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Abstract

1.	 Declines in grassland diversity in response to nutrient addition are a general conse-
quence of global change. This decline in species richness may be driven by multiple
underlying processes operating at different time-scales. Nutrient addition can re-
duce diversity by enhancing the rate of local extinction via competitive exclusion,
or by reducing the rate of colonization by constraining the pool of species able to
colonize under new conditions. Partitioning net change into extinction and coloni-
zation rates will better delineate the long-term effect of global change in grasslands.

[Correction added on 22-February-2023, after first online publication: Four additional authors have been added: Anu Eskelinin, Ramesh Laungani, Xavier Raynaud and Risto Virtanen. 
The author contributions section has also been updated] 
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1  |  INTRODUC TION

Increased nutrient supply is consistently linked to declines in species 
richness among plant communities (Borer, Seabloom, et al.,  2014; 
Harpole et al.,  2016; Hautier et al.,  2009; Midolo et al.,  2019; 
Rajaniemi, 2002). Although richness is a common indicator of a sys-
tem's response to global change, a decline in richness can be generated 
by multiple processes operating at different time-scales. Canonical 
ecological theory (e.g. MacArthur & Wilson,  1967) suggests that 
richness reflects a balance between rates of species gains and losses 
through time. Consistent turnover is a normal quality of undisturbed 
communities, producing a dynamic composition but steady-state 
equilibrium in richness (MacArthur & Wilson, 1967). Disruption of this 
equilibrium via alteration to either gains or losses of species by global 
change drivers, therefore, underlies declines in richness (Figure 1).

In terrestrial plant communities, a decline in species richness 
associated with increased nutrient supply has been attributed to, 
among other factors, a reduction in below-ground resource limita-
tion or modification to soil biogeochemistry, reducing below-ground 
niche space and subsequently shifting competition above-ground 
for light (Harpole et al.,  2016; Hautier et al.,  2009). Species may 

then be lost via competitive exclusion by superior competitors for 
light (Borer, Seabloom, et al.,  2014). Multi-nutrient limitation of 
plant productivity is common in grasslands, (Fay et al., 2015) and, 
therefore, fertilization with multiple nutrients may accelerate loss 
of richness (Figure 1b) by reducing the number or dimensionality 
of below-ground limiting factors (Harpole et al., 2016; Harpole & 
Tilman, 2007). The reduction of niche-space can lead to the loss of 
perennial, generally slower-growing and native species in favour of 
faster-growing, more resource-acquisitive annual or invasive spe-
cies (Suding et al., 2005; Tognetti et al., 2021).

Fertilization also can lead to the gain of new native and non-
native species (Flores-Moreno et al., 2016). Specifically, non-native 
species often respond differently to nutrient enrichment than na-
tives, becoming dominant in fertilized plots (Seabloom et al., 2015). 
This is likely because nutrient addition can reduce barriers to inva-
sions, particularly in nutrient limited systems where native species 
are locally adapted, or because some exotic species have evolved 
locally in human-dominated higher nutrient ecosystems (Davis 
et al., 2000; Seabloom et al., 2015). However, even small numbers 
of introduced species can maintain high relative abundance, leading 
to greater local extinction rates without compensatory colonization 
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2.	 We synthesized changes in richness in response to experimental fertilization 
with nitrogen, phosphorus and potassium with micronutrients across 30 grass-
lands. We quantified changes in local richness, colonization, and extinction over 
8–10 years of nutrient addition, and compared these rates against control condi-
tions to isolate the effect of nutrient addition from background dynamics.

3.	 Total richness at steady state in the control plots was the sum of equal, relatively 
high rates of local colonization and extinction. On aggregate, 30%–35% of initial 
species were lost and the same proportion of new species were gained at least 
once over a decade. Absolute turnover increased with site-level richness but 
was proportionately greater at lower-richness sites relative to starting richness. 
Loss of total richness with nutrient addition, especially N in combination with 
P or K, was driven by enhanced rates of extinction with a smaller contribution 
from reduced colonization. Enhanced extinction and reduced colonization were 
disproportionately among native species, perennials, and forbs. Reduced colo-
nization plateaued after the first few (<5) years after nutrient addition, while 
enhanced extinction continued throughout the first decade.

