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Intelligent Framework for Mineral Segmentation and Fluid-accessible Surface Area

Analysis in Scanning Electron Microscopy
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HIGHLIGHT

e Random Forest and U-Net models used to identify minerals in SEM BSE and EDS images.

e Predicted porosity, mineral abundance and accessibility comparable to ground-truth data.

o Filter-based U-Net and Random Forest models had a comparable performance to the BSE-EDS
based models.

e Image grayscale variation makes machine learning models rely more on extracted features and
mineral patterns.

e Dissolution risk assessment map proposed to identify locations most susceptible for reaction.

Keyword

Reactive surface area analysis, Mineral volume fraction and accessibility, Machine learning, SEM

imaging, Dissolution risk assessment map, U-Net, Random Forest.

ABSTRACT
Imaging is powerful means of sample characterization where mineral abundances and surface
areas can be quantified from mineral maps. Images are typically manually processed by domain
experts, which is time-consuming, labor intensive, and subjective. Emerging techniques, such as
machine learning based image processing, can potentially address these limitations and accelerate

image processing but the performance of these models for accurate sample characterization and
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surface area analysis has not been completely evaluated. This study evaluates the potential of
Random Forest and U-Net machine learning methods for mineral characterization and surface area
analysis of six sandstone samples. Various input variable sets including filter extracted features,
scanning electron microscopy (SEM) backscatter electron (BSE) images and SEM-energy
dispersive x-ray spectroscopy images (EDS) images were considered. The evaluation was
conducted by providing an intelligent framework that not only evaluates the accuracy of prediction
for each pixel but also investigates the accuracy of predicted neighboring pixels. In addition, a new
methodology is proposed to distinguish the more susceptible places to dissolution on the surface
of a given mineral using a ranked mineral dissolution risk assessment map. The results showed
both methods had an acceptable performance with the U-Net model outperforming Random Forest.
Both methods showed an improved accuracy when filter extracted features were added to the
dataset as input variables. The models’ performance predicting mineral abundances and
accessibility agreed well with ground truth data for majority classes (e.g., quartz) compared to
minority classes. Finally, the proposed methodology was shown to reliably identify the locations
susceptible for dissolution indicated via proposed risk assessment maps. The intelligent
segmentation and surface area analysis framework is a promising tool for accelerating the

processing of SEM data and reactivity assessment of samples.

1. Introduction

Micro-porosity imaging is a valuable technique for characterizing mineral/pore spatial
distributions in the fields of geosciences and environmental engineering. The extracted parameters
such as porosity, mineral abundance, texture, fracture distribution, and accessible mineral surface
areas (Qin and Beckingham 2019; Landrot et al. 2012; Peters 2009; Ma et al., 2021; Luhmann et

all., 2017) are the basis for digital rock analysis (4sadi and Beckingham, 2021; Kim et al., 2021,
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Brunhoeber et al., 2021; Anovitz et al., 2022) and other related computational simulation works.
Reactive transport models utilize this information to simulate geochemical reactions that vary from
a chemical weathering induced mineral dissolution (Chen et al., 2020a; Mahdikhani et al., 2018;
Deng et al., 2020), to rather complex CO:-brine-mineral interactions in carbon capture and storage
(CCS) systems (Beckingham et al., 2017; Qin and Beckingham, 2019) and reactions in multi-
mineral subsurface energy storage (Koohi-Fayegh and Rosen, 2020; lloejesi and Beckingham

2021a&b) and enhanced oil recovery (Esene et al., 2019; Seyyedi et al., 2018) Systems.

Scanning electron microscopy backscattered electron microscopy (SEM-BSE) imaging is a
powerful technique for mineral analysis and microstructure characterization (Li et al., 2021;
Peters, 2009). SEM imaging incorporating energy-dispersive X-Ray spectroscopy (EDS)
elemental maps enable classification of minerals and facilitates quantification of mineral phases,
including those with abundance less than the X-ray diffraction (XRD) detection limit (Landrot et
al. 2012). Although XRD is a great source for mineral identification, it cannot provide any spatial
information. In addition, XRD has noted limitations for distinguishing the minority mineral phases
based on the instrument used, often 1% (Landrot et al., 2012) to 5% (Beckingham et al., 2017
Salek Et al., 2022). These types of limitations do not restrict identification of minority phases via

SEM-BSE and EDS imaging.

Extracted data from SEM-BSE and EDS imaging is useful for assessing sample properties
or parameterize reactive transport simulations to consider reactivity under a specified set of
conditions (Beckingham et al. 2017). Quantification of mineral volume fractions and accessible
surface areas are of particular interest where accessible surface area refers to mineral surfaces in
contact with reactive fluids. Beckingham et al. (20/7) found that simulations carried out using
mineral accessible surface areas quantified from mineral/pore segmented images better reflected
the reaction rates observed in core-flood experiments than simulations that used the specific

surface areas measured via BET.
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Despite advances in image processing and analysis, segmenting of SEM-BSE and EDS
images is challenging. Images either need to be processed by software with a large element
composition-to-mineral database such as Quantitative Evaluation of Minerals by Scanning
Electron Microscopy (QEMSCAN) (Pirrie et al., 2004) or to be conducted by experienced expert
technicians (4sadi and Beckingham, 2021; Brunhoeber et al., 2021; Kim et al., 2021), both of
which are expensive, time-consuming, labor-intensive, and subjective. Machine learning (ML)
based methods have emerged as a relatively new and open-source approach for mineral

classification.

