

1 Estimation of mineral accessible surface area

2 from mineral abundance and clay content

3 *Fanqi Qin[‡], Md. Fahim Salek[‡], Parisa Asadi, Chidera Illoejesi, Olivia Brunhoeber,*

4 *Mukseet Mahmood, Lauren, E. Beckingham**

5 Department of Civil and Environmental Engineering, Auburn University

6 Auburn, AL 36830

7 *Corresponding author: leb@auburn.edu

⁸ [‡]co-first author, these authors contributed equally towards this work

9 Abstract

10 Mineral reactive surface area is often quantified through a wide range of approaches
11 (e.g., BET adsorption, geometry approximation, imaging techniques). As such,
12 values vary 1 – 5 orders of magnitude which can result in large discrepancies when
13 used in reactive transport models to simulate geochemical reaction rates.
14 Simulations carried out using mineral accessible surface areas (ASAs) determined
15 from a coupled 2D and 3D imaging approach have shown better match with reaction
16 rates measured in core-flood experiments. However, such image processing requires
17 large amounts of time and resources. In this work, the possibility of estimating
18 mineral ASAs from easily measured properties like mineral abundance and porosity

19 is explored. Six sandstone samples of varying compositions were studied along with
20 data from three additional samples from previous literature. Mineral ASAs were
21 quantified using a combined 2D SEM and 3D X-ray nano-CT imaging approach.
22 Sample properties like mineral accessibility, mineral ASAs, connected porosity, and
23 clay content were compared to explore potential correlations between properties.
24 Overall, it was observed that mineral accessibility can be predicted where feldspar
25 mineral accessibility generally increases with increasing abundance and quartz
26 accessibility decreases with increasing clay content. Mineral ASAs vary between
27 samples, depending on the relative abundance of minerals and overall pore
28 connectivity. While the ASA of quartz decreases with abundance, albite and
29 carbonate mineral ASAs increase with abundance. Quantitative observations,
30 including predictive relationships for ASAs from porosity and mineral volume
31 fraction are developed. Estimations of ASAs and mineral accessibility from more
32 easily quantifiable properties can largely reduce the required extent of image
33 analysis.

34 **Keywords:** Image processing, mineral property quantification, accessible mineral
35 surface area, mineral dissolution rates, reactive surface area, 3D computed
36 tomography.

37 **1. Introduction**

38 Geochemical reactions occur in a variety of environmental systems, such as
39 chemical weathering on the surface of the earth¹⁻⁵, CO₂-brine-mineral interactions

40 in carbon capture and storage (CCS) systems⁶⁻¹², enhanced oil recovery¹³⁻¹⁶, and
41 subsurface energy storage systems.¹⁷⁻²⁰ These reactions are rather complex as natural
42 environmental systems are often heterogeneous. For example, the CO₂-induced
43 geochemical reactions in subsurface storage systems are impacted by many factors
44 such as injection rate, formation depth, porosity, permeability, saturation, mineral
45 composition, etc.²¹

46 Reactive transport modeling is a powerful tool that has been used to simulate these
47 complex geochemical reactions over laboratory and geological timescales.²²⁻²⁸
48 Transition state theory (TST)²⁹⁻³¹ is commonly used to calculate mineral reaction
49 rates in these simulations as given by:

50
$$R_m = A_m k_m [f\Delta G_r] \quad (1)$$

51 where R_m is the mineral reaction rate, A_m is the mineral reactive surface area, k_m
52 is the reaction rate constant, and $f\Delta G_r$ is the thermodynamic driving force for the
53 reaction.³² Thermodynamic parameters and rate constants are often obtained from
54 a thermodynamic and kinetic database, while the porosity, mineral abundance, and
55 mineral surface areas are usually measured. X-ray diffraction (XRD) is commonly
56 used to determine the mineral composition (abundance) of a sample, while mineral-
57 specific surface area is often used as an approximation of reactive surface area and
58 measured using the Brunauer–Emmett–Teller (BET) adsorption method.³³ The
59 limitations of these approaches, however, need to be considered and may restrict
60 the ability to accurately simulate the rate and extent of geochemical reactions and
61 the corresponding impact of reactions on formation properties (e.g., porosity,

62 permeability). Quantification of minor mineral phases, for example, is challenging
63 with XRD and largely depends on the detection limit of the instrument, which can
64 vary from 0.33% to 5%.³⁴ It can also be challenging to quantify clay abundance and
65 composition through XRD analysis. Detecting clay minerals is necessary because it
66 plays an important role in controlling pore connectivity and mineral accessibility as
67 they are commonly present as grain coating or bridging phases.³⁵⁻³⁹ The BET
68 adsorption method provides a good estimation of mineral-specific surface area
69 (SSA). However, estimating the specific surface area for each mineral in a multi-
70 mineral sample is not feasible and instead requires analysis of pure mineral phases,
71 which vary widely.^{40,41} BET analysis also depends on the degassing condition and
72 how much the sample is disaggregated⁴²⁻⁴⁴. Moreover, the mineral-specific surface
73 area may not accurately reflect the reactive surface area of mineral phases in
74 consolidated samples.⁴⁵

75 Imaging has emerged as a relatively new approach for mineral property
76 quantification⁴⁵⁻⁵⁰ that has shown promise to improve simulations of mineral
77 reaction rates. Beckingham et al. (2017) found that simulations carried out using
78 mineral accessible surface area (ASA) quantified from imaging reflect the reaction
79 rates observed in core-flood experiments more closely than simulations that use
80 specific surface area.⁴⁵ In addition, imaging can often facilitate the quantification of
81 mineral phases with abundances less than the XRD detection limit.⁵¹

82 Although the mineral abundances and accessible mineral surface areas quantified
83 from imaging are promising for improved reactive transport modeling, the time and

84 resources involved in this process, from sample preparation, image acquisition,
85 image segmentation, and mineral properties quantification, can be enormous.
86 Resources may be somewhat reduced by capturing images at lower resolutions
87 where differences in mineral volume fractions and ASAs extracted from 0.3
88 microns, and 5.7 microns resolution images were found to be relatively minor
89 (within one order of magnitude).⁴⁹ Additional limitations, however, arise from the
90 fact that getting higher-quality images from scanning electron microscopy (SEM)
91 requires samples to be polished and cut into thin sections.⁵² As such, a means of
92 estimating accessible mineral surface areas from other, more easily measured
93 properties is highly desirable to reduce time and resource requirements and predict
94 the evolution of ASA in reactive systems. In this work, we evaluate mineral ASAs
95 of sandstones of varying compositions and explore relationships between mineral
96 abundance, accessibility, ASA, clay content, and pore connectivity. Through
97 analysis of these relationships, we aim to be able to estimate and predict mineral
98 accessibility and ASAs without the intensive image acquisition and analysis process.

99 **2. Materials and Methods**

100 Data from nine sandstone samples were selected for analysis in this work. This
101 includes six sandstone samples where mineral abundances and accessibilities were
102 analyzed via SEM imaging in our previous work.⁵³ In addition, data from three
103 samples from earlier literature are considered. This includes a Paluxy sandstone
104 sample studied by Qin and Beckingham (2019)⁴⁹, collected from the pilot CO₂
105 injection site at Kemper County, Mississippi, U.S.⁵⁴, a Lower Tuscaloosa sandstone

106 sample studied by Landrot et al. (2012)⁴⁷ collected from a geologic carbon
107 sequestration pilot site in Cranfield, Mississippi (well CFU 31-F2), and a sample
108 extracted from a geothermal well (Vydmantai-1) at a depth of 954.6 m, located at the
109 southeast end of the Baltic Sea in Lithuania.⁵⁰ Sample characteristics and imaging
110 methodologies are described in the following sections.

111 **2.1 Sample characterization and preparation**

112 The nine sandstone samples of varying compositions, including high to low clay
113 and carbonate content, selected for this work are given in Table 1. Table 2 provides
114 information about sample sizes used for imaging in this study and prior literatures.
115 Core samples from the Bandera Grey, Bandera Brown, Bentheimer, and Kentucky
116 formations obtained from Kocurek Industries and Lower Tuscaloosa and Paluxy
117 sandstone samples obtained from the Geological Survey of Alabama were used here
118 for 3D X-ray nano-Computed Tomography (X-ray nano-CT) imaging. Core samples
119 from Kocurek Industries were 0.5 inches in diameter and 1 inch in length. Samples
120 from the Geological Survey of Alabama were intact pieces roughly 0.5 x 0.5 x 0.5 in³
121 in dimension. Polished thin and thick sections from each formation were created
122 and analyzed via SEM imaging by Salek et al. (2022).⁵³

123 Data on sample porosity, connected porosity, mineral abundances, and
124 accessibilities were taken from the previous literature (Table 1 & Table 3) as
125 determined using imaging analyses. All sandstones considered here are mainly
126 composed of quartz (66% - 94%), with varying amounts of feldspar, carbonate, and

127 clay minerals as well as trace amounts of other mineral species. The porosity of these
128 samples varies from 13% to 35% (Table 1). ^{40,53,55,56}

129 Available ASA data were also collected from the literature for the Paluxy⁴⁹ and
130 Lower Tuscaloosa⁴⁷ samples. Mineral ASAs for the remaining seven samples were
131 determined here, leveraging mineral accessibility analyses from Salek et al. (2022)⁵³
132 and Ma et al. (2021).⁵⁰ For the Baltic Sea sample, the mineral segmented map
133 obtained from Ma et al. (2021)⁵⁰ is analyzed again to determine the connected
134 porosity and mineral accessibility considering pore connectivity.

135 **Table 1.** Sandstone samples considered in this work categorized based on relative
136 abundances of clay and carbonate: 1) high clay, high carbonate content samples; 2)
137 high clay, low carbonate content samples and 3) low clay, low carbonate content
138 samples. Data from prior literature analysis in ^aSalek et al. (2022)⁵³, ^bQin and
139 Beckingham (2019)⁴⁹, ^cMa et al. (2021)⁵⁰, ^dLandrot et al. (2012)⁴⁷.

