2022 IEEE 40th International Conference on Computer Design (ICCD) | 978-1-6654-6186-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICCD56317.2022.00023

2022 IEEE 40th International Conference on Computer Design (ICCD)

DNNCloak: Secure DNN Models Against Memory
Side-channel Based Reverse Engineering Attacks

Yuezhi Che
yche3 @hawk.iit.edu
Hllinois Institute of Technology
Chicago, USA

Abstract—As deep neural networks (DNN) expand their atten-
tion into various domains and the high cost of training a model,
the structure of a DNN model has become a valuable intellectual
property and needs to be protected. However, reversing DNN
models by exploiting side-channel leakage has been demonstrated
in various ways. Even if the model is encrypted and the processing
hardware units are trusted, the attacker can still extract the
model’s structure and critical parameters through side channels,
potentially posing significant commercial risks. In this paper, we
begin by analyzing representative memory side-channel attacks
on DNN models and identifying the primary causes of leakage.
We also find that the full encryption used to protect model param-
eters could add extensive overhead. Based on our observations,
we propose DNNCloak, a lightweight and secure framework
aiming at mitigating reverse engineering attacks on common
DNN architectures. DNNCloak includes a set of obfuscation
schemes that increase the difficulty of reverse-engineering the
DNN structure. Additionally, DNNCloak reduces the overhead
of full weights encryption with an efficient matrix permutation
scheme, resulting in reduced memory access time and enhanced
security against retraining attacks on the model parameters. At
last, we show how DNNCloak can defend DNN models from side-
channel attacks effectively, with minimal performance overhead.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have become
increasingly popular as a result of their superior accuracy
in a wide range of machine learning applications, including
automatic speech recognition [30], image recognition[27], and
Al for games [26]. On the other hand, training a successful
model is expensive since it requires a huge amount of labeled
data and hardware resources. For example, the collection of
over 1.4 million hand-annotated images and 20 thousand cat-
egories in ImageNet [25] requires considerable effort in terms
of manpower and material resources. Therefore, the knowledge
of a well-trained DNN model is intellectual property (IP) and
should be kept confidential. Moreover, knowing of the DNN
model, such as its structure or parameters, can increase the
success rate of adversarial attacks [15, 20], which becomes
one of the major security concerns associated with the use
of DNNs [9]. The model parameters, including the weights
and intermediate results, can be hidden by using the existing
encryption, like direct encryption and counter mode encryp-
tion. Although encryption causes performance degradation, it
is necessary for security. However, the increasing commercial
value of DNN comes with more potential risks of attacks.
Previous works show that a knowledgeable attacker is able

Rujia Wang
rwang67 @iit.edu
Lllinois Institute of Technology
Chicago, USA

to conduct an attack to extract the hidden information of the
model even if the data is encrypted through side-channels,
such as access patterns [9, 10], the timing difference in the
cache hierarchy [8, 17, 31]. Among all these side-channel
attacks, from the architectural perspective, it is relatively easy
to observe and attack through the memory access patterns
[9, 10], including the access type, address, frequency, and
memory footprint. The attacker only needs to probe the
external memory bus and record the signals on the command
and address buses [12], which cannot be protected by using
data content encryption. Therefore, in this work, we focus on
defending the reverse engineering attacks by memory access
pattern side-channel.

The memory accesses during DNN inference exhibit very
strong deterministic patterns, which can reveal the structure
of the DNN model. Once the structure of the DNN model
is known, the attacker can then conduct other attacks, such
as the model extraction [29] and the membership inference
attack [18], for further model stealing. During DNN inference,
the working layer always reads the preceding layer’s output
as its input feature maps. If the feature maps and weights
are stored in off-chip memory, the memory access patterns
can easily expose the layer boundary between two consecutive
layers by detecting read-after-write (RAW) dependency [10].
Additionally, the memory footprint exposes the dimension of
each layer directly, enabling for the leakage of the overall
DNN structure through the access pattern side-channel.

While access pattern leakage poses a significant threat to
DNN model IP, there is a lack of lightweight and effective
defense mechanisms. The general method to defend memory
access pattern leakage is Oblivious RAM (ORAM) [7], which
is a provable secure cryptographic protocol. ORAM turns
memory accesses into indistinguishable access sequences by
address remapping and adding redundant dummy accesses.
However, the state-of-the-art ORAM protocols and optimiza-
tions [2, 3, 24, 28] still show a very high protection overhead
for most applications. Except for ORAMs, recent studies pro-
pose shuffle-based [16] and software-based [13] obfuscation
schemes to protect DNN model from access pattern leakage.
However, the naive shuffle-based obfuscation[16] is not able to
hide the accesses with Read-After-Write (RAW) dependency;
the software-based scheme[13] generates a new model with the
same model accuracy as the original, but the newly generated

2576-6996/22/$31.00 ©2022 IEEE 89
DOI 10.1109/ICCD56317.2022.00023

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

model is still exposed and becomes a new target for attacks.

In the paper, we propose DNNCloak, a lightweight and
secure DNN framework against memory side-channel attacks,
which protects both DNN model structure and parameters.
DNNCloak is the first architecture-level obfuscation design to
protect DNN against side-channel attacks. This work makes
the following contributions:

« We observe that most existing side-channel attacks on
DNN only make use of partial access patterns. Not all
access patterns are necessary to be hidden; we only need
to protect the access patterns that leak critical hints about
the DNN model structure. Based on our observations, we
summarize four critical leakage hints that are actually
used in reverse engineering.

o Our proposed DNNCloak provides three schemes, Layer
Divider, Layer Shrinker, and Layer Obfuscator, to hide
the critical leakage hints, so protecting the model struc-
ture efficiently.

e Our proposed DNNCloak provides a novel structure
called Random Permutation Matrix to protect the model
parameters. We demonstrate that this method is secure
and more efficient compared to the full encryption or
existing partial encryption scheme.

o Our results show that DNNCloak may take down memory
cycles to 86% of the unprotected baseline model, while
achieving high security protection.