Machine learning for geoscience and environmental engineering applications has included
mineral characterization (Karimpouli and Tahmasebi, 2019, Li et al., 2021; Chen et al., 2020D),
spatial distribution mapping (Kim et al., 2021), rock typing and permeability prediction
(Mohammadian et al., 2022, Yoon and Melander, 2021). Pore-scale imaging has advanced
crucially through the integration of machine learning with imaging techniques (Asadi and
Beckingham, 2021; Kim et al., 2021). While prior work has considered use of machine learning
for mineral segmentation in SEM images (Li et al., 2021), the performance of machine learning
models for mineral characterization of SEM images based on mineral abundance and accessible

surface area analysis, which is the focus of this work, has not been considered.

Using mathematical models, machine learning excavates nonlinear underlying patterns in
a dataset (Chen et al., 2020b; Zhang et al., 2022, Asadi and Beckingham 2021; Suthaharan, 2016).
Models can simultaneously consider several extracted features in addition to the color or grayscale
intensity for a more reliable mineral/pore segmentation. This ability is valuable for segmenting
individual minerals with similar or overlapping grayscale intensity in SEM BSE images as well as

addressing grayscale color variations from one sample to the other due to different device
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parameter setups such as brightness or contrast. In these cases, extracted features of minerals are
key to successful mineral/pore segmentation (Asadi and Beckingham 2021; Suthaharan, 2016).
Relying only on gray-scale intensity for training of machine learning models can lead to unstable
models with less generalization to other datasets due to intensity variation among different images
and intensity overlaps of different minerals. Combining image datasets with image filtering
techniques as inputs to machine learning models can potentially improve mineral quantification
and surface area analysis from images. This is because filters can find underlying patterns in

minerals and therefore improve the prediction results.

This study aims to provide an intelligent platform for auto-segmentation of mineral/pore
phases in SEM images, using mineral volume fractions and accessible surface area to evaluate
performance. Two widely used machine learning methods, Random Forest and U-Net are used to
process images of sandstone samples and mineral volume fractions and accessible surface areas
determined from machine learning-processed images and compared with data from manually-
processed images. A quantitative dissolution risk assessment analysis that identifies locations more
susceptible to dissolution by taking the predicted results for neighboring pixels into account is
proposed. The prepared framework will help geologists obtain the mineralogy, mineral/pore spatial
distribution, and the mineral reactivity risk assessment maps for sandstone samples reliably and
quickly based on SEM images. This automated and open-source framework to estimate mineral
abundance and accessibility is also desirable to reduce time and resource requirements to obtain

sample characteristics and inform reactive transport simulation models.
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2. Data and Methodology

2.1 Sandstone Samples

Processed mineral maps for six sandstone samples introduced in our previous work (Salek et al.
2022) were selected for machine learning model training and analysis. Data included processed
maps of Bandera Brown, Bentheimer, and Kentucky sandstones (samples purchased from Kocurek
Industries), Lower Tuscaloosa and Paluxy sandstones (samples from Geological Survey of
Alabama), and an additional Paluxy sandstone from Kemper County pilot CO» injection site (Qin
and Beckingham, 2019). In addition, a new pooled dataset was created and considered by the
models which was the combination of the images of the six sandstone samples (referred to as the
pooled dataset). The XRD data (Tablel) and prior compositional analyses of the samples showed
that they are mainly quartz (66% - 94%), with various amounts of feldspars, carbonate and clay
minerals, and trace amount of other mineral species such as chlorite, with porosity ranging from

0.14 to 0.33 (Kocurek Industries; Guan 2012; Soong et al. 2016; Salek et al., 2022; Qin and
Beckingham, 2019).

Table 1. XRD composition analysis of the samples obtained from Kocurek Industries !, Guan?

(2012) and Soong et al.? (2016).

XRD & S o & s | = £ g

Z T 2 |3 3 | E £ 2 | E

Sandstones e s = e = S = = 2
Source £ o | < é‘ © 8 v =15

Bandera Brown! | SPE-178999 | 22-23 | 66 13 2 3 0 3 11 2

Bentheimer! SPE-174666 24 944 | 12 1.2 0.5 0
Bandera Gray' SPE-173736 | 20-21 | 59 12 0 0 15 3 10 1
Kentucky! SPE-147395 14 66 17 3 0 0 trace | 14 0
Paluxy’ 20-25 | 69.3 | 24.5 1.2 0.8 23 0.2
Lower Tuscaloosa® 30-33 | 92 | 05 1.6 1.5 3.7

