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ABSTRACT 18 

Imaging is powerful means of sample characterization where mineral abundances and surface 19 

areas can be quantified from mineral maps. Images are typically manually processed by domain 20 

experts, which is time-consuming, labor intensive, and subjective. Emerging techniques, such as 21 

machine learning based image processing, can potentially address these limitations and accelerate 22 

image processing but the performance of these models for accurate sample characterization and 23 
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surface area analysis has not been completely evaluated. This study evaluates the potential of 24 

Random Forest and U-Net machine learning methods for mineral characterization and surface area 25 

analysis of six sandstone samples. Various input variable sets including filter extracted features, 26 

scanning electron microscopy (SEM) backscatter electron (BSE) images and SEM-energy 27 

dispersive x-ray spectroscopy images (EDS) images were considered. The evaluation was 28 

conducted by providing an intelligent framework that not only evaluates the accuracy of prediction 29 

for each pixel but also investigates the accuracy of predicted neighboring pixels. In addition, a new 30 

methodology is proposed to distinguish the more susceptible places to dissolution on the surface 31 

of a given mineral using a ranked mineral dissolution risk assessment map. The results showed 32 

both methods had an acceptable performance with the U-Net model outperforming Random Forest. 33 

Both methods showed an improved accuracy when filter extracted features were added to the 34 

dataset as input variables. The models’ performance predicting mineral abundances and 35 

accessibility agreed well with ground truth data for majority classes (e.g., quartz) compared to 36 

minority classes. Finally, the proposed methodology was shown to reliably identify the locations 37 

susceptible for dissolution indicated via proposed risk assessment maps. The intelligent 38 

segmentation and surface area analysis framework is a promising tool for accelerating the 39 

processing of SEM data and reactivity assessment of samples.  40 

1. Introduction 41 

Micro-porosity imaging is a valuable technique for characterizing mineral/pore spatial 42 

distributions in the fields of geosciences and environmental engineering. The extracted parameters 43 

such as porosity, mineral abundance, texture, fracture distribution, and accessible mineral surface 44 

areas (Qin and Beckingham 2019; Landrot et al. 2012; Peters 2009; Ma et al., 2021; Luhmann et 45 

all., 2017) are the basis for digital rock analysis (Asadi and Beckingham, 2021; Kim et al., 2021; 46 
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Brunhoeber et al., 2021; Anovitz et al., 2022) and other related computational simulation works. 47 

Reactive transport models utilize this information to simulate geochemical reactions that vary from 48 

a chemical weathering induced mineral dissolution (Chen et al., 2020a; Mahdikhani et al., 2018; 49 

Deng et al., 2020), to rather complex CO2-brine-mineral interactions in carbon capture and storage 50 

(CCS) systems (Beckingham et al., 2017;  Qin and Beckingham, 2019) and reactions in multi-51 

mineral subsurface energy storage (Koohi-Fayegh and Rosen, 2020; Iloejesi and Beckingham 52 

2021a&b) and enhanced oil recovery (Esene et al., 2019; Seyyedi et al., 2018) Systems. 53 

Scanning electron microscopy backscattered electron microscopy (SEM-BSE) imaging is a 54 

powerful technique for mineral analysis and microstructure characterization (Li et al., 2021; 55 

Peters, 2009). SEM imaging incorporating energy-dispersive X-Ray spectroscopy (EDS) 56 

elemental maps enable classification of minerals and facilitates quantification of mineral phases, 57 

including those with abundance less than the X-ray diffraction (XRD) detection limit (Landrot et 58 

al. 2012). Although XRD is a great source for mineral identification, it cannot provide any spatial 59 

information. In addition, XRD has noted limitations for distinguishing the minority mineral phases 60 

based on the instrument used, often 1% (Landrot et al., 2012) to 5% (Beckingham et al., 2017 61 

Salek Et al., 2022). These types of limitations do not restrict identification of minority phases via 62 

SEM-BSE and EDS imaging.  63 

Extracted data from SEM-BSE and EDS imaging is useful for assessing sample properties 64 

or parameterize reactive transport simulations to consider reactivity under a specified set of 65 

conditions (Beckingham et al. 2017). Quantification of mineral volume fractions and accessible 66 

surface areas are of particular interest where accessible surface area refers to mineral surfaces in 67 

contact with reactive fluids. Beckingham et al. (2017) found that simulations carried out using 68 

mineral accessible surface areas quantified from mineral/pore segmented images better reflected 69 

the reaction rates observed in core-flood experiments than simulations that used the specific 70 

surface areas measured via BET.  71 
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Despite advances in image processing and analysis, segmenting of SEM-BSE and EDS 72 

images is challenging. Images either need to be processed by software with a large element 73 

composition-to-mineral database such as Quantitative Evaluation of Minerals by Scanning 74 

Electron Microscopy (QEMSCAN) (Pirrie et al., 2004) or to be conducted by experienced expert 75 

technicians (Asadi and Beckingham, 2021; Brunhoeber et al., 2021; Kim et al., 2021), both of 76 

which are expensive, time-consuming, labor-intensive, and subjective. Machine learning (ML) 77 

based methods have emerged as a relatively new and open-source approach for mineral 78 

classification. 79 

Machine learning for geoscience and environmental engineering applications has included 80 

mineral characterization (Karimpouli and Tahmasebi, 2019; Li et al., 2021; Chen et al., 2020b), 81 

spatial distribution mapping (Kim et al., 2021), rock typing and permeability prediction 82 

(Mohammadian et al., 2022, Yoon and Melander, 2021).  Pore-scale imaging has advanced 83 

crucially through the integration of machine learning with imaging techniques (Asadi and 84 