II. BACKGROUND
A. DNN Basics

1) DNN Architectures: A typical DNN architecture is
shown in Figure 1(a). There are several types of hidden layers
between the input and output layers: convolutional layers,
pooling layers and fully connected layers. A convolutional
layer applies a convolutional operation to the input feature
maps (IFMs) and passes the output feature maps (OFMs) to
the next layer. During every convolution, a filter with weights
slides over the IFMs and transforms the input matrix into a
new matrix with extracted convoluted features. A pooling layer
is applied over feature map to reduce the spatial size of the
representation, thus reducing the number of parameters and
computation in the network. A fully connected layer connects
all the inputs from the previous layer to every activation unit
of the next layer, which is widely used as the last few layers
of a DNN.

2) DNN Accelerators: Since the operations in DNN, such
as the convolution operation, can be naturally calculated in
parallel, the DNN accelerator can exploit parallelism by utiliz-
ing direct connections between an array of processing engines
(PEs). As shown in figure 1 (b), a typical DNN accelerator pri-
marily consists of an array of PEs and a global buffer. During
the DNN inference, the IFMs and filters are partitioned into
small tiles and then processed by the accelerator. The global
buffer holds the intermediate results within the same layer.
After the computing, the accelerator combines the results and
writes the OFMs to the external memory [4, 10]. Therefore, in
the DNN accelerator, the feature maps and weights are stored

90

Hidden layer
Input layer =
-

| cpu | Extemal DRAM |

. Output layer
5

PE Array]
/O FIFOs
- %
g
IFMs " DNN Accelerator
Filters
OFMs

(a) DNN architecture (b) DNN accelerator

Fig. 1: DNN architecture and a typical DNN accelerator.

in the external memory, while the intermediate results of small
tiles in the same layer are kept in the on-chip global buffer.
The memory traffic could expose the complete access pattern
between layers in this situation, so the attack steps will be
discussed in the next section.

B. Reverse DNN via Memory Access Patterns

In this section, we introduce ReverseCNN [10], a general
memory access pattern side-channel attack framework.

1) Threat Model: When using the DNN accelerator, the
DNN computations are offloaded from the host CPU to the
DNN accelerator. As discussed in Section II-A2, the on-chip
memory size of the accelerator is limited, so the majority of
data, including the IFMs, weights, and OFMs, are transmitted
on the external memory bus between the DNN accelerator
and memory [10]. In such a use case, we assume that all the
computation units, including the accelerator and the host CPU,
are trusted. Also, the communication between the host CPU
and the accelerator is secured with encryption, so the data
content is not exposed to the attacker. However, the memory
access pattern to the external memory, including the read
and write type, intensities, and frequencies, can be observed.
During the DNN inference, the accelerator first accesses the
off-chip memory for weights and IFMs. After each matrix
computation, it writes the OFMs back to the memory. As
a result, the attacker can directly obtain the memory access
patterns by snooping the address bus.

2) Attack Steps: To reconstruct the structure of the DNN
model through access patterns, the attacker must get the layer
sequence and dimensions. We summarized the attack steps in
ReverseCNN[10], which is followed by other similar attacks
[9]. The first step to Identify the number of layers. The memory
access patterns may expose the layer boundaries through read-
after-write (RAW) dependency. We show an example of mem-
ory access patterns during DNN inference in Figure 2, similar
to the ones identified in [10], the RAW dependency of feature
map accesses can clearly expose the layer boundaries. At the
end of each convolutional layer, the output of a preceding layer
will be read as the input by the following layer. The second
step is to identify the dimension of each layer. The attacker
can easily infer the dimensions of the feature maps and filters
according to their accessed memory footprint within the same
layer. First, the filter is read-only and the access patterns of
the feature maps have the RAW dependency. Second, the same
type of data is stored in a continuous memory space, so the
attacker can easily distinguish the feature maps and filters

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

le6

== Feature map Read E
== Feature map Write
== Filter Read

B

Layer boundary 2

7.095 4

7.090
Layer boundary 1

7.085 1

Address space

7.080 4

7.0754

i
10000 15000 20000 25000 30000 35000
Example trace index

0 5000

Fig. 2: The exposed memory access pattern trace during DNN
inference.

and obtain their dimension in each layer. In last step, the
attacker could reverse the weights by exploring the vulner-
ability introduced by zero pruning techniques. Zero pruning
has been recently implemented in multiple DNN accelerators
[21] due to its efficiency. The zero pruning only reads and
writes non-zero values in the weight matrices, so the attackers
can effectively know the value of pixel in OFM becomes
zero (0 = f(3, wsx; + b)). The attackers can then get a
linear equations for w; and b with known z;, so weights can
be expressed as a function of the bias. In ReverseCNN[10],
attackers may fully recover weights by carefully modifying
the non-zero value in the input.