2.2 SEM BSE-EDS and Labeled Images
SEM BSE images of the samples used in this work and their corresponding EDS elemental maps

were captured using a ZEISS EVO 50VP Scanning Electron Microscope at Auburn University and
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analyzed in our previous work (Salek et al., 2022; Qin and Beckingham 2019). SEM images were
captured at resolutions ranging from 0.34 um to 5.71 pum. Eight SEM-EDS elemental maps were
used in this study including aluminum (Al), magnesium (Mg), sodium (Na), potassium (K),
calcium (Ca), silicon, (Si), iron (Fe), titanium (Ti). Image acquisition was performed on single
image field of views for all samples except for the Paluxy sandstone from Kemper County pilot
CO2 injection site (Qin and Beckingham, 2019) that was generated from multiple image fields and
was tiled to create a main image with the resolution of interest (0.34 pm). Mineral phases were
identified based on relative grayscale intensity and elemental signatures (Peters, 2009), with
knowledge of anticipated minerals from XRD data (Salek et al. 2022; Qin and Beckingham, 2019).
The detailed information about the SEM-BSE and EDS image acquisition and device set up are
provided in Qin and Beckingham (2019) and Salek et al. (2022), and detailed image processing
methodology and its cross validation with XRD data can be found in Landrot et al. (2012) and

Beckingham et al. (2017).

Here, to train the models and validate the machine learning models’ performances, mineral
maps were labeled with a specific label value assigned to each mineral as the ground truth value.
Figure 1 shows an example of labeled image and its corresponding colors. As evident in the Figure,
the samples were mainly comprised of quartz, carbonates, K-feldspar and albite. Table 2 shows
the number of pixels of each mineral class for the six samples that 70%, 15% and 15% were used

for training, validation, and test, respectively.
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Figure 1. a) 2D SEM BSE image of a thin section from the Paluxy formation with image resolution of 1.9 pm, and

image size of 17.14 mm? (reproduced from Salek et al., 2022), b.) Mineral phase segmented image.

Table 2. Labeled mineral/pore pixels for the samples.

Mineral Label | Bandra Lower Bentheimer | Kentucky | Bandera | Paluxy Paluxy
Brown Tuscaloosa Gray Samplel | Sample2

Pore “0” 443623 144457 1616132 1145212 | 2552360 | 2673382 | 8183063

Quartz “1” 1144567 267011 2845788 279728 727147 891332 19279109

Albite «“2” 159540 1396 74450 307767 411706 944590

Kaolinite “3” 67063 10623 87317

Smectite/I “4” 18267 215434 256845 9163 1791284

1lite

K- “5” 129752 4577 81431 53458 487745 46501 1058115

Feldspar

Chlorite “6” 7581

Magnetite “7° 23169 47663

Anatase “8” 7333 3042 11581 31302

Carbonate “9” 105 4321 75 228996 30133 2615561

Muscovite | “10” 1510 46492 27582 23082 105808

Zircon “11” 6672

Ilmenite “12” 10284 5362

Siderite “13” 11079 528404

Biotite “14” 45734

2.3 Feature Extraction

Minerals have different visible characteristics like texture and grain size which make them

distinguishable from one another. Filtering techniques convolute the original images such that
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additional features may be reliably extracted for machine learning models to differentiate minerals
with similar color intensity (Asadi and Beckingham, 2021). In this study, well-known filters,
including difference of Gaussian, Median, Non-local mean, Bilateral, vertical and horizontal Sobel
filters, were applied to the sandstone BSE images using the OpenCV (Bradski and Kaehler, 2008)
and Scikit-image (Van der Walt et al., 2014) libraries of Python. These filters provide feature maps
representative of texture, grain size, edges and color variation. For instance, the Sobel and Bilateral
filters are used to extract edge features and textures, while difference of Gaussians is utilized for

blobs and corners (4sadi and Beckingham 2021).

2.4 Establishing the Datasets

In this study, BSE images, elemental EDS maps, and extracted features were used as input
variables for machine learning models. Labeled images were established as ground truth images
for each sample and introduced to the models to be trained for mineral/pore segmentation. In
addition to these individual sample datasets, a pooled dataset which was a combination of all
samples was generated to further investigate feature-based machine learning mineral/pore
segmentation on a more general and comprehensive database. For the Random Forest model, the
input was the pixel-level grayscale values extracted from the BSE image, elemental maps
(including Al, Mg, Na, K, Ca, Si, Fe, Ti), and filter extracted features (including difference of
Gaussian disk 1 and 10, Bilateral, Median-blur, non-local Means, and Sobel filter in x and y
directions). The label data was the mineral class that ranged from 0 to 14 for each pixel. The U-
Net model was trained end-to-end where the input was images cut from the stacked BSE image,
the elemental maps (i.e., Al, Mg, Na, K, Ca, Si, Fe, Ti), and the filter extracted features (i.e.,
difference of Gaussian disk 1 and 10, Bilateral, Median-blur, non-local Means, and Sobel filter in

x and y directions), while the output was the corresponding mineral labels.
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2.4.1 Dataset for Random Forest

The Random Forest training dataset for each sample had a shape of mxn, where m was the number
of pixels, and m was the number of input variables obtained from the eight elemental EDS maps,
BSE intensity image, and the six filter extracted feature maps (Table 2). The BSE and EDS
intensity values at each pixel were extracted from the grayscale maps. Intensity values range from
0 (black) to 255 (white) and brighter pixels reflect higher elemental intensities in EDS maps and
bigger average atomic numbers in BSE images. The brightness/intensity values of filter extracted

features demonstrates various patterns such as entropy or edges in the associated BSE images.

