
DNNCloak: Secure DNN Models Against Memory
Side-channel Based Reverse Engineering Attacks

Yuezhi Che
yche3@hawk.iit.edu

Illinois Institute of Technology
Chicago, USA

Rujia Wang
rwang67@iit.edu

Illinois Institute of Technology
Chicago, USA

Abstract—As deep neural networks (DNN) expand their atten-
tion into various domains and the high cost of training a model,
the structure of a DNN model has become a valuable intellectual
property and needs to be protected. However, reversing DNN
models by exploiting side-channel leakage has been demonstrated
in various ways. Even if the model is encrypted and the processing
hardware units are trusted, the attacker can still extract the
model’s structure and critical parameters through side channels,
potentially posing significant commercial risks. In this paper, we
begin by analyzing representative memory side-channel attacks
on DNN models and identifying the primary causes of leakage.
We also find that the full encryption used to protect model param-
eters could add extensive overhead. Based on our observations,
we propose DNNCloak, a lightweight and secure framework
aiming at mitigating reverse engineering attacks on common
DNN architectures. DNNCloak includes a set of obfuscation
schemes that increase the difficulty of reverse-engineering the
DNN structure. Additionally, DNNCloak reduces the overhead
of full weights encryption with an efficient matrix permutation
scheme, resulting in reduced memory access time and enhanced
security against retraining attacks on the model parameters. At
last, we show how DNNCloak can defend DNN models from side-
channel attacks effectively, with minimal performance overhead.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have become

increasingly popular as a result of their superior accuracy

in a wide range of machine learning applications, including

automatic speech recognition [30], image recognition[27], and

AI for games [26]. On the other hand, training a successful

model is expensive since it requires a huge amount of labeled

data and hardware resources. For example, the collection of

over 1.4 million hand-annotated images and 20 thousand cat-

egories in ImageNet [25] requires considerable effort in terms

of manpower and material resources. Therefore, the knowledge

of a well-trained DNN model is intellectual property (IP) and

should be kept confidential. Moreover, knowing of the DNN

model, such as its structure or parameters, can increase the

success rate of adversarial attacks [15, 20], which becomes

one of the major security concerns associated with the use

of DNNs [9]. The model parameters, including the weights

and intermediate results, can be hidden by using the existing

encryption, like direct encryption and counter mode encryp-

tion. Although encryption causes performance degradation, it

is necessary for security. However, the increasing commercial

value of DNN comes with more potential risks of attacks.

Previous works show that a knowledgeable attacker is able

to conduct an attack to extract the hidden information of the

model even if the data is encrypted through side-channels,

such as access patterns [9, 10], the timing difference in the

cache hierarchy [8, 17, 31]. Among all these side-channel

attacks, from the architectural perspective, it is relatively easy

to observe and attack through the memory access patterns

[9, 10], including the access type, address, frequency, and

memory footprint. The attacker only needs to probe the

external memory bus and record the signals on the command

and address buses [12], which cannot be protected by using

data content encryption. Therefore, in this work, we focus on

defending the reverse engineering attacks by memory access

pattern side-channel.

The memory accesses during DNN inference exhibit very

strong deterministic patterns, which can reveal the structure

of the DNN model. Once the structure of the DNN model

is known, the attacker can then conduct other attacks, such

as the model extraction [29] and the membership inference

attack [18], for further model stealing. During DNN inference,

the working layer always reads the preceding layer’s output

as its input feature maps. If the feature maps and weights

are stored in off-chip memory, the memory access patterns

can easily expose the layer boundary between two consecutive

layers by detecting read-after-write (RAW) dependency [10].

Additionally, the memory footprint exposes the dimension of

each layer directly, enabling for the leakage of the overall

DNN structure through the access pattern side-channel.

While access pattern leakage poses a significant threat to

DNN model IP, there is a lack of lightweight and effective

defense mechanisms. The general method to defend memory

access pattern leakage is Oblivious RAM (ORAM) [7], which

is a provable secure cryptographic protocol. ORAM turns

memory accesses into indistinguishable access sequences by

address remapping and adding redundant dummy accesses.

However, the state-of-the-art ORAM protocols and optimiza-

tions [2, 3, 24, 28] still show a very high protection overhead

for most applications. Except for ORAMs, recent studies pro-

pose shuffle-based [16] and software-based [13] obfuscation

schemes to protect DNN model from access pattern leakage.

However, the naive shuffle-based obfuscation[16] is not able to

hide the accesses with Read-After-Write (RAW) dependency;

the software-based scheme[13] generates a new model with the

same model accuracy as the original, but the newly generated

89

2022 IEEE 40th International Conference on Computer Design (ICCD)

2576-6996/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCD56317.2022.00023

20
22

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r D
es

ig
n

(I
C

C
D

) |
 9

78
-1

-6
65

4-
61

86
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

D
56

31
7.

20
22

.0
00

23

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

model is still exposed and becomes a new target for attacks.

In the paper, we propose DNNCloak, a lightweight and

secure DNN framework against memory side-channel attacks,

which protects both DNN model structure and parameters.