C. DNN Weights Encryption

Memory encryption, such as direct encryption and counter
mode encryption, is used to protect the confidentiality of DNN
weights stored off-chip. The direct encryption uses the AES
encryption engine and applies the same global key to all data,
and has high decryption latency; while the counter model
encryption [11] uses a counter-based AES encryption engine
to generate a one-time pad (OTP), encryption and decryption
are accomplished by simply XORing the OTP with the target
data. OTPs are never reused, so counter mode encryption
provides a higher security level than direct encryption. We use
counter model encryption as memory encryption. However,
full memory encryption still reduce over 50% of overall per-
formance due to the low hardware bandwidth [32]. So, partial
encryption is proposed, for example, the criticality-aware
smart encryption scheme [32] selectively encrypts 40% of the
total parameters and achieves the same security guarantee as
full encryption, improving performance by saving encryption
time. Although data can be protected by memory encryption,
the exposed access pattern between layers still reveal sensitive
information, as discussed above (§1I-B).

III. OBSERVATIONS AND CHALLENGES

A. Critical Leakage Hints through Access Patterns

By analyzing the attack steps (8§1I-B2), our key insight is
that we do not need to obfuscate all memory accesses
during DNN inference to protect the DNN structure, since

91

not all access patterns information is useful for attackers. We
refer to these useful hints that potentially reveal the DNN
structure as critical leakage hints, which need to be hidden and
protected. We list four critical leakage hints: (1) RAW (read-
after-write) dependency on feature maps and (2) the memory
footprint accessed in each layer; these two hints are introduced
(§81I-B2), which expose the layer boundaries and dimensions,
respectively. Besides, we find out two more hints: (3) Memory
access intensities and (4) The accessed memory address space
of filters. The access intensities represent the memory access
frequency within a periodic time, and it can be exploited
through timing side-channel [6]. The access intensities of the
Conv and Pool layer are very different: in our tests, the Conv
layers (95.25 accesses/ms) have a greater access intensity
than the Pooling layers (31.52 accesses/ms) on average, so
the layer boundaries between different type of layers may
be exposed through access intensities. The accessed memory
address space of filters also can expose the layer boundary. The
filters are allocated in consecutive memory space; as shown in
figure 2, there are noticeable deviations at each layer boundary
since a new layer needs access to a new set of filters.

B. Challenges

1) RAW dependency cannot be hidden by shuffling: Al-
though we have identified the critical leakage hints, hiding
them is still challenging. For example, the DNN access pattern
inherently has the RAW dependency due to the data transfer
between adjacent layers. Therefore, the attacker can always
observe a large amount of accesses with RAW dependency
during DNN inference. The challenge is that the RAW depen-
dency cannot be hidden by shuffling the mapping between on-
chip addresses and physical addresses. Moreover, adding some
fake RAW accesses for obfuscation may not be sufficient,
since attacker can still determine the difference by examining
a large number of original access sequences with true RAW
dependency, unless the added fake RAW accesses are large
enough to completely obfuscate the original ones, which would
be extremely costly.

2) Limitations of Existing Defense Schemes: In order to
completely eliminate access pattern leakage, ORAM[7] was
proposed and has been optimized in past decades [24, 28].
ORAM is a general provable secure protocol designed for
obfuscating all memory accesses; however, it is less desirable
to applying ORAM for DNN applications, because of the
significant performance overhead with random memory reads
and writes. Liu et al. [16] proposed a shuffle-based obfuscation
scheme for DNNSs, aiming to reduce the overhead of ORAM-
based approach. However, the RAW dependency could not be
hidden. Besides, tracking the entire shuffling needs a huge
mapping table, which is impossible to store on-chip. Li et al.
[13] proposed NeurObfuscator, a full-stack software solution
that provides obfuscation toward the layer sequence of the
network and the dimension of layers, and can hide the original
access patterns. However, the authors claim that their software-
based obfuscation has no affect on the model’s functionality,
which means that the attacker may still reverse the obfuscated

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

N [Cowbiise| T B
U : -
R & | Instructions| PCle e Layer 1:
! 1& @ Read: IFM (a X b) Write: OFM (m X n)
. z (a) Conv. layer
g DNNCloak Scheduler g Implemented Address o
< 7 | Randomization Method Sub L is
& Output Feature Map Q - U ayeris
_+ =
| Global |—LRelu Pool (—_>‘:| Hj TR £ ol Untusted Read: IFM (ax b/2) ~ Write: OFM (m X n/2)
> Buffer Input Feature Map g (::> (_- é ;UU § Memory
Weights Network 4 Sub Layer2: g - -
Access Patterns Leakage ite: i
& Read: IFM (a x b/2) Write: OFM (m X n)
Trusted DNN Accelerator + OFM (Sub layerl)

Fig. 3: The high-level overview of DNNCloak architecture.

DNN model through a new set of memory access patterns.
Since the obfuscated model is functionally identical to the
original, it could serve as a new target for attackers.

IV. THE DESIGN OF DNNCLOAK FRAMEWORK
A. DNNCloak Architecture Overview

We propose DNNCloak, a lightweight defense framework
for DNN models under reverse engineering attacks. Instead of
obfuscating all access patterns, we focus on efficiently hiding
the critical leakage hints to protect the DNN model. Figure
3 shows a high-level overview of DNNCloak architecture
design in a typical DNN accelerator architecture. Note that our
proposed parts are highlighted in grey. DNNCloak architecture
consists of three schemes (Layer Divider, Layer Shrinker, and
Layer Obfuscator), which obfuscate the data flow between
the accelerator and the external memory. The R/W Selector
and LS-Buffer are added to assist the Layer Shrinker method.
The address remapping function unit (Randomizer) utilizes
Feistel Network, which provides a lightweight random address
mapping [19, 22, 23]. Briefly, it is an XOR-based algorithm
with the requirements of a secret key array, and it provides a
one-to-one mapping with low overhead, 6B on-chip size and
less than 3 cycles latency [23].