4.	 Synthesis. Our results indicate a high rate of colonizations and extinctions under-
lying the richness of ambient communities and that nutrient enhancement drives 
overall declines in diversity primarily by exclusion of previously established spe-
cies. Moreover, enhanced extinction continues over long time-scales, suggesting 
continuous, long-term community responses and a need for long-term study to 
fully realize the extinction impact of increased nutrients on grassland composition.

K E Y W O R D S
dynamic equilibrium, grasslands, nutrient enrichment, Nutrient Network (NutNet), plant 
population and community dynamics, richness, turnover
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rates (Seabloom et al., 2013). This is frequently the case among in-
troduced species that are dominant in their native range, leading to 
homogenization in the composition of sites with the same dominant 
species (Firn et al., 2011). This process could ultimately reduce colo-
nization rates by constraining the pool of species able to successfully 
colonize (Figure 1c). Increased nutrient supply can, therefore, reduce 
overall richness through the loss of inferior soil resource competi-
tors as below-ground niches are reduced and gain of a more limited 
subset of highly competitive resource-acquisitive (often non-native) 
species.

Whether increased nutrient supply predominantly affects rich-
ness via altered local colonization rates or local extinction rates, 
the time-scale by which these mechanisms play out is uncertain. 
Colonization can be affected at short or long time-scales depending 
on propagule pressure (Poulsen et al., 2007), while rates of extinc-
tion will vary with population size and strength of priority effects 
(Uricchio et al., 2019; Werner et al., 2016). While theory suggests 
that the relative importance of extinction and colonization and 
their sensitivity to disturbance should vary with site-level condi-
tions (Shurin, 2007), empirical studies in plant systems are few and 

relegated to single locations (Kaarlejärvi et al.,  2017; Olofsson & 
Shams, 2007). The magnitude of local turnover rates can increase 
with regional species richness (MacArthur & Wilson, 1967) while the 
rate and magnitude of disturbance can have different consequences 
depending on site fertility, climate and pre-dominance of distinct 
functional groups (Mouillot et al., 2013; Svensson et al., 2009), em-
phasizing the need to control for both local and regional diversity. 
Generalizing across sites and across time-scales will, therefore, 
cut through these idiosyncrasies to provide broadly encompassing 
mechanistic explanations for the changes in species richness associ-
ated with increased nutrient supply (Magurran et al., 2010).

Ultimately, the direct influence of increased nutrient supply on 
plant richness stems from its impact on background rates of coloni-
zation and extinction. While there are approximate expectations for 
changes in both components (either gains or losses) following nutri-
ent addition, it is unclear how these components combine to drive 
declines in overall richness. In this study, we synthesized temporal 
patterns in richness from 30 grassland sites with nutrient addition 
treatments. We quantified the rate of species gains and losses over a 
period of 8–10 years and assessed their relative contribution to total 
species richness in control versus treatment plots. Using these data, 
we asked the following questions:

1.	 What are species turnover rates in grasslands under ambient 
conditions?

2.	 Are declines in richness with nutrient addition driven by reduced 
colonization rates, enhanced local extinction rates, or both?

3.	 Do changes to colonization and extinction rates operate synchro-
nously or at distinct time-scales?

4.	 Does the predominant cause of species decline change with the 
addition of multiple nutrients?

5.	 Are species life form, life history and provenance associated with 
reduced colonization or enhanced extinction rates with nutrient 
addition?

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

The Nutrient Network (NutNet) is a globally distributed experi-
ment replicated across short-statured, primarily herbaceous eco-
systems (hereafter called grasslands) on six continents (Borer, 
Harpole, et al.,  2014). Most sites with experimental treatments 
contain three replicated treatment blocks (21 of 30 sites; range 
1–6 blocks per site). Within each block, eight different nutri-
ent addition treatments are applied to 5 × 5 m plots. Thus, most 
sites have a total of 24 experimental units (3 blocks × 8 nutrient 
treatments; Borer, Harpole, et al.,  2014). These nutrient addi-
tion treatments represent the factorial combinations of nitrogen 
(N), phosphorus (P) and potassium and micronutrients (Kμ), plus 
a control. Nutrient addition rates are as follows: 10 g N m−2 year−1 
as timed-release urea, 10 g P m−2 year−1 as triple superphosphate, 