DNNCloak is the first architecture-level obfuscation design to

protect DNN against side-channel attacks. This work makes

the following contributions:

• We observe that most existing side-channel attacks on

DNN only make use of partial access patterns. Not all

access patterns are necessary to be hidden; we only need

to protect the access patterns that leak critical hints about

the DNN model structure. Based on our observations, we

summarize four critical leakage hints that are actually

used in reverse engineering.

• Our proposed DNNCloak provides three schemes, Layer
Divider, Layer Shrinker, and Layer Obfuscator, to hide

the critical leakage hints, so protecting the model struc-

ture efficiently.

• Our proposed DNNCloak provides a novel structure

called Random Permutation Matrix to protect the model

parameters. We demonstrate that this method is secure

and more efficient compared to the full encryption or

existing partial encryption scheme.

• Our results show that DNNCloak may take down memory

cycles to 86% of the unprotected baseline model, while

achieving high security protection.

II. BACKGROUND

A. DNN Basics

1) DNN Architectures: A typical DNN architecture is

shown in Figure 1(a). There are several types of hidden layers

between the input and output layers: convolutional layers,

pooling layers and fully connected layers. A convolutional

layer applies a convolutional operation to the input feature

maps (IFMs) and passes the output feature maps (OFMs) to

the next layer. During every convolution, a filter with weights

slides over the IFMs and transforms the input matrix into a

new matrix with extracted convoluted features. A pooling layer

is applied over feature map to reduce the spatial size of the

representation, thus reducing the number of parameters and

computation in the network. A fully connected layer connects

all the inputs from the previous layer to every activation unit

of the next layer, which is widely used as the last few layers

of a DNN.

2) DNN Accelerators: Since the operations in DNN, such

as the convolution operation, can be naturally calculated in

parallel, the DNN accelerator can exploit parallelism by utiliz-

ing direct connections between an array of processing engines

(PEs). As shown in figure 1 (b), a typical DNN accelerator pri-

marily consists of an array of PEs and a global buffer. During

the DNN inference, the IFMs and filters are partitioned into

small tiles and then processed by the accelerator. The global

buffer holds the intermediate results within the same layer.

After the computing, the accelerator combines the results and

writes the OFMs to the external memory [4, 10]. Therefore, in

the DNN accelerator, the feature maps and weights are stored

Fig. 1: DNN architecture and a typical DNN accelerator.

in the external memory, while the intermediate results of small

tiles in the same layer are kept in the on-chip global buffer.

The memory traffic could expose the complete access pattern

between layers in this situation, so the attack steps will be

discussed in the next section.

B. Reverse DNN via Memory Access Patterns

In this section, we introduce ReverseCNN [10], a general

memory access pattern side-channel attack framework.

1) Threat Model: When using the DNN accelerator, the

DNN computations are offloaded from the host CPU to the

DNN accelerator. As discussed in Section II-A2, the on-chip

memory size of the accelerator is limited, so the majority of

data, including the IFMs, weights, and OFMs, are transmitted

on the external memory bus between the DNN accelerator

and memory [10]. In such a use case, we assume that all the

computation units, including the accelerator and the host CPU,

are trusted. Also, the communication between the host CPU

and the accelerator is secured with encryption, so the data

content is not exposed to the attacker. However, the memory

access pattern to the external memory, including the read

and write type, intensities, and frequencies, can be observed.

During the DNN inference, the accelerator first accesses the

off-chip memory for weights and IFMs. After each matrix

computation, it writes the OFMs back to the memory. As

a result, the attacker can directly obtain the memory access

patterns by snooping the address bus.

2) Attack Steps: To reconstruct the structure of the DNN

model through access patterns, the attacker must get the layer

sequence and dimensions. We summarized the attack steps in

ReverseCNN[10], which is followed by other similar attacks

[9]. The first step to Identify the number of layers. The memory

access patterns may expose the layer boundaries through read-

after-write (RAW) dependency. We show an example of mem-

ory access patterns during DNN inference in Figure 2, similar

to the ones identified in [10], the RAW dependency of feature

map accesses can clearly expose the layer boundaries. At the

end of each convolutional layer, the output of a preceding layer

will be read as the input by the following layer. The second

step is to identify the dimension of each layer. The attacker

can easily infer the dimensions of the feature maps and filters

according to their accessed memory footprint within the same

layer. First, the filter is read-only and the access patterns of

the feature maps have the RAW dependency. Second, the same

type of data is stored in a continuous memory space, so the

attacker can easily distinguish the feature maps and filters

90

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The exposed memory access pattern trace during DNN

inference.

and obtain their dimension in each layer. In last step, the

attacker could reverse the weights by exploring the vulner-

ability introduced by zero pruning techniques. Zero pruning

has been recently implemented in multiple DNN accelerators

[21] due to its efficiency. The zero pruning only reads and

writes non-zero values in the weight matrices, so the attackers

can effectively know the value of pixel in OFM becomes

zero (0 = f(
∑

i wixi + b)). The attackers can then get a

linear equations for wi and b with known xi, so weights can

be expressed as a function of the bias. In ReverseCNN[10],

attackers may fully recover weights by carefully modifying

the non-zero value in the input.