Sample category	Formations	Quartz (v%)	Clay (v%)	Carbonate (v%)	Porosity (%)	Connected Porosity (%)
High clay and high carbonate content	Bandera Grey ^a	63.46	6.39	5.69	15.31	2.21
	Paluxy ^b	76.45	8.23	9.63	25.16	23.38

	Baltic Sea sample ^c	59.35	8.12	14.79	17.68	2.56
High clay and low carbonate content	Bandera Brown ^a	73.48	5.96	0.01	22.17	8.91
	Kentucky ^a	62.58	11.73	0	13.25	4.27
	Lower Tuscaloosa ^d	82.3	12.5	0	16	12
	Lower Tuscaloosa ^a	92.03	3.67	1.48	33.29	28.69
Low clay and low carbonate content	Bentheimer ^a	95.32	1.64	0	34.92	18.45
	Paluxy ^a	69.31	2.5	0.78	18.77	5.36

140

141 **Table 2.** Sample description for 2D SEM and 3D X-ray nano-CT imaging. Data from
 142 prior literature analysis in ^aSalek et al. (2022)⁵³, ^bQin and Beckingham (2019)⁴⁹, ^cMa
 143 et al. (2021)⁵⁰, ^dLandrot et al. (2012)⁴⁷.

Formations	SEM Imaging	3D X-ray nano-CT
------------	-------------	------------------

Bandera Grey, Bandera Brown, Bentheimer, Kentucky ^a	Polished Disk of 1-in diameter and 0.2-in thickness ^a	Core Sample, 0.5-in diameter and 1 in height
Lower Tuscaloosa and Paluxy sandstone ^a	Polished thin sections ^a	Intact pieces roughly 0.5 in x 0.5 in x 0.5 in
Paluxy sandstone ^b	Polished thin section ^b	Intact piece roughly 0.5 in x 0.5 in x 0.5 in ^b
Baltic Sea ^c	Polished thin section ^c	-
Lower Tuscaloosa ^d	Polished thin section ^d	Rectangular volume (8 mm x 3 mm x 3 mm) ^d

144

145 **2.2 Imaging acquisition and mineral properties quantification**

146 3D X-ray nano-CT images of six sandstone samples were collected and used to
 147 determine pore connectivity and mineral ASA after Landrot et al. (2012)⁴⁷,
 148 Beckingham et al. (2017)⁴⁵, and Qin and Beckingham (2019)⁴⁹. Mineral ASA reflects
 149 the surface area in contact with the reactive fluid. Mineral ASAs were computed by
 150 multiplying the average connected surface area determined from the analysis of the
 151 processed 3D X-ray nano-CT image for each sample by the mineral accessibility
 152 calculated from 2D SEM images for each phase determined in Salek et al. (2022).⁵³
 153 Mineral accessibilities were computed from 2D mineral maps based on processed

154 SEM backscattered electron (BSE) images complemented with elemental maps from
155 SEM energy-dispersive x-ray spectroscopy (EDS) analysis. In the processed mineral
156 map, each mineral phase was depicted as a unique color. Accessible mineral pixels
157 of each phase were identified as those adjacent to connected pore pixels, and mineral
158 accessibility was calculated as the fraction of interfacial pixels corresponding to each
159 mineral phase. Connected porosity considered here includes multi-scale nano-pore
160 connectivity via clay minerals.⁵³

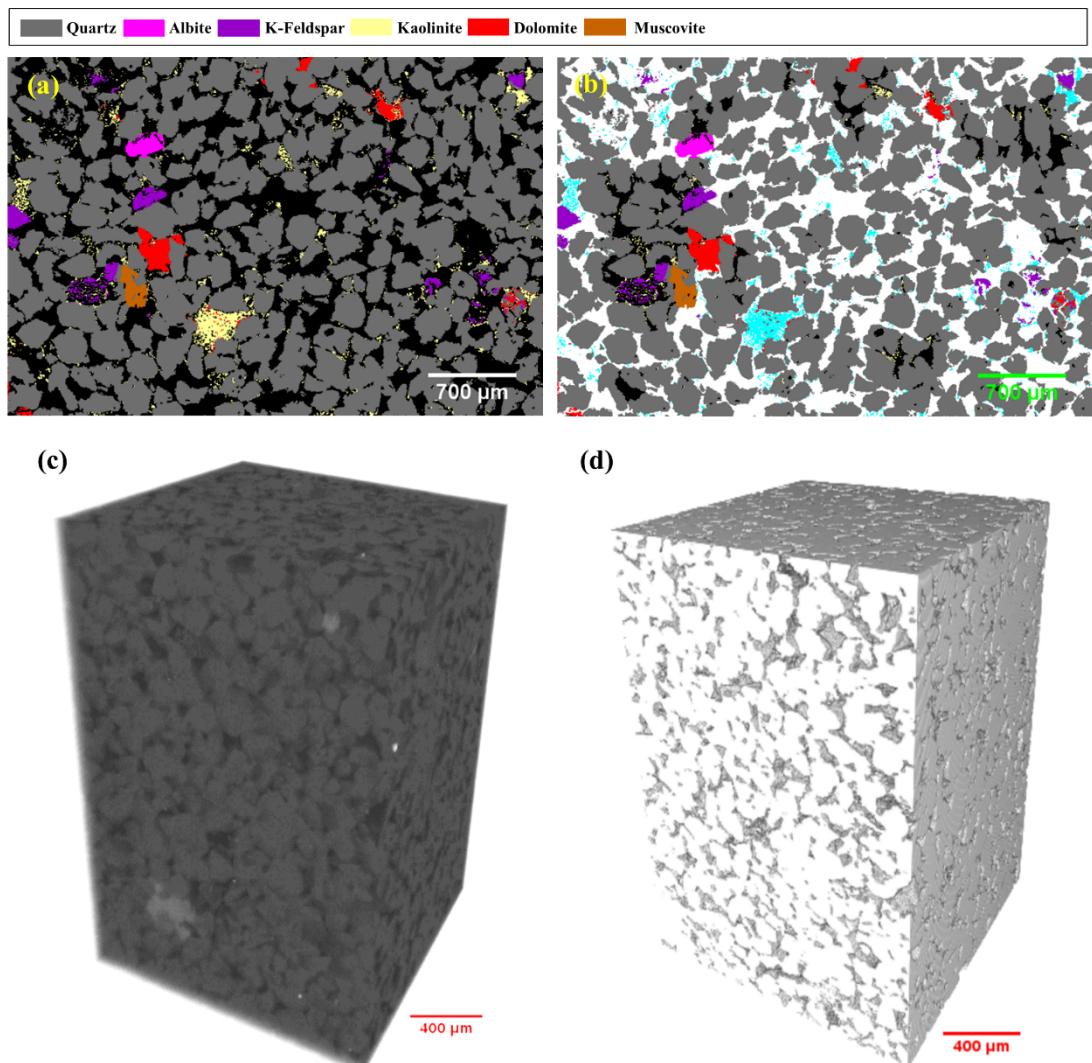
161 Here, 3D X-ray nano-CT images were taken of the six sandstone samples studied
162 in Salek et al. (2022)⁵³ using a ZEISS Xradia 620 Versa 3D X-ray Microscope at
163 Auburn University. The reconstructed 3D X-ray nano-CT images were used to
164 calculate the total connected surface area. This was accomplished by first manually
165 segmenting the images into grain and pore voxels using ImageJ, an open source
166 image processing software. Randomly sampled sub-cubes with the same total area
167 as the corresponding 2D mineral map used to quantify mineral accessibilities were
168 then sampled from the larger 3D image. The connected surface area of these cubes
169 was then identified and calculated using a marching cubes algorithm in MATLAB
170 with a mesh applied to the grain voxels. Ten of these sub-cubes were randomly
171 selected and analyzed to obtain average values of connected surface area for each
172 sample.

173 A correction factor (CF) is also needed when there is a large difference in the
174 resolution of the 2D SEM BSE and 3D X-ray nano-CT images.⁴⁷ The CF is introduced
175 to refine the connected surface area measured from the 3D X-ray nano-CT images

176 in order to account for the features present at scales below the voxel size of the
177 images. The CF was determined by first reducing the image resolution of the
178 mineral maps in ImageJ to be matched with the resolution of the 3D X-ray nano-
179 CT images, and then counting the number of connected interfacial pixels in the two
180 images. The correction factor is calculated as,

$$181 \text{ Correction factor (CF)} = \frac{P_{original}}{P_{reduced}}$$

182 where $P_{original}$ and $P_{reduced}$ refer to the total number of connected interfacial pixels
183 in the original high-resolution 2D mineral map images and the resolution-reduced
184 2D mineral map images, respectively.⁴⁷ The corrected total connected surface area
185 was then calculated by multiplying the connected surface area measured from 3D
186 X-ray nano-CT images by the corresponding sample-specific correction factor.


187 While for the Lower Tuscaloosa⁴⁷ and Paluxy⁴⁹ samples, the accessibility and ASA
188 data were collected from the associated papers, and the accessibility and connected
189 porosity for the Baltic Sea sample were produced here. Then the accessibility of the
190 minerals was multiplied by the total specific surface area determined by a method
191 other than the 3D microCT measurement used in this study. The details of their
192 total specific surface area calculation can be found in Ma et al. (2021).⁵⁰

193 **3. Results and Discussion**

194 **3.1 Image processing and mineral property quantification**

195 3D X-ray nano-CT images were produced and processed to identify the
196 connected pore-space and calculate the surface area for six sandstone samples.

197 Mineral ASAs for each of these samples were then computed using the computed
198 surface area in conjunction with mineral accessibilities obtained from Salek et al.
199 (2022).⁵³ For brevity, images and data for the Lower Tuscaloosa formation are
200 presented here and the rest of the 3D X-ray nano-CT images are presented in the
201 Supplementary Material. The resulting mineral ASAs for each sample are given in
202 Table 3 in addition to mineral volume fractions and accessibilities determined from
203 2D mineral maps (Salek et al. (2022)⁵³). It should be noted that this methodology is
204 only valid for non-clay minerals⁴⁷ and as such the ASA of clay minerals and minerals
205 with many small-scale features (e.g., muscovite) cannot be directly measured from
206 these images and therefore are not reported here.