F I G U R E  1  Conceptual figure describing how a change in total 
richness can arise from different alterations to turnover dynamics. 
Arrows indicate a change from control conditions. (a) Total 
richness declines relative to the control with nutrient addition. 
This phenomenon could result from a reduced rate of gain of 
new species through time (b), or from an enhanced rate of loss of 
species originally present pre-treatment through time (c), or some 
combination of these two processes. Purple lines are the change 
in total richness, blue lines are the gain of species not already 
present in treatment year 0, and orange lines are the loss of species 
from treatment year 0. Dotted lines represent rates in control 
treatments, and solid lines rates under nutrient addition.
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10 g K m−2 year−1 as potassium sulfate and 100 g m−2 of a micronu-
trient mix (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn, 
0.05% Mo and 1% Zn). N, P and K are applied annually, while the 
micronutrient mix was applied only once at the start of the study 
to prevent toxicity of largely immobile micronutrients. Treatments 
are hereafter referred to shorthand by their nutrient components, 
for example, ‘NK’ for Nitrogen + Potassium and micronutrients, 
‘NPK’ for full nutrient additions. All present species are identified 
in each 5 × 5  m plot every year at the time of peak biomass, or 
twice annually in highly seasonal sites. For the current study, we 
only selected sites with at least 8 years of treatment data (n = 30 
sites) to capture longer-term dynamics in species turnover, as well 
as control for otherwise uneven sample sizes at disparate time 
intervals.

2.2  |  Data manipulation

We quantified the rate of species gains and losses over a period of 
8–10 years, and assessed their relative contribution to total species 
richness (absolute and proportional) in control versus nutrient treat-
ment plots. Taxa that were only identified to genus were treated as a 
single species, representing a slightly conservative estimate of rich-
ness. Because overall richness varied across sites (Seabloom, Adler, 
et al., 2021), the same number of species lost will likely have a larger 
effect on function in species-poor than species-rich communities 
(Symstad et al.,  1998). We accounted for this in two ways: (1) by 
quantifying colonizations and extinctions proportionate to a plot's 
pre-treatment baseline richness, in addition to absolute change in 
richness and (2) by examining explicitly whether patterns of species 
gain and loss differ once initial species richness is included as a fixed 
covariate.

In each year of treatment, we classified species present in an 
experimental unit as either ‘original’ or ‘new’. ‘Original’ species 
were defined as those present in a plot in the first 2 years of the 
time series (in the pre-treatment year or the first year of treat-
ment) and, therefore, represent species that were either already 
established or colonized very early in nutrient addition treat-
ments. In contrast, ‘new’ species were any species not classified as 
‘original’ that were observed in a plot after the first year of treat-
ment, and were, therefore, not originally present and arrived after 
plots had been subject to treatment effects for at least one full 
year. ‘Species gained’ in any given year was defined as the number 
of ‘new’ species present during that year (not cumulative over the 
time series), and ‘species lost’ were the number of ‘original’ species 
not present during that year. These definitions let us quantify the 
relative contribution of both local colonization and extinction to 
total richness across time and treatments. Proportional richness 
was calculated by dividing a given year's total richness by the rich-
ness in treatment year 0, and is, therefore, relative to a plot's pre-
treatment baseline richness.

To determine whether richness alters patterns of species gains 
and losses with nutrient addition, we stratified plots based on 

their initial richness. Categories were based on the richness in a 
1m2 quadrat in the pretreatment year: 1–10 species (n = 394), 11–
15 species (n = 171), 16–20 species (n = 119) and greater than 21 
species (n = 65). We chose category sizes iteratively by looking at 
various ranges of starting richness and lumping groups with similar 
slope.

2.3  |  Analyses

To generalize trends across sites, we fit generalized additive mod-
els (GAMs) separately for change in plot-level total richness, gains, 
and losses through time (8–10 years of treatment). GAMs were fit to 
each type of richness (i.e. ‘total’, ‘new’ and ‘original’ in both absolute 
and proportional richness). To select a best-fit smooth model, we fit 
three increasingly nested hierarchical GAMs: site as a random ef-
fect, site and block, and site, block and plot. We crossed these mod-
els with restricted maximum likelihood (REML)-selected smoothing 
parameters at 3, 4 or 5 spline knots. We selected the model with 
the best Akaike information criterion (AIC; Sakamoto et al.,  1986) 
and generalized cross-validation score (GCV; Table S1). These mod-
els allowed for both qualitative assessment of the broader trends in 
turnover dynamics through time, as well as quantitative comparisons 
of the magnitude of local colonizations and extinctions between 
treatments. For most analyses, we compared Control models to NPK 
models to emphasize the effect of full nutrient addition. To assess 
the effect of each nutrient treatment, we averaged the difference 
in richness between each treatment and the control in each year of 
treatment (Figure 3).