C. DNN Weights Encryption

Memory encryption, such as direct encryption and counter

mode encryption, is used to protect the confidentiality of DNN

weights stored off-chip. The direct encryption uses the AES

encryption engine and applies the same global key to all data,

and has high decryption latency; while the counter model

encryption [11] uses a counter-based AES encryption engine

to generate a one-time pad (OTP), encryption and decryption

are accomplished by simply XORing the OTP with the target

data. OTPs are never reused, so counter mode encryption

provides a higher security level than direct encryption. We use

counter model encryption as memory encryption. However,

full memory encryption still reduce over 50% of overall per-

formance due to the low hardware bandwidth [32]. So, partial
encryption is proposed, for example, the criticality-aware
smart encryption scheme [32] selectively encrypts 40% of the

total parameters and achieves the same security guarantee as

full encryption, improving performance by saving encryption

time. Although data can be protected by memory encryption,

the exposed access pattern between layers still reveal sensitive

information, as discussed above (§II-B).

III. OBSERVATIONS AND CHALLENGES

A. Critical Leakage Hints through Access Patterns

By analyzing the attack steps (§II-B2), our key insight is

that we do not need to obfuscate all memory accesses
during DNN inference to protect the DNN structure, since

not all access patterns information is useful for attackers. We

refer to these useful hints that potentially reveal the DNN

structure as critical leakage hints, which need to be hidden and

protected. We list four critical leakage hints: (1) RAW (read-
after-write) dependency on feature maps and (2) the memory
footprint accessed in each layer; these two hints are introduced

(§II-B2), which expose the layer boundaries and dimensions,

respectively. Besides, we find out two more hints: (3) Memory
access intensities and (4) The accessed memory address space
of filters. The access intensities represent the memory access

frequency within a periodic time, and it can be exploited

through timing side-channel [6]. The access intensities of the

Conv and Pool layer are very different: in our tests, the Conv

layers (95.25 accesses/ms) have a greater access intensity

than the Pooling layers (31.52 accesses/ms) on average, so

the layer boundaries between different type of layers may

be exposed through access intensities. The accessed memory
address space of filters also can expose the layer boundary. The

filters are allocated in consecutive memory space; as shown in

figure 2, there are noticeable deviations at each layer boundary

since a new layer needs access to a new set of filters.

B. Challenges

1) RAW dependency cannot be hidden by shuffling: Al-

though we have identified the critical leakage hints, hiding

them is still challenging. For example, the DNN access pattern

inherently has the RAW dependency due to the data transfer

between adjacent layers. Therefore, the attacker can always

observe a large amount of accesses with RAW dependency

during DNN inference. The challenge is that the RAW depen-

dency cannot be hidden by shuffling the mapping between on-

chip addresses and physical addresses. Moreover, adding some

fake RAW accesses for obfuscation may not be sufficient,

since attacker can still determine the difference by examining

a large number of original access sequences with true RAW

dependency, unless the added fake RAW accesses are large

enough to completely obfuscate the original ones, which would

be extremely costly.

2) Limitations of Existing Defense Schemes: In order to

completely eliminate access pattern leakage, ORAM[7] was

proposed and has been optimized in past decades [24, 28].

ORAM is a general provable secure protocol designed for

obfuscating all memory accesses; however, it is less desirable

to applying ORAM for DNN applications, because of the

significant performance overhead with random memory reads

and writes. Liu et al. [16] proposed a shuffle-based obfuscation

scheme for DNNs, aiming to reduce the overhead of ORAM-

based approach. However, the RAW dependency could not be

hidden. Besides, tracking the entire shuffling needs a huge

mapping table, which is impossible to store on-chip. Li et al.

[13] proposed NeurObfuscator, a full-stack software solution

that provides obfuscation toward the layer sequence of the

network and the dimension of layers, and can hide the original

access patterns. However, the authors claim that their software-

based obfuscation has no affect on the model’s functionality,

which means that the attacker may still reverse the obfuscated

91

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The high-level overview of DNNCloak architecture. Fig. 4: The example of Layer Divider.

DNN model through a new set of memory access patterns.

Since the obfuscated model is functionally identical to the

original, it could serve as a new target for attackers.

IV. THE DESIGN OF DNNCLOAK FRAMEWORK

A. DNNCloak Architecture Overview

We propose DNNCloak, a lightweight defense framework

for DNN models under reverse engineering attacks. Instead of

obfuscating all access patterns, we focus on efficiently hiding

the critical leakage hints to protect the DNN model. Figure

3 shows a high-level overview of DNNCloak architecture

design in a typical DNN accelerator architecture. Note that our

proposed parts are highlighted in grey. DNNCloak architecture

consists of three schemes (Layer Divider, Layer Shrinker, and

Layer Obfuscator), which obfuscate the data flow between

the accelerator and the external memory. The R/W Selector

and LS-Buffer are added to assist the Layer Shrinker method.

The address remapping function unit (Randomizer) utilizes

Feistel Network, which provides a lightweight random address

mapping [19, 22, 23]. Briefly, it is an XOR-based algorithm

with the requirements of a secret key array, and it provides a

one-to-one mapping with low overhead, 6B on-chip size and

less than 3 cycles latency [23].

