
PS-ORAM: Efficient Crash Consistency Support for
Oblivious RAM on NVM

Gang Liu∗
liug@hnu.edu.cn

College of Computer Science and Electronic
Engineering, Hunan University

Changsha, Hunan, China

Kenli Li†
lkl@hnu.edu.cn

College of Computer Science and Electronic
Engineering, Hunan University

Changsha, Hunan, China

Zheng Xiao
zxiao@hnu.edu.cn

College of Computer Science and Electronic
Engineering, Hunan University

Changsha, Hunan, China

Rujia Wang∗
rwang67@iit.edu

Computer Science Department,
Illinois Institute of Technology

Chicago, Illinois, USA

ABSTRACT
Oblivious RAM (ORAM) is a provable secure primitive to
prevent access pattern leakage on the memory bus. By ran-
domly remapping the data blocks and accessing redundant
blocks, ORAM prevents access pattern leakage through ob-
fuscation. Byte-addressable non-volatile memory (NVM) is
considered as the candidate for main memory due to its bet-
ter scalability, competitive performance, and persistent data
store. While there is much prior work focusing on improv-
ing ORAM’s performance on the conventional DRAM-based
memory system, when the memory technology shifts to
use NVM, ensuring an efficient crash-consistent ORAM is
needed for security, correctness, and performance. Directly
using traditional software-based crash consistency support
for ORAM system is not only expensive but also insecure.
In this work, we study how to persist ORAM construc-

tion with an NVM-based memory system. To support crash
consistency without damaging ORAM system security and
compromising the performance, we propose PS-ORAM. PS-
ORAM consists of a novel ORAM controller design and a set
of ORAM access protocols that support crash consistency.
∗This work was done when Gang Liu was a visiting student at Illinois
Insitute of Technology. Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York City, NY
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527425

We evaluate PS-ORAMwith the system without crash consis-
tency support, non-recursive and recursive PS-ORAM only
incurs 4.29% and 3.65% additional performance overhead.
The results show that PS-ORAM not only supports effective
crash consistency with minimal performance and hardware
overhead but also is friendly to NVM lifetime.

CCS CONCEPTS
• Computer systems organization→ Architectures.

KEYWORDS
Crash consistency, NVM, ORAM, Persistence, Security

ACM Reference Format:
Gang Liu, Kenli Li, Zheng Xiao, and Rujia Wang. 2022. PS-ORAM:
Efficient Crash Consistency Support for Oblivious RAM on NVM.
In Proceedings of The 49th Annual International Symposium on Com-
puter Architecture (ISCA ’22). ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3470496.3527425

1 INTRODUCTION
Protecting the security and privacy of the data and program
running on a shared system is never easy. There is an in-
creasing need for system designers to consider security and
privacy protection in addition to performance. There are a lot
of efforts from the industry and academia designing secure
hardware to give the system a root-of-trust. For example,
TPM [8], SGX [34], XOM [38], Trustzone [44] and SME [35],
process sensitive data through data encryption and integrity
check, or reserve a protected region that cannot be tam-
pered, which effectively prevent adversaries from revealing
the plaintext or compromising the data easily. However, the
protections are still mainly using encryption and integrity
check, which is far from enough. For example, attackers are
able to probe sensitive information from victim applications

188

https://orcid.org/0000-0003-1330-0945
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0003-1144-7599
https://orcid.org/0000-0003-4019-5327
https://doi.org/10.1145/3470496.3527425
https://doi.org/10.1145/3470496.3527425
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3527425&domain=pdf&date_stamp=2022-06-11

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

through various side channels, such as the timing informa-
tion, the power usage and the memory access pattern can be
exploited by malicious adversaries to infer sensitive infor-
mation. Among them, memory access pattern leakage refers
to that the adversaries can utilize the temporal and spatial
information on the memory address bus to correlate the pro-
gram’s control flow graph [72], the searchable encryption
database [31], or even the neural network structure [26, 27].
The cryptographic community proposed Oblivious RAM

