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Abstract— A smart home with a controller that can understand
and predict the interaction between the external environment and
the user’s behavior and preferences can provide significant energy
efficiency and savings. Unfortunately, experimentation of real world
homes for the development of such a controller is prohibitively
expensive. In this paper we describe techniques through which
such experiments can be performed on scaled testbed with an
accelerated time. We illustrate how the modeling of different
geographical areas can be performed by the mapping of the model’s
temperature and time to their real-world equivalents. We train
three different machine learning models for predicting different
sensor readings in the testbed, and find that the achieved predictive
accuracy supports the feasibility of the development of future smart
climate controllers.

Index Terms Internet of things, machine learning, smart home
modeling, temperature prediction.

I. INTRODUCTION

Many smart homes currently in development may come with
a variety of features: a remote security system, controlling
appliances and lights, and even playing music. However, one
less advertised component of smart homes is their potential
financial and environmental related benefits [1]. The cost of
heating and cooling one’s home can add up fast: in 2012 alone,
the average American household spent an average of nearly
$1000 on temperature regulation. Additionally, it has been found
that 39% of global energy-related carbon emissions are from
buildings with most of these emissions coming from heating,
cooling, and lighting costs [2].

Modern smart thermostats have shown potential for energy
and cost savings, with studies showing an energy savings rate
of up to 13% for heating and up to 25% for cooling [3].
However, modern smart homes and smart thermostats do not
take into account temperature fluctuations between rooms within
the home nor the state of the home when regulating internal
temperature. One of the biggest obstacles to improving the way
we cool and heat buildings and homes is the availability of
testbeds. The development of a real-size testbed is costly and
time consuming. It is also difficult to collect data which is
applicable to various climatic conditions without the deployment
of homes across a wide area, increasing the cost of research
significantly. The work described in this paper was performed
on ScaledHome, a testbed that allows us to perform accelerated
experiments with a scaled IoT enabled smart home. By utilizing

temperature and humidity scaling, we are able to replicate
a variety of environments. We are also able to control the
state of the house (windows and doors) in order to manipulate
temperature and air flow. Our testbed performs simulations at a
rate approximately 15 times faster than real time.

Our unique testbed gives us the ability to experiment with
a variety of smart thermostat implementations. We developed
a predictive learning model that is able to predict internal
temperatures before undesirable conditions are ever reached. We
envision the realization of an intelligent agent which is able to
control the state of the house in order to regulate temperature.
For example, a warm room can be cooled by opening its door
and receiving cooler air from other areas of the house without
the use of air conditioning. With predictive modeling, all of this
can be done before the room becomes warm in the first place.

The rest of this paper is organized as follows. We summarize
the related work in Section II. We explain the design of our
testbed in Section III and describe our simulation development
strategies in Section IV. We evaluate the performance of our
models in Section V and conclude in Section VI.

II. RELATED WORK

Several research projects used machine learning methods,
neural networks, and linear models to forecast a home’s internal
conditions.

Al-Obeidat et al. [4] used publicly available data from two
sensor-rigged homes to build internal temperature prediction
models that utilize ridge and lasso regression. Poto¢nik et al. [5]
developed machine learning models for the short-term predic-
tion of indoor temperatures. They found that nonlinear models
outperform linear models in fitting and generalization. Adding
features such as future outdoor temperature and expected solar
radiation improved the model’s accuracy.

Spencer et al. [6] used segmented linear regression to forecast
future temperatures using publicly available data consisting of
sensor readings indicating appliance usage, location of people,
and atmospheric and weather conditions. In another publication,
Spencer et al. [7] forecasted the internal temperature of a home
using a linear model and found that one to two hours of sensor
data was able to provide a stable accuracy of forecast horizons.

Barker et al. [8] explored the optimization of home energy
consumption by collecting and analyzing data in heavily instru-



mented real-size test-beds. While the deployment of IoT devices
was extensive, sensor data for doors and windows were not
recorded and used during the project.

Zamora-Martinez et al. [9] studied the performance of differ-
ence covariate combinations in the prediction of indoor temper-
atures. In another publication by Zamora-Martinez et al. [10],
on-line learning techniques was applied to explore the viability
of predictive systems deployed in an unknown environment.

Lee et al. [11] presented a virtual system that allows for the
simulation of real-world activity in a home by utilization of an
autonomous agent generator. Machine learning is applied to the
data generated from virtual sensors collecting user location and
internal temperature. Their work, which demonstrates a strong
relationship between in-home human behavior and air quality,
reveals that the most impacted feature by human activity is
temperature.