Beckingham, 2021; Kim et al., 2021). While prior work has considered use of machine learning 85 

for mineral segmentation in SEM images (Li et al., 2021), the performance of machine learning 86 

models for mineral characterization of SEM images based on mineral abundance and accessible 87 

surface area analysis, which is the focus of this work, has not been considered.  88 

Using mathematical models, machine learning excavates nonlinear underlying patterns in 89 

a dataset (Chen et al., 2020b; Zhang et al., 2022, Asadi and Beckingham 2021; Suthaharan, 2016). 90 

Models can simultaneously consider several extracted features in addition to the color or grayscale 91 

intensity for a more reliable mineral/pore segmentation. This ability is valuable for segmenting 92 

individual minerals with similar or overlapping grayscale intensity in SEM BSE images as well as 93 

addressing grayscale color variations from one sample to the other due to different device 94 
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parameter setups such as brightness or contrast. In these cases, extracted features of minerals are 95 

key to successful mineral/pore segmentation (Asadi and Beckingham 2021; Suthaharan, 2016). 96 

Relying only on gray-scale intensity for training of machine learning models can lead to unstable 97 

models with less generalization to other datasets due to intensity variation among different images 98 

and intensity overlaps of different minerals. Combining image datasets with image filtering 99 

techniques as inputs to machine learning models can potentially improve mineral quantification 100 

and surface area analysis from images.  This is because filters can find underlying patterns in 101 

minerals and therefore improve the prediction results. 102 

This study aims to provide an intelligent platform for auto-segmentation of mineral/pore 103 

phases in SEM images, using mineral volume fractions and accessible surface area to evaluate 104 

performance. Two widely used machine learning methods, Random Forest and U-Net are used to 105 

process images of sandstone samples and mineral volume fractions and accessible surface areas 106 

determined from machine learning-processed images and compared with data from manually-107 

processed images. A quantitative dissolution risk assessment analysis that identifies locations more 108 

susceptible to dissolution by taking the predicted results for neighboring pixels into account is 109 

proposed. The prepared framework will help geologists obtain the mineralogy, mineral/pore spatial 110 

distribution, and the mineral reactivity risk assessment maps for sandstone samples reliably and 111 

quickly based on SEM images. This automated and open-source framework to estimate mineral 112 

abundance and accessibility is also desirable to reduce time and resource requirements to obtain 113 

sample characteristics and inform reactive transport simulation models. 114 
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2. Data and Methodology 115 

2.1 Sandstone Samples 116 

Processed mineral maps for six sandstone samples introduced in our previous work (Salek et al. 117 

2022) were selected for machine learning model training and analysis. Data included processed 118 

maps of Bandera Brown, Bentheimer, and Kentucky sandstones (samples purchased from Kocurek 119 

Industries), Lower Tuscaloosa and Paluxy sandstones (samples from Geological Survey of 120 

Alabama), and an additional Paluxy sandstone from Kemper County pilot CO2 injection site (Qin 121 

and Beckingham, 2019). In addition, a new pooled dataset was created and considered by the 122 

models which was the combination of the images of the six sandstone samples (referred to as the 123 

pooled dataset).  The XRD data (Table1) and prior compositional analyses of the samples showed 124 

that they are mainly quartz (66% - 94%), with various amounts of feldspars, carbonate and clay 125 

minerals, and trace amount of other mineral species such as chlorite, with porosity ranging from 126 

0.14 to 0.33 (Kocurek Industries; Guan 2012; Soong et al. 2016; Salek et al., 2022; Qin and 127 

Beckingham, 2019).  128 

Table 1. XRD composition analysis of the samples obtained from Kocurek Industries 1, Guan2 129 

(2012) and Soong et al.3 (2016).  130 

 131 

2.2 SEM BSE-EDS and Labeled Images 132 

SEM BSE images of the samples used in this work and their corresponding EDS elemental maps 133 

were captured using a ZEISS EVO 50VP Scanning Electron Microscope at Auburn University and 134 
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Bandera Brown1 SPE-178999 22-23 66 13 2 3 0 3 11 2 

Bentheimer1 SPE-174666 24 94.4 1.2 1.2 0.5 0 
   

Bandera Gray1 SPE-173736 20-21 59 12 0 0 15 3 10 1 

Kentucky1 SPE-147395 14 66 17 3 0 0 trace 14 0 

Paluxy2  20-25 69.3 24.5 1.2 0.8  2.3 0.2  

Lower Tuscaloosa3  30-33 92 0.5 1.6  1.5 3.7   
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analyzed in our previous work (Salek et al., 2022; Qin and Beckingham 2019). SEM images were 135 

captured at resolutions ranging from 0.34 μm to 5.71 μm. Eight SEM-EDS elemental maps were 136 

used in this study including aluminum (Al), magnesium (Mg), sodium (Na), potassium (K), 137 

calcium (Ca), silicon, (Si), iron (Fe), titanium (Ti). Image acquisition was performed on single 138 

image field of views for all samples except for the Paluxy sandstone from Kemper County pilot 139 

CO2 injection site (Qin and Beckingham, 2019) that was generated from multiple image fields and 140 

was tiled to create a main image with the resolution of interest (0.34 µm). Mineral phases were 141 

identified based on relative grayscale intensity and elemental signatures (Peters, 2009), with 142 

knowledge of anticipated minerals from XRD data (Salek et al. 2022; Qin and Beckingham, 2019). 143 