B. DNN Model Structure Protection Mechanisms

DNNCloak includes three schemes to hide the critical hints.

Among these four hints introduced in section III-A, hint 4 can

be concealed by address randomization, the remaining hints

are obfuscated by the DNNCloak schemes.

1) Layer Divider (LD): Considering the challenges

(§III-A) for hiding the hint 1 RAW dependency, the idea

of Layer Divider is to divide one single Conv layer into

multiple smaller sublayers, thereby increasing the total number

of observed layers. For example, Figure 4 (a) shows one Conv

layer with a a∗ b IFM, a k ∗k filter, and a m∗n OFM. Figure

4 (b) shows an example of Layer Divider, the original layer is

divided into two sub-layers. DNNCloak reads half of the input

a∗b/2 as the IFM for the first sub-layer. Then write the results

as the first sub-layer’s OFM and the size is m ∗ n/2. Next,

the second sub-layer reads the other half of the original input

a∗b/2 and also reads the preceding layer’s OFM, and only the

half original input does the multiply-accumulate operations.

Each sub-layer is performed continuously with the same filter

so we can keep the filter on-chip to avoid unnecessary off-chip

memory accesses. Finally, we can get a complete results by

concatenating the results of the two sub-layers.
While we divided the layer into two sub-layers in the

preceding example, for security purposes, the Layer Divider

should randomly divide each layer into different number of

sub-layers. We define a divide rate Rd that represents the

average number of sub-layers that each layer is divided. By

adjusting the Layer Divider’s Rd, we can arbitrarily increase

the number of original layer boundaries. While the increased

Rd causes more frequent division of the original layer and im-

proves security, it introduces extra read and write operations.

As a result, the attacker will observe more layer boundaries

than the actual ones from the RAW dependency.
2) Layer Shrinker (LS): While the Layer Divider scheme

obfuscates the layer sequence, the critical leakage hint 2

remains, which exposes the dimension of each layer through

the memory footprint. We then propose the Layer Shrinker

to address this issue. The main idea of Layer Shrinker is

to reduce the exposed memory footprint size by buffering

a portion of the feature maps on-chip. Figure 5 depicts the

Layer Shrinker organization and shows two different scenarios.

Three components are included within the Layer Shrinker:

the LS-Controller, the LS-Map, and the Threshold Generator.

In addition, we have an R/W Selector and LS-buffer on-chip

for the method process. The LS-Buffer can store OFMs and

directly provide them to the following layer as IFMs, and the

R/W Selector manages the data flow.
Figure 5 (a) shows when the DNN accelerator writes the

OFMs. 1 LS-Controller receives the instructions that indi-

cate the memory address for writing OFMs. And the OFM

instructions could imply the starting memory address a0 and

the OFMs size SOFM . 2 Instead of writing all of the OFMs to

memory, we can buffer a portion of OFMs on-chip. A constant

buffer size Sbuffer may be easily reversed by attackers, so we

hide the actual buffered size, Sbuffer × T , with a random T
generated by the Threshold Generator. 3 Then, LS-Controller

updates the LS-Map, which records the information about

buffered addresses, such as the starting address a0 and the

corresponding T . 4 Lastly, LS-Controller controls the R/W

Selector to buffer a portion of the data (Sbuffer×T) and write

the rest (SOFM − Sbuffer × T) to memory.
Figure 5 (b) shows reading the IFMs. 1 LS-Controller

receives the instructions indicating the memory addresses

needed to be read. 2 Next, LS-Controller check the LS-

92

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Layer Shrinker design illustration.

Map to get the information about a0 and T . So the needed

memory address is start from the a0 + Sbuffer × T with size

SOFM − Sbuffer × T . 3 LS-Controller manages the R/W

Selector to control the data flow, reading from the LS-Buffer

and memory.

3) Layer Obfuscator (LOB): Hint 3 leaks information

through the access intensities between different types of layers.

To obfuscate the different access intensities and hide the ex-

posed layer boundary between the different types of layers, we

propose the Layer Obfuscator. The pooling layers have lower

access intensities compared to the Conv layers, so the idea of

Layer Obfuscator is to add dummy accesses to make the access

intensities the same. Since the pooling layer takes a small part

of DNN execution time, the extra overhead has little effect

to the overall performance. Additionally, we used an address

randomization method that disrupts the initial spatial locality,

rendering the added dummy accesses indistinguishable.

C. DNN Model Weights Protection

After obtaining the model structure, the attacker can con-

tinue to attack the model and reverse the weights by exploiting

the vulnerabilities caused by the conventional zero pruning

technique (§II-B2). As described in section II-C, full memory

encryption is able to protect the model parameters by making

zero and non-zero values indistinguishable to attackers, but

it is costly due to encryption and decryption latency. Partial

encryption can enhance performance, but the improvement

depends on the ratio of partial encryption. If partial encryption

ratio is insufficient for the sake of reducing encryption latency,

the model’s ability to resist retraining attacks will be dimin-

ished. We show our related observations in section IV-C2.

1) Random Permutation Matrix (RPM) Format : To re-

duce the latency caused by memory encryption, we propose

a novel scheme, Random Permutation Matrix (RPM), which

encrypts just a small portion of the data, such as some

metadata, to achieve the same level of protection to the model

as full encryption.