To evaluate the functional makeup of species gained and lost, 
we further partitioned the data along three functional axes that 
characterize below- and above-ground competitive trade-offs: 
lifeform (forbs vs. grasses), lifespan (annuals vs. perennials), and 
provenance (native vs. introduced). Each of these six functional 
subgroups was modelled separately with GAMs in the same man-
ner described above. Finally, we subtracted Control model predic-
tions from NPK model predictions to focus on the full-treatment 
effect on gains or losses of each functional group (Figure 4). We 
did not model changes in proportional richness by functional sub-
group because highly uneven sample sizes of some subgroups in 
many plots misrepresented the magnitudes of change in those 
plots.

Because nutrient addition treatments favour specific functional 
groups, they could further impact diversity by constraining the pool 
of species able to compete and persist. To quantify this, we first cre-
ated community matrices from each site representing the presence/
absence of each potential species gained (‘new’ species as defined 
above) after the first full year of treatment or ‘original’ species that 
persisted through the final year of measurement for each 1 m2 plot. 
We then computed the pairwise Jaccard dissimilarity index in spe-
cies gained/retained after years 0 and 1 among plots within each 
treatment within each site (Figure S3), and averaged these indices 
across sites (Figure S4). Higher values indicate that species gained or 
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retained within treatments were highly dissimilar, while lower values 
indicate greater similarity.

Finally, we identified all species at each site that were gained, 
lost, or persisted during the length of each site's study period in 
Control and NPK treatments only. We then quantified the propor-
tion of these species in each category that were unique to either 
treatment, and what proportion of each category was identified 
in both treatments (Figure S1). Any new species as defined above 
were classified as a species ‘gained’, any original species that were 
not present in the final 2 years of treatment were classified as 
‘lost’.

All work was done in R version 4.1.0 (R Core Team, 2020). GAMs 
were fit and compared using the ‘mgcv’ package (Wood,  2017). 
Jaccard indices were calculated using the ‘vegan’ package (Oksanen 
et al., 2013).

3  |  RESULTS

Aggregated across 30 sites, control plots exhibited approximately 
balanced rates of local colonization and extinction resulting in con-
sistent richness through time (Figure  2). However, this consistent 

richness was maintained by highly dynamic turnover processes. 
Over a decade, 30%–35% of original species were lost in at least 
1 year, while 30%–35% of initial richness was gained as new species 
(Figure 2). In both control and NPK plots, the greatest colonization 
and extinction rates occurred within approximately the first 5 years 
of the experiment. While the rate of local extinction leveled off in 
control plots, enhanced local extinction in NPK plots continued 
throughout the time series. Thus, full nutrient addition plots (NPK) 
exhibited overall declines in richness. These declines were primar-
ily driven by local extinction of the original species and secondarily 
by reduced colonization by new species (in NPK relative to control, 
46% more original species were lost versus 27% fewer new species 
gained). This relationship was the same using both absolute and 
proportional metrics of richness. After a decade of treatment, NPK 
plots contained 3.5 fewer species on average; proportionally, rich-
ness declined by 20% in these plots.

Comparing years 0–1 to years 8–10 across all nutrient enrichment 
treatments, enhanced extinction was generally greater than reduced 
colonization (as much as four times greater, Figure 3). When mea-
sured as proportional richness, reduced colonization contributed to 
richness loss only in NPK and NK treatments, while enhanced ex-
tinction contributed to proportional richness loss in all treatments. 

F I G U R E  2  The change in absolute 
(top) and proportional (bottom) richness 
from baseline during the first 10 years 
of measurement in the control (left) 
versus NPK addition treatments (right), 
aggregated across 30 NutNet sites. Lines 
are fit from generalized additive models 
with site, block and plot as nested random 
effects. Proportional richness is the 
change in richness relative to plot richness 
in year 0. Confidence intervals are one 
standard error from the estimate. Purple 
lines are the change in total richness, 
orange lines are the loss of species 
present in treatment year 0 and 1, and 
blue lines are the gain of species after 
treatment year 1.