The detailed information about the SEM-BSE and EDS image acquisition and device set up are 144 

provided in Qin and Beckingham (2019) and Salek et al. (2022), and detailed image processing 145 

methodology and its cross validation with XRD data can be found in Landrot et al. (2012) and 146 

Beckingham et al. (2017).  147 

Here, to train the models and validate the machine learning models’ performances, mineral 148 

maps were labeled with a specific label value assigned to each mineral as the ground truth value. 149 

Figure 1 shows an example of labeled image and its corresponding colors. As evident in the Figure, 150 

the samples were mainly comprised of quartz, carbonates, K-feldspar and albite. Table 2 shows 151 

the number of pixels of each mineral class for the six samples that 70%, 15% and 15% were used 152 

for training, validation, and test, respectively. 153 
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 154 

Figure 1. a) 2D SEM BSE image of a thin section from the Paluxy formation with image resolution of 1.9 µm, and 155 

image size of 17.14 mm2 (reproduced from Salek et al., 2022), b.) Mineral phase segmented image. 156 

Table 2. Labeled mineral/pore pixels for the samples. 157 

Mineral Label Bandra 
Brown 

Lower 
Tuscaloosa 

Bentheimer Kentucky Bandera 
Gray 

Paluxy 
Sample1 

Paluxy 
Sample2 

Pore “0” 443623 144457 1616132 1145212 2552360 2673382 8183063 

Quartz “1” 1144567 267011 2845788 279728 727147 891332 19279109 

Albite “2” 159540 1396 74450 307767 411706 944590   

Kaolinite “3” 67063 10623       87317   

Smectite/I

llite 

“4” 18267     215434 256845 9163 1791284 

K-

Feldspar 

“5” 129752 4577 81431 53458 487745 46501 1058115 

Chlorite “6” 7581             

Magnetite “7” 23169     47663       

Anatase “8” 7333     3042 11581 31302   

Carbonate “9” 105 4321 75   228996 30133 2615561 

Muscovite “10”   1510   46492 27582 23082 105808 

Zircon “11”       6672       

Ilmenite “12”     10284 5362       

Siderite “13”           11079 528404 

Biotite “14”         45734     

 158 

2.3 Feature Extraction 159 

Minerals have different visible characteristics like texture and grain size which make them 160 

distinguishable from one another. Filtering techniques convolute the original images such that 161 
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additional features may be reliably extracted for machine learning models to differentiate minerals 162 

with similar color intensity (Asadi and Beckingham, 2021). In this study, well-known filters, 163 

including difference of Gaussian, Median, Non-local mean, Bilateral, vertical and horizontal Sobel 164 

filters, were applied to the sandstone BSE images using the OpenCV (Bradski and Kaehler, 2008) 165 

and Scikit-image (Van der Walt et al., 2014) libraries of Python. These filters provide feature maps 166 

representative of texture, grain size, edges and color variation. For instance, the Sobel and Bilateral 167 

filters are used to extract edge features and textures, while difference of Gaussians is utilized for 168 

blobs and corners (Asadi and Beckingham 2021). 169 

2.4 Establishing the Datasets  170 

In this study, BSE images, elemental EDS maps, and extracted features were used as input 171 

variables for machine learning models. Labeled images were established as ground truth images 172 

for each sample and introduced to the models to be trained for mineral/pore segmentation. In 173 

addition to these individual sample datasets, a pooled dataset which was a combination of all 174 

samples was generated to further investigate feature-based machine learning mineral/pore 175 

segmentation on a more general and comprehensive database. For the Random Forest model, the 176 

input was the pixel-level grayscale values extracted from the BSE image, elemental maps 177 

(including Al, Mg, Na, K, Ca, Si, Fe, Ti), and filter extracted features (including difference of 178 

Gaussian disk 1 and 10, Bilateral, Median-blur, non-local Means, and Sobel filter in x and y 179 

directions). The label data was the mineral class that ranged from 0 to 14 for each pixel. The U-180 

Net model was trained end-to-end where the input was images cut from the stacked BSE image, 181 

the elemental maps (i.e., Al, Mg, Na, K, Ca, Si, Fe, Ti), and the filter extracted features (i.e., 182 

difference of Gaussian disk 1 and 10, Bilateral, Median-blur, non-local Means, and Sobel filter in 183 

x and y directions), while the output was the corresponding mineral labels. 184 
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2.4.1 Dataset for Random Forest  185 

The Random Forest training dataset for each sample had a shape of m×n, where m was the number 186 

of pixels, and m was the number of input variables obtained from the eight elemental EDS maps, 187 

BSE intensity image, and the six filter extracted feature maps (Table 2). The BSE and EDS 188 

intensity values at each pixel were extracted from the grayscale maps. Intensity values range from 189 

0 (black) to 255 (white) and brighter pixels reflect higher elemental intensities in EDS maps and 190 

bigger average atomic numbers in BSE images. The brightness/intensity values of filter extracted 191 

features demonstrates various patterns such as entropy or edges in the associated BSE images. 192 

To create the database, each input variable was first normalized to transform data to the 193 

range of 0–1 by dividing each pixel value by the maximum value for that specific input variable. 194 

The input variable values at the same pixel location were then extracted as a vector containing 15 195 

input values, including the inputs from BSE, EDS, and filter extracted features. The mineral/pore 196 

class labels at the corresponding output pixels were the ground truth data with 15 mineral/pore 197 

classes (Table 2). The dataset for the samples was imbalanced as they were mainly comprised of 198 

quartz, feldspars, and calcite. To address this issue, different weights were assigned to each class 199 

that was proportional to the inverse percent size of each class within the dataset. Thus, a matrix 200 

with the size of the number of pixels in each dataset × 15 was used as input, where 15 denotes the 201 

number of input variables extracted at each data point. 202 

The ground truth data was a vector with the size of the number of pixels in each dataset × 203 