207

208 **Figure 1.** a) Mineral phase segmented map of Lower Tuscaloosa sample; b)
 209 connected pore space map considering nanopore connectivity showing connected
 210 macro pores as white pixels and connected nanopores in cyan; c) reconstructed 3D
 211 X-ray nano-CT image with a voxel size of 4.53 μm ; d) thresholded 3D X-ray nano-
 212 CT image with pores depicted in black and grains in white; Subfigures a-b
 213 reproduced with permission from Ref. 53⁵³, Copyright 2022 ACS Publications.

214 Figure 1 shows the 2D processed mineral map for the Lower Tuscaloosa sandstone
 215 sample⁵³ where each color corresponds to a different mineral phase. The mineral

216 abundances and accessibilities, determined from pixel counting, are given in Table
217 3. This sample is comprised of over 92% quartz with 3.67% kaolinite clay. The
218 abundances of other mineral phases are all below 2%. The quantification of pore
219 pixels in the processed 2D image showed that the porosity for this sample is 33%,
220 whereas the connected porosity is 28.69% obtained from the quantification of
221 connected pores in the 2D connected pore space map (Figure 1b). This connectivity
222 accounts for macro-pore as well as nano-pore connectivity through clay minerals,
223 predominantly kaolinite in this sample.

224 In the context of this study, macro-pores refer to the larger pore spaces which are
225 observable with 2D SEM images and nano pores are nanometer scale pores that are
226 beyond the SEM image resolution of this work. Nano-pore connectivity refers the
227 connectivity in sub-resolution nano-scale pore spaces ⁴⁷. This nano-pore
228 connectivity is special because it may make a mineral grain accessible to reactive
229 fluid even if that phase is coated with clay, if the clay mineral has sufficient nano-
230 pore connectivity ^{45,47,57}. This nano-pore connectivity can be identified and
231 quantified via nanometer resolution Focused Ion Beam-Scanning Electron
232 Microscopy (FIB-SEM) images of that mineral ^{45,47}. This information can be
233 incorporated into the image analysis to account for nano-pore connectivity when
234 evaluating overall pore connectivity and mineral accessibility. Excluding nano-pore
235 connectivity can result in underestimating accessible surface area, which may
236 provide imprecise estimates of reactivity in reactive transport simulations. For
237 example, Salek et al. (2022) observed an increase in accessibility of K-feldspar as

238 high as 17 times when they considered nanopore connectivity compared to when it
239 was excluded ⁵⁷.

240 Mineral accessibilities consider mineral surfaces in contact with the identified
241 connected pores, where kaolinite has notably higher accessibility as compared to
242 abundance due to its presence as a grain coating. Mineral ASAs account for
243 connectivity in 3D as determined via analysis of the X-ray nano-CT images and are
244 given in Table 3. There is a difference of two orders of magnitude variation between
245 the calculated mineral ASAs for different mineral phases. The ASA of quartz is
246 calculated to be $2.96 \times 10^{-1} \text{ m}^2/\text{g}$, while the ASAs of K-feldspar, albite, and dolomite
247 are approximately two orders of magnitude smaller. In this case, the higher ASA
248 corresponds to the phase with the highest abundance and K-feldspar, albite, and
249 dolomite are all minor mineral phases with abundances < 2% and accessibility < 3%.

250

251 **Table 3.** Mineral properties, including mineral abundances, accessibilities, and ASAs
252 quantified from 2D SEM BSE images and 3D nano-CT images. The surface area of
253 clay minerals (kaolinite, smectite/illite, and chlorite) and muscovite cannot be
254 directly quantified from images. Accessibility accounts for nanoscale pore
255 connectivity through clay minerals.

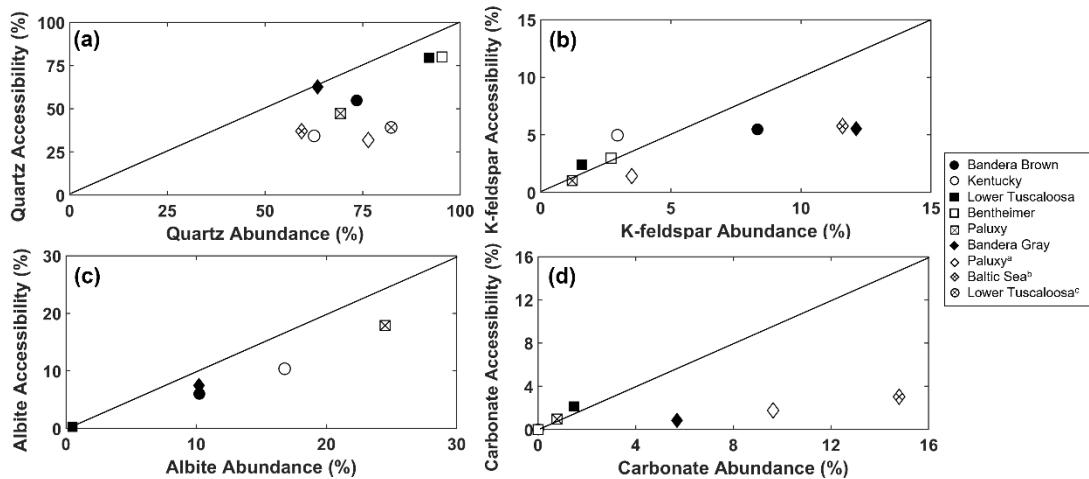
Formation	Mineral	Abundance (v%)	Accessibility (%)	Accessible surface area (m ² /g)

	Quartz	73.48	54.81	4.00×10^{-02}
	K-feldspar	8.33	5.48	4.00×10^{-03}
	Albite	10.24	6.02	4.93×10^{-03}
	Calcite	0.01	0.00	0.0
Bandera	Kaolinite	4.31	21.83	NA
Brown	Smectite/illite	1.17	6.35	NA
	Chlorite	0.48	3.45	NA
	Anatase	0.47	0.08	5.84×10^{-05}
	Magnetite	1.49	1.97	1.44×10^{-03}
Lower Tuscaloosa	Quartz	92.03	79.48	2.96×10^{-01}
	K-feldspar	1.58	2.40	8.95×10^{-03}
	Muscovite	0.53	0.18	NA
	Kaolinite	3.67	15.51	NA
	Dolomite	1.48	2.13	7.94×10^{-03}
	Albite	0.49	0.30	1.12×10^{-03}

Bentheimer	Quartz	95.32	80.05	1.49×10^{-2}
	K-feldspar	2.71	2.99	5.55×10^{-4}
	Kaolinite	1.64	16.71	NA
	Calcite	0.00	0.00	0.0
	Ilmenite	0.40	0.24	4.46×10^{-5}
Kentucky	Quartz	62.58	34.29	7.69×10^{-2}
	Albite	16.79	10.37	2.33×10^{-2}
	K-feldspar	2.95	4.97	1.11×10^{-2}
	Smectite/illite	11.73	31.25	NA
	Ilmenite	0.29	0.99	2.22×10^{-3}
	Magnetite	2.60	12.27	2.75×10^{-2}
	Anatase	0.17	0.71	1.59×10^{-3}
	Zircon	0.37	0.34	7.62×10^{-4}
	Muscovite	2.55	4.79	NA
	Paluxy	Quartz	69.31	47.24

	K-feldspar	1.21	1.05	1.53 x10 ⁻⁰³
	Calcite	0.78	0.96	1.40 x10 ⁻⁰⁴
	Kaolinite	2.26	28.12	NA
	Muscovite	0.60	0.95	NA
	Albite	24.50	17.86	2.60 x10 ⁻⁰²
	Siderite	0.29	0.35	5.10 x10 ⁻⁰⁴
	Anatase	0.81	0.24	3.49 x10 ⁻⁰⁴
	Smectite/illite	0.24	3.24	NA
Bandera Grey	Quartz	63.46	62.63	3.41 x10 ⁻⁰²
	K-feldspar	12.12	5.53	3.02 x10 ⁻⁰³
	Albite	10.22	7.45	4.06 x10 ⁻⁰³
	Calcite	5.69	0.84	4.58 x10 ⁻⁰⁴
	Smectite/illite	6.39	23.45	NA
	Muscovite	0.69	0.00	NA
	Biotite	1.14	0.00	0.0

	Anatase	0.29	0.09	4.91 x10 ⁻⁰⁵
Baltic Sea	Quartz	59.35	37.09	1.56 x10 ⁻⁰²
	K-feldspar	11.60	5.76	2.42 x10 ⁻⁰³
	Dolomite	14.79	3.03	1.27 x10 ⁻⁰³
	Kaolinite	8.13	47.85	NA
	Muscovite	5.74	5.88	NA
	Ilmenite	0.39	0.39	1.65 x10 ⁻⁰⁴


256

257 Comparison of data for the other sandstone samples shows that minerals with
 258 high abundance and accessibility do not necessarily have higher ASA. For example,
 259 the abundance and accessibility of K-feldspar in the Bandera Gray sandstone are
 260 12.12% and 5.53%, whereas the abundance and accessibility of K-feldspar in the
 261 Kentucky sandstone is 2.97% and 4.97%. However, the ASA of K-feldspar in the
 262 Kentucky sample is $1.11 \times 10^{-02} \text{ m}^2/\text{g}$, which is higher than the surface area of K-
 263 feldspar in the Bandera Gray sample ($3.02 \times 10^{-03} \text{ m}^2/\text{g}$). This indicates that abundance
 264 and accessibility alone are not a reliable means of predicting ASA. As such,
 265 correlations between measured properties are further explored.