B. DNN Model Structure Protection Mechanisms

DNNCloak includes three schemes to hide the critical hints.
Among these four hints introduced in section III-A, hint 4 can
be concealed by address randomization, the remaining hints
are obfuscated by the DNNCloak schemes.

1) Layer Divider (LD): Considering the challenges
(§II-A) for hiding the hint 1 RAW dependency, the idea
of Layer Divider is to divide one single Conv layer into
multiple smaller sublayers, thereby increasing the total number
of observed layers. For example, Figure 4 (a) shows one Conv
layer with a axb IFM, a k x k filter, and a m xn OFM. Figure
4 (b) shows an example of Layer Divider, the original layer is
divided into two sub-layers. DNNCloak reads half of the input
axb/2 as the IFM for the first sub-layer. Then write the results
as the first sub-layer’s OFM and the size is m * n/2. Next,
the second sub-layer reads the other half of the original input
axb/2 and also reads the preceding layer’s OFM, and only the
half original input does the multiply-accumulate operations.
Each sub-layer is performed continuously with the same filter
so we can keep the filter on-chip to avoid unnecessary off-chip

92

(b) Layer Divider divides one layer into two sublayers (R;=2)

Fig. 4: The example of Layer Divider.

memory accesses. Finally, we can get a complete results by
concatenating the results of the two sub-layers.

While we divided the layer into two sub-layers in the
preceding example, for security purposes, the Layer Divider
should randomly divide each layer into different number of
sub-layers. We define a divide rate R, that represents the
average number of sub-layers that each layer is divided. By
adjusting the Layer Divider’s Ry, we can arbitrarily increase
the number of original layer boundaries. While the increased
R4 causes more frequent division of the original layer and im-
proves security, it introduces extra read and write operations.
As a result, the attacker will observe more layer boundaries
than the actual ones from the RAW dependency.

2) Layer Shrinker (LS): While the Layer Divider scheme
obfuscates the layer sequence, the critical leakage hint 2
remains, which exposes the dimension of each layer through
the memory footprint. We then propose the Layer Shrinker
to address this issue. The main idea of Layer Shrinker is
to reduce the exposed memory footprint size by buffering
a portion of the feature maps on-chip. Figure 5 depicts the
Layer Shrinker organization and shows two different scenarios.
Three components are included within the Layer Shrinker:
the LS-Controller, the LS-Map, and the Threshold Generator.
In addition, we have an R/W Selector and LS-buffer on-chip
for the method process. The LS-Buffer can store OFMs and
directly provide them to the following layer as IFMs, and the
R/W Selector manages the data flow.

Figure 5 (a) shows when the DNN accelerator writes the
OFMs. (D LS-Controller receives the instructions that indi-
cate the memory address for writing OFMs. And the OFM
instructions could imply the starting memory address ag and
the OFMs size Soras. @) Instead of writing all of the OFMs to
memory, we can buffer a portion of OFMs on-chip. A constant
buffer size Sy, fer may be easily reversed by attackers, so we
hide the actual buffered size, Spyuffer X T', with a random T
generated by the Threshold Generator. (3) Then, LS-Controller
updates the LS-Map, which records the information about
buffered addresses, such as the starting address ag and the
corresponding 7. @ Lastly, LS-Controller controls the R/W
Selector to buffer a portion of the data (S, f fer X 1) and write
the rest (Sornr — Spuffer X T') to memory.

Figure 5 (b) shows reading the IFMs. () LS-Controller
receives the instructions indicating the memory addresses
needed to be read. (2) Next, LS-Controller check the LS-

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

@ [FM instructions
Threshold GEN. 29 o

BT °Upd‘.ﬂe E— % % Threshold GEN. oChcck ? C %
© | LSComoller [=| LSMap [§% | ¥ | Lo LsConoller [LsMap |55 | 5
OFM instructions”_| | % z 5
ojwme oM [] © Read IFM g
] g < T g
R/W Selector S = R/W Selector - JLBuiet g

| — Write to Memory

(a) Write a portion (based on T) of output
feature maps (OFM) into LS-Buffer

> Read from Memory
(b) Read input feature maps (IFM) from LS-
Buffer

Fig. 5: Layer Shrinker design illustration.

Map to get the information about ag and 7'. So the needed
memory address is start from the ag + Spyrfer x T with size
Sorm — Svuffer X T (3 LS-Controller manages the R/W
Selector to control the data flow, reading from the LS-Buffer
and memory.

3) Layer Obfuscator (LOB): Hint 3 leaks information
through the access intensities between different types of layers.
To obfuscate the different access intensities and hide the ex-
posed layer boundary between the different types of layers, we
propose the Layer Obfuscator. The pooling layers have lower
access intensities compared to the Conv layers, so the idea of
Layer Obfuscator is to add dummy accesses to make the access
intensities the same. Since the pooling layer takes a small part
of DNN execution time, the extra overhead has little effect
to the overall performance. Additionally, we used an address
randomization method that disrupts the initial spatial locality,
rendering the added dummy accesses indistinguishable.

C. DNN Model Weights Protection

After obtaining the model structure, the attacker can con-
tinue to attack the model and reverse the weights by exploiting
the vulnerabilities caused by the conventional zero pruning
technique (§11-B2). As described in section II-C, full memory
encryption is able to protect the model parameters by making
zero and non-zero values indistinguishable to attackers, but
it is costly due to encryption and decryption latency. Partial
encryption can enhance performance, but the improvement
depends on the ratio of partial encryption. If partial encryption
ratio is insufficient for the sake of reducing encryption latency,
the model’s ability to resist retraining attacks will be dimin-
ished. We show our related observations in section IV-C2.