1 which contained the value of the mineral/pore class labels. The dataset of each sample was 204 

randomly split into training (70%), validation (15%) and test (15%) datasets to train and evaluate 205 

the Random Forest model. 206 
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2.4.2 Dataset for U-Net  207 

Unlike the Random Forest model with pixel-level classification, where the input data was a matrix 208 

of shape m×n, the training process for the U-Net model was end-to-end and utilized neighboring 209 

pixels, which allows for segmented regions with less noise. To create the dataset, the stacked and 210 

normalized input images were cropped into smaller training samples (128×128 pixels). Then, using 211 

a data augmentation procedure that including flipping in both vertical and horizontal directions, 212 

zooming, shifting, and rotation, the amount of data was increased to have more data for improved 213 

prediction. For the pooled dataset, each input sample had a total of 15 channels (input variable 214 

set), while the output had 15 channels for each mineral/pore class. After data augmentation, there 215 

were a total of 8,505 samples (Table 2) for training and testing, which were further divided into 216 

training, validation, and testing, with the fractions of 70%, 15% and 15%. 217 

2.5 Pixel Wise Image Analysis and Segmentation Algorithms  218 

2.5.1 Random Forest Machine Learning Model  219 

Random Forest (Breiman 2001) is one of the powerful ensemble learning methods that combines 220 

m random decision trees (mtree) trained on different subsamples of data into a decision forest 221 

(Asadi and Tian, 2021) to solve regression/classification problems. The grown forest algorithm 222 

not only has higher precision over individual decision trees such as CART, but also is relatively 223 

unbiased to multivariate common linearity and imbalanced data (Asadi and Beckingham 2021; 224 

Asadi and Tain 2021) which makes it appealing for phase segmentation. 225 

For training, the model randomly selects N subsamples from the training dataset using a 226 

Bootstrapping technique. Each sample set is used to construct a decision classification tree, each 227 

of which randomly selects k input variables and starts with a single node.  Each node in the decision 228 

tree is a weak binary classifier which selects the various parameters (e.g., k input variables or a 229 
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variable attribute) to maximize the classification index, whereas the final leaf node includes a 230 

discriminator to assign each pixel to a specific class. In Random Forest, each tree finds new splits 231 

and builds out it’s nodes while minimizing the Gini impurity (equation 1) for each split based on 232 

its information and patterns in a subsample of the training set, eventually stopping at leaf nodes 233 

when it reaches the maximum depth of tree or the minimum number of samples per node.  234 

In general, each node in a forest seeks to minimize the impurity index. In this study, the 235 

Gini index that is one of the most common impurity functions was used. The function is given by,  236 

Gini	(p) 	= ∑ *! 	(1 − *! 	) = 	1 − ∑ *!"	!
!#$ 	!

!#$    (1) 237 

where pk is probability that the sample belongs to class k. This represents the likelihood of 238 

misclassification of a random data point at a certain node if the data point were classified randomly. 239 

When the Gini coefficient is the smallest, the purity is the highest and the uncertainty is the 240 

smallest.  241 

In this study, the Scikit-Learn library of Python was used to implement the Random Forest 242 

model (Pedregosa et al., 2011). At first, a model with 200 random trees (i.e., ntree = 200), each 243 

with unlimited depth and no pruning, was created. Randomly selected k input variables (estimated 244 

as the square root of the numbers of predictors, i.e., ktry ≈ 4) from all input variables were selected 245 

at each node to train the model. Next, the model’s hyperparameters were fine-tuned. For ktry and 246 

ntree tuning, the random search was incorporated by grid searching the ntree in the range of 30 to 247 

700 and ktry in the rage of 2 to 8, resulting in the final forest of ntree = 50 and ktry = 4. The depth 248 

of tree changed from 15 to 4×15 and the best one was 32. The minimum sample per split was 249 

selected to be five based on random number search in the range of three to ten. 250 
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2.5.2 Modified U-Net Deep Learning Model 251 

The U-Net method (Ronneberger et al., 2015), a fully connected Convolutional Neural Network 252 

(CNN) method, was originally proposed to efficiently capture nuances required in the analysis of 253 

medical images. Ever since, it has become a standard tool for various classification problems and 254 

shown great performance by using less images and outputting more precise segmentation maps 255 

(Asadi and Beckingham, 2021; Kim et al., 2021). The architecture is based on a symmetric 256 

encoder–decoder approach which resembles a U-shaped structure. The encoder consists of 257 

contraction blocks to capture context via feature extraction. Each block takes a 128 by 128 input 258 

image to apply two convolutional kernels of 3 by 3, followed by a rectified linear transformation 259 

and a max-pooling operation with a stride of 2 by 2.  The max-pooling process reduces spatial 260 

information while convolutional kernels increase feature channels in the the encoder path allowing 261 

the network to learn complex structures effectively due to propagating context information to 262 

higher dimensions (Asadi and Beckingham, 2021). The decoder is responsible for precisely 263 

retrieving spatial information along the up sampling, where the output of each convolutional level 264 

is combined with high resolution features from the contraction part through skip connection ports. 265 

The expansion blocks in the decoder pass the input to two convolutional layers followed by a 2 by 266 