(ORAM) [22, 23] to address the memory access pattern leak-
age. The ultimate goal of ORAM is to hide the program access
pattern by adding redundant blocks and periodically reshuf-
fling the data in memory. In this way, the attacker will be
not able to guess whether the program is accessing the same
or a different data, whether the access is a read or a write,
whether we are repeatedly accessing a hot region, etc. The
efficiency of ORAM family has improved significantly in
recent years. Tree-based ORAM, such as Path ORAM [58],
has become one of the mainstream ORAM protocols that
people adopt to use on main memory systems[20, 53] with
trusted processor. There are extensive research works focus
on improving the performance of ORAM on DRAM-based
memory systems [11, 13, 50, 63, 64, 71].

We are seeing the scalability issues of DRAM technology
and are in the transition to emerging non-volatile memory
(NVM) technology. For example, 3dXpoint based Optane
memory [24] has already been released to the public; future
computing systems such as memory-centric computing ar-
chitectures [9, 36] use NVM as their unifiedmemory backend.
Compared to DRAM, NVM provides natural benefits such
as non-volatility, persistency, and high-density. When NVM
is architected as persistent memory, it is crucial to maintain
crash consistency for data [7, 21, 40, 47, 66]. The specific
requirement to address crash consistency is that data (e.g.,
application data, and configuration, metadata) must be recov-
erable even if the system power fails or the system crashes
[33, 43].

On the other hand, NVM based memory system still faces
security challenges like DRAM, such as the information leak-
age on the memory bus through the access patterns. Ap-
plications like collaborative file editing [60] (e.g., Dropbox-
like applications) require both security features that protect
against access pattern leakage and data crash consistency.
Therefore, an NVM-based ORAM system could bring ben-
efits from the two worlds. While some prior works start
to address this issue [6, 12, 14, 46], they either work on a
different threat model[6], or emphasis on write access over-
head [46], or provide a less secure solution [12, 14]. None
of the prior works consider the crash consistency problem
of ORAM when it is being implemented on NVM. We find
that, traditional software-based solutions, such as logging
[17, 62] or copy-on-write mechanism (CoW) [18, 61], can

only handle general data recovery well; however, such ap-
proaches cannot work well with NVM-based secure memory
systems for two reasons(details in Section 2.5). First, software-
based (e.g., logging or CoW) support for crash consistency
mechanisms are inefficient [40, 47]. Second, it may lead to
information leakage and break security guarantee. Recently,
several NVM-based secure memory systems were proposed
with encryption[66] and integrity check [40] support. We
are motivated to revisit the crash consistency problem in the
presence of ORAM construction and protocol, and further
enhance the family of crash-consistent secure NVM systems.
In this work, we study the crash consistency problem

when we implement ORAM protocols with the NVM system
for the first time. By improving the ORAM hardware archi-
tecture and software protocol, we propose an end-to-end PS-
ORAM architecture. PS-ORAM system can persistently store
ORAM-related data in NVM while solving the crash consis-
tency problem without leaking more information. We first
analyze the different components on the ORAM controller to
determine the content that needs synchronous persistency
and data consistency in Section 2. Then, we analyze persis-
tent atomic access and present different case studies that
show what happens if data or other metadata is not persisted
during a crash, and analyze the challenges of the problem
and the system design goals in Section 3. Next, we present
our core design that minimizes the performance overhead
due to the persistent write-back and propose an efficient and
secure write-back scheme in Section 4. Finally, we evaluate
our design in terms of performance, write traffic in Section
5.

2 BACKGROUND AND MOTIVATION
In this section, we first describe the threat model. Second, we
introduce the basics of ORAM and NVM. Then, we discuss
the problems of traditional software-based persistence meth-
ods. Lastly, we describe how ORAM could be implemented
on NVM based system.