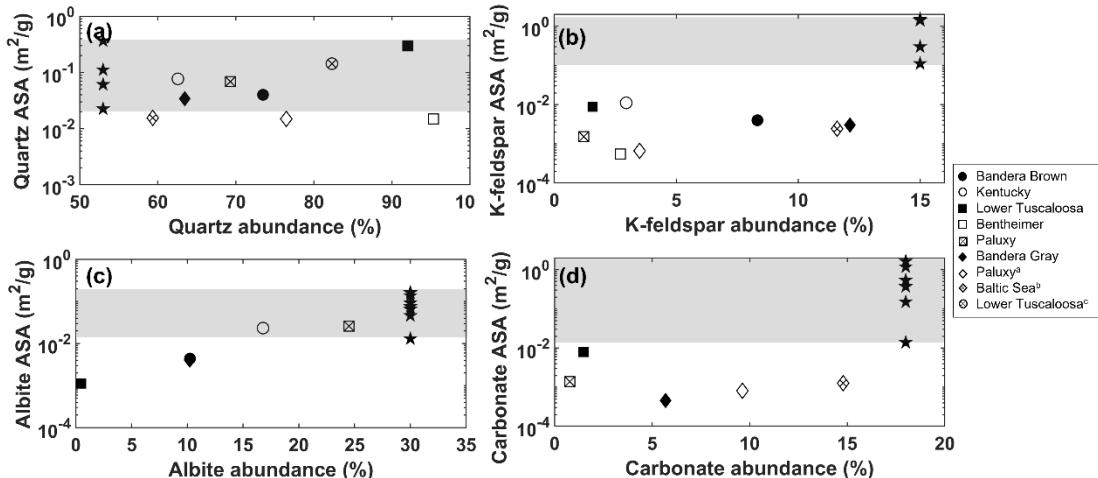
266 **3.2 Correlation of quantified mineral properties**

267 In this section, relationships among mineral abundance, accessibility, ASA, and
 268 total connected surface area are explored for all nine sandstone samples. Mineral
 269 accessibilities account for multi-scale (macro and nano) pore connectivity. To
 270 evaluate the potential impact of clay and carbonate content on mineral properties,
 271 samples were separated into three categories based on clay and carbonate content
 272 (Table 1). In addition, four minerals are considered here for analysis – quartz, K-
 273 feldspar, albite, and carbonate minerals which include calcite and/or dolomite.
 274 These phases are present in a majority of the samples considered. BET-specific
 275 surface areas from the literature are also considered to compare with ASA
 276 determined from images.

277 **3.2.1 Accessibility versus abundance**

278
 279 **Figure 2.** Relationship between mineral abundance and mineral accessibility for a)
 280 quartz, b) K-feldspar, c) albite, and d) carbonate minerals. The solid diagonal
 281 represents the equivalent line. Diamonds are data points of samples with high clay
 282 and high carbonate content, circles are samples with high clay and low carbonate

283 content, and squares are samples with low clay and low carbonate content. ^aPaluxy
284 sandstone sample in Qin and Beckingham (2019)⁴⁹; ^bBaltic Sea sample in Ma et al.
285 (2021)⁵⁰; ^cLower Tuscaloosa sandstone sample in Landrot et al. (2012).⁴⁷


286 Mineral accessibilities are plotted against abundances in Figure 2, with the solid
287 line indicating equivalency between accessibility and abundance. Any data point on
288 this solid line means that accessibility equals abundance. From Figure 2, quartz is
289 the most abundant phase and has the highest accessibility. However, most data
290 points fall under the equivalency line indicating quartz is relatively less accessible
291 than suggested by mineral abundance. This reflects the grain coatings that are
292 frequently observed on quartz surfaces. For the samples with lower clay and
293 carbonate content (squares in Figure 2a), the quartz accessibility is relatively
294 proportional to abundance. This makes sense as clay and carbonate minerals are
295 often present as grain coating and bridging phases which would reduce the
296 accessibility of the predominant phases.

297 The impact of clay and carbonate content on accessibility can be considered by
298 comparing samples with low to high clay and carbonate content, shown as different
299 symbols in Figure 2. The accessibility of quartz is quite varied for the range of sample
300 compositions considered and is largely reduced for some samples (Paluxy, ^cLower
301 Tuscaloosa and Kentucky) with higher clay and carbonate content (Figure 2a,
302 diamond, and circular shapes), indicating clay and carbonate content has a large
303 impact on the accessibility of quartz. This is anticipated due to the distribution of
304 clay and carbonate phases as grain coating and bridging phases.

305 The accessibility of feldspar minerals, K-feldspar, and albite, increases with
306 abundance. Compared to K-feldspar, the accessibility of albite is reflected relatively
307 well by abundance and is less impacted by the clay or carbonate content. For the
308 considered samples, K-feldspar is less accessible when the sample has higher clay
309 and higher carbonate content (Figure 2b, diamond shapes) as compared to low clay
310 and low carbonate (squares, Figure 2b). In comparison with quartz, the accessibility
311 of feldspar minerals has better overall agreement with the observed abundances.
312 While present in lower abundances, this may suggest that clay and carbonate
313 minerals preferentially occur on quartz surfaces over feldspars.

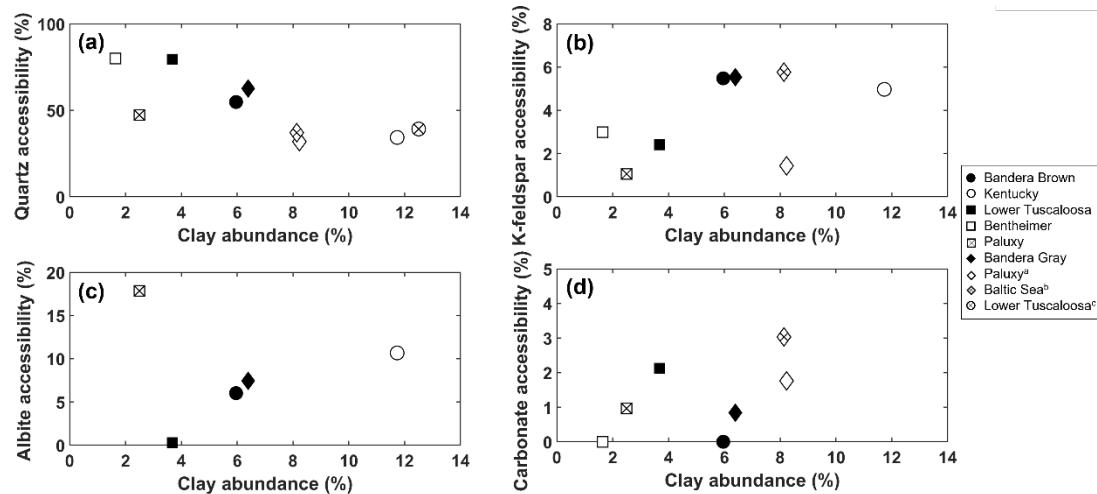
314 As for carbonate minerals, making inferences about the overall trend is limited as
315 only some samples contain carbonate minerals. However, the accessibility of
316 carbonate minerals was less than the abundance for samples with high amounts of
317 clay and carbonate (diamond shape, Figure 2d). This reflects the presence of
318 carbonate minerals as cements between grains with associated more limited surfaces
319 in contact with pores as evident in Figure 1, for example. For samples with lower
320 carbonate abundances, the accessibility agrees relatively well with abundance.

321 **3.2.2 Accessible surface area vs. abundance**

322

323 **Figure 3.** Relationship between mineral abundance and mineral ASA: a) quartz, b)
 324 K-feldspar, c) albite, and d) carbonate minerals. Diamonds are data points of samples
 325 with high clay and high carbonate content, circles are samples with high clay and
 326 low carbonate content, and squares are samples with low clay and low carbonate
 327 content. BET-specific surface areas reported in the literature are plotted with the
 328 star shape, and their range shaded grey (abundances for these values are
 329 meaningless). BET literature data: Quartz (Brady and Walther (1989)⁵⁸; Gautier et
 330 al. (2001)⁵⁹; Tester et al. (1994)⁶⁰), K-feldspar (Gautier et al. (1994)⁶¹; Lundstrom and
 331 Ohman (1990)⁶²; Blake and Walter (1996)⁶³; Bunsenberg and Clemency (1975)⁶⁴),
 332 Albite (Knauss and Wolery (1986)⁶⁵; Chou and Wollast (1984)⁶⁶; Wang et al.
 333 (2017)⁶⁷; Hellmann (1994)⁶⁸; Chen and Brantley (1997)⁶⁹), Carbonate (Cubillas et al.
 334 (2005)⁷⁰; Papadopoulos and Rowell (1988)⁷¹; Sjoberg (1976)⁷²; Subhas et al. (2015)⁷³)

335 Mineral ASAs are plotted against mineral abundance in Figure 3. Aside from the
 336 two Lower Tuscaloosa samples, the ASA of quartz decreases within an order of
 337 magnitude with increasing quartz abundance. This may reflect that samples with


338 higher quartz content have less surface roughness as the presence of clay minerals
339 results in increased roughness. Quartz ASAs agree relatively well with the range of
340 measured BET surface areas (stars and shaded range) for quartz. The observed higher
341 quartz ASA for the two Lower Tuscaloosa samples reflects that these are samples
342 whose pores are more well-connected compared to the other samples considered
343 here.

344 ASAs for K-feldspar (Figure 3b) are relatively consistent and one to more than
345 three orders of magnitude less than the BET surface area values obtained from the
346 literature. The lower ASA for K-feldspar minerals here reflects the low accessibility
347 of K-feldspar minerals in the considered samples (Table 3). The accessibility of K-
348 feldspar for all samples is <6%, even for samples with larger proportions of K-
349 feldspar (>10% abundance). As such, the resulting ASA is reduced as these phases
350 are not adjacent to the connected pore space. The BET surface areas do not reflect
351 mineral accessibility and are thus higher for K-feldspar samples. While K-feldspar
352 ASA is independent of K-feldspar abundance, the ASA of albite increases with
353 increasing abundance and interestingly better agrees with the range of BET surface
354 area measurements. This may be because of the better agreement between Albite
355 accessibility and abundance, discussed above.