1) Random Permutation Matrix (RPM) Format : To re-
duce the latency caused by memory encryption, we propose
a novel scheme, Random Permutation Matrix (RPM), which
encrypts just a small portion of the data, such as some
metadata, to achieve the same level of protection to the model
as full encryption.

Figure 6 shows an example of using RPM data format. Note
that n0 refers to those non-critical weights with very small
values, also can be regarded as zero. The position of each
element in the matrix is randomly permuted, and a bit map is
added as metadata at the head of the data block. There are two
components in the bit map, the position bits (Bpsition) and
the order bits (Boyrqer). For example in figure 6, if the matrix
size is 3 x 3, such as all filters in VGG16, then the Bpsition
should be 9 bits, which indicates the position of the n0. So
in this example, Bposition is 110110101, And the Bgrger is

93

N 1
|
|

nl Matrix size (float): 9x8 = 72B
n0 is the non-critical number

Encryption is needed

n8 | n9
&I&EE&H permute T
_ e .
Add bit map as Metadata:
n9 1.B, : 9 bits
nl

« Bposition*
a4
nS n8

(110110101)

2. Byger: 24 bits (up to 36 bits)
| Matrix size: 6x8 = 48B
i (unencrypted)
1

(0011 1001 0001 0010 0101 1000)
Metadata (encrypted)

| Random Permutation Matrix Format

| PR — —

n3

Fig. 6: Random Permutation Matrix data format.

24 bits (up to 36 bits), which records the original position
and is used to restore the matrix order. So, for 3 x 3 matrix
such as VGGI6, the total size of the metadata is less than
5.7B. Generally, to record a permuted m X m matrix, it takes
logs(m x m) bits for each position. So, the increasing size of
the matrix would increase the overhead of both B),s;tion and
Border- When m = 3, the size ratio of metadata and matrix
data is 0.078; while when m = 11, the ratio is increased to
0.125. Note that most filter size is less than 11 x 11. Therefore,
the overhead of the metadata is 7.8% to 12.5% in common.
With RPM, we only need to encrypt the metadata B,osition
and B,q4.r to achieve the same security and accuracy of full
weights encryption. The possibility of restoring the order of

a m X m matrix is — and that is for only one matrix in

one convolution. Thernelfore, reordering the permuted filters is
impossible.

Moreover, as discussed, the n0 in figure 6 refers to the non-
critical weights, and can be pruned as zero. So, the more n0,
the less overhead of metadata. Notably, we also do not need
to store n0 in the data block since the metadata indicates the
position of each n0. Hence, if the matrix is 3 x 3, the matrix
size would be 72B before permuting as shown in figure 6,
which requires two data blocks to store one matrix. After
random permutation, if there are more than two n0 in the
matrix, then the matrix size is less than 64B even with the
metadata so that only one data block is fetched from memory
each time. Therefore, RPM with pruning can significantly
reduce memory access time.

2) RPM Discussions: We discuss the security of RPM by
comparing it with full encryption and partial encryption in
terms of retraining model accuracy.

Observation 1: RPM can achieve the same security level of full
encryption with much less overhead. We compare RPM with
partial encryption scheme SEALing [32] to show the model’s
ability to resist retraining attacks. We use the same settings as
[32]: using the VGG16 model as an example, and the dataset
is CIFAR-10; assume the retraining dataset contains only 10%
(5000 images) of the original training dataset, and augment the
retraining dataset to 45000 images; we first select the matrix
with the largest sum to encrypt. Then, as shown in figure
7 (a), when the selective encryption ratio is above 50%, the
partial encryption achieves the same security level as the full
encryption; but when the encryption ratio is insufficient, for

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

-#-VGG16 with partial encryption VGG16 with RPM

0.95
09
085

e
%

0.75

—n—

Re-trained model accuracy

70% 60% 50% 40% 30% 20% White

Partial encryption ratio
(a) Re-trained VGG16 accuracy comparison between partial encryption and RPM

7
Black 90% 80% 10%

1

S 2 2
= o =

Model accuracy
<
o

=3

20% 30% 40% 50% 60% 80% 90% 100%

RPM pruning ratio

0% 10% 70%

(b) VGG16 accuracy after pruning different ratios of weights

Fig. 7: Observations on Random Permutation Matrix design.

example, when the ratio is 20%, the model can be retrained to
over 85% accuracy. On the other hand, without knowing the
bit map, the model with RPM always has the same security
level as full encryption during retraining tests.

Observation 2: RPM can work with pruning to reduce over-
head without hurting inference accuracy. In our experiments,
we prune the smallest weights to zero in VGG16, and with
different pruning ratios, the model accuracy is shown in figure
7 (b). When 40% of the smallest weights are pruned to zero,
the model accuracy only decreases less than 0.1%; when the
pruning ratio is 50%, the model accuracy decreases 0.2%;
when the pruning ratio is 60% or greater, the model accuracy
degrades rapidly.

In summary, RPM has the same security level as full
encryption for model IP protection. And it provides strong
security against retraining attacks and, under the same re-
training conditions, achieves the same model accuracy as full
encryption or 60% partial encryption, while we only need to
encrypt the bit map, so the encryption ratio is about 10%.
Therefore, RPM reduces the encryption latency significantly;
in addition, RPM can reduce the memory access time since
the non-critical weights can be pruned without leaking any
information. We show the performance results in section VI-B.