2.1 Threat Model
We follow the conventional Trusted Computing Base (TCB)
boundary and assume that the system equips with a secure
and tamper-resistance processor capable of computing with-
out information leakage [48, 50, 58, 71]. Everything on-chip
is considered within the TCB boundary. The off-chip main
memory system is vulnerable to access pattern attacks, such
as physically monitoring the visible signals on the printed
circuit boards (including the motherboard and memory mod-
ules). The address bus, the command bus, and the data bus are
separate from commodity DDR DIMMs in the system. As a
result, the memory controller sends out the address and com-
mand in cleartext. Therefore, the attacks can be done with

189

PS-ORAM: Efficient Crash Consistency Support for Oblivious RAM on NVM ISCA ’22, June 18–22, 2022, New York City, NY

physical access to the bus [26, 37] or through side-channel
analysis [26, 27]. By observing the access patterns such as
access frequency, access type (read or write), and also the
repeatability of accessing the same location, the attacker can
obtain some leaked sensitive information in the program
[31].
In some system settings, part of the main memory sys-

tem can be considered as protected and free from most of
security attacks. For example, with SGX [34], a small re-
gion in the memory called EPC can store pages safely. With
cmov-based operation, the accesses to EPC region can be
considered as oblivious too[1, 53]. In this work, we discuss
implementations under the two assumptions: 1) memory is
fully untrusted; 2) memory has a partially trusted region.
The different assumptions will change how ORAM metadata
can be persisted without leaking information. We discuss
this issue in detail in Section 4.4.

2.2 ORAM Basics
ORAM [22] is a security primitive that can hide the pro-
gram’s access pattern and accordingly eliminate information
leakage. ORAM’s basic idea is to access more blocks than the
actual data we need, and shuffle the address space so that the
access address becomes random. With the ORAM controller
in the secure processor, onememory access from the program
is translated into an ORAM-protected sequence. ORAM pro-
tocol guarantees that any two ORAM access sequences are
computationally indistinguishable. In other words, ORAM
physical access pattern and the original logical access pattern
are independent, which hides the actual data address with
the ORAM obfuscation. Since all ORAM access sequences
are indistinguishable, an attacker cannot extract sensitive
information through the access pattern. Tree-based ORAM
schemes, such as Path ORAM [58] and Ring ORAM [48],
have improved the overall access and reshuffle efficiency
greatly through cryptographic innovations. In this work, we
focus on one of the most representative tree-based ORAMs,
Path ORAM [58], which is the building block of many data
oblivious frameworks, such as Obliviate [2], Taostore [52]
and Zerotrace [53].

2.2.1 Path ORAM Construction. Logically, Path ORAM reor-
ganizes the external memory into a binary tree (we refer to
as the ORAM tree). Upon a memory request from the LLC, a
full path of data blocks is fetched, as shown in Figure 1. The
node in the ORAM tree is called a bucket and can hold𝑍 data
blocks. The height of the ORAM tree is noted as 𝐿. In Figure
1, we show an ORAM tree with 4 levels (𝐿 = 3), and the
bucket size equals to 2 (𝑍 = 2). Each block inside the bucket
contains the encrypted data content and a header that tracks
the program address, path id, and initialization vectors (IV)
used with AES counter mode encryption. Dummy blocks are

path id

ORAM Controller (trusted)

Stash Position Map

From LLC: Req. for addr. a

map(a, path id l)

Addr. Logic
Generate physical address

Memory Controller

DRAM addrs
for path id l

Encryption/Decryption Circuits

(data, label, addr)

Data Encryption/Decryption

Return block to LLC

Level 0

Level 1

Level 2

Level L

 l=6

0 1 2 3 4 5 6 7

ORAM tree: external memory (untrusted)

Block
address

Path
id DataIV2IV1 Block_a

B=64/128 Bytes

Check Stash Access PosMap Load Path Update Stash Evict Path

Step 1 Step 2 Step 3 Step 4 Step 5

time

Z=2 blocks

Figure 1: Path ORAM construction and access protocol

marked with a special program address ⊥. Following [20],
IV1 is used to encrypt the block’s header, while IV2 is used
to encrypt the data content.