356 The highest observed ASA of carbonate minerals occurs in samples low carbonate
357 content (<5%). For samples comprised of >5% carbonate minerals, the surface area
358 is relatively constant with carbonate abundance. There is a wide range of BET-
359 measured surface area values from the literature for carbonate minerals, all larger

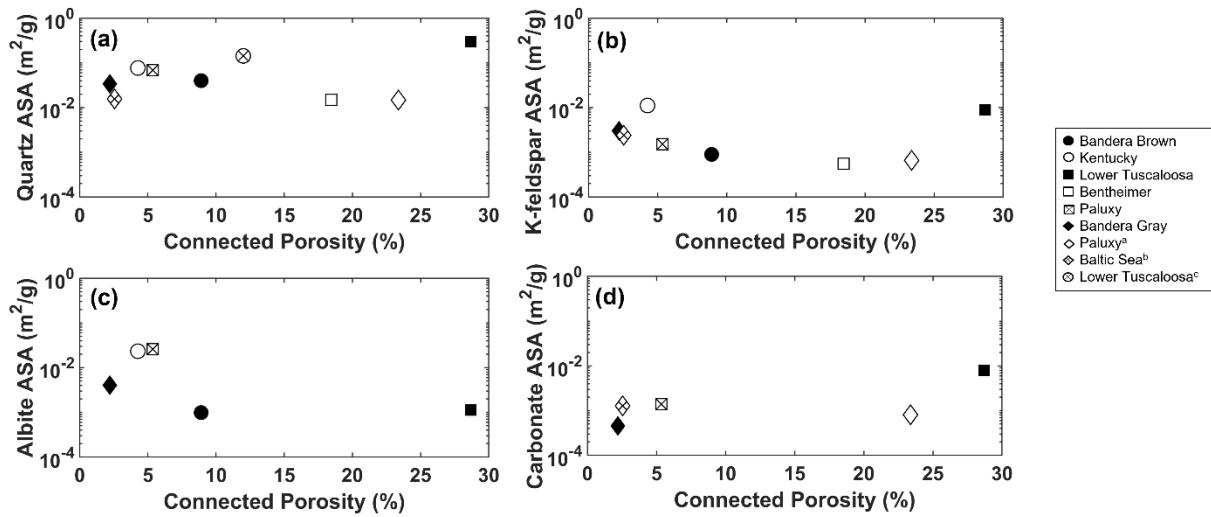
360 than the ASA values measured in this study. This discrepancy reflects the observed
361 relation between carbonate abundance and accessibility where for samples with
362 >5% carbonate minerals, the accessibility of carbonate minerals is low.

363 **3.2.3 Variation in accessibility with clay content**

364

365 **Figure 4.** Relationship between mineral accessibility and clay abundance for a)
366 quartz, b) K-feldspar, c) albite, and d) carbonate minerals. Samples with high clay
367 and high carbonate content are represented by diamond markers, samples with high
368 clay and low carbonate content are marked with circles, and samples with low clay
369 and low carbonate content are marked with squares. ^aPaluxy sandstone sample in
370 Qin and Beckingham (2019)⁴⁹; ^bBaltic Sea sample in Ma et al. (2021)⁵⁰; ^cLower
371 Tuscaloosa sandstone sample in Landrot et al. (2012).⁴⁷

372 Clay minerals are typically present as coating or bridging phases and can
373 potentially impact the overall pore connectivity and accessibility of mineral
374 surfaces.^{46,74} Mineral accessibility is plotted against clay abundance in Figure 4 to
375 evaluate the potential impact of clay abundance on mineral accessibilities. As shown

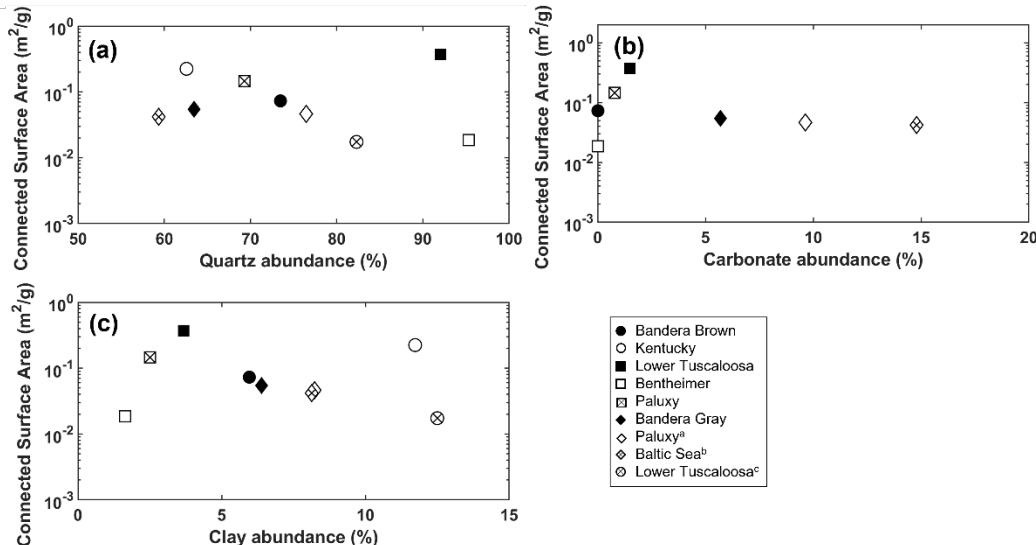

376 in the figure, the accessibility of quartz is most impacted by clay abundance,
 377 decreasing as the clay abundance increases. When the clay content is greater than
 378 8%, the accessibility of quartz is less than 50%. The accessibility of K-feldspar and
 379 albite overall increase with increasing clay content, except for the Paluxy sample
 380 from Kemper County, Mississippi (hollow diamond in Figure 4b). Carbonate
 381 accessibility increases with clay abundance for samples with low clay low carbonate
 382 content (squares in Figure 4d) but overall carbonate accessibility is low such that a
 383 predictive relationship is challenging to discern.

384 **3.2.4 Dependence of mineral ASA on porosity and connected porosity**

385
 386 **Figure 5.** Relationship between mineral ASA and porosity for a) quartz, b) K-
 387 feldspar, c) albite, and d) carbonate minerals. Exponential regression curve shown
 388 in dotted lines. Samples with high clay and high carbonate content are represented
 389 by diamond markers, samples with high clay and low carbonate content are marked
 390 with circles, and samples with low clay and low carbonate content are marked with
 391 squares. ^aPaluxy sandstone sample in Qin and Beckingham (2019)⁴⁹; ^bBaltic Sea

392 sample in Ma et al. (2021)⁵⁰; ^cLower Tuscaloosa sandstone sample in Landrot et al.
 393 (2012)⁴⁷.

394


395 **Figure 6.** Relationship between mineral ASA and connected porosity for a) quartz,
 396 b) K-feldspar, c) albite, and d) carbonate. Samples with high clay and high carbonate
 397 content are represented by diamond markers, samples with high clay and low
 398 carbonate content are marked with circles, and samples with low clay and low
 399 carbonate content are marked with squares. ^aPaluxy sandstone sample in Qin and
 400 Beckingham (2019)⁴⁹; ^bBaltic Sea sample in Ma et al. (2021)⁵⁰; ^cLower Tuscaloosa
 401 sandstone sample in Landrot et al. (2012)⁴⁷.

402 The relationship between sample porosity and connected porosity and mineral
 403 ASA is explored in Figures 5 and 6. The mineral ASAs of all phases decrease with
 404 increasing porosity, with exceptions for the Lower Tuscaloosa sample (filled square).
 405 Regression trendlines are fit to data in Figure 5 to explore whether an empirical
 406 relation can be made to relate ASA to porosity. ASA values for the Lower Tuscaloosa
 407 sample are excluded for Quartz and K-feldspar from the regression analysis.

408 Analyses show there is a strong relationship between ASA and porosity for K-
409 feldspar where the empirical equation fits the data well with an R^2 value of 0.69.
410 For quartz and albite, the predictivity of the equation is moderate with R^2 values
411 near 0.3. Carbonate mineral ASA, on the other hand, has low predictability based
412 on porosity from this empirical relationship where the R^2 value is only 0.08. Even
413 with moderate predictability, however, these relationships can improve estimates
414 of ASA where common empirical approaches to estimating mineral reactive surface
415 area result in several orders of magnitude variation in values and observed ASA
416 values here are within one order of magnitude from the trendline for the majority
417 of samples.

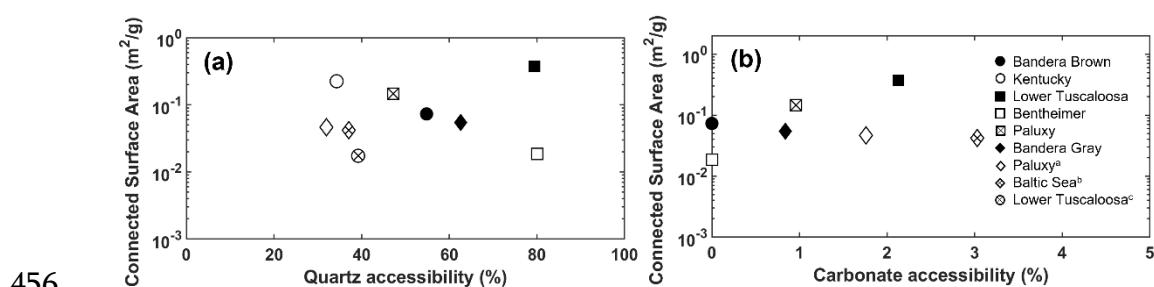
418 For connected porosity, quartz, K-feldspar, and albite show a similar decreasing
419 trend, whereas carbonate ASA remains relatively consistent even with increasing
420 connected porosity except for the Lower Tuscaloosa sample (filled square) (Figure
421 6). More porous sandstone samples may perhaps be more weathered and thus have
422 lower overall roughness than lower porosity samples. Similarly, more weathered
423 samples may have higher connected porosity.

424 **3.2.5 Dependence of connected surface area on composition**

425

426 **Figure 7.** Relationship between the total connected surface area determined from
 427 3D micro-CT images and mineral abundance of a) quartz, b) clays, and c) carbonates.