V. DNNCLOAK DESIGN AND SECURITY DISCUSSIONS

In this section, we discuss the following design choices and
their impact on defense mechanisms: the choice of divide rate
R4 (8IV-B1); the choice of LS-Buffer size Spyffer (§1V-B2);
and how DNNCloak can protect against reverse engineering
attacks on the DNN model. Figure 8 illustrates DNNCloak
schemes step-by-step. To start with, Figure 8 (a) shows a
sketch of a basic DNN access pattern as an example. The X-
axis is the trace index which indicates the processing timeline,
and the Y-axis is the memory address space. The first RAW
reveals the layer boundary and also the memory footprint
exposes the feature map size Z¢“! and filters size Zif (@ is
the current layer index) as introduced in section II-B.

94

== Feature map Read = Feature map Write == Filter Read = = Random Filter Read

LayerBw sssgasinnunns asaisassannss
sssspsspuEmann sssspussanses
if H |
z} Do
! gou Suzmp
g Y R i
3 / 2 551”'": & igrout
- Zout @2 ! ” 2 ” -
- S £ s5q_- LS
—'g l/ b M 2
< 15t RAW i1 RAW = 15 RAW
g g - | g 7
s Layer 1 ﬁ Layer 0. 1 . 2 i Layer3 s Layer(: 1 :2 :Layer3
Trace index Trace index Trace index
(a) Baseline access pattern (b) Layer Divider access (c) Layer Divider + Layer Shrinker

pattern (randomized) access pattern (randomized)

Fig. 8: DNNCloak access pattern obfuscation illustration.

a) Layer Divider Divide Rate Discussion: Figure 8 (b)
depicts the access pattern after using the DNNCloak Layer
Divider. The address space is randomized but we preserve the
access pattern of feature maps before the randomization for
illustrative purposes while the address randomization cannot
hide the RAW dependency. In this case, the divide rate R4 = 2.
We divide two DNN layers into four sublayers. Each sublayer
needs to read the preceding sublayer’s OFM, generating more
layer boundaries exposed by RAW dependency, so that the
attacker observes more layers. If we set a larger divide rate,
it would be extremely difficult for the attacker to reverse the
original structure even if the attacker knows the divide rate.
As shown in table I, we use AlexNet as an example, when
Ry = 32, there are 1.28 x 10'3 possible DNN structures
for reconstructing the observed layer sequence to the original
sequence. Also, one layer sequence has dozens of possible
dimension structures [10], making obtaining the original model
structure extremely costly for attackers. On the other hand,
with additional sublayers, the training cost increases signif-
icantly and only a few possible structures may achieve a
similar accuracy as the original model, the accuracy of most
structures decreases due to the overfitting issues. For example,
the AlexNet achieves 57% top-1 validation accuracy with the
original structure on CIFAR100 datasets; by dividing more
sublayers, with the same training settings, the model accuracy
decreases significantly, as shown in table 1.

b) Layer Shrinker Buffer Size Discussion: In Figure 8
(b), the OFM size S;’“t is still exposed, and also we can still
infer that S§“* + S¢ut = Zg“* in this example. Figure 8 (c)
enhances the defense with the Layer Shrinker. After buffering
a part of OFM in LS-Buffer, the exposed S(’)"“t is less than
Sgut (Speut + S1ovt < Zgut), so the attacker cannot obtain
the real dimension of each layer preventing the reverse DNN
attack from commencing. In our experiments, we set the LS-
Buffer size to 16KB or 32KB and we expect the LS-Buffer
size will be much smaller than the DNN accelerator’s global
buffer, which commonly ranges between 100KB and 500KB.
Using VGG16 as an example, the size of the feature maps
within a single layer during DNN inference is around 1MB to
6MB; however, because we implement the Layer Divider, the
size of feature maps within each layer will be split by the R,.
When R, = 32, the feature maps of each sublayer are about
32KB to 192KB, which means that the LS-Buffer can store a
substantial portion of them and hide the actual dimension.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I: AlexNet with DNNCloak Protection.

Divide rate | Possible structures | Re-train accuracy
R;=0 24 57.30%

R; =28 5.53 x 10 43.56%

Ry =16 8.94 x 1010 11.56%

Ry = 32 1.28 x 1013 0.91%

In sum, DNNCloak increases the exposed number of layer
boundaries, limiting the attacker from getting all possible
attack structures; moreover, the new structures result in lower
accuracy; and DNNCloak hides the exposed dimension of
each layer by buffering a portion of feature maps. Therefore,
DNNCloak can mitigate the reverse DNN attacks effectively.

VI. EVALUATION
A. Experimental Methodology

The evaluation takes three main steps: First, we use Keras
[5], an open-source python library that provides a variety of
DNN models, to run DNN different applications. Keras may
be used to learn about the model structure, such as the layer
sequence, layer type, and dimensions. As mentioned in section
IV-C2, we use CIFAR10 as dataset when we evaluate the
accuracy loss of the re-trained model.

Second, we implement DNN applications in C++, in which
we can customize the layer structure and weight parameters.
All operations of our program run on the local CPU. The
main purpose of this step is to collect the access pattern of
the DNN application. So, when running the C++ program, we
record the addresses and access types of the operations related
to the feature maps and filters. We have four models, VGG16,
VGG19, AlexNet, and LeNet; we collect more than 2 billion
memory accesses trace for each application.