Marufuzzaman et al. [12] used decision tree-based machine
learning algorithms to predict the activities of an inhabitant
in a smart home with high accuracy. Magalhdes et al. [13]
developed a model that is able to capture the relationship
between heating energy use and indoor temperatures at different
levels of occupant behavior using artificial neural networks. Lin
et al. [14] used machine learning to quantify the correlation
between smart home features and chemical measurements of
air quality.

Cviti¢ et al. [15] used logic regression and supervised ma-
chine learning to develop a model able to classify IoT devices
based on traffic flow features.

Efficient temperature regulation has been explored in other
scale modeled systems as well. Nada et al. [16] studied the
effects of three air distribution systems on a scaled data center
to determine the efficiency of the model to simulate actual data
centers. Different isolation techniques led to the reduction of
temperatures within different areas of the data center. Okulska
et al. [17] explored the use of graph theory to find the optimal
path of airflow in a home to regulate temperature in an energy
efficient manner.

Our work extends previous research using earlier implementa-
tions of the ScaledHome testbed. The earliest publication on this
project by Ling et al. [18] explores the implementation of fully
connected and LSTM neural networks on publicly available
real-world data sets and on data collected in the ScaledHome-1
prototype. Burns et al. [19] describes the ScaledHome testbed
used in our experiments and further investigated the effective-
ness of LSTM models on temperature and humidity prediction
within the home. This study utilized changing the state of
climate-control appliances at regular intervals and the state of
windows and doors at random. Mendula et al. [20] implemented
a management system that allowed for the remote performance
of experiments on the Scaled-Home. Overall, we are expanding
on these previous iterations by using the testbed as a basis to
run our daily temperature simulations on. Furthermore, we are
testing the same model’s effectiveness in predicting temperature
in comparison to other machine learning algorithms.

Fig. 1. External view of the ScaledHome testbed

III. THE SCALEDHOME TESTBED

The ScaledHome testbed models the architecture of a small
American suburban home. It contains six rooms: two bedrooms,
one bathroom, a living room, a dining room, and a kitchen. The
model was built using plywood for the walls and floor, wooden
posts for supporting beams, and a cardboard and paper-based
sloped roof. We have found that typical homes in the US with
layouts comparable to our ScaledHome average between an area
of 800 - 1200 sq. ft. Our ScaledHome itself is 2ft x 3ft and
corresponds to a 26ft x 39ft house with an area of 1014 sq
ft. This means that our ScaledHome has a length and width
approximately 13 times shorter and an area 169 times smaller
than a real life home.

Fig. 2.

Internal view of the ScaledHome testbed

The testbed operates inside an environmental enclosure, with
infrared lamps and fans used to model weather patterns, as
well as internal heating and air conditioning. There are a total
of eight windows and seven doors in the ScaledHome, with



two doors leading to the front and back of the house. Each
room is separated by a door, except the dining room and
the kitchen, which are divided by a partially opened wall.
Each room, excluding the bathroom, contains two windows on
perpendicular walls. The dining and kitchen area also has a
total of two windows, with each room having a single window
on perpendicular walls.

Temperature and humidity in the rooms of the testbed were
measured using DHT-22 sensors. These sensors provide an
accuracy of 2% with a humidity range of 0 to 100%, and
an accuracy of #0.5°C with a temperature range of -40 to
80°C [21].

In the house, there are a total of eight sensors which collect
temperature and humidity data: one in each room, and two in
the living room due to its large size. Each sensor was placed in
the center of the room, excluding the living room in which each
sensor was placed on opposite sides of the room. Additionally,
we attached fifteen Raspberry Pi micro servo motors, eight to
the windows and seven to the doors, as actuators for opening
and closing them.

Two different Raspberry Pi 3’s were employed in our Scaled-
Home environment. The first Raspberry Pi collected all tem-
perature and humidity data from the DHT-22 sensors scattered
throughout the home. The second Raspberry Pi controls and
records the actuator states of all doors, windows, and appliances
in the ScaledHome Environment. Because a single Raspberry Pi
is not able to power all the motors and appliances, we used a
Pi HAT module to add an external power source that allowed
the control of all fifteen motors with a single Raspberry Pi.