Control NPK

0 2 4 6 8 10 0 2 4 6 8 10

−4

0

4

C
ha

ng
e 

in
 R

ic
hn

es
s 

fro
m

 Y
ea

r 0

Control NPK

0 2 4 6 8 10 0 2 4 6 8 10
−0.6

−0.3

0.0

0.3

0.6

Years since Treatment Start

P
ro

po
rti

on
al

 C
ha

ng
e

Richness Type New Species Original Species Total Richness

 13652745, 2023, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14038 by U

niversity O
f O

regon Libraries, W
iley O

nline Library on [01/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



    |  557Journal of EcologyMUEHLEISEN et al.

The strongest changes in enhanced extinction and reduced coloni-
zation for both absolute and proportional metrics were observed 
in N addition treatments, especially when N was added in tandem 
with other nutrients. Partitioned along functional axes, forbs con-
tributed disproportionately to enhanced losses in NPK treatments 
compared to control (Figure 4; 1.76 ± 0.52 SE additional forb losses, 
0.22 ± 0.21 SE grass losses, Δ1.99), as did perennials (1.63 ± 0.46 
SE additional perennial losses, 0.46 ± 0.35 SE annual losses, Δ1.17), 
and natives (1.80 ± 0.51 SE additional native losses, 0.21 ± 0.30 SE 
introduced losses, Δ1.58). There was similar differentiation in func-
tional characteristics of reduced gains under NPK treatment, though 
the magnitude was muted reflecting fewer reduced gains overall 
(Figure 4; 0.56 ± 0.18 SE fewer forb gains, 0.09 ± 0.09 SE fewer grass 
gains, Δ0.47; 0.65 ± 0.18 SE fewer perennial gains, 0.19 ± 0.18 SE 
fewer annual losses, Δ0.45: 63%; 0.74 ± 0.23 SE fewer native gains, 
0.18 ± 0.14 SE fewer introduced gains, Δ0.56).

Nitrogen addition plots had slightly higher Jaccard dissimilarity 
among replicates and were, therefore, more variable than non-N 
treatments in species gained or retained after a decade, contrary 
to our expectation that nitrogen addition would homogenize plant 
composition (Figure S4; +3% in N treatments; t = 4.07, p << 0.001). 
However, analysing the proportion of species uniquely gained, 
lost, or persisting in either control or NPK indicates that NPK plots 
gained slightly fewer overall unique species relative to control plots 
(−12.0%; Figure  S1). NPK plots similarly lost more unique species 
after a decade of treatment (+14.6%), and fewer unique species per-
sisted relative to control plots (−17.1%; Figure S1).

Absolute gain and loss increased in magnitude with starting ini-
tial richness (Figures S2 and S3). Higher-richness control plots (20+ 
species) gained approximately three times as many new species over 
the course of the experiment as plots with lower starting richness 
(< 16 species; Figure S3). The greatest level of extinctions occurred 

F I G U R E  3  The change in mean annual richness of each nutrient 
treatment relative to the control (dashed vertical lines) calculated 
for each treatment year and averaged across all years for (a) 
absolute and (b) proportional richness. Error bars are one standard 
error of the mean. Purple points are the change in total richness 
relative to the control, blue points are the partition of total richness 
change associated with new species gain, and orange points are the 
partition associated with loss of original species.
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when all nutrients were added together (NPK), and starting richness 
had the strongest interaction with nutrient addition in these NPK 
plots (Figure S2). For proportional richness, the opposite trend was 
observed, albeit weaker in magnitude; despite low-richness plots 
exhibiting the smallest absolute changes, proportional gain and loss 
decreased with increased total richness. In both the control and NPK 
treatment, plots with a starting richness less than 11 had the great-
est proportional gains (Figures S2 and S3).