To create the database, each input variable was first normalized to transform data to the
range of 0—1 by dividing each pixel value by the maximum value for that specific input variable.
The input variable values at the same pixel location were then extracted as a vector containing 15
input values, including the inputs from BSE, EDS, and filter extracted features. The mineral/pore
class labels at the corresponding output pixels were the ground truth data with 15 mineral/pore
classes (Table 2). The dataset for the samples was imbalanced as they were mainly comprised of
quartz, feldspars, and calcite. To address this issue, different weights were assigned to each class
that was proportional to the inverse percent size of each class within the dataset. Thus, a matrix
with the size of the number of pixels in each dataset x 15 was used as input, where 15 denotes the

number of input variables extracted at each data point.

The ground truth data was a vector with the size of the number of pixels in each dataset x
1 which contained the value of the mineral/pore class labels. The dataset of each sample was
randomly split into training (70%), validation (15%) and test (15%) datasets to train and evaluate

the Random Forest model.

10
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2.4.2 Dataset for U-Net

Unlike the Random Forest model with pixel-level classification, where the input data was a matrix
of shape mxn, the training process for the U-Net model was end-to-end and utilized neighboring
pixels, which allows for segmented regions with less noise. To create the dataset, the stacked and
normalized input images were cropped into smaller training samples (128x128 pixels). Then, using
a data augmentation procedure that including flipping in both vertical and horizontal directions,
zooming, shifting, and rotation, the amount of data was increased to have more data for improved
prediction. For the pooled dataset, each input sample had a total of 15 channels (input variable
set), while the output had 15 channels for each mineral/pore class. After data augmentation, there
were a total of 8,505 samples (Table 2) for training and testing, which were further divided into

training, validation, and testing, with the fractions of 70%, 15% and 15%.

2.5 Pixel Wise Image Analysis and Segmentation Algorithms

2.5.1 Random Forest Machine Learning Model

Random Forest (Breiman 2001) is one of the powerful ensemble learning methods that combines
m random decision trees (mtree) trained on different subsamples of data into a decision forest
(4sadi and Tian, 2021) to solve regression/classification problems. The grown forest algorithm
not only has higher precision over individual decision trees such as CART, but also is relatively
unbiased to multivariate common linearity and imbalanced data (Asadi and Beckingham 2021,

Asadi and Tain 2021) which makes it appealing for phase segmentation.

For training, the model randomly selects NV subsamples from the training dataset using a
Bootstrapping technique. Each sample set is used to construct a decision classification tree, each
of which randomly selects k input variables and starts with a single node. Each node in the decision

tree is a weak binary classifier which selects the various parameters (e.g., k input variables or a

11
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variable attribute) to maximize the classification index, whereas the final leaf node includes a
discriminator to assign each pixel to a specific class. In Random Forest, each tree finds new splits
and builds out it’s nodes while minimizing the Gini impurity (equation 1) for each split based on
its information and patterns in a subsample of the training set, eventually stopping at leaf nodes

when it reaches the maximum depth of tree or the minimum number of samples per node.

In general, each node in a forest seeks to minimize the impurity index. In this study, the

Gini index that is one of the most common impurity functions was used. The function is given by,

Gini(p) =Xk 1ok 1 —pp) = 1—-3k_ p? (1)

where py is probability that the sample belongs to class k. This represents the likelihood of
misclassification of a random data point at a certain node if the data point were classified randomly.
When the Gini coefficient is the smallest, the purity is the highest and the uncertainty is the

smallest.

In this study, the Scikit-Learn library of Python was used to implement the Random Forest
model (Pedregosa et al., 2011). At first, a model with 200 random trees (i.e., ntree = 200), each
with unlimited depth and no pruning, was created. Randomly selected k input variables (estimated
as the square root of the numbers of predictors, i.e., ktry = 4) from all input variables were selected
at each node to train the model. Next, the model’s hyperparameters were fine-tuned. For k#ry and
ntree tuning, the random search was incorporated by grid searching the ntree in the range of 30 to
700 and ktry in the rage of 2 to 8, resulting in the final forest of ntree = 50 and ktry = 4. The depth
of tree changed from 15 to 4x15 and the best one was 32. The minimum sample per split was

selected to be five based on random number search in the range of three to ten.