428 Samples with high clay and high carbonate content are represented by diamond
 429 markers, samples with high clay and low carbonate content are marked with circles,
 430 and samples with low clay and low carbonate content are marked with squares.


431 ^aPaluxy sandstone sample in Qin and Beckingham (2019)⁴⁹; ^bBaltic Sea sample in Ma
 432 et al. (2021)⁵⁰; ^cLower Tuscaloosa sandstone sample in Landrot et al. (2012)⁴⁷.

433 Variations in the total connected surface area for sandstone samples is plotted
 434 against quartz, carbonate, and clay abundance in Figure 7. In general, the connected
 435 surface area decreases as quartz abundance increases (except in Lower Tuscaloosa
 436 samples), likely because of the relatively smooth surface (decreased roughness) of
 437 quartz grains. Carbonate minerals are commonly present as a cementing phase,
 438 which could potentially decrease the overall pore connectivity. For samples with
 439 carbonate content >2%, the connected surface area is relatively constant as

440 carbonate mineral abundance increases. Increased surface area is expected with
441 increasing clay content as clay coatings increase the overall surface roughness. Some
442 of this roughness, however, may be beyond the image resolution and may not add
443 to the total surface area quantified here.

444 Interestingly, for the high clay and high carbonate samples (diamonds), the total
445 connected surface area remains constant with increasing quartz, carbonate, or clay
446 abundance. The total connected surface area for the low clay, low carbonate samples
447 (squares), on the other hand, increases with the increase of carbonate and clay
448 content. These observations suggest that increasing carbonate content reduces the
449 total pore connectivity and thus connected surface area while increasing clay
450 content increases surface roughness and thus connected surface area. For the low
451 clay, low carbonate samples, the relative proportion of clay content between
452 samples is larger than the difference in carbonate content which may reflect the
453 increase in ASA. Additionally, these samples only have a small fraction of carbonate
454 mineral phases (<5%) such that overall connectivity is not largely impacted.

455 **3.2.6 Dependence of connected surface area on mineral accessibility**

457 **Figure 8.** Relationship between the total connected surface area calculated from 3D
458 micro-CT images and mineral accessibility for a) quartz and b) carbonate minerals.

459 Samples with high clay and high carbonate content are represented by diamond
460 markers, samples with high clay and low carbonate content are marked with circles,
461 and samples with low clay and low carbonate content are marked with squares.^a
462 Paluxy sandstone sample in Qin and Beckingham (2019)⁴⁹; ^bBaltic Sea sample in Ma
463 et al. (2021)⁵⁰; ^cLower Tuscaloosa sandstone sample in Landrot et al. (2012)⁴⁷.

464 The total connected surface area is plotted against mineral accessibility in
465 Figure 8. Since quartz is the most abundant phase in all samples, it is studied in this
466 part. Compared to other mineral species, the surface of quartz is relatively smooth,
467 and samples with higher quartz accessibility are expected to have a lower surface
468 area (Figure 8a). For carbonate minerals, samples with lower carbonate and clay
469 content (Figure 8b, square) tend to have higher surface areas. This is likely because
470 carbonate minerals are usually present as cementing phases, which may decrease
471 the overall pore connectivity and thus the connected surface area. Again, for the
472 high clay and high carbonate samples (diamonds), the total connected surface area
473 remains constant with increasing quartz or carbonate accessibility. However, the
474 total connected surface area for the low carbonate low clay samples (squares)
475 increases with the increase of carbonate accessibility.

476 **5. Conclusions**

477 This study explores potential relationships between mineral accessibility, ASA,
478 and the overall mineral composition using data from nine sandstone samples of
479 varying compositions. ASAs were determined from a multi-scale imaging-based

480 approach and data of the four most common mineral phases found in sandstone
481 were compared here: quartz, feldspar, clay, and carbonate minerals.

482 Observations in this study suggest that the accessibility of quartz, K-feldspar, and
483 albite can be estimated based on knowledge of the overall mineral composition. The
484 accessibility of quartz can be approximated based on its abundance and the clay
485 content of the samples. When samples have no or low clay content, the accessibility
486 of quartz is expected to be proportional to its abundance, whereas with increasing
487 clay content, the accessibility decreases as clay minerals often occur as coatings on
488 quartz mineral surfaces (Figure 2). More specifically, when clay content is greater
489 than 8%, the accessibility of quartz is less than 50%. This could be utilized to
490 estimate mineral accessibility if the sample composition is known (e.g., XRD
491 analysis).

492 The accessibility of K-feldspar and albite increase with abundance. For samples
493 with larger proportions of albite, the accessibility can reasonably be approximated
494 as equal to the abundance. The accessibility of feldspar minerals did not have a
495 direct dependence on the abundance of clay minerals in contrast with quartz. This
496 suggests clay minerals may preferentially occur on quartz surfaces in comparison to
497 K-feldspar and albite.

498 In terms of carbonate minerals, predictive patterns were less clear. For samples
499 with low volume fractions of carbonate minerals, <5%, the abundance and
500 accessibility increased proportionally. For samples with >5% calcite abundance, the
501 accessibility of carbonate minerals was far less. This reflects the occurrence of

502 carbonate as grain cementing phases with limited surfaces in contact with reactive
503 fluids.

504 ASAs here are quantified by multiplying mineral accessibility by the measured
505 total connected surface area. As there was decent predictability for mineral
506 accessibility based on mineral abundances and clay content, this suggests that ASAs
507 may be obtained via reduced imaging efforts requiring only quantification of the
508 total connected surface area which can be obtained via 3D X-ray nano-CT imaging.

509 Required mineral abundances and clay content can more rapidly and easily be
510 determined from routine XRD analyses.

511 Mineral ASAs largely depend on the total connected surface area, measured here
512 from 3D X-ray nano-CT images. The total connected surface area generally
513 decreases with increasing quartz and carbonate content because of the
514 comparatively smooth surface of quartz and the reduction in pore connectivity due
515 to increased cementation from carbonate minerals. Increasing clay content is
516 anticipated to increase surface roughness but quantification of this roughness may
517 be limited by the resolution of the 3D X-ray nano-CT images.

518 Some additional correlations were also observed that can more easily facilitate
519 estimation of ASA for some mineral phases. No direct correlation could be drawn
520 between the ASA and the abundance of the quartz. However, albite ASA increases
521 with abundance. ASA values for minor mineral phases (<5% abundance) are
522 difficult to predict. However, K-feldspar and carbonate ASAs appear largely

523 independent of their abundance and relatively constant at $\sim 3 \times 10^{-3}$ m²/g and $\sim 10^{-3}$ m²/g, respectively, for samples with volume fractions $> 5\%$.

525 Mineral ASAs also showed some dependence on porosity and correlative
526 equations between ASAs and porosity were fit based on collected data. As porosity
527 is easily determined via routine core sample analysis, use of these equations would
528 greatly improve estimation of mineral surface areas. While the fit of these
529 relationships with the collected data was not perfect, and some outlier samples were
530 removed to improve fit, these relationships may still improve estimates of surface
531 area in comparison with current approaches that yield variations in surface area
532 estimates ranging several orders of magnitude.

533 **Acknowledgment**

534 This work is supported by the National Science Foundation under Grant No. EAR-
535 1847243. The purchase of the X-ray Computed Nano-tomography instrument used
536 to obtain results included in this publication was supported by the National Science
537 Foundation under the award CMMI MRI 1919818.

538 **Supporting Information**

539 Raw and Processed 3D Nano CT Images of the samples.

540 **Abbreviations and Terminologies**

541 SEM - Scanning Electron Microscopy

542 3D X-Ray nano-CT - Three-dimension X-Ray nano Computed Tomography

543 BET - Brunauer–Emmett–Teller

544 XRD - X-ray Diffraction

545 SSA (m²/g) - Specific Surface Area

546 ASA (m²/g) - Accessible Surface Area, the mineral surface area accessible to pore
547 fluids

548 CF - Correction factor, applied to account for the sub resolution features in 3D X-
549 ray nano-CT images

550 Mineral Accessibility (%) - Fraction of pore-grain interfacial pixels of each mineral
551 phase

552 Porosity (%) – The ratio of void space to the total volume

553 Connected Porosity (%) – The ratio of connected pore space to the total volume

554 Total Connected Surface Area (m²/g)- Total mineral surface area adjacent to
555 connected pores

556 References

557 (1) Cao, Y.; Song, H.; Algeo, T. J.; Chu, D.; Du, Y.; Tian, L.; Wang, Y.; Tong, J.
558 Intensified Chemical Weathering during the Permian-Triassic Transition
559 Recorded in Terrestrial and Marine Successions. *Palaeogeogr. Palaeoclimatol.*
560 *Palaeoecol.* **2019**, *519*, 166–177.

561 (2) Chen, X.-Y.; Teng, F.-Z.; Huang, K.-J.; Algeo, T. J. Intensified Chemical

562 Weathering during Early Triassic Revealed by Magnesium Isotopes.

563 *Geochim. Cosmochim. Acta* **2020**, *287*, 263–276.

564 (3) Mahdikhani, M.; Bamshad, O.; Shirvani, M. F. Mechanical Properties and

565 Durability of Concrete Specimens Containing Nano Silica in Sulfuric Acid

566 Rain Condition. *Constr. Build. Mater.* **2018**, *167*, 929–935.

567 (4) Yu, Z.; Wu, G.; Keys, L.; Li, F.; Yan, N.; Qu, D.; Liu, X. Seasonal Variation of

568 Chemical Weathering and Its Controlling Factors in Two Alpine Catchments,

569 Nam Co Basin, Central Tibetan Plateau. *J. Hydrol.* **2019**, *576*, 381–395.

570 (5) White, A. F.; Brantley, S. L. Chemical Weathering Rates of Silicate Minerals:

571 An Overview. *Chem. Weather. rates Silic. Miner.* **2018**, 1–22.

572 (6) Navarre-Sitchler, A.; Steefel, C. I.; Sak, P. B.; Brantley, S. L. A Reactive-

573 Transport Model for Weathering Rind Formation on Basalt. *Geochim.*

574 *Cosmochim. Acta* **2011**, *75* (23), 7644–7667.