Figure 6 shows an example of using RPM data format. Note

that n0 refers to those non-critical weights with very small

values, also can be regarded as zero. The position of each

element in the matrix is randomly permuted, and a bit map is

added as metadata at the head of the data block. There are two

components in the bit map, the position bits (Bposition) and

the order bits (Border). For example in figure 6, if the matrix

size is 3× 3, such as all filters in VGG16, then the Bposition

should be 9 bits, which indicates the position of the n0. So

in this example, Bposition is 110110101. And the Border is

Fig. 6: Random Permutation Matrix data format.

24 bits (up to 36 bits), which records the original position

and is used to restore the matrix order. So, for 3 × 3 matrix

such as VGG16, the total size of the metadata is less than

5.7B. Generally, to record a permuted m×m matrix, it takes

log2(m×m) bits for each position. So, the increasing size of

the matrix would increase the overhead of both Bposition and

Border. When m = 3, the size ratio of metadata and matrix

data is 0.078; while when m = 11, the ratio is increased to

0.125. Note that most filter size is less than 11×11. Therefore,

the overhead of the metadata is 7.8% to 12.5% in common.

With RPM, we only need to encrypt the metadata Bposition

and Border to achieve the same security and accuracy of full

weights encryption. The possibility of restoring the order of

a m × m matrix is
1

m!
, and that is for only one matrix in

one convolution. Therefore, reordering the permuted filters is

impossible.

Moreover, as discussed, the n0 in figure 6 refers to the non-

critical weights, and can be pruned as zero. So, the more n0,

the less overhead of metadata. Notably, we also do not need

to store n0 in the data block since the metadata indicates the

position of each n0. Hence, if the matrix is 3× 3, the matrix

size would be 72B before permuting as shown in figure 6,

which requires two data blocks to store one matrix. After

random permutation, if there are more than two n0 in the

matrix, then the matrix size is less than 64B even with the

metadata so that only one data block is fetched from memory

each time. Therefore, RPM with pruning can significantly

reduce memory access time.

2) RPM Discussions: We discuss the security of RPM by

comparing it with full encryption and partial encryption in

terms of retraining model accuracy.

Observation 1: RPM can achieve the same security level of full
encryption with much less overhead. We compare RPM with

partial encryption scheme SEALing [32] to show the model’s

ability to resist retraining attacks. We use the same settings as

[32]: using the VGG16 model as an example, and the dataset

is CIFAR-10; assume the retraining dataset contains only 10%

(5000 images) of the original training dataset, and augment the

retraining dataset to 45000 images; we first select the matrix

with the largest sum to encrypt. Then, as shown in figure

7 (a), when the selective encryption ratio is above 50%, the

partial encryption achieves the same security level as the full

encryption; but when the encryption ratio is insufficient, for

93

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

0.7

0.75

0.8

0.85

0.9

0.95

1

Black 90% 80% 70% 60% 50% 40% 30% 20% 10% WhiteR
e-

tr
ai

ne
d

m
od

el
 a

cc
ur

ac
y

Partial encryption ratio

VGG16 with partial encryption VGG16 with RPM

0

0.2

0.4

0.6

0.8

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
od

el
 a

cc
ur

ac
y

RPM pruning ratio

Fig. 7: Observations on Random Permutation Matrix design.

example, when the ratio is 20%, the model can be retrained to

over 85% accuracy. On the other hand, without knowing the

bit map, the model with RPM always has the same security

level as full encryption during retraining tests.

Observation 2: RPM can work with pruning to reduce over-
head without hurting inference accuracy. In our experiments,

we prune the smallest weights to zero in VGG16, and with

different pruning ratios, the model accuracy is shown in figure

7 (b). When 40% of the smallest weights are pruned to zero,

the model accuracy only decreases less than 0.1%; when the

pruning ratio is 50%, the model accuracy decreases 0.2%;

when the pruning ratio is 60% or greater, the model accuracy

degrades rapidly.

In summary, RPM has the same security level as full

encryption for model IP protection. And it provides strong

security against retraining attacks and, under the same re-

training conditions, achieves the same model accuracy as full

encryption or 60% partial encryption, while we only need to

encrypt the bit map, so the encryption ratio is about 10%.

Therefore, RPM reduces the encryption latency significantly;

in addition, RPM can reduce the memory access time since

the non-critical weights can be pruned without leaking any

information. We show the performance results in section VI-B.

V. DNNCLOAK DESIGN AND SECURITY DISCUSSIONS

In this section, we discuss the following design choices and

their impact on defense mechanisms: the choice of divide rate

Rd (§IV-B1); the choice of LS-Buffer size Sbuffer (§IV-B2);

and how DNNCloak can protect against reverse engineering

attacks on the DNN model. Figure 8 illustrates DNNCloak

schemes step-by-step. To start with, Figure 8 (a) shows a

sketch of a basic DNN access pattern as an example. The X-

axis is the trace index which indicates the processing timeline,

and the Y-axis is the memory address space. The first RAW

reveals the layer boundary and also the memory footprint

exposes the feature map size Zout
i and filters size Zf

i (i is

the current layer index) as introduced in section II-B.