On the trusted side, the ORAM controller converts the reg-
ular memory access pattern into ORAM sequences. ORAM
controller mainly includes a position map (PosMap), a stash,
address translation logic, and encryption/decryption circuit.
The PosMap is a lookup table that stores the path id (leaf
label) for a given logical address. The stash is a small buffer
that can hold a small number of data blocks [50] during
the path accesses. The obliviousness of the access pattern is
achieved by randomly remapping the path id of a data block
after each access.

2.2.2 Path ORAM Access Protocol. Next, we discuss the
Path ORAM access protocol. Given a memory request 𝑎 =

(addr, 𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒, 𝑑𝑎𝑡𝑎) for data block 𝑎, the access steps of
𝑂𝑅𝐴𝑀 (𝑎) are as below:

① Check Stash: Check if the block 𝑎 is in the stash. If hit,
fetch the data block to the processor if it is a read, or
update the value if it is a write. If it is a miss, proceed
to the next step.

② Access PosMap: The actual physical memory loca-
tion of block 𝑎 is determined by checking the PosMap
with 𝑎𝑑𝑑𝑟 , and a path id 𝑙 is returned. Then, randomly
generate and update a new path id 𝑙 ′ for the accessed
block 𝑎.

③ Load Path: Load all blocks on path 𝑙 from the ORAM
tree in the memory to the stash, decrypt them and find
the block 𝑎. Then, return the block 𝑎 to the processor
if it’s a read operation, or update the value in the stash
if it’s a write operation.

190

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

④ Update Stash: The path id of the block 𝑎 in the stash
also needs to be updated to 𝑙 ′. In this case, data blocks
in the stash have the most up-to-date value and path
id.

⑤ Evict Path: Evict data in the stash back to memory
on path 𝑙 . The basic rule of eviction is to fill as many
blocks as possible that can be written to path 𝑙 . If the
real blocks are not enough, then pad with dummy
blocks.

2.3 Persistent System with NVM
Emerging NVM technologies, such as Phase-Change Mem-
ory (PCM), Spin-Transfer Torque (STT-RAM), and Memris-
tor, are considered candidates for replacing conventional
technologies such as DRAM and NAND Flash. The Micron
and Intel 3dXpoint-based Optane [29] has shown competi-
tive performance, density and scalability with conventional
technology. When used as main memory, NVMs may pro-
vide persistent memory, where regular store instructions can
be used to make persistent changes to data structures to
keep them safe from crashes or failures. A great number
of research efforts have sought to optimize recoverable or
crash-consistent software (e.g., databases [4, 5], file systems
[15, 55], key-value stores [65, 67]) for NVMs.

On the other hand, NVM systems still suffer from various
security vulnerabilities. To provide data confidentiality, NVM
can utilize lightweight encryption schemes [59, 69]; to detect
and fix integrity issues, adopting Merkle tree and support
its persistent updates have been recently studied [7, 66, 73].
Access pattern leakage is another degree of vulnerability,
and we can add obfuscation with the help of ORAM[46].

2.4 Crash-consistent ORAM Systems
While the main memory could be replaced with NVM, the
on-chip cache and buffers still use volatile memory for better
performance. To ensure the on-chip content can be flushed
back to the NVM, Intel Asynchronous DRAM Refresh (ADR)
[32] provides write pending queues (WPQs) as on-chip per-
sistence domain. In the event of crash, the content in the
WPQs can be persisted to NVM for crash consistency. How-
ever, when there is an ORAM controller sit between theWPQ
and the LLC, we need to consider how to persist the content
in stash and PosMap, as they are not part of the persistence
domain yet.
After several ORAM accesses, a small number of data

blocks will remain in the volatile stash. Such data blocks
could contain the most up-to-date values for a given logical
address. Consider that a failure happens during the execution,
such content in the stash may be lost before they are written
back to the NVM-based ORAM tree. The loss of data in the
stash not only causes a crash consistency problem but also

causes the system to fail to correctly recover lost data blocks.
Similarly, the PosMap contains mapping information that
determines where to locate a block in the mainmemory. Each
data block is given a path id, and it is not only associated
with the block (in the header), but also stores in the PosMap.
As discussed in section 2.2.2, the updates on path id happen
on multiple steps. If the PosMap is volatile, we will not be
able to locate the block of interest in the main memory.
Furthermore, we identify that if the ORAM access needs

to be recoverable, the data buffered in the stash and the
PosMap needs to be persisted atomically. Otherwise, data
inconsistencies could happen when we try to recover from a
crash. We discuss the details of the writeback inconsistencies
and design requirements in the next section.