575 (7) March, R.; Doster, F.; Geiger, S. Assessment of CO₂ Storage Potential in

576 Naturally Fractured Reservoirs with Dual-porosity Models. *Water Resour.*

577 *Res.* **2018**, *54* (3), 1650–1668.

578 (8) Cui, H.; Zhao, T.; Wu, R. An Investment Feasibility Analysis of CCS Retrofit

579 Based on a Two-Stage Compound Real Options Model. *Energies* **2018**, *11* (7),

580 1711.

581 (9) Snæbjörnsdóttir, S. Ó.; Oelkers, E. H.; Mesfin, K.; Aradóttir, E. S.; Dideriksen,

582 K.; Gunnarsson, I.; Gunnlaugsson, E.; Matter, J. M.; Stute, M.; Gislason, S. R.
583 The Chemistry and Saturation States of Subsurface Fluids during the in Situ
584 Mineralisation of CO₂ and H₂S at the CarbFix Site in SW-Iceland. *Int. J.*
585 *Greenh. Gas Control* **2017**, *58*, 87–102.

586 (10) Snæbjörnsdóttir, S. Ó.; Gislason, S. R.; Galeczka, I. M.; Oelkers, E. H. Reaction
587 Path Modelling of In-Situ Mineralisation of CO₂ at the CarbFix Site at
588 Hellisheiði, SW-Iceland. *Geochim. Cosmochim. Acta* **2018**, *220*, 348–366.

589 (11) Bensinger, J.; Beckingham, L. E. CO₂ Storage in the Paluxy Formation at the
590 Kemper County CO₂ Storage Complex: Pore Network Properties and
591 Simulated Reactive Permeability Evolution. *Int. J. Greenh. Gas Control* **2020**,
592 *93*, 102887.

593 (12) Qin, F.; Beckingham, L. E. The Impact of Mineral Reactive Surface Area
594 Variation on Simulated Mineral Reactions and Reaction Rates. *Appl.*
595 *Geochemistry* **2021**, *124*, 104852.

596 (13) Khurshid, I.; Afgan, I. Geochemical Investigation of CO₂ Injection in Oil and
597 Gas Reservoirs of Middle East to Estimate the Formation Damage and Related
598 Oil Recovery. *Energies* **2021**, *14*(22), 7676.

599 (14) Jia, H.; Sheng, J. J. Simulation Study of Huff-n-Puff Air Injection for
600 Enhanced Oil Recovery in Shale Oil Reservoirs. *Petroleum* **2018**, *4*(1), 7–14.

601 (15) Esene, C.; Rezaei, N.; Aborig, A.; Zendehboudi, S. Comprehensive Review of

602 Carbonated Water Injection for Enhanced Oil Recovery. *Fuel* **2019**, *237*,
603 1086–1107.

604 (16) Gbadamosi, A. O.; Junin, R.; Manan, M. A.; Agi, A.; Yusuff, A. S. An
605 Overview of Chemical Enhanced Oil Recovery: Recent Advances and
606 Prospects. *Int. Nano Lett.* **2019**, *9*(3), 171–202.

607 (17) Kabuth, A.; Dahmke, A.; Beyer, C.; Bilke, L.; Dethlefsen, F.; Dietrich, P.;
608 Duttmann, R.; Ebert, M.; Feeser, V.; Görke, U.-J. Energy Storage in the
609 Geological Subsurface: Dimensioning, Risk Analysis and Spatial Planning:
610 The ANGUS+ Project. *Environ. Earth Sci.* **2017**, *76*(1), 1–17.

611 (18) Fleming, M. R.; Adams, B. M.; Randolph, J. B.; Ogland-Hand, J. D.; Kuehn, T.
612 H.; Buscheck, T. A.; Bielicki, J. M.; Saar, M. O. High Efficiency and Large-
613 Scale Subsurface Energy Storage with CO₂. In *43rd Workshop on geothermal
614 reservoir engineering, Stanford, CA*; 2018.

615 (19) Illojesi, C. O.; Beckingham, L. E. Assessment of Geochemical Limitations to
616 Utilizing CO₂ as a Cushion Gas in Compressed Energy Storage Systems.
617 *Environ. Eng. Sci.* **2021**, *38*(3), 115–126.

618 (20) Koohi-Fayegh, S.; Rosen, M. A. A Review of Energy Storage Types,
619 Applications and Recent Developments. *J. Energy Storage* **2020**, *27*, 101047.

620 (21) Yang, F.; Bai, B.; Tang, D.; Shari, D.-N.; David, W. Characteristics of CO₂
621 Sequestration in Saline Aquifers. *Pet. Sci.* **2010**, *7*(1), 83–92.

622 (22) Steefel, C. I.; Molins, S.; Trebotich, D. Pore Scale Processes Associated with
623 Subsurface CO₂ Injection and Sequestration. *Geochemistry Geol. CO₂*
624 *Sequestration* **2013**, *77*, 259–303.

625 (23) Steefel, C. I.; DePaolo, D. J.; Lichtner, P. C. Reactive Transport Modeling: An
626 Essential Tool and a New Research Approach for the Earth Sciences. *Earth*
627 *Planet. Sci. Lett.* **2005**, *240*(3–4), 539–558.

628 (24) Steefel, C. *Reactive Transport Modeling: Applications in Subsurface Energy*
629 *and Environmental Problems*; John Wiley & Sons, 2018.

630 (25) Pallud, C.; Meile, C.; Laverman, A. M.; Abell, J.; Van Cappellen, P. The Use
631 of Flow-through Sediment Reactors in Biogeochemical Kinetics:
632 Methodology and Examples of Applications. *Mar. Chem.* **2007**, *106* (1–2),
633 256–271.

634 (26) Li, L.; Maher, K.; Navarre-Sitchler, A.; Druhan, J.; Meile, C.; Lawrence, C.;
635 Moore, J.; Perdrial, J.; Sullivan, P.; Thompson, A. Expanding the Role of
636 Reactive Transport Models in Critical Zone Processes. *Earth-science Rev.*
637 **2017**, *165*, 280–301.

638 (27) Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.;
639 Wörman, A. Hyporheic Flow and Transport Processes: Mechanisms, Models,
640 and Biogeochemical Implications. *Rev. Geophys.* **2014**, *52*(4), 603–679.

641 (28) Maher, K.; Navarre-Sitchler, A. Reactive Transport Processes That Drive

642 Chemical Weathering: From Making Space for Water to Dismantling
643 Continents. *Rev. Mineral. Geochemistry* **2019**, *85*(1), 349–380.

644 (29) Aagaard, P.; Helgeson, H. C. Thermodynamic and Kinetic Constraints on
645 Reaction Rates among Minerals and Aqueous Solutions; I, Theoretical
646 Considerations. *Am. J. Sci.* **1982**, *282*(3), 237–285.

647 (30) Lasaga, A. C.; Kirkpatrick, R. J. Kinetics of Geochemical Processes. 3 Vol. 8.
648 Reviews in Mineralogy. **1981**.

649 (31) Lasaga, A. C. Chemical Kinetics of Water-rock Interactions. *J. Geophys. Res.
650 solid earth* **1984**, *89*(B6), 4009–4025.

651 (32) Steefel, C. I.; Beckingham, L. E.; Landrot, G. Micro-Continuum Approaches
652 for Modeling Pore-Scale Geochemical Processes. *Rev. Mineral. Geochemistry*
653 **2015**, *80*(1), 217–246.

654 (33) Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular
655 Layers. *J. Am. Chem. Soc.* **1938**, *60*(2), 309–319.

656 (34) O'Connell, K.; Regalbuto, J. R. High Sensitivity Silicon Slit Detectors for 1
657 Nm Powder XRD Size Detection Limit. *Catal. Letters* **2015**, *145*(3), 777–783.

658 (35) Storvoll, V.; Bjørlykke, K.; Karlsen, D.; Saigal, G. Porosity Preservation in
659 Reservoir Sandstones Due to Grain-Coating Illite: A Study of the Jurassic
660 Garn Formation from the Kristin and Lavrans Fields, Offshore Mid-Norway.
661 *Mar. Pet. Geol.* **2002**, *19*(6), 767–781.

662 (36) Griffiths, J.; Worden, R. H.; Wooldridge, L. J.; Utley, J. E. P.; Duller, R. A.
663 Detrital Clay Coats, Clay Minerals, and Pyrite: A Modern Shallow-Core
664 Analogue for Ancient and Deeply Buried Estuarine Sandstones. *J. Sediment.*
665 *Res.* **2018**, *88*(10), 1205–1237.

666 (37) Tang, L.; Gluyas, J.; Jones, S. Porosity Preservation Due to Grain Coating
667 Illite/Smectite: Evidence from Buchan Formation (Upper Devonian) of the
668 Ardmore Field, UK North Sea. *Proc. Geol. Assoc.* **2018**, *129*(2), 202–214.

669 (38) Wooldridge, L. J.; Worden, R. H.; Griffiths, J.; Utley, J. E. P. How to Quantify
670 Clay-Coat Grain Coverage in Modern and Ancient Sediments. *J. Sediment.*
671 *Res.* **2019**, *89*(2), 135–146.

672 (39) Busch, B. Pilot Study on Provenance and Depositional Controls on Clay
673 Mineral Coatings in Active Fluvio-Eolian Systems, Western USA. *Sediment.*
674 *Geol.* **2020**, *406*, 105721.

675 (40) Black, J. R.; Carroll, S. A.; Haese, R. R. Rates of Mineral Dissolution under
676 CO₂ Storage Conditions. *Chem.* *Geol.* **2015**.
677 <https://doi.org/10.1016/j.chemgeo.2014.09.020>.

678 (41) Bourg, I. C.; Beckingham, L. E.; DePaolo, D. J. The Nanoscale Basis of CO₂
679 Trapping for Geologic Storage. *Environ. Sci. Technol.* **2015**, *49*(17), 10265–
680 10284.