2 up-sampling layer. In the decoder, while the image size gradually increases, the feature depth 267 

gradually decreases. At the end of the network, the feature images were passed through a 1 by 1 268 

convolutional layer with a SoftMax activation function to perform the multi-layer semantic 269 

segmentation and provide the probability of each pixel, and map M features which are desired 270 

minerals/pore classes. The class associated with the highest estimated probability would then be 271 

the one assigned to that pixel. 272 
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This classification scheme was implemented in Python using the TensorFlow and Keras 273 

packages. Here, stacked BSE, EDS and filter extracted features from the original BSE images as 274 

well as their corresponding segmented maps were used for training. Several loss functions 275 

including focal (equation 2) and categorical cross-entropy were utilized and applied to adjusted 276 

weights and biases for finding the best performing one. The focal loss function, which is designed 277 

to counteract class imbalance, had the best performance and is used in this study. In the focal loss 278 

function, each class is down-weighted such that their contribution to the total loss is small even if 279 

their number is large. The function is given by, 280 

Focal Loss(*%) = −	-%(1	−	*%)&	./0(*%)			 (2) 

where pt is the probability of a given class, α is a regulator parameter range from [0, 1], and γ 281 

controls the penalizing power of the model to the error and is an integer number greater than zero 282 

(γ>0). When γ = 1, the focal loss function works like the cross-entropy loss function. In this study, 283 

γ = 2 and α = 1 were set due to better performance. Adaptive moment estimation (ADAM) was 284 

selected as the optimizer to iteratively adapt the network’s learning rate and early-stopping was 285 

used to prevent overfitting. Fine-tuning function of the TensorFlow library was used for the 286 

number of epochs varied from 100 to 1000 (epoch = 300 was the best one) and the learning rate 287 

(LR) from 10−6 to 100 (LR = 0.0001 was the best one). Note that normalized datasets, with an 288 

interval of [0, 1], were used here so that the models could converge faster. 289 

2.6 Mineral/pore Quantification and Surface Area Analysis 290 

In this study, the performance of machine learning models for mineral/pore quantification and 291 

surface area analysis was evaluated. The porosity, mineral abundance, and mineral accessibility 292 

values were determined in predicted mineral maps and cross compared to the grand-truth data 293 

quantified from 2D labeled BSE-EDS images. The porosity values and volume fraction of mineral 294 
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phases (mineral abundance) were determined by counting pore pixels and mineral pixels with the 295 

same color, respectively. The percentage of each mineral’s surface that is adjacent to the pores 296 

(mineral accessibility) then were quantified by counting mineral pixels adjacent to pore pixels. 297 

Here, accessibility is based on the assumption that all pores are connected or would be accessible 298 

to reactive fluids.  299 

2.6.1 Ranked Mineral Dissolution Risk Assessment  300 

Here, a new concept, a ranked mineral dissolution risk assessment map, that inherits the name and 301 

application from groundwater vulnerability and risk assessment maps but for mineral dissolution 302 

assessment, is introduced. The ranked mineral dissolution risk assessment map is used here as a 303 

means of evaluating the model predicted maps and checking their goodness of fit for extracting 304 

reactive sample characteristics not only pixel wise but also considering adjacent neighbors.  305 

To create the ranked mineral dissolution risk assessment map, we first assigned a rank 306 

number to each pixel, ranging from 1 for less reactive minerals (i.e., quartz) to 14 for highly 307 

reactive ones (i.e., calcite, dolomite) for a specific set of conditions. Pores were assigned the 308 

highest (15) assigned rank number. The mineral rankings were based on dissolution rates obtained 309 

from Brantley (2008), Yadav and Chakrapani (2006), and Zhang et al. (2015) at pH 5 and a 310 

temperature of 298 K. Next, the pixel-wise risk number for each individual mineral was 311 

determined based on the highest adjacent ranked pixel to the pixel of interest.  312 

The ranked mineral dissolution risk assessment map will help further assess the spatial 313 

distribution of reactivity risk for a given mineral and its evolution of risk. This map only considers 314 

the potential risk of being exposed to fluid to provide a conceptual reactive risk assessment map. 315 

The higher assigned rank, the higher the risk for the given pixel to be exposed to the fluid and to 316 
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be involved in a rection over time compared to other pixels with similar mineralogy but less 317 

dissolvable adjacent neighbors. 318 

2.7 Performance Metrics 319 

To evaluate the performance of machine learning-based models, accuracy, precision, recall, and 320 

F1-score performance metrics were used. Precision calculates how often the model’s prediction is 321 

correct over all positive predictions of a given class, whereas recall or sensitivity measures how 322 

accurate the model is in detecting true positive classes (relevant data). F1-score is the tradeoff 323 

between recall and precision and takes both TP, data points truly predicted as the class under 324 

consideration, and FN, incorrect rejection of that class, into account. They are defined as: 325 

F1 = (2× precision ×recall)/(precision + recall)   (3) 326 

precision = TP/(TP + FP)      (4) 327 

recall = TP/(TP + FN)       (5) 328 

The test image set was compared against the ground truth images to evaluate the models. To 329 

calculate the binary F1-score for each class, the given class was considered individually as 330 

positive, with the other classes as negative. Once the score was calculated for every class, their 331 

mean values were computed to evaluate the macro performance of the classifiers. However, this 332 

analysis does not consider a potential class imbalance among the samples as it weighs all classes 333 

equally. Thus, for a fairer global performance evaluation, we also estimated the overall statistics 334 

by computing the weighted average of each evaluation metric with respect to the representativity 335 

of each class.  336 
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3. Results and Discussion 337 