4  |  DISCUSSION

Species richness dynamics are driven by local colonization (gains) 
and extinction (losses) of species through time (MacArthur & 
Wilson, 1967). Declines in overall richness may be a consequence 
of anthropogenic disturbance (Butchart et al., 2010), as is the case 
in grasslands in response to increased nutrient supply (Harpole 
et al., 2016; Hautier et al., 2009; Rajaniemi, 2002). Alteration to ei-
ther the rate of local colonization or extinction can underlie direc-
tional responses of species richness to grassland perturbation, but 
the relative contribution of each remains to be resolved. Using data 
from 30 sites across the global Nutrient Network experiment, we 
found that declines in grassland plant species richness with nutri-
ent addition (N, P and K plus micronutrients) over a decade were 
predominantly driven by enhanced rates of local extinction, while 
reduced rates of colonization played a relevant but secondary role, 
particularly at shorter time-scales.

In aggregate, total richness in control plots remained constant 
through time despite substantial changes in species composition due 
to persistent occurrence of colonization and extinction. As a result, 
the largely stable richness was underlain by a continuous churning of 
species. N addition caused declines in richness due to both reduced 
rates of local colonization and enhanced extinction. However, species 
loss from enhanced local extinction was 2–5 times greater than from 
reduced colonization. These treatment effects did not, therefore, ap-
pear to have influenced richness dynamics in Control plots despite 
their proximity (Furey et al., 2022). Similar to our findings, changes 
to the richness of alpine plant communities as a result of fertilization 
and soil disturbance were driven primarily by extinctions, rather than 
colonizations, regardless of whether total richness increased or de-
creased (Olofsson & Shams, 2007). Likewise, fertilization in a tundra 
plant community led to more species lost than gained, resulting in 
an overall decline in richness (Kaarlejärvi et al., 2017). Consistency 
between our results, aggregated across many sites, and results from 
these individual sites suggest that fertilization-induced changes in 
total richness through time are more sensitive to enhanced extinction 
rates than to constrained colonization in plant communities.

4.1  |  Colonization and extinction over time

We found that species richness responses to nutrient addition were 
cumulative across years, consistent with classic studies of Nutrient 

Network or other sites (Bobbink et al.,  2010; Borer, Seabloom, 
et al., 2014; Harpole et al., 2016; Seabloom, Adler, et al., 2021). These 
changes are not necessarily constant over time, and deconstructing 
responses into extinction and colonization processes can clarify the 
time-scale dependence of mechanisms underlying cumulative re-
sponses to nutrient addition. Colonization could be amplified early 
if nutrient-adapted species establish soon after nutrient addition, 
especially in otherwise nutrient-poor plots, or depressed on longer 
time-scales if fewer random arrivals from the regional species pool 
are able to successfully colonize (Smith et al.,  2009). Extinction, 
meanwhile, could happen quickly if some existing species are rapidly 
outcompeted by fast-growing competitive dominants. Colonization 
levelled off in both control and fertilized plots by the end of 10 years; 
however, the curve flattened more quickly in fertilized plots, sug-
gesting that fertilized communities quickly constrain the colonization 
rate of new species. The rate of local extinction of original species, 
by contrast, continued to increase without levelling off by the end 
of 10 years. Equilibrium was, therefore, never reached in plots with 
chronic NPK addition due to sustained local extinction, implying 
competitive exclusion at immediate time-scales, as well as ongoing 
extinction that can play out over a decade or longer. Mechanistically, 
this sustained extinction could reflect an ‘extinction debt’, where 
higher abundances in some species buffer their eventual extirpa-
tion (Cousins & Vanhoenacker, 2011; Kuussaari et al., 2009; Tilman 
et al., 1994), drawing out the ultimate effect of nutrient enhancement 
over longer time-scales. Similarly, eventual losses could be drawn out 
in plots or sites with a greater proportion of longer-lived perennials 
due to slower turnover of pre-established species. If population sizes 
or life spans are mediating extinction rates, then disturbances such 
as climate extremes could accelerate losses, suggesting a potentially 
harmful interaction between global change drivers.