Fig. 8: DNNCloak access pattern obfuscation illustration.

a) Layer Divider Divide Rate Discussion: Figure 8 (b)

depicts the access pattern after using the DNNCloak Layer

Divider. The address space is randomized but we preserve the

access pattern of feature maps before the randomization for

illustrative purposes while the address randomization cannot

hide the RAW dependency. In this case, the divide rate Rd = 2.

We divide two DNN layers into four sublayers. Each sublayer

needs to read the preceding sublayer’s OFM, generating more

layer boundaries exposed by RAW dependency, so that the

attacker observes more layers. If we set a larger divide rate,

it would be extremely difficult for the attacker to reverse the

original structure even if the attacker knows the divide rate.

As shown in table I, we use AlexNet as an example, when

Rd = 32, there are 1.28 × 1013 possible DNN structures

for reconstructing the observed layer sequence to the original

sequence. Also, one layer sequence has dozens of possible

dimension structures [10], making obtaining the original model

structure extremely costly for attackers. On the other hand,

with additional sublayers, the training cost increases signif-

icantly and only a few possible structures may achieve a

similar accuracy as the original model, the accuracy of most

structures decreases due to the overfitting issues. For example,

the AlexNet achieves 57% top-1 validation accuracy with the

original structure on CIFAR100 datasets; by dividing more

sublayers, with the same training settings, the model accuracy

decreases significantly, as shown in table I.

b) Layer Shrinker Buffer Size Discussion: In Figure 8

(b), the OFM size Sout
i is still exposed, and also we can still

infer that Sout
0 + Sout

1 = Zout
0 in this example. Figure 8 (c)

enhances the defense with the Layer Shrinker. After buffering

a part of OFM in LS-Buffer, the exposed S′
0
out is less than

Sout
0 (S′

0
out + S′

1
out < Zout

0), so the attacker cannot obtain

the real dimension of each layer preventing the reverse DNN

attack from commencing. In our experiments, we set the LS-

Buffer size to 16KB or 32KB and we expect the LS-Buffer

size will be much smaller than the DNN accelerator’s global

buffer, which commonly ranges between 100KB and 500KB.

Using VGG16 as an example, the size of the feature maps

within a single layer during DNN inference is around 1MB to

6MB; however, because we implement the Layer Divider, the

size of feature maps within each layer will be split by the Rd.

When Rd = 32, the feature maps of each sublayer are about

32KB to 192KB, which means that the LS-Buffer can store a

substantial portion of them and hide the actual dimension.

94

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I: AlexNet with DNNCloak Protection.

Divide rate Possible structures Re-train accuracy
Rd = 0 24 57.30%

Rd = 8 5.53× 108 43.56%

Rd = 16 8.94× 1010 11.56%

Rd = 32 1.28× 1013 0.91%

In sum, DNNCloak increases the exposed number of layer

boundaries, limiting the attacker from getting all possible

attack structures; moreover, the new structures result in lower

accuracy; and DNNCloak hides the exposed dimension of

each layer by buffering a portion of feature maps. Therefore,

DNNCloak can mitigate the reverse DNN attacks effectively.

VI. EVALUATION

A. Experimental Methodology
The evaluation takes three main steps: First, we use Keras

[5], an open-source python library that provides a variety of

DNN models, to run DNN different applications. Keras may

be used to learn about the model structure, such as the layer

sequence, layer type, and dimensions. As mentioned in section

IV-C2, we use CIFAR10 as dataset when we evaluate the

accuracy loss of the re-trained model.
Second, we implement DNN applications in C++, in which

we can customize the layer structure and weight parameters.

All operations of our program run on the local CPU. The

main purpose of this step is to collect the access pattern of

the DNN application. So, when running the C++ program, we

record the addresses and access types of the operations related

to the feature maps and filters. We have four models, VGG16,

VGG19, AlexNet, and LeNet; we collect more than 2 billion

memory accesses trace for each application.
Third, we conduct experiments on the USIMM simulator

[1], and we evaluate the memory cycle time as performance

results. USIMM is a cycle-accurate memory framework that

reads an application trace as input and outputs a memory

cycle. For the simulation, we use DDR4-1866 memory, which

operates at a command rate of 933MHz, and a cycle time of

1.07ns. The memory configuration and timing is referred to

[14]. Besides, we set the LS-Buffer latency as 10 cycles and

the randomizer latency is 3 cycles [23]. The USIMM conducts

trace-driven simulation so we utilize the access pattern trace

generated in the second step as input for our tests.

B. Experimental Results
1) Results of LD and LS: The divide rate Rd and LS-

Buffer size Sbuffer have a direct effect on the results of

Layer Divider and Layer Shrinker. We use four applications

to examine the results with different Rd and Sbuffer. Figure

9 illustrates the memory cycle results from the USIMM

simulation. Each figure shows four different divide rate values,

Rd = 0, 8, 16, 32, respectively. For each Rd, we use three

different LS-Buffer size, Sbuffer = 0, 16, 32KB. With the

increased Rd, DNNCloak can provide higher obfuscation but

has the expense of a long memory cycle. While increasing

the Sbuffer of the LS-Buffer can help reduce memory cycles.