Third, we conduct experiments on the USIMM simulator
[1], and we evaluate the memory cycle time as performance
results. USIMM is a cycle-accurate memory framework that
reads an application trace as input and outputs a memory
cycle. For the simulation, we use DDR4-1866 memory, which
operates at a command rate of 933MHz, and a cycle time of
1.07ns. The memory configuration and timing is referred to
[14]. Besides, we set the LS-Buffer latency as 10 cycles and
the randomizer latency is 3 cycles [23]. The USIMM conducts
trace-driven simulation so we utilize the access pattern trace
generated in the second step as input for our tests.

B. Experimental Results

1) Results of LD and LS: The divide rate R; and LS-
Buffer size Sy,yfer have a direct effect on the results of
Layer Divider and Layer Shrinker. We use four applications
to examine the results with different Rq and Sy, e, Figure
9 illustrates the memory cycle results from the USIMM
simulation. Each figure shows four different divide rate values,
R; = 0,8,16, 32, respectively. For each R4, we use three
different LS-Buffer size, Sy,rfer = 0,16,32KB. With the
increased R;, DNNCloak can provide higher obfuscation but
has the expense of a long memory cycle. While increasing
the Spy ¢ er Of the LS-Buffer can help reduce memory cycles.
When R; = 32 and the LS-Buffer size is 32KB, the memory
cycle costs 1.28x, 1.14x, 1.06x and 1.11x more than the
R4 = 0 and no LS-Buffer baseline in four applications.

95

2) Results of LOB: The Layer Obfuscator introduces extra
dummy accesses in order to obfuscate the access intensities
in different types of layers. As shown in figure 10 (a), we
compare the memory cycle to the Ry = 0 and no LS-Buffer
baseline, we choose Ry = 32 and Syyffer = 32K B as our
default Layer Divider (LD) and Layer Shrinker (LS) settings.
LeNet only contains two Conv layers and two pooling layers,
so the LOB introduces more extra accesses in percentage
compared to other models. Our results show that, after im-
plementing LOB with LD and LS, the total memory cycle
increases 1.26x compare to the baseline.

3) Results of RPM: We use VGG16 as an example to show
the RPM results with different pruning ratios in figure 10 (b).
We modify the ratio of non-critical numbers by pruning the
smallest value to zero. The left side of the Y-axis shows the
memory cycle, and the right side shows the model accuracy
loss after pruning. The model accuracy depicted by the line
decreases slowly at the point of 0%, 20%, 40%, with only less
than 0.1% accuracy loss; but when pruning 60%, the model
accuracy loss increase to 4%, and after that, the accuracy will
drop rapidly. When we prune more non-critical numbers, more
memory access can be reduced with our RPM. As a result, at
the point 40%, while preserving the model accuracy, VGG16
takes only 0.68x memory cycles compared to the case without
pruning.

4) Overall DNNCloak performance: We demonstrate the
DNNCloak schemes separately in the previous section. We
show the trade-off between Divide Rate R; and performance,
the influence of LS-Buffer buffer size Sy f e and the trade-off
between model accuracy and performance. In this section, we
use Rq = 32, Spuyfer = 32K B with LOB and 0.1% accuracy
loss with RPM 0.4 pruning ratio as our default DNNCloak
setting and show the overall performance compared to the
baseline. The baseline is running with no encryption and
no obfuscation. We compare our proposed DNNCloak with
full encryption, partial encryption (with 40% encryption ra-
tio) and DNNCloak without RPM (pruning ratio =0) cases.
The VGG16 and VGG19 use 3x3 matrix in filters, whereas
AlexNet and LeNet mainly use 5 x5 matrix filters, so the RPM
performs better for VGG16 and VGG19 since one filter can be
compressed into one data block. Moreover, the LOB decreases
more for LeNet as explained in VI-B2. Therefore, as shown
in figure 10 (c), our default DNNCloak reduces the memory
cycle to 0.73x, 0.69x compared to the baseline for VGG16 and
VGG19, while DNNCloak takes 1.02x, 1.08x more memory
cycles than the baseline for AlexNet and LeNet.

On average, DNNCloak only takes 0.54x, 0.7x and
0.69x compared to full encryption, partial encryption and
DNNCLoak without RPM, which are 1.59x, 1.22x and 1.26x
compared to the baseline; and the memory cycle of our default
DNNCloak is only 0.86x compared to the baseline.

VII. CONCLUSIONS

In this paper, we propose DNNCloak, a lightweight ob-
fuscation scheme to mitigate reverse engineering attacks on
DNN though access pattern side-channels. Our insight is that

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

m No LS-Buffer 16KB LS-Buffer 32KB LS-Buffer

x1010
© 20 o 24 o
515 2,18 ES
o Qo o
E 10 . =12 =
E s | IN g 6 g
N S S
= N =0 3 = R X
Rd=0 Rd=8 Rd=16 Rd=32 Rd=0 Rd=8 = Rd=16 Rd=32 Rd=0 Rd=8 Rd=16 Rd=32 Rd=0 Rd=8 Rd=16 Rd=32
Layer Divide Rate Layer Divide Rate Layer Divide Rate Layer Divide Rate
(a) VGG16 results (b) VGG19 results (c) AlexNet results (d) LeNet results
Fig. 9: Results of LD and LS in common DNN applications with different settings.
m Full encryption = Partial encryption
mLOB sLD+LS LD +LS+LOB

(R4=32, Sp1~32KB)

== VGG16 -m=Accuracy loss

DNNCloak (RPM ratio=0) mDNNCloak (RPM ratio=0.4)

(R=32, Sp=32KB)