12
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2.5.2 Modified U-Net Deep Learning Model

The U-Net method (Ronneberger et al., 2015), a fully connected Convolutional Neural Network
(CNN) method, was originally proposed to efficiently capture nuances required in the analysis of
medical images. Ever since, it has become a standard tool for various classification problems and
shown great performance by using less images and outputting more precise segmentation maps
(Asadi and Beckingham, 2021; Kim et al., 2021). The architecture is based on a symmetric
encoder—decoder approach which resembles a U-shaped structure. The encoder consists of
contraction blocks to capture context via feature extraction. Each block takes a 128 by 128 input
image to apply two convolutional kernels of 3 by 3, followed by a rectified linear transformation
and a max-pooling operation with a stride of 2 by 2. The max-pooling process reduces spatial
information while convolutional kernels increase feature channels in the the encoder path allowing
the network to learn complex structures effectively due to propagating context information to
higher dimensions (4sadi and Beckingham, 2021). The decoder is responsible for precisely
retrieving spatial information along the up sampling, where the output of each convolutional level
is combined with high resolution features from the contraction part through skip connection ports.
The expansion blocks in the decoder pass the input to two convolutional layers followed by a 2 by
2 up-sampling layer. In the decoder, while the image size gradually increases, the feature depth
gradually decreases. At the end of the network, the feature images were passed through a 1 by 1
convolutional layer with a SoftMax activation function to perform the multi-layer semantic
segmentation and provide the probability of each pixel, and map M features which are desired
minerals/pore classes. The class associated with the highest estimated probability would then be

the one assigned to that pixel.
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This classification scheme was implemented in Python using the TensorFlow and Keras
packages. Here, stacked BSE, EDS and filter extracted features from the original BSE images as
well as their corresponding segmented maps were used for training. Several loss functions
including focal (equation 2) and categorical cross-entropy were utilized and applied to adjusted
weights and biases for finding the best performing one. The focal loss function, which is designed
to counteract class imbalance, had the best performance and is used in this study. In the focal loss
function, each class is down-weighted such that their contribution to the total loss is small even if

their number is large. The function is given by,

Focal Loss(py) = — a:(1 — p)¥ log(pr) (2)

where p; is the probability of a given class, a is a regulator parameter range from [0, 1], and vy
controls the penalizing power of the model to the error and is an integer number greater than zero
(y>0). When y = 1, the focal loss function works like the cross-entropy loss function. In this study,
vy =2 and a = 1 were set due to better performance. Adaptive moment estimation (ADAM) was
selected as the optimizer to iteratively adapt the network’s learning rate and early-stopping was
used to prevent overfitting. Fine-tuning function of the TensorFlow library was used for the
number of epochs varied from 100 to 1000 (epoch = 300 was the best one) and the learning rate
(LR) from 107 to 10° (LR = 0.0001 was the best one). Note that normalized datasets, with an

interval of [0, 1], were used here so that the models could converge faster.

2.6 Mineral/pore Quantification and Surface Area Analysis

In this study, the performance of machine learning models for mineral/pore quantification and
surface area analysis was evaluated. The porosity, mineral abundance, and mineral accessibility
values were determined in predicted mineral maps and cross compared to the grand-truth data

quantified from 2D labeled BSE-EDS images. The porosity values and volume fraction of mineral

14
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phases (mineral abundance) were determined by counting pore pixels and mineral pixels with the
same color, respectively. The percentage of each mineral’s surface that is adjacent to the pores
(mineral accessibility) then were quantified by counting mineral pixels adjacent to pore pixels.
Here, accessibility is based on the assumption that all pores are connected or would be accessible

to reactive fluids.

2.6.1 Ranked Mineral Dissolution Risk Assessment

Here, a new concept, a ranked mineral dissolution risk assessment map, that inherits the name and
application from groundwater vulnerability and risk assessment maps but for mineral dissolution
assessment, is introduced. The ranked mineral dissolution risk assessment map is used here as a
means of evaluating the model predicted maps and checking their goodness of fit for extracting

reactive sample characteristics not only pixel wise but also considering adjacent neighbors.

To create the ranked mineral dissolution risk assessment map, we first assigned a rank
number to each pixel, ranging from 1 for less reactive minerals (i.e., quartz) to 14 for highly
reactive ones (i.e., calcite, dolomite) for a specific set of conditions. Pores were assigned the
highest (15) assigned rank number. The mineral rankings were based on dissolution rates obtained
from Brantley (2008), Yadav and Chakrapani (2006), and Zhang et al. (2015) at pH 5 and a
temperature of 298 K. Next, the pixel-wise risk number for each individual mineral was

determined based on the highest adjacent ranked pixel to the pixel of interest.

The ranked mineral dissolution risk assessment map will help further assess the spatial
distribution of reactivity risk for a given mineral and its evolution of risk. This map only considers
the potential risk of being exposed to fluid to provide a conceptual reactive risk assessment map.

The higher assigned rank, the higher the risk for the given pixel to be exposed to the fluid and to

15
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be involved in a rection over time compared to other pixels with similar mineralogy but less

dissolvable adjacent neighbors.