IV. EXPERIMENTAL SETUP
A. Choosing Locations

One of the benefits to using a testbed with an artificial weather
enclosure is that it allows us to model the home as if situated in
a variety of geographical areas. For modeling, we chose five
locations from the United States with different climates: (1)
Denver, Colorado (2) Detroid, Michigan (3) Las Vegas, Nevada,
(4) Jacksonville, Florida and (5) Charlotte, North Carolina (see
Figure 3). For each location, modeled a representative day for
the specific climate.

In order to simulate different climates in our ScaledHome,
we first had to determine what our limitations were in regards
to temperature. To do this we ran each of our appliances
individually to find its maximum and minimum stabilization
points as well as how long it takes to reach those points. We
mapped the range of temperatures feasible in the ScaledHome
to the range of temperatures possible on the specific geographic
location with a location specific scaling formula:

T, — T
TSH _ target min TSM _ TSH TSH 1
Tmax o Tmin ( max min ) + min ( )
To maintain the realism of the house, we devised three
different kinds of simulations, each modeling the movements
of one, two, and three people, respectively, throughout the
course of a 15 hour day. There are three kinds of commands in
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Fig. 3. Climate map with chosen locations marked [22] .

TABLE I
CHARLOTTE, NC SCALED TEMPERATURES AND HUMIDITIES

Time of Day  Target Scaled Target Scaled
Temp (in C)  Temp (in C)  Humidity Humidity
7:00 AM 11.7° 22.7° 48% 47.1%
8:30 AM 14.4° 23.6° 44% 46.3%
6:00 PM 23.9° 26.7° 37% 44.7%
10:00 PM 18.3° 24.9° 52% 48.0%

the simulation files: toggling appliances, toggling motors, and
setting a wait time. The wait time tells the actuator controller
how long the house should remain in its current state after
the commands are run. These simulations have slight variations
based on the city’s climate. For example, people who live in a
moderate climate are more likely to have their windows open
during the day; this is reflected in our simulations.

Each simulation is broken up into three phases: a morning
phase of 1 hour and 30 minutes of real time, a midday phase
of 9 hours and 30 minutes of real time, and an evening phase
of 4 hours of real time. All the simulations have four or five
key times depending on when the temperature peaks in a given
city. The first two key times are at 7:00 AM and 8:30 AM
which mark the start and end of the morning phase. The next
key time is the hottest time of the day. Most of the cities have
their peak during the midday phase however, Charlotte’s peak
time coincides with the start of the evening phase. So, Charlotte
only has four key times, while the other cities have five. The
final two key times are the start and end of the evening phase
at 6:00 PM and 10:00 PM. The temperature scaling described
above was used to scale the temperatures at these key times for
each city. Table I shows the temperature mapping for Charlotte
at key times of the day.

Using the mapped temperatures and the appliance stabiliza-
tion data we collected, we were able to determine how long
each phase took for each city. We did this by looking at how
long it took the lamp to heat or cool from the temperature at the
start of a phase to the end of a phase. Once we had the times
each phase took in each city, we were able to change the times
of the actions in the simulation files to fit accordingly.
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Fig. 4. Cyclic representation of time used as an input variable.

Altogether, we have 15 baseline simulations ranging between
30 to 40 minutes long. Some simulations were repeated to ensure
that target temperatures were reached, so we have data from 20
simulation runs in total. This gives us roughly 5,500 data points
to train and test our machine learning algorithms on.

B. Time as an Input

Because sensor data and actuator state data are collected
separately, we must first combine the two according to their
time stamps before we can analyze them. This presented an
issue for us when it came time to put our data in our chosen
machine learning algorithms. In addition, we ran simulations
over the course of many days and hours, so the timestamps
on our data is not consistent from simulation to simulation.
However, all the simulations represent the same 15 hour day.
In order to make time a consistent and valuable input for the
machine learning algorithms, we converted time to a cyclic
variable represented by the sine and cosine functions. We did
this by first converting the real time data we collected to seconds
starting from zero and going to the end of the simulation. After
scaling the seconds between zero and one, we converted each
time into a sine and cosine variable. The combination of the sine
and cosine value maps to a specific time in a 24-hour period.
Because our simulations model a day that starts at 7:00 A.M.,
the starting sine value is 1.00 and the starting cosine value is
-0.25. The time mapping can be seen in Figure 4. We theorized
that including this cyclic time variable would drastically improve
the algorithms’ performances since daily temperature patterns
are also cyclic in nature.