When Rd = 32 and the LS-Buffer size is 32KB, the memory

cycle costs 1.28x, 1.14x, 1.06x and 1.11x more than the

Rd = 0 and no LS-Buffer baseline in four applications.

2) Results of LOB: The Layer Obfuscator introduces extra

dummy accesses in order to obfuscate the access intensities

in different types of layers. As shown in figure 10 (a), we

compare the memory cycle to the Rd = 0 and no LS-Buffer

baseline, we choose Rd = 32 and Sbuffer = 32KB as our

default Layer Divider (LD) and Layer Shrinker (LS) settings.

LeNet only contains two Conv layers and two pooling layers,

so the LOB introduces more extra accesses in percentage

compared to other models. Our results show that, after im-

plementing LOB with LD and LS, the total memory cycle

increases 1.26x compare to the baseline.

3) Results of RPM: We use VGG16 as an example to show

the RPM results with different pruning ratios in figure 10 (b).

We modify the ratio of non-critical numbers by pruning the

smallest value to zero. The left side of the Y-axis shows the

memory cycle, and the right side shows the model accuracy

loss after pruning. The model accuracy depicted by the line

decreases slowly at the point of 0%, 20%, 40%, with only less

than 0.1% accuracy loss; but when pruning 60%, the model

accuracy loss increase to 4%, and after that, the accuracy will

drop rapidly. When we prune more non-critical numbers, more

memory access can be reduced with our RPM. As a result, at

the point 40%, while preserving the model accuracy, VGG16

takes only 0.68x memory cycles compared to the case without

pruning.

4) Overall DNNCloak performance: We demonstrate the

DNNCloak schemes separately in the previous section. We

show the trade-off between Divide Rate Rd and performance,

the influence of LS-Buffer buffer size Sbuffer and the trade-off

between model accuracy and performance. In this section, we

use Rd = 32, Sbuffer = 32KB with LOB and 0.1% accuracy

loss with RPM 0.4 pruning ratio as our default DNNCloak

setting and show the overall performance compared to the

baseline. The baseline is running with no encryption and

no obfuscation. We compare our proposed DNNCloak with

full encryption, partial encryption (with 40% encryption ra-

tio) and DNNCloak without RPM (pruning ratio =0) cases.

The VGG16 and VGG19 use 3×3 matrix in filters, whereas

AlexNet and LeNet mainly use 5×5 matrix filters, so the RPM

performs better for VGG16 and VGG19 since one filter can be

compressed into one data block. Moreover, the LOB decreases

more for LeNet as explained in VI-B2. Therefore, as shown

in figure 10 (c), our default DNNCloak reduces the memory

cycle to 0.73x, 0.69x compared to the baseline for VGG16 and

VGG19, while DNNCloak takes 1.02x, 1.08x more memory

cycles than the baseline for AlexNet and LeNet.

On average, DNNCloak only takes 0.54x, 0.7x and

0.69x compared to full encryption, partial encryption and

DNNCLoak without RPM, which are 1.59x, 1.22x and 1.26x

compared to the baseline; and the memory cycle of our default

DNNCloak is only 0.86x compared to the baseline.

VII. CONCLUSIONS

In this paper, we propose DNNCloak, a lightweight ob-

fuscation scheme to mitigate reverse engineering attacks on

DNN though access pattern side-channels. Our insight is that

95

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

R =0 R =8 R =16 R =32

M
em

or
y

cy
cl

e

Layer Divide Rate

0

6

12

18

24

R =0 R =8 R =16 R =32

M
em

or
y

cy
cl

e

Layer Divide Rate

0

2.5

5

7.5

10

R =0 R =8 R =16 R =32

M
em

or
y

cy
cl

e

Layer Divide Rate

0

0.4

0.8

1.2

1.6

R =0 R =8 R =16 R =32

M
em

or
y

cy
cl

e

Layer Divide Rate

Fig. 9: Results of LD and LS in common DNN applications with different settings.

0
0.3
0.6
0.9
1.2
1.5
1.8

VGG16 VGG19 AlexNet LeNet GMM
em

or
y

cy
cl

e
co

m
pa

re
d

to

th
e

ba
se

li
ne

Full encryption Partial encryption
DNNCloak (RPM ratio=0) DNNCloak (RPM ratio=0.4)

0.0%

1.5%

3.0%

4.5%

0

4

8

12

16

0% 20% 40% 60%

A
cc

ur
ac

y
lo

ss

M
em

or
y

cy
cl

e

Pruning ratio in RPM

VGG16 Accuracy loss

0
0.2
0.4
0.6
0.8

1
1.2
1.4

VGG16 VGG19 AlexNet LeNet GM

M
em

or
y

cy
cl

e
co

m
pa

re
d

to

th
e

ba
se

li
ne

LOB LD+LS LD +LS+LOB

Fig. 10: Results of LOB, RPM and overall performance.

not all access patterns is necessary to be hidden and we

identify the critical leakage hints that may leak the model

structure during DNN reverse engineering attacks. Our design

DNNCloak focus on hide those leakage hints only to achieve

an efficient obfuscation purpose. DNNCloak has three methods

that can obfuscate the original model structure, and also

provides the random permutation matrix scheme to improve

the performance. The experimental results of DNNCloak in-

dicate that DNNCloak costs only 0.86x memory cycle time in

average compared to the original model.