4.5% 18

Memory cycle
3

OO0 =
SRR =i

12 3.0%
0 0.0%

15

n
S
the baseline
o
N=

Accuracy loss

Memory cycle compared to
the baseline

VGG16 VGGI19 AlexNet

LeNet GM

Pruning ratio in RPM

(a) Layer Obfuscator results

(b) Random Permutation Matrix results

Memory cycle compared to

VGG16 VGGI19 AlexNet

LeNet GM

(¢) DNNCloak results

Fig. 10: Results of LOB, RPM and overall performance.

not all access patterns is necessary to be hidden and we
identify the critical leakage hints that may leak the model
structure during DNN reverse engineering attacks. Our design
DNNCloak focus on hide those leakage hints only to achieve
an efficient obfuscation purpose. DNNCloak has three methods
that can obfuscate the original model structure, and also
provides the random permutation matrix scheme to improve
the performance. The experimental results of DNNCloak in-
dicate that DNNCloak costs only 0.86x memory cycle time in
average compared to the original model.

ACKNOWLEDGMENT

We thank the reviewers for their insightful comments.
This research is supported in part by the National Science
Foundation under grant CCF-2029014 and CNS-2152497.

REFERENCES

N. Chatterjee et al. “Usimm: the utah simulated memory module”.
In: University of Utah, Tech. Rep (2012).

Y. Che et al. “Imbalance-aware scheduler for fast and secure ring
oram data retrieval”. In: 2019 IEEE 37th International Conference
on Computer Design (ICCD). IEEE. 2019, pp. 604-612.

Y. Che et al. “Multi-range supported oblivious RAM for efficient
block data retrieval”. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE. 2020.

Y.-H. Chen et al. “Eyeriss: An energy-efficient reconfigurable accel-
erator for deep convolutional neural networks”. In: IEEE journal of
solid-state circuits 52.1 (2016), pp. 127-138.

F. Chollet et al. Keras. https://keras.io. 2015.

C. W. Fletchery et al. “Suppressing the oblivious ram timing channel
while making information leakage and program efficiency trade-offs”.
In: HPCA. 2014.

O. Goldreich et al. “Software protection and simulation on oblivious
RAMSs”. In: Journal of the ACM (JACM) (1996).

C. Gongye et al. “Reverse-engineering deep neural networks using
floating-point timing side-channels”. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC). 2020.

X. Hu et al. “Deepsniffer: A dnn model extraction framework based
on learning architectural hints”. In: ASPLOS. 2020.

W. Hua et al. “Reverse engineering convolutional neural net-
works through side-channel information leaks”. In: 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). 2018.

T. Kohno et al. “CWC: A high-performance conventional authenti-
cated encryption mode”. In: International Workshop on Fast Software
Encryption. Springer. 2004, pp. 408-426.

[9]

[10]

[11]

96

[12]

[13]

[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]

[30]

[31]

[32]

D. Lee et al. “An off-chip attack on hardware enclaves via the memory
bus”. In: 29th {USENIX} Security Symposium. 2020.

J. Li et al. “NeurObfuscator: A Full-stack Obfuscation Tool
to Mitigate Neural Architecture Stealing”. In: arXiv preprint
arXiv:2107.09789 (2021).

S. Li et al. “DRAMSsim3: a cycle-accurate, thermal-capable DRAM
simulator”. In: IEEE Computer Architecture Letters (2020).

Y. Liu et al. “Delving into transferable adversarial examples and
black-box attacks”. In: arXiv:1611.02770 (2016).

Y. Liu et al. “Mitigating reverse engineering attacks on deep neural
networks”. In: ISVLSI. 2019.

Y. Liu et al. “GANRED: GAN-based Reverse Engineering of DNNs
via Cache Side-Channel”. In: Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop. 2020.

Y. Long et al. “Understanding membership inferences on well-
generalized learning models”. In: arXiv preprint:1802.04889 (2018).
A. J. Menezes et al. Handbook of applied cryptography. CRC press,
2018.

S. J. Oh et al. “Towards reverse-engineering black-box neural net-
works”. In: Explainable Al: Interpreting, Explaining and Visualizing
Deep Learning. Springer, 2019, pp. 121-144.

A. Parashar et al. “Scnn: An accelerator for compressed-sparse convo-
lutional neural networks”. In: ACM SIGARCH Computer Architecture
News (2017).

M. K. Qureshi. “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping”. In: MICRO. 2018.

M. K. Qureshi et al. “Enhancing lifetime and security of PCM-based
main memory with start-gap wear leveling”. In: MICRO. 2009.

L. Ren et al. “Constants Count: Practical Improvements to Oblivious
{RAM}”. In: {USENIX} Security. 2015.

O. Russakovsky et al. “Imagenet large scale visual recognition chal-
lenge”. In: IJCV (2015).

D. Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: nature (2016).

K. Simonyan et al. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

E. Stefanov et al. “Path ORAM: an extremely simple oblivious RAM
protocol”. In: CCS. 2013.

F. Tramer et al. “Stealing machine learning models via prediction
apis”. In: 25th {USENIX} Security Symposium ({USENIX} Security
16). 2016, pp. 601-618.

W. Xiong et al. “The Microsoft 2017 conversational speech recogni-
tion system”. In: JEEE ICASSP. 2018.

M. Yan et al. “Cache telepathy: Leveraging shared resource attacks to
learn {DNN} architectures”. In: 29th {USENIX} Security Symposium
({USENIX} Security 20). 2020.

P. Zuo et al. “SEALing Neural Network Models in Encrypted Deep
Learning Accelerators”. In: 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE. 2021.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