C. Prediction Algorithms

To generate predictions from our data we decided to compare
the performance of three algorithms: long short-term memory
(LSTM), k-nearest neighbors (KNN) and random forest. In
previous iterations of this project, Mendula et al. [20], Burns et

TABLE I
LSTM HYPERPARAMETERS

Hyperparameter Value
number of features 36
batch size 64
time steps 10
shift steps 15
learning rate 0.01
time steps 10
epochs 50
size of dense layer 16

optimizer Adam

al. [19] and Ling et al. [18], LSTM was found to be an effective
algorithm for generating predictions. Mendula et al. [20] also
found KNN to work well particularly for large datasets like the
one we have been able to collect. Random forest was chosen
because it is a popular machine learning algorithm that is known
to work well on larger datasets. For our initial analysis of our
data we used a basic LSTM setup with the hyperparameters seen
in Table II. For KNN and Random Forest we used grid search
to find the best parameters for our data set before training our
models. We found that using five neighbors and distance as the
weight function worked best for KNN and using 150 estimators
with a maximum depth of five and using mean squared error
to determine the quality of the split worked best for Random
Forest.

All three algorithms are predicting 15 data points in the future.
This is one to two minutes in the future in our simulations which
corresponds to approximately an hour in real time. This range
would give an intelligent agent operating a house based on these
predictions ample time to take temperature regulation measures.

We set aside 15 of our 20 simulations to be used as
training data. This contained approximately 4,000 data points.
The remaining five simulations were reserved for testing our
algorithms. This set contained approximately 1,500 data points,
giving us roughly a 70% - 30% split in our training and testing
sets. In addition, we trained and tested each algorithm twice,
once including a cyclic sinusoidal time variable as an input and
once without. The code for our experimentation and data anal-
ysis, along with the simulation files, can be found at https:
//github.com/nia-00/UCF_REU_SmartHome_2021.

V. PERFORMANCE EVALUATION

In this section, we present the results of our experiments on
the prediction of the internal and external temperatures of the
ScaledHome. We compared the performance of three machine
learning models using the metrics of root mean squared error
(RMSE), mean absolute error (MAE) and the R? score. The
root mean squared error denotes the standard deviation of the
predictions. The mean absolute error shows, on average, how
big of an error we can expect in our predictions. Finally, the
R? score indicates how closely fit the predictions are to the
regression line. The results are shown in Table III.
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Fig. 5. The prediction accuracy for temperature (left) and humidity (right) using (top) LSTM, (middle) Random Forest and (bottom) K-nearest neighbor based

prediction

A. Algorithm Accuracy

In Figure 5 we present the prediction accuracy for all three
algorithms. The red line on the graphs represent completely
accurate predictions. The closer the points on the graph are
to the red line, the more accurate the prediction is. Each

color represents a different sensor of the ScaledHome. We are
predicting 15 time steps in the future, which is approximately
3 minutes in simulated time or one hour in real time. Though
we only focused on matching the simulation temperatures to
their scaled real-world equivalent in our experimentation, the



TABLE III
ALGORITHM PERFORMANCE EVALUATION

Performance Metric  LSTM  KNN  Random Forest
RMSE 0.64 1.01 0.75
MAE 0.44 0.73 0.54
RZ Score 0.89 0.69 0.84

sensors in the ScaledHome environment collect temperature
and humidity data simultaneously. Therefore we used both
temperature and humidity readings in our datasets.

Table III and Figure 5 show that all models were able to gen-
erate accurate predictions. This shows that, with some tweaking,
all three algorithms are suitable for further development to an
intelligent, temperature regulating agent. That being said, LSTM
was the best performing algorithm of the three.

Out of all the sensors, the outside sensor had the most
variation and random spikes away from the regression line in
each of the six models. This is likely because it was the only
external sensor. Due to being directly under the lamp, it had
different temperature patterns to the internal sensors that were
protected by the roof of the house.

VI. CONCLUSION

In this paper we used the ScaledHome platform to develop
predictive models of temperatures in smart homes. Using tem-
perature mapping and time-accelerated experiments, we had
shown that machine learning models can achieve good accuracy
for such a prediction under a variety of climate conditions and
user behavior. We found that using a deep recurrent neural
network (LSTM) outperforms approaches such as K-nearest
neighbor and Random Forest. Future work will broaden the
range of modeled climate conditions and add humidity to the
predicted values.
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