3.1 Performance of the models on single and pooled datasets 338 

This section investigates the effect of different image datasets with various grayscale distribution 339 

on the U-Net and Random Forest classifier’s performances. Samples (i.e., individual sandstone 340 

samples as well as the pooled dataset) had different image resolution, size, range of gray scale 341 

intensity, and several mineral components. Figure 2 presents the loss and accuracy of the trained 342 

U-Net model as a function of epoch for the pooled dataset. As shown, the loss in the pooled dataset 343 

decreases significantly after five epochs, while the accuracy of the U-Net model improves to 344 

around 96% after a few epochs. Similarly, the Random Forest classifier for the pooled dataset 345 

reaches an accuracy of 92%. A similar trend is obtained for individual datasets with accuracy 346 

ranging from 85% to 95%. The loss and accuracy plots for individual samples as well as for the 347 

pooled dataset for the Random Forest model are provided in the supplementary materials (Figs. 348 

S1 – S3).   349 

By comparing the results of individual samples results (Figs. S1 – S3) with the pooled 350 

dataset (Figure 2), it can be concluded that using a larger dataset (i.e., pooled dataset) can improve 351 

the results. In general, the U-Net model trained on the pooled dataset reaches a lower loss value 352 

with fewer epochs, obtaining a higher accuracy and outperforming the individual datasets.  The 353 

same is evident for the Random Forest model where the model trained on the pooled dataset 354 

achieves a better score compared to individual sets.  355 
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 356 

Figure 2. The accuracy and loss against the number of epochs for the U-Net model trained on 357 

pooled dataset. 358 

3.2 Effect of input variable on the models’ performance 359 

The pooling of different sandstone samples together provides a dataset with varied grayscale 360 

intensity values but similar mineral characteristics such as mineral size, texture, patterns, etc. 361 

Therefore, to make a better prediction, machine learning algorithms must rely on the underlying 362 

patterns in addition to the BSE grayscale values. This section presents the models’ performances 363 

on predicting mineral/pore classes with different input variable sets (i.e., BSE gray intensity, 364 

elemental EDS maps, and filter extracted features).  365 

Figure 3 shows the F1-score of pores and mineral classes calculated for the predicted results 366 

of U-Net and Random Forest models on the pooled dataset. Different colors reflect different input 367 

variable sets, where the results of the Random Forest and U-Net classifiers trained with only the 368 

gray-scale BSE image (blue in Fig. 3) have 56% and 88% accuracy, respectively. As shown, the 369 

BSE-based model cannot predict minority classes such as zircon, chlorite, siderite and biotite and 370 

has a fair performance identifying albite due to its similar grayscale intensity as quartz.  371 
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 372 

Figure 3. Performance of U-Net deep learning (a) and Random Forest machine learning (b) 373 

models for different mineral classes in pooled dataset. 374 

When filter extracted features are considered in addition to the grayscale BSE images 375 

(green in Fig. 3), a higher performance for both models is evident. The filters extract features such 376 

as texture, size, edges, etc. which improve the predictive performance of the model, especially for 377 

minerals with similar grayscale intensity (e.g., quartz and K-feldspar). The performance of models 378 

in predicting chlorite, zircon, smectite/illite and muscovite significantly improved, particularly for 379 

the Random Forest model. The filtered-based model has a comparable performance to the BSE-380 

EDS based model (the dark gray in Fig. 3), highlighting the significant improvement of mineral 381 
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segmentation by simply utilizing filtering techniques. This is particularly valuable in cases when 382 

EDS elemental maps are not available. 383 

Integrating the EDS elemental map and filtering techniques (in Fig 3) further improves the 384 

results by considering both extracted features and elemental maps along with the BSE values. The 385 

resulting accuracy improves from 56% to 92% for Random Forest and 88% to 96% for the U-Net 386 

model, which also is shown visually in Figure 4 and 5. This also has noted success in predicting 387 

phases with low volume fractions, minority classes. These phases are difficult to predict and result 388 

in low performance of the associated classes due to data scarcity. An improvement in prediction 389 

is evident in the pooled dataset using the BSE, EDS, and filter images as input. This results in 390 

prediction of minority classes such as chlorite that are not predicted by any other methods. In 391 

addition, the performance in predictions of muscovite is significantly higher than that in any other 392 

methods in both models. In summary, the pooled dataset with the BSE&EDS&Filter input 393 

variables set has the highest accuracy and F1-Score and thus was selected as the final model. 394 

 395 

 396 
 397 
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 398 
Figure 4. Visual performance of U-Net on different classes in the pooled dataset. Vertical and 399 

horizontal axes demonstrate pixel numbers with 0.71 μm resolution. 400 

Both models show good performance for prediction of pore classes. Based on Figure 3, the 401 

“pore” class reaches a high F1-score of 96% to 98%. This highlights the capability of the models 402 

to automatically predict the sample pore pixels. Thus, obtained porosity values, which are an 403 

important characteristic of a sample and used in reactive transport simulations, are almost identical 404 

to the ground-truth data.  405 

 406 

 407 
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  408 

Figure 5. Visual performance of the RF model on different mineral classes in the pooled dataset. 409 

Vertical and horizontal axes demonstrate pixel numbers with 0.71 μm resolution. 410 

The high F1-score accuracy for most of the classes obtained from the U-Net framework 411 

(i.e., the U-Net with pooled dataset and the BSE&EDS&Filter input variable set) reveals the 412 

robustness of the framework to various ranges of grayscale inputs since it relies more on extracted 413 

features and elemental maps. These features are also important in the Random Forest model where 414 

the “mean decrease in Gini Impurity” is used here to rank the input variables for the Random 415 