2.7 Performance Metrics

To evaluate the performance of machine learning-based models, accuracy, precision, recall, and
F1-score performance metrics were used. Precision calculates how often the model’s prediction is
correct over all positive predictions of a given class, whereas recall or sensitivity measures how
accurate the model is in detecting true positive classes (relevant data). Fl-score is the tradeoff
between recall and precision and takes both 7P, data points truly predicted as the class under

consideration, and FN, incorrect rejection of that class, into account. They are defined as:

F1 = (2x precision xrecall)/(precision + recall) 3)
precision = TP/(TP + FP) 4)
recall = TP/(TP + FN) (5)

The test image set was compared against the ground truth images to evaluate the models. To
calculate the binary Fl-score for each class, the given class was considered individually as
positive, with the other classes as negative. Once the score was calculated for every class, their
mean values were computed to evaluate the macro performance of the classifiers. However, this
analysis does not consider a potential class imbalance among the samples as it weighs all classes
equally. Thus, for a fairer global performance evaluation, we also estimated the overall statistics
by computing the weighted average of each evaluation metric with respect to the representativity

of each class.
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3. Results and Discussion

3.1 Performance of the models on single and pooled datasets

This section investigates the effect of different image datasets with various grayscale distribution
on the U-Net and Random Forest classifier’s performances. Samples (i.e., individual sandstone
samples as well as the pooled dataset) had different image resolution, size, range of gray scale
intensity, and several mineral components. Figure 2 presents the loss and accuracy of the trained
U-Net model as a function of epoch for the pooled dataset. As shown, the loss in the pooled dataset
decreases significantly after five epochs, while the accuracy of the U-Net model improves to
around 96% after a few epochs. Similarly, the Random Forest classifier for the pooled dataset
reaches an accuracy of 92%. A similar trend is obtained for individual datasets with accuracy
ranging from 85% to 95%. The loss and accuracy plots for individual samples as well as for the
pooled dataset for the Random Forest model are provided in the supplementary materials (Figs.

S1-—S3).

By comparing the results of individual samples results (Figs. S1 — S3) with the pooled
dataset (Figure 2), it can be concluded that using a larger dataset (i.e., pooled dataset) can improve
the results. In general, the U-Net model trained on the pooled dataset reaches a lower loss value
with fewer epochs, obtaining a higher accuracy and outperforming the individual datasets. The
same is evident for the Random Forest model where the model trained on the pooled dataset

achieves a better score compared to individual sets.
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Figure 2. The accuracy and loss against the number of epochs for the U-Net model trained on

pooled dataset.

3.2 Effect of input variable on the models’ performance

The pooling of different sandstone samples together provides a dataset with varied grayscale
intensity values but similar mineral characteristics such as mineral size, texture, patterns, etc.
Therefore, to make a better prediction, machine learning algorithms must rely on the underlying
patterns in addition to the BSE grayscale values. This section presents the models’ performances
on predicting mineral/pore classes with different input variable sets (i.e., BSE gray intensity,

elemental EDS maps, and filter extracted features).

Figure 3 shows the F1-score of pores and mineral classes calculated for the predicted results
of U-Net and Random Forest models on the pooled dataset. Different colors reflect different input
variable sets, where the results of the Random Forest and U-Net classifiers trained with only the
gray-scale BSE image (blue in Fig. 3) have 56% and 88% accuracy, respectively. As shown, the
BSE-based model cannot predict minority classes such as zircon, chlorite, siderite and biotite and

has a fair performance identifying albite due to its similar grayscale intensity as quartz.
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Figure 3. Performance of U-Net deep learning (a) and Random Forest machine learning (b)

models for different mineral classes in pooled dataset.

When filter extracted features are considered in addition to the grayscale BSE images
(green in Fig. 3), a higher performance for both models is evident. The filters extract features such
as texture, size, edges, etc. which improve the predictive performance of the model, especially for
minerals with similar grayscale intensity (e.g., quartz and K-feldspar). The performance of models
in predicting chlorite, zircon, smectite/illite and muscovite significantly improved, particularly for
the Random Forest model. The filtered-based model has a comparable performance to the BSE-

EDS based model (the dark gray in Fig. 3), highlighting the significant improvement of mineral
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segmentation by simply utilizing filtering techniques. This is particularly valuable in cases when

EDS elemental maps are not available.

Integrating the EDS elemental map and filtering techniques (in Fig 3) further improves the
results by considering both extracted features and elemental maps along with the BSE values. The
resulting accuracy improves from 56% to 92% for Random Forest and 88% to 96% for the U-Net
model, which also is shown visually in Figure 4 and 5. This also has noted success in predicting
phases with low volume fractions, minority classes. These phases are difficult to predict and result
in low performance of the associated classes due to data scarcity. An improvement in prediction
is evident in the pooled dataset using the BSE, EDS, and filter images as input. This results in
prediction of minority classes such as chlorite that are not predicted by any other methods. In
addition, the performance in predictions of muscovite is significantly higher than that in any other
methods in both models. In summary, the pooled dataset with the BSE&EDS&Filter input

variables set has the highest accuracy and F1-Score and thus was selected as the final model.
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401 Both models show good performance for prediction of pore classes. Based on Figure 3, the

402  “pore” class reaches a high F1-score of 96% to 98%. This highlights the capability of the models
403  to automatically predict the sample pore pixels. Thus, obtained porosity values, which are an
404  important characteristic of a sample and used in reactive transport simulations, are almost identical

405  to the ground-truth data.
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Figure 5. Visual performance of the RF model on different mineral classes in the pooled dataset.

Vertical and horizontal axes demonstrate pixel numbers with 0.71 pm resolution.