681 (42) Lapham, D. P.; Lapham, J. L. Gas Adsorption on Commercial Magnesium

682 Stearate: Effects of Degassing Conditions on Nitrogen BET Surface Area and
683 Isotherm Characteristics. *Int. J. Pharm.* **2017**, *530* (1), 364–376.
684 <https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.08.003>.

685 (43) SONG, J.; WANG, L.; SONG, G. Research on Influence Factors on
686 Determination of Specific Surface Area of Carbon Material by N2
687 Adsorption Method. *J. Appl. Sci. Eng. Innov.* **Vol 2014**, *1*(1), 77–82.

688 (44) Tinni, A.; Sondergeld, C.; Rai, C. Particle Size Effect on Porosity and Specific
689 Surface Area Measurements of Shales. In *International Symposium of the*
690 *Society of Core Analysts, SCA2014-013, Avignon-France*; 2014.

691 (45) Beckingham, L. E.; Steefel, C. I.; Swift, A. M.; Voltolini, M.; Yang, L.; Anovitz,
692 L. M.; Sheets, J. M.; Cole, D. R.; Kneafsey, T. J.; Mitnick, E. H.; Zhang, S.;
693 Landrot, G.; Ajo-Franklin, J. B.; DePaolo, D. J.; Mito, S.; Xue, Z. Evaluation of
694 Accessible Mineral Surface Areas for Improved Prediction of Mineral
695 Reaction Rates in Porous Media. *Geochim. Cosmochim. Acta* **2017**.
696 <https://doi.org/10.1016/j.gca.2017.02.006>.

697 (46) Peters, C. A. Accessibilities of Reactive Minerals in Consolidated Sedimentary
698 Rock: An Imaging Study of Three Sandstones. *Chem. Geol.* **2009**, *265* (1–2),
699 198–208.

700 (47) Landrot, G.; Ajo-Franklin, J. B.; Yang, L.; Cabrini, S.; Steefel, C. I.
701 Measurement of Accessible Reactive Surface Area in a Sandstone, with
702 Application to CO₂ Mineralization. *Chem. Geol.* **2012**, *318–319*, 113–125.

703 https://doi.org/10.1016/j.chemgeo.2012.05.010.

704 (48) Beckingham, L. E.; Mitnick, E. H.; Steefel, C. I.; Zhang, S.; Voltolini, M.;
705 Swift, A. M.; Yang, L.; Cole, D. R.; Sheets, J. M.; Ajo-Franklin, J. B. Evaluation
706 of Mineral Reactive Surface Area Estimates for Prediction of Reactivity of a
707 Multi-Mineral Sediment. *Geochim. Cosmochim. Acta* **2016**, *188*, 310–329.

708 (49) Qin, F.; Beckingham, L. E. Impact of Image Resolution on Quantification of
709 Mineral Abundances and Accessible Surface Areas. *Chem. Geol.* **2019**, *523*,
710 31–41.

711 (50) Ma, J.; Ahkami, M.; Saar, M. O.; Kong, X.-Z. Quantification of Mineral
712 Accessible Surface Area and Flow-Dependent Fluid-Mineral Reactivity at the
713 Pore Scale. *Chem. Geol.* **2021**, *563*, 120042.

714 (51) Leask, E. K.; Ehlmann, B. L. Identifying and Quantifying Mineral Abundance
715 through VSWIR Microimaging Spectroscopy: A Comparison to XRD and
716 SEM. In *2016 8th Workshop on Hyperspectral Image and Signal Processing:*
717 *Evolution in Remote Sensing (WHISPERS)*; IEEE, 2016; pp 1–5.

718 (52) Xiong, Q.; Baychev, T. G.; Jivkov, A. P. Review of Pore Network Modelling
719 of Porous Media: Experimental Characterisations, Network Constructions
720 and Applications to Reactive Transport. *J. Contam. Hydrol.* **2016**, *192*, 101–
721 117.

722 (53) Salek, M. F.; Qin, F.; Asadi, P.; Illojesi, C.; Brunhoeber, O.; Mahmood, M.;

723 Beckingham, L. E. Impact of Pore Connectivity on Quantification of Mineral
724 Accessibility in Sandstone Samples. *ACS Earth Sp. Chem.* **2022**,
725 <https://doi.org/https://doi.org/10.1021/acsearthspacechem.2c00099>.

726 (54) Riestenberg, D. *Project ECO2S: Characterization of a World Class Carbon*
727 *Dioxide Storage Complex*; Southern States Energy Board, Peachtree Corners,
728 GA (United States), 2018.

729 (55) Bashir, M. J. K.; Isa, M. H.; Kutty, S. R. M.; Awang, Z. Bin; Aziz, H. A.;
730 Mohajeri, S.; Farooqi, I. H. Landfill Leachate Treatment by Electrochemical
731 Oxidation. *Waste Manag.* **2009**, *29* (9), 2534–2541.
732 <https://doi.org/10.1016/j.wasman.2009.05.004>.

733 (56) Areir, M.; Xu, Y.; Harrison, D.; Fyson, J. 3D Printing of Highly Flexible
734 Supercapacitor Designed for Wearable Energy Storage. *Mater. Sci. Eng. B*
735 *Solid-State Mater. Adv. Technol.* **2017**, *226* (June), 29–38.
736 <https://doi.org/10.1016/j.mseb.2017.09.004>.

737 (57) Salek, M. F.; Qin, F.; Asadi, P.; Illojesi, C.; Brunhoeber, O.; Mahmood, M.;
738 Beckingham, L. E. Impact of Pore Connectivity on Quantification of Mineral
739 Accessibility in Sandstone Samples. *ACS Earth Sp. Chem.* **2022**, *6* (7), 1858–
740 1867.

741 (58) Brady, P. V; Walther, J. V. Controls on Silicate Dissolution Rates in Neutral
742 and Basic PH Solutions at 25 C. *Geochim. Cosmochim. Acta* **1989**, *53* (11),
743 2823–2830.

744 (59) Gautier, J.-M.; Oelkers, E. H.; Schott, J. Are Quartz Dissolution Rates
745 Proportional to BET Surface Areas? *Geochim. Cosmochim. Acta* **2001**, *65* (7),
746 1059–1070.

747 (60) Tester, J. W.; Worley, W. G.; Robinson, B. A.; Grigsby, C. O.; Feerer, J. L.
748 Correlating Quartz Dissolution Kinetics in Pure Water from 25 to 625 C.
749 *Geochim. Cosmochim. Acta* **1994**, *58* (11), 2407–2420.

750 (61) Gautier, J.-M.; Oelkers, E. H.; Schott, J. Experimental Study of K-Feldspar
751 Dissolution Rates as a Function of Chemical Affinity at 150 C and PH 9.
752 *Geochim. Cosmochim. Acta* **1994**, *58* (21), 4549–4560.

753 (62) Lundström, U.; Öhman, L. Dissolution of Feldspars in the Presence of Natural,
754 Organic Solutes. *J. Soil Sci.* **1990**, *41* (3), 359–369.

755 (63) Blake, R. E.; Walter, L. M. Effects of Organic Acids on the Dissolution of
756 Orthoclase at 80 C and PH 6. *Chem. Geol.* **1996**, *132* (1–4), 91–102.

757 (64) Busenberg, E.; Clemency, C. V. The Dissolution Kinetics of Feldspars at 25 C
758 and 1 Atm CO₂ Partial Pressure. *Geochim. Cosmochim. Acta* **1976**, *40* (1),
759 41–49.

760 (65) Knauss, K. G.; Wolery, T. J. Dependence of Albite Dissolution Kinetics on PH
761 and Time at 25 C and 70 C. *Geochim. Cosmochim. Acta* **1986**, *50* (11), 2481–
762 2497.

763 (66) Chou, L.; Wollast, R. Study of the Weathering of Albite at Room Temperature

764 and Pressure with a Fluidized Bed Reactor. *Geochim. Cosmochim. Acta* **1984**,
765 **48**(11), 2205–2217.

766 (67) Wang, J.; Wang, Z.; Yang, L.; Yang, G.; Miao, C.; Lv, P. Natural Albite as a
767 Novel Solid Basic Catalyst for the Effective Synthesis of Biodiesel:
768 Characteristics and Performance. *Energy* **2017**, *141*, 1650–1660.

769 (68) Hellmann, R. The Albite-Water System: Part I. The Kinetics of Dissolution
770 as a Function of PH at 100, 200 and 300 C. *Geochim. Cosmochim. Acta* **1994**,
771 **58**(2), 595–611.

772 (69) Chen, Y.; Brantley, S. L. Temperature-and PH-Dependence of Albite
773 Dissolution Rate at Acid PH. *Chem. Geol.* **1997**, *135*(3–4), 275–290.

774 (70) Cubillas, P.; Köhler, S.; Prieto, M.; Chaïrat, C.; Oelkers, E. H. Experimental
775 Determination of the Dissolution Rates of Calcite, Aragonite, and Bivalves.
776 *Chem. Geol.* **2005**, *216*(1–2), 59–77.

777 (71) Papadopoulos, P.; Rowell, D. L. The Reactions of Cadmium with Calcium
778 Carbonate Surfaces. *J. Soil Sci.* **1988**, *39*(1), 23–36.

779 (72) Sjöberg, E. L. A Fundamental Equation for Calcite Dissolution Kinetics.
780 *Geochim. Cosmochim. Acta* **1976**, *40*(4), 441–447.

781 (73) Subhas, A. V; Rollins, N. E.; Berelson, W. M.; Dong, S.; Erez, J.; Adkins, J. F.
782 A Novel Determination of Calcite Dissolution Kinetics in Seawater. *Geochim.
783 Cosmochim. Acta* **2015**, *170*, 51–68.

784 (74) Lai, P.; Moulton, K.; Krevor, S. Pore-Scale Heterogeneity in the Mineral
785 Distribution and Reactive Surface Area of Porous Rocks. *Chem. Geol.* **2015**,
786 *411*, 260–273.

787