Forest model to determine the most important variables for mineral/pore segmentation. Figure 6 416 

shows the resulting relative rank where the higher numbers indicate a higher contribution to 417 
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successful classification. As shown, the median filter has the highest rank followed by the Ti 418 

elemental map. The results reveal the higher contribution of elemental images and filter extracted 419 

features compared to the BSE gray scale values. 420 

 421 

Figure 6. Rank of the input variables based on their contribution to improving segmentation 422 

(horizontal numbers are the rank of the variables called feature importance value). 423 

3.3 Comparison of the Best Random Forest and U-Net Models 424 

The SEM-BSE image dataset of the sandstone samples were processed and segmented for further 425 

mineral abundance and surface area analysis, using the best-trained models. Figure 7 compares the 426 

results of the best performing Random Forest and U-Net frameworks trained on the 427 

BSE&EDS&Filter input variable set of the pooled dataset. Although the pixel wise Random Forest 428 

classifier almost fails to predict some minority classes such as zircon and chlorite, it has an 429 

acceptable performance for the majority classes such as quartz (Fig. 7). On the other hand, U-Net 430 

has a higher performance, especially for muscovite minority class, and can successfully detect 431 

different classes. U-Net preserves the structural dependency of pixels and considers the 432 

neighboring pixels by utilizing the convolutional kernels which helps detect continuous features 433 
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such as edges and textures (Figure 8). Providing several extracted features helps the Random 434 

Forest model to consider this spatial dependency. Considering neighboring pixels and structural 435 

dependency when making a prediction also helps overcome the noise (based on Figure 4, 5 and 8) 436 

that inherently exists in SEM-EDS image datasets and as a result improves prediction performance. 437 

 438 

Figure 7. Comparison of the best performing U-Net and Random Forest models on predicting 439 

different mineral classes in pooled dataset. 440 

Visualization of segmented quartz, albite, microcline, dolomite, kaolinite, illite/smectite, 441 

chlorite and pores within the samples (Fig. 4, 5 and 8 for a test subset of the samples) show that 442 

the most prevalent component of the samples is quartz, which is in agreement with XRD and 443 

ground truth data. Close inspection of these images also shows the promise machine learning has 444 

to classify variations in minerals at small scales, some of which may be missed in manual 445 

segmentation. Analysis of additional data extracted from segmented images are investigated in the 446 

next sections. 447 
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 448 

 449 

Figure 8. Visual comparison of the best performing U-Net and Random Forest models for 450 

predicting different mineral classes in pooled dataset. Vertical and horizontal axes demonstrate 451 

pixel numbers with 0.71 μm resolution. 452 
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3.4 Mineral/pore abundance and mineral accessibility analysis 453 

The abundance and accessibility of minerals in segmented images for test dataset (15% of total 454 

images in pooled dataset) are given in Table 3. Results of mineral quantification indicate that 455 

overall quartz has the highest abundance among phases, followed by carbonate minerals 456 

(combined) and K-feldspar. This is also evident in the predicted results for individual datasets. 457 

Given the comparison of the results obtained from Random Forest and U-Net models with the 458 

ground truth data and considering abundance and accessibility as evaluation metrics, quartz 459 

(Abundance = 76.83% and Accessibility = 57.61%) is slightly underestimated (Abundance = 460 

72.62% and Accessibility = 44.79%) by Random Forest and slightly overestimated by U-Net 461 

(Abundance = 77.72% and Accessibility= 55.86%). The results for other minerals, provided in 462 

Table 3, show a similar performance in which U-Net has a better result and less difference to the 463 

ground truth data compared to the Random Forest model predictions. Note that ground truth data 464 

was cross validated with XRD results and therefore U-Net model results is aligned with XRD data. 465 

In general, the observed differences in volume percentages are reasonable with most minerals 466 

within few percent agreement with the ground truth abundances. There is a larger variation evident 467 

among predicted accessibility with as much as 12% variation between predicted accessibility and 468 

the ground truth value with the largest difference for smectite/illite.  469 

 These results show the capability of machine learning models, especially U-Net, in 470 

characterizing geological samples to assess mineralogy and reactivity. A larger, balanced dataset 471 

with various mineral distributions could enhance model training and thus improve the results even 472 

further.  473 

Table 3. Predicted abundance and accessibility values obtained from the models and the 474 
corresponding ground truth data. 475 

Mineral Rank Chemical formula Method Abundance (%) Accessibility (%) 
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Quartz 1 SiO2 
ground truth 76.83 57.61 
RF 72.62 44.79 
U-Net 77.72 55.86 

Albite 11 NaAlSi ₃O ₈ 
ground truth 2.02 2.66 
RF 4.22 3.49 
U-Net 2.40 3.97 

Kaolinite 5 Al2Si2O5(OH)4 

ground truth 0.39 4.85 

RF 0.64 7.18 

U-Net 0.27 3.25 

Anatase 3 TiO2 

ground truth 0.04 0.05 

RF 0.03 0.03 

U-Net 0.03 0.05 

Carbonate 14 CaCO₃/MgCO3·CaCO3 

ground truth 8.47 3.45 

RF 8.35 2.96 

U-Net 6.76 2.46 

Biotite 8 K(Mg,Fe++)3[AlSi3O10(OH,F)2 

ground truth 0.05 0.01 

RF 0.18 0.04 

U-Net 0.11 0.12 

Muscovite 6 KAl2[AlSi3O10] 