2.5 Limitations with Software-based Crash
Consistency Support

Although traditional software-based mechanisms can be
used to support crash consistency in general, it is challenging
to apply it to ORAM systems for several reasons. For exam-
ple, the logging-based system [17, 62] maintains a backup
copy of the original data in the log, and the log system redoes
log (store new data) or undoes log (store old data). Logging
consumes much more NVM capacity than the original data,
because each log entry is an original tuple of data and corre-
sponding metadata (e.g., counter value, data address, etc.),
and typically each memory record must be logged [17, 62].
Therefore, directly adopting logging-based schemes to sup-
port the crash consistency of the ORAM system is impracti-
cal: it will cause significant performance loss, slow recovery,
and more memory space overhead. Similarly, a copy-on-
write-based (CoW) system [18, 61] always creates a new
copy of the data to be updated. The disadvantage of CoW
is that the copy operation cost is expensive and cause long
stall time [56]. Since ORAM reads and writes multiple blocks
along the path, if every accessed data block is to be copied,
it will not only cause memory capacity overhead but also
lead to more serious performance loss. Also, additional NVM
bandwidth is required due to the copy of redundant unmod-
ified data blocks [57]. There are abundant dummy blocks
accesses in ORAM system, and backing up these dummy
blocks are useless and causing lifetime reduction of NVM.

Additionally, software-based approaches may cause infor-
mation leakage, which undermines the security protection of
ORAM. For example, if the log is stored without protection,
then the attacker will obtain the related access pattern or
data information by peeking at the log, which will cause
information leakage.

191

PS-ORAM: Efficient Crash Consistency Support for Oblivious RAM on NVM ISCA ’22, June 18–22, 2022, New York City, NY

2.6 Design Challenges and Scope of This
Work

To summarize, it is challenging to implement ORAM on
NVM for three reasons: 1) ORAM is expensive in terms of
memory access overhead; 2) simply replacing the memory
device toNVMcannot provide theORAMaccesseswith crash
consistency; 3) Using software-based approach to support
ORAM crash consistency could lead to huge performance
loss and security problems.

In this work, we focus on enabling persistent ORAM sys-
tem with low overhead, without leaking additional informa-
tion. We believe that to achieve provable secure access pat-
tern obfuscation, ORAM is required, and the cost of ORAM
protocol can be further optimized with the cryptographic
innovation. On the other hand, ensuring crash consistency
for the ORAM system is a critical problem to be solved by
the computer architecture community when the memory
system shifts to NVM technology.

3 DESIGN REQUIREMENTS FOR CRASH
RECOVERABLE ORAM

In this section, we discuss the design requirements for a
recoverable persistent ORAM system. Simply replacing the
main memory technology to NVM cannot guarantee consis-
tent recovery. An ideal case would be that all on-chip buffers
are built from NVM to write to the stash or position map
is persistent immediately. However, as most of the on-chip
components are still considered volatile, we identify a need
to properly handle the volatile data in the ORAM controller
to make the overall ORAM system persistent.

3.1 Consistent Metadata Update
The ORAM accesses not only require updating the data block,
but also the metadata associated with it, including the header
and the position map entry. Here, we define the consistent
metadata update requirement as follows: when there is a
crash happening at any ORAM access step, we can restart the
ORAM access by identifying the target data block location
in the NVM again. In other words, the path id information
and other metadata should not be lost.
Figure 2 demonstrates why consistent metadata update

is desired. In step 2 of an ORAM access, a new path id is
randomly generated for the target block, and the correspond-
ing entry in the PosMap is updated. If the metadata is not
persisted consistently, any crash happens after step 2 would
possibly cause data inconsistency since the path id is changed.
We discuss the details by several case studies in Section 3.3.