The high Fl-score accuracy for most of the classes obtained from the U-Net framework
(i.e., the U-Net with pooled dataset and the BSE&EDS&Filter input variable set) reveals the
robustness of the framework to various ranges of grayscale inputs since it relies more on extracted
features and elemental maps. These features are also important in the Random Forest model where
the “mean decrease in Gini Impurity” is used here to rank the input variables for the Random
Forest model to determine the most important variables for mineral/pore segmentation. Figure 6

shows the resulting relative rank where the higher numbers indicate a higher contribution to
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successful classification. As shown, the median filter has the highest rank followed by the Ti
elemental map. The results reveal the higher contribution of elemental images and filter extracted

features compared to the BSE gray scale values.
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Figure 6. Rank of the input variables based on their contribution to improving segmentation

(horizontal numbers are the rank of the variables called feature importance value).

3.3 Comparison of the Best Random Forest and U-Net Models

The SEM-BSE image dataset of the sandstone samples were processed and segmented for further
mineral abundance and surface area analysis, using the best-trained models. Figure 7 compares the
results of the best performing Random Forest and U-Net frameworks trained on the
BSE&EDS&Filter input variable set of the pooled dataset. Although the pixel wise Random Forest
classifier almost fails to predict some minority classes such as zircon and chlorite, it has an
acceptable performance for the majority classes such as quartz (Fig. 7). On the other hand, U-Net
has a higher performance, especially for muscovite minority class, and can successfully detect
different classes. U-Net preserves the structural dependency of pixels and considers the

neighboring pixels by utilizing the convolutional kernels which helps detect continuous features
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such as edges and textures (Figure 8). Providing several extracted features helps the Random
Forest model to consider this spatial dependency. Considering neighboring pixels and structural
dependency when making a prediction also helps overcome the noise (based on Figure 4, 5 and 8)

that inherently exists in SEM-EDS image datasets and as a result improves prediction performance.
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Figure 7. Comparison of the best performing U-Net and Random Forest models on predicting

different mineral classes in pooled dataset.

Visualization of segmented quartz, albite, microcline, dolomite, kaolinite, illite/smectite,
chlorite and pores within the samples (Fig. 4, 5 and 8 for a test subset of the samples) show that
the most prevalent component of the samples is quartz, which is in agreement with XRD and
ground truth data. Close inspection of these images also shows the promise machine learning has
to classify variations in minerals at small scales, some of which may be missed in manual
segmentation. Analysis of additional data extracted from segmented images are investigated in the

next sections.
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3.4 Mineral/pore abundance and mineral accessibility analysis

The abundance and accessibility of minerals in segmented images for test dataset (15% of total
images in pooled dataset) are given in Table 3. Results of mineral quantification indicate that
overall quartz has the highest abundance among phases, followed by carbonate minerals
(combined) and K-feldspar. This is also evident in the predicted results for individual datasets.
Given the comparison of the results obtained from Random Forest and U-Net models with the
ground truth data and considering abundance and accessibility as evaluation metrics, quartz
(Abundance = 76.83% and Accessibility = 57.61%) is slightly underestimated (Abundance =
72.62% and Accessibility = 44.79%) by Random Forest and slightly overestimated by U-Net
(Abundance = 77.72% and Accessibility= 55.86%). The results for other minerals, provided in
Table 3, show a similar performance in which U-Net has a better result and less difference to the
ground truth data compared to the Random Forest model predictions. Note that ground truth data
was cross validated with XRD results and therefore U-Net model results is aligned with XRD data.
In general, the observed differences in volume percentages are reasonable with most minerals
within few percent agreement with the ground truth abundances. There is a larger variation evident
among predicted accessibility with as much as 12% variation between predicted accessibility and

the ground truth value with the largest difference for smectite/illite.

These results show the capability of machine learning models, especially U-Net, in
characterizing geological samples to assess mineralogy and reactivity. A larger, balanced dataset
with various mineral distributions could enhance model training and thus improve the results even

further.

Table 3. Predicted abundance and accessibility values obtained from the models and the
corresponding ground truth data.

| Mineral | Rank | Chemical formula | Method | Abundance (%) | Accessibility (%) |
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ground truth 76.83 57.61
Quartz 1 SiO, RF 72.62 44.79
U-Net 77.72 55.86

ground truth 2.02 2.66

Albite 11 NaAlSis0 s RF 4.22 3.49
U-Net 2.40 3.97

ground truth 0.39 4.85

Kaolinite 5 AleizOs(OH)4 RF 0.64 7.18
U-Net 0.27 3.25

ground truth 0.04 0.05

Anatase 3 TiO, RF 0.03 0.03
U-Net 0.03 0.05

ground truth 8.47 3.45

Carbonate 14 CaCO03/MgCO;5-CaCOs RF 8.35 2.96
U-Net 6.76 2.46

ground truth 0.05 0.01

Biotite 8 K(Mg,Fe++)3;[AlSi3010(OH,F), | RF 0.18 0.04
U-Net 0.11 0.12

ground truth 0.81 1.49

Muscovite 6 KAL[AISi3010] RF 0.37 0.58
U-Net 0.42 1.00

ground truth 3.86 3.30

K-feldspar 10 KAISi;0g RF 4.12 2.07
U-Net 4.82 3.98

ground truth 0.96 0.30

Siderite 13 Fe(Ca,Mg)(COs)2 RF 0.88 022
U-Net 1.22 0.39
K o6 Al > [Al o Si ground truth 6.45 25.79