ground truth 0.81 1.49 

RF 0.37 0.58 

U-Net 0.42 1.00 

K-feldspar 10 KAlSi3O8 

ground truth 3.86 3.30 

RF 4.12 2.07 

U-Net 4.82 3.98 

Siderite 13 Fe(Ca,Mg)(CO3)2 

ground truth 0.96 0.30 

RF 0.88 0.22 

U-Net 1.22 0.39 

Smectite/Illite 9 
K 0.65 Al 2 [Al 0.65 Si 3.35 

O10](OH)2 

ground truth 6.45 25.79 

RF 8.18 37.90 

U-Net 5.99 28.08 

Magnetite 12 Fe₃O₄ 

ground truth 0.09 0.32 

RF 0.36 0.39 

U-Net 0.20 0.57 

Zircon 2 ZrSiO4 

ground truth 0.00 0.00 

RF 0.00 0.00 

U-Net 0.03 0.00 

Ilmenite 4 (Fe,Ti)2O3 
ground truth 0.03 0.08 

RF 0.03 0.06 
U-Net 0.02 0.04 

Chlorite 7 ClO− 2 

ground truth 0.01 0.10 

RF 0.02 0.30 

U-Net 0.02 0.24 

 476 
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3.4.1 Mineral dissolution risk assessment map for potential reactive surface area evolution 477 

This section compares and contrasts the obtained dissolution rank from the U-Net mineral/pore 478 

results with ground truth data. Figure 9 shows the potential dissolution rank for U-Net predicted 479 

K-feldspar mineral pixels obtained based on the maximum dissolution rank of neighboring pixels 480 

to the pixels of interest. As evident in the figure, variations in the dissolution risk ranking can be 481 

observed. Regions that are most available for reaction have the highest scores and are shown in 482 

blue. These surfaces are adjacent to pore space. Variations in the anticipated availability of other 483 

surfaces for reaction are indicated by varying color/risk number. Higher numbers are anticipated 484 

to be accessible for reaction more quickly than those with lower numbers. 485 

 The overall trend in the predicted image is similar to the ground truth image. This reveals 486 

the reliability of the U-Net model not only for predicting the mineralogy, and as a result, reactivity, 487 

of each pixel but also the ability of the trained framework to correctly predict neighboring pixels 488 

that may impact the potential reactivity of the pixels of interest.  The results obtained based on this 489 

image show the U-Net predicted pore/mineral segmented map can be utilized to inform the reactive 490 

transport models over time scale.  491 

  492 
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Figure 9. Ranked mineral dissolution risk assessment map for K-feldspar (rank 10) that is 494 

adjacent to rank 15 (pores) and 14 (carbonate), with 0.34 μm resolution. Rank zero shows pixels 495 

that are not on the surface of the mineral of interest. 496 

4. Conclusions 497 

This study evaluated the performance of Random Forest and U-Net models for mineral/pore phase 498 

segmentation and surface analysis of SEM images of various sandstone samples. This is achieved 499 

by providing a framework that not only evaluates the results on each pixel but also takes the 500 

predicted neighboring pixels into account. The performance of the models was investigated on a 501 

series of individual datasets as well as a combined dataset that included data from various samples, 502 

each with different grayscale intensity variation, in addition to EDS maps and filter data. It was 503 

shown that the performance of both platforms reaches the highest score when all BSE, EDS, filter 504 

data are used as input variables on the pooled dataset to train the models. Using those inputs, the 505 

U-Net model achieved the highest performance accuracy of 96%.  506 

In general, the results from the U-Net model had a higher performance compared to the 507 

Random Forest model in predicting each class and thus a more reliable phase segmentation in 508 

different samples. In addition, the U-Net model had a better performance for surface quantification 509 

and had comparable results to the ground truth data for mineral abundances and accessibility. By 510 

comparing the results of the individual dataset to the pooled one, it can be concluded that using 511 

larger datasets (i.e., pooled dataset) can improve the results even further which is an inherent 512 

characteristic of machine learning models. 513 

The results obtained from comparing the models with different input variable sets showed 514 

the trained models relied more on extracted features and information obtained from EDS elemental 515 
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maps. Feature importance ranking in the Random Forest model confirmed this conclusion. It also 516 

showed the median and gaussian filters had the highest contribution in phase segmentation due to 517 

removing unwanted noise and providing more integrated phases. Relying on extracted features 518 

provided a more robust solution to grayscale variation from one dataset to another since the 519 

grayscale intensity may vary but extracted features are more or less similar in different datasets.   520 

 Finally, the mineral risk assessment map was proposed. This provided a robust solution to 521 

identify the locations susceptible for dissolution and is recommended to be used in conjunction 522 

with the machine learning platforms. This map can capture variations in surface reactivity due to 523 

differences in accessibility where some surfaces are in contact with pores and thus accessible for 524 

reaction while others are occluded by mineral coatings. Occluded surfaces will be accessible for 525 

reaction once the coating phase dissolves. This may be a promising approach to considering the 526 

potential evolution of reactive surfaces. 527 

The intelligent segmentation and surface analysis framework in this work is promising for 528 

accelerating the processing of SEM data as well as reducing the need for post-process filtration. 529 

The obtained parameters can be utilized to enhance understanding of sample characteristics 530 

including mineralogy as well as reactive properties. Data such as porosity and mineral volume 531 

fractions can be quantified from processed maps and used to inform reactive transport simulations.  532 
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Supplementary and codes 536 

The labeling and Normalizing&Cropping, Filtering, Accessibility&Abundance_Total, and ranked 537 

mineral dissolution risk assessment map codes and images can be found at 538 

https://github.com/Parisa-Asadi/Machine-learning-for-Surface-Areas-Analysis. 539 
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