Altogether, nutrient-induced declines in total richness were ini-
tially a product of higher extinction rates, which are likely to lead 
to continued decline in richness beyond our 10-year window of ob-
servation. Shrinking niche-space is a potential explanation for this 
decline. Though we do not quantify this explicitly, responses of dif-
ferent functional groups to nutrient addition align with expectations 
for which types of plants are typically lost when niches shrink. With 
nutrient addition, forbs, perennials and native species dispropor-
tionately contributed to enhanced losses and reduced gains relative 
to grasses, annuals and introduced species. A functional shift toward 
faster growth with nutrient addition suggests an enhanced impor-
tance of light competition above-ground and, at the same time, a 
reduced role for below-ground competition as limiting factors are 
ameliorated (Harpole et al.,  2016; Hautier et al.,  2009). These re-
sults recapitulate a strong bedrock predicting these findings, espe-
cially in grasslands: enhanced nutrients favour faster-growing, more 
resource-acquisitive species (Chapin,  1980; Suding et al.,  2005; 
Tilman & Wedin, 1991; Tognetti et al., 2021), which tend to charac-
terize introduced species (Flores-Moreno et al., 2016; Van Kleunen 
et al.,  2010), and consequently disfavour poorer light-competitors 
such as forbs, and more resource-conservative perennials and na-
tives (Stevens et al., 2006; Suding et al., 2005).
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Differentiation in reduced gains among functional groups mir-
rored losses, suggesting an environmental filter on initial coloniza-
tion. Interestingly however, reduced gains only became functionally 
differentiated 4–5 years after treatment started. Speculatively, 
this could reflect a weaker initial environmental filter on coloniza-
tion that becomes more apparent through time, perhaps reflecting 
growing dominance of more resource-acquisitive species. Greater 
habitat connectivity and dispersal could, therefore, dampen losses 
under nutrient addition, particularly because grasslands are capable 
of supporting greater diversity than their steady-state richness sug-
gests (Foster & Tilman, 2003; Shackelford et al., 2021). Accordingly, 
dispersal limitation may enhance declines in both absolute and func-
tional richness. In aggregate, these results imply that functionally 
diverse species can colonize nutrient-enriched environments, at 
least early in treatment, while only a more limited subset can per-
sist. Going forward, closer examination of shifts in the demography 
of different functional groups could provide a more direct under-
standing of these consequences for diversity. Furthermore, con-
sideration of shifts in species rank-abundance could more directly 
explain the differences in time-scale we observe in altered turnover 
dynamics (Avolio et al., 2019). Ultimately, absolute richness is only a 
rough measure of biodiversity change (Hillebrand et al., 2018), and 
consideration of more comprehensive metrics could refine our un-
derstanding of the role of colonization in maintaining or failing to 
maintain diversity under nutrient-enriched conditions.

4.2  |  Starting richness and magnitude of response

When accounting for the starting richness of each plot, magnitudes 
of both absolute species colonization and extinction increased with 
greater richness, though lower-richness plots experienced the great-
est proportional change over time. However, these initial propor-
tionate changes in colonization rates levelled off more quickly in 
lower-richness plots, suggesting rapid colonization and dominance 
by more competitive species at lower-richness sites. The conse-
quences of nutrient addition may, therefore, take longer to manifest 
in more species rich communities, even if the proportionate end-
points are comparable.

More broadly, the background fluxes in a plot's richness appear to 
be in proportion to its initial richness. This is not necessarily surprising. 
Higher-richness plots may be associated with greater environmental 
heterogeneity in limiting factors, resulting in higher turnover (Hodapp 
et al.,  2018; Richardson & Pyšek,  2012). Alternatively, a larger spe-
cies pool, coupled with variation in dispersal among years, could drive 
higher colonization rates by nothing more than demographic stochas-
ticity (assuming a relationship between site- and plot-level diversity; 
Hubbell, 2005; MacArthur & Wilson, 1967). It is probable that both 
of these explanations contribute to the relationship observed, though 
in a highly scale-dependent manner (Chisholm & Lichstein,  2009; 
Seabloom, Batzer, et al., 2021). Notably, this is contrary to expecta-
tions of other frameworks like the diversity-resistance hypothesis 
(Kennedy et al., 2002). However, the expectation that more speciose 

communities should be more resistant to invasion (i.e. any species cur-
rently absent from a location, native or nonnative) does not pan out in 
NPK treatments, though we did not control for the prior presence of 
non-native species (see Firn et al., 2011).