ACKNOWLEDGMENT

We thank the reviewers for their insightful comments.

This research is supported in part by the National Science

Foundation under grant CCF-2029014 and CNS-2152497.

REFERENCES

[1] N. Chatterjee et al. “Usimm: the utah simulated memory module”.
In: University of Utah, Tech. Rep (2012).

[2] Y. Che et al. “Imbalance-aware scheduler for fast and secure ring
oram data retrieval”. In: 2019 IEEE 37th International Conference
on Computer Design (ICCD). IEEE. 2019, pp. 604–612.

[3] Y. Che et al. “Multi-range supported oblivious RAM for efficient
block data retrieval”. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE. 2020.

[4] Y.-H. Chen et al. “Eyeriss: An energy-efficient reconfigurable accel-
erator for deep convolutional neural networks”. In: IEEE journal of
solid-state circuits 52.1 (2016), pp. 127–138.

[5] F. Chollet et al. Keras. https://keras.io. 2015.
[6] C. W. Fletchery et al. “Suppressing the oblivious ram timing channel

while making information leakage and program efficiency trade-offs”.
In: HPCA. 2014.

[7] O. Goldreich et al. “Software protection and simulation on oblivious
RAMs”. In: Journal of the ACM (JACM) (1996).

[8] C. Gongye et al. “Reverse-engineering deep neural networks using
floating-point timing side-channels”. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC). 2020.

[9] X. Hu et al. “Deepsniffer: A dnn model extraction framework based
on learning architectural hints”. In: ASPLOS. 2020.

[10] W. Hua et al. “Reverse engineering convolutional neural net-
works through side-channel information leaks”. In: 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). 2018.

[11] T. Kohno et al. “CWC: A high-performance conventional authenti-
cated encryption mode”. In: International Workshop on Fast Software
Encryption. Springer. 2004, pp. 408–426.

[12] D. Lee et al. “An off-chip attack on hardware enclaves via the memory
bus”. In: 29th {USENIX} Security Symposium. 2020.

[13] J. Li et al. “NeurObfuscator: A Full-stack Obfuscation Tool
to Mitigate Neural Architecture Stealing”. In: arXiv preprint
arXiv:2107.09789 (2021).

[14] S. Li et al. “DRAMsim3: a cycle-accurate, thermal-capable DRAM
simulator”. In: IEEE Computer Architecture Letters (2020).

[15] Y. Liu et al. “Delving into transferable adversarial examples and
black-box attacks”. In: arXiv:1611.02770 (2016).

[16] Y. Liu et al. “Mitigating reverse engineering attacks on deep neural
networks”. In: ISVLSI. 2019.

[17] Y. Liu et al. “GANRED: GAN-based Reverse Engineering of DNNs
via Cache Side-Channel”. In: Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop. 2020.

[18] Y. Long et al. “Understanding membership inferences on well-
generalized learning models”. In: arXiv preprint:1802.04889 (2018).

[19] A. J. Menezes et al. Handbook of applied cryptography. CRC press,
2018.

[20] S. J. Oh et al. “Towards reverse-engineering black-box neural net-
works”. In: Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning. Springer, 2019, pp. 121–144.

[21] A. Parashar et al. “Scnn: An accelerator for compressed-sparse convo-
lutional neural networks”. In: ACM SIGARCH Computer Architecture
News (2017).

[22] M. K. Qureshi. “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping”. In: MICRO. 2018.

[23] M. K. Qureshi et al. “Enhancing lifetime and security of PCM-based
main memory with start-gap wear leveling”. In: MICRO. 2009.

[24] L. Ren et al. “Constants Count: Practical Improvements to Oblivious
{RAM}”. In: {USENIX} Security. 2015.

[25] O. Russakovsky et al. “Imagenet large scale visual recognition chal-
lenge”. In: IJCV (2015).

[26] D. Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: nature (2016).

[27] K. Simonyan et al. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[28] E. Stefanov et al. “Path ORAM: an extremely simple oblivious RAM
protocol”. In: CCS. 2013.

[29] F. Tramèr et al. “Stealing machine learning models via prediction
apis”. In: 25th {USENIX} Security Symposium ({USENIX} Security
16). 2016, pp. 601–618.

[30] W. Xiong et al. “The Microsoft 2017 conversational speech recogni-
tion system”. In: IEEE ICASSP. 2018.

[31] M. Yan et al. “Cache telepathy: Leveraging shared resource attacks to
learn {DNN} architectures”. In: 29th {USENIX} Security Symposium
({USENIX} Security 20). 2020.

[32] P. Zuo et al. “SEALing Neural Network Models in Encrypted Deep
Learning Accelerators”. In: 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE. 2021.

96

Authorized licensed use limited to: MICROSOFT. Downloaded on May 01,2023 at 14:49:57 UTC from IEEE Xplore. Restrictions apply.

