al., 2011, ApJ, 142, 72

Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Ferreira P. G., 2019, ARA&A, 57, 335

Gao L., Springel V., White S. D. M., 2005, MNRAS, 363, L66

Gil-Marin H. et al., 2020, MNRAS, 498, 2492

Grieb J. N. et al., 2017, MNRAS, 467, 2085

Gunn J. E. et al., 2006, AJ, 131, 2332

Guzzo L. et al., 2008, Nature, 451, 541

Harker G., Cole S., Helly J., Frenk C., Jenkins A., 2006, MNRAS, 367, 1039

Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399

Hearin A. P. et al., 2017, AJ, 154, 190

Hinshaw G. et al., 2013, ApJS, 208, 19

Hou J. et al., 2021, MNRAS, 500, 1201

Howlett C., Lewis A., Hall A., Challinor A., 2012, JCAP, 1204, 027

Howlett C., Ross A. J., Samushia L., Percival W. J., Manera M., 2015,
MNRAS, 449, 848

Kaiser N., 1987, MNRAS, 227, 1

Krause E., Hirata C. M., Martin C., Neill J. D., Wyder T. K., 2013, MNRAS,
428, 2548

Landy S. D., Szalay A. S., 1993, ApJ, 412, 64

Lang D., Hogg D. W., Schlegel D. J., 2016, AJ, 151, 36

Lange J. U., Hearin A. P, Leauthaud A., van den Bosch F. C., Guo H., DeRose
J., 2022, MNRAS, 509, 1779

Laureijs R. et al., 2011, preprint (arXiv:1110.3193)

Leauthaud A. et al., 2017, MNRAS, 467, 3024

Lewis A., 2013, Phys. Rev., D87, 103529

Lewis A., Bridle S., 2002, Phys. Rev., D66, 103511

Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473

Lyke B. W. et al., 2020, ApJS, 250, 8

Mohammad F. G., de la Torre S., Bianchi D., Guzzo L., Peacock J. A., 2016,
MNRAS, 458, 1948

Mohammad F. G. et al., 2020, MNRAS, 498, 128

Navarro J. E,, Frenk C. S., White S. D. M., 1996, ApJ, 462, 563

Neal R. M., 2005, preprint (arXiv:math/0502099)

Neveux R. et al., 2020, MNRAS, 499, 210

Obuljen A., Dalal N., Percival W. J., 2019, J. Cosmol. Astropart. Phys., 2019,
020

Okumura T. et al., 2016, PASJ, 68, 38

Percival W. J., Bianchi D., 2017, MNRAS, 472, L40

Pezzotta A. et al., 2017, A&A, 604, A33

Planck Collaboration V, 2020a, A&A, 641, A5

Planck Collaboration VI, 2020b, A&A, 641, A6

Planck Collaboration VIII, 2020c, A&A, 641, A8

Prakash A. et al., 2016, ApJS, 224, 34

Raichoor A. et al., 2021, MNRAS, 500, 3254

Reid B. A., Seo H.-J., Leauthaud A., Tinker J. L., White M., 2014, MNRAS,
444, 476

Reid B. et al., 2016, MNRAS, 455, 1553

Rossi G. et al., 2021, MNRAS, 505, 377

Ross A. J. et al., 2020, MNRAS, 498, 2354

Samushia L., Percival W. J., Raccanelli A., 2012, MNRAS, 420, 2102

Sanchez A. G. et al., 2017, MNRAS, 464, 1640

Satpathy S. et al., 2017, MNRAS, 469, 1369

Sheth R. K., Tormen G., 2004, MNRAS, 350, 1385

Smee S. A. etal., 2013, AJ, 146, 32

Smith A. et al., 2020, MNRAS, 499, 269

Song Y.-S., Percival W. J., 2009, J. Cosmol. Astropart. Phys., 2009, 004

Tamone A. et al., 2020, MNRAS, 499, 5527

Torrado J., Lewis A., 2021, J. Cosmol. Astropart. Phys., 2021, 057

Wechsler R. H., Zentner A. R., Bullock J. S., Kravtsov A. V., Allgood B.,
2006, Apl, 652,71

Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G.,
Rozo E., 2013, Phys. Rep., 530, 87

Zhai Z. et al., 2017, ApJ, 848, 76

Zhai Z. et al., 2019, ApJ, 874, 95

Zhai Z. et al., 2022, preprint (arXiv:2203.08999)

Zhao C. et al., 2021, MNRAS, 503, 1149

This paper has been typeset from a TeX/IATgX file prepared by the author.

MNRAS 516, 617-635 (2022)

€202 AeIN L0 Uo Josn jdeq s[eoipouad AQ 6286199/ L9/1/91G/aI0IE/SEIUW/ W09 dNO"D1WaPED.//:SA)Y WOy PAPEOjUMOQ



	1 INTRODUCTION
	2 EBOSS LRG SAMPLE
	3 METHODS
	4 ROBUSTNESS AND SYSTEMATIC ERROR CHECKS
	5 RESULTS
	6 DISCUSSION
	7 SUMMARY
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