Finally, the rate of colonization only begins to saturate toward 
the end of our time series in high-richness plots. In contrast, lower-
richness plots reach total saturation in colonization around 5 years 
from treatment start. This could reflect a larger site-level species pool; 
in higher-richness sites, new species can presumably accumulate for 
longer by whatever mechanism. This does not account, however, for 
earlier saturation in extinction rates in the same high-richness plots. 
It is possible that higher-richness plots in our study are, on average, 
sensitive to and responding to directional environment change even 
in control plots, especially if this encompassed different pre-treatment 
management histories (Lindholm et al., 2020), leading to asymmetry 
between colonization and extinction. The high-richness category was 
also our smallest category (n = 76 plots). Higher-richness plots could, 
therefore, be more sensitive to outliers, particularly if those plots are, 
for example, recovering from disturbance.

4.3  |  Similarity and variation across 
nutrient treatments

We found that patterns of total richness, extinction (loss of original 
species), and colonization (gain of new species) were directionally 
consistent across nutrient addition treatments, where all combina-
tions of nutrients had reduced total absolute richness. Treatments 
containing N had the greatest effect on original species loss, align-
ing with many previous studies that have shown that N enrichment 
leads to species losses across scales (Bobbink et al.,  1998, 2010; 
De Schrijver et al.,  2011; Field et al.,  2014; Stevens et al.,  2004). 
Limitation of grassland production by N and P (Fay et al., 2015) may 
alter the competitive growth environment, determining grassland 
richness. We find mixed evidence for the impact of P enrichment on 
grassland richness; P-addition alone showed little effect on richness, 
but P in synergy with either N or K enhanced richness loss over just 
the effect of either nutrient alone. Unsurprisingly, K (plus micronu-
trients) addition had no meaningful effect until added with N or K 
because the above-ground biomass production of few grasslands is 
limited by micronutrients alone (Fay et al., 2015).

Overall, treatments with increasing numbers of nutrients added, 
especially in combination with N, increasingly magnified the loss of 
total richness (Harpole & Tilman, 2007). Similarly, we did not find a 
decrease in colonization rates until multiple nutrients were added. 
Indeed, N alone can increase proportional colonization, suggesting 
that these effects may depend on the site's initial diversity and fer-
tility. Collectively, these results suggest that a loss of local diversity 
through both enhanced extinction and reduced colonization may be 
driven by enhanced production with the addition of a greater num-
ber of nutrients (Harpole et al., 2016; Tilman et al., 1982). As more 
nutrients are available below-ground, competition transitions above-
ground for space and light (Hautier et al., 2009), or at least increases 
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in importance (Grime, 1973; Newman, 1973). As competition shifts 
above-ground, new species may have difficulty establishing or in-
creasing when rare (Hastings, 1980), thus reducing colonization or 
enhancing local extinction. We see a disproportionate loss of forbs, 
perennials and native species in alignment with this interpretation. 
These effects are likely scale-dependent however, preventing some 
generalization. Fertilized treatment plots were connected to the 
metacommunity of a site via dispersal, allowing the persistence of 
locally extirpated species in the regional species pool. In contrast, 
atmospheric nitrogen deposition takes place at broader scales, re-
ducing the possibility for recolonization of original species facing 
local extinction.

5  |  CONCLUSIONS

In sum, we found that plant richness in grasslands arises from a bal-
ance of colonization and extinction, but with considerable species 
turnover. Thus, conceptions of stable richness in grasslands through 
time must also appreciate that species composition and potentially 
associated functional characteristics may nonetheless be changing 
through time. Declines in richness associated with nutrient enhance-
ment resulted from a disruption of this equilibrium. The loss of di-
versity with nutrient enhancement can, therefore, be understood as 
a product of two unequal processes. The failure of pre-established 
species to persist long-term under enriched conditions generally ac-
counts for the greatest loss in richness, particularly with addition 
of N, though this may be missed without sufficiently long-term as-
sessment. Some loss in richness may also stem from a constraint in 
the number of species able to initially colonize in new conditions. 
These losses are predominantly characterized by generally slower-
growing, more resource-conservative species, suggesting a shift in 
competition from below-ground resources to light above ground. 
Furthermore, baseline community richness can mediate the rela-
tive rate of these processes. Lower-richness communities are more 
immediately sensitive to nutrient enhancement, changing the most 
within 5 years of fertilization. Conversely, the extinction impacts 
of fertilization may take longer to manifest in higher-richness sites. 
Altogether, appreciation for the proximate impacts of nutrient en-
hancement on transient dynamics in grasslands draws the most rele-
vant ecological mechanisms and their time-scales into sharper relief.
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