. . 065 Al 2 65 S13,

Smectite/Illite 9 Onl( OI-(;)GZS 335 RF 8.18 37.90
U-Net 5.99 28.08

ground truth 0.09 0.32

Magnetite 12 FesOs RF 0.36 0.39
U-Net 0.20 0.57

ground truth 0.00 0.00

Zircon 2 71810, RF 0.00 0.00
U-Net 0.03 0.00

ground truth 0.03 0.08

Ilmenite 4 (Fe,T1),03 RF 0.03 0.06
U-Net 0.02 0.04

ground truth 0.01 0.10

Chlorite 7 ClO RF 0.02 0.30
U-Net 0.02 0.24
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3.4.1 Mineral dissolution risk assessment map for potential reactive surface area evolution
This section compares and contrasts the obtained dissolution rank from the U-Net mineral/pore
results with ground truth data. Figure 9 shows the potential dissolution rank for U-Net predicted
K-feldspar mineral pixels obtained based on the maximum dissolution rank of neighboring pixels
to the pixels of interest. As evident in the figure, variations in the dissolution risk ranking can be
observed. Regions that are most available for reaction have the highest scores and are shown in
blue. These surfaces are adjacent to pore space. Variations in the anticipated availability of other
surfaces for reaction are indicated by varying color/risk number. Higher numbers are anticipated

to be accessible for reaction more quickly than those with lower numbers.

The overall trend in the predicted image is similar to the ground truth image. This reveals
the reliability of the U-Net model not only for predicting the mineralogy, and as a result, reactivity,
of each pixel but also the ability of the trained framework to correctly predict neighboring pixels
that may impact the potential reactivity of the pixels of interest. The results obtained based on this
image show the U-Net predicted pore/mineral segmented map can be utilized to inform the reactive

transport models over time scale.
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Figure 9. Ranked mineral dissolution risk assessment map for K-feldspar (rank 10) that is
adjacent to rank 15 (pores) and 14 (carbonate), with 0.34 pm resolution. Rank zero shows pixels

that are not on the surface of the mineral of interest.

4. Conclusions

This study evaluated the performance of Random Forest and U-Net models for mineral/pore phase
segmentation and surface analysis of SEM images of various sandstone samples. This is achieved
by providing a framework that not only evaluates the results on each pixel but also takes the
predicted neighboring pixels into account. The performance of the models was investigated on a
series of individual datasets as well as a combined dataset that included data from various samples,
each with different grayscale intensity variation, in addition to EDS maps and filter data. It was
shown that the performance of both platforms reaches the highest score when all BSE, EDS, filter
data are used as input variables on the pooled dataset to train the models. Using those inputs, the

U-Net model achieved the highest performance accuracy of 96%.

In general, the results from the U-Net model had a higher performance compared to the
Random Forest model in predicting each class and thus a more reliable phase segmentation in
different samples. In addition, the U-Net model had a better performance for surface quantification
and had comparable results to the ground truth data for mineral abundances and accessibility. By
comparing the results of the individual dataset to the pooled one, it can be concluded that using
larger datasets (i.e., pooled dataset) can improve the results even further which is an inherent

characteristic of machine learning models.

The results obtained from comparing the models with different input variable sets showed

the trained models relied more on extracted features and information obtained from EDS elemental
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maps. Feature importance ranking in the Random Forest model confirmed this conclusion. It also
showed the median and gaussian filters had the highest contribution in phase segmentation due to
removing unwanted noise and providing more integrated phases. Relying on extracted features
provided a more robust solution to grayscale variation from one dataset to another since the

grayscale intensity may vary but extracted features are more or less similar in different datasets.

Finally, the mineral risk assessment map was proposed. This provided a robust solution to
identify the locations susceptible for dissolution and is recommended to be used in conjunction
with the machine learning platforms. This map can capture variations in surface reactivity due to
differences in accessibility where some surfaces are in contact with pores and thus accessible for
reaction while others are occluded by mineral coatings. Occluded surfaces will be accessible for
reaction once the coating phase dissolves. This may be a promising approach to considering the

potential evolution of reactive surfaces.

The intelligent segmentation and surface analysis framework in this work is promising for
accelerating the processing of SEM data as well as reducing the need for post-process filtration.
The obtained parameters can be utilized to enhance understanding of sample characteristics
including mineralogy as well as reactive properties. Data such as porosity and mineral volume

fractions can be quantified from processed maps and used to inform reactive transport simulations.
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Supplementary and codes
The labeling and Normalizing&Cropping, Filtering, Accessibility&Abundance Total, and ranked
mineral dissolution risk assessment map codes and images can be found at

https://github.com/Parisa-Asadi/Machine-learning-for-Surface-Areas-Analysis.
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