3.2 Atomic ORAM Accesses to NVM
Except for the consistent metadata updates, another design
requirement for persistent ORAM is to preserve the access
atomicity. Here, we define the ORAM access atomicity as
follows: The data in the stash and themetadata in the PosMap
should reach persistency in an atomic way. If one of them is
persisted while the other is not, the continued ORAM access
is then out-of-sync.

The reason to have atomic ORAM access is that the meta-
data and the data correspond to the same actual memory
request. On a system failure, if only the content in the stash
is persisted by writing back to the NVM-ORAM tree, the
data content in the NVM-ORAM tree would be overwritten.
In this case, if the PosMap entries are not persisted yet, it
is impossible to locate the new path id where the data is
located. A reverse example is if the metadata in PosMap is
persisted, but the stash data is not, based on the new path
id in PosMap, it is impossible to recover the lost data in the
stash. We also discuss the details of why atomicity is needed
in Section 3.3.

3.3 Case Studies on Crash Recoverability
To summarize, to ensure a recoverable ORAM access after
a crash, we need to ensure the following requirements are
met:

a) Ensure that the accessed data blocks in the NVM-
ORAM tree are not lost during a crash. Data blocks
in the stash that have not been evicted back into the
NVM-ORAM tree can not be lost.

b) The address and path id contained in each block evicted
from stash to NVM-ORAM tree should be consistent
with the metadata stored in the updated (persistent)
PosMap, that is, consistent updates.

c) The updated path ids of the accessed data in the PosMap,
the data in the stash, should all reach the NVM atomi-
cally. Otherwise, there is a mismatch between the data
persistency and metadata persistency.

Figure 2 shows an example that when the requirements
are not met, during a crash, the NVM-based ORAM system
could result in inconsistent status. We assume that 𝑛 ORAM
accesses have been performed, so some data blocks remain
in the stash, e.g., block 𝑏. At the time of the crash, we are per-
forming the (𝑛 + 1)-th ORAM access. At step 2, the PosMap
update is completed, i.e., the block 𝑎 is mapped to a new path
id 𝑙 ′ in PosMap. Then, on step 3-5, we could observe differ-
ent types of inconsistencies due to the path id remapping
process.
Case 1: If the crash occurs in step 3 during the ORAM access,
since the path id of block 𝑎 in PosMap has been updated
(𝑙 → 𝑙 ′), and block 𝑏 has not been written back from the

192

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

the details of the persistent evict path operation in
Section 4.2.2.

Note that the main function of the backup data block
generated in Step 4 of PS-ORAM access is to recover the
data block lost after the crashed system. We analyze how to
recover lost data in Section 4.3.

4.2.2 PS-ORAM eviction in detail. The PS-ORAM eviction is
the main step of writing the data or metadata from volatile
on-chip components back to the persistent NVM system. We
show the substeps of eviction as below.

• Step 5-A (Encrypt evicted blocks) The data blocks
that need to be written back from the stash are identi-
fied first. Because PS-ORAM loads the path 𝑙 in Step
3, the eviction path is also 𝑙 . In Figure 4, the gray and
brown blocks are identified and they will be encrypted.
Note that the backup block (𝑎, 𝑙) is also included as an
eviction candidate. Meanwhile, if the data block’s path
id has been changed, the corresponding dirty meta-
data entries in the temporary PosMap are identified2.
In this example, the entry (𝑐, 𝑙) is identified and will
be encrypted. The block 𝑐 was previously fetched and
path 𝑙 is its new path id.

• Step 5-B (Push data into WPQs) Once the eviction
data blocks and metadata are ready from encryption,
the drainer sends the “start" signal, and the candidate
data blocks and PosMap entries are loaded into the
two corresponding WPQs. Note that the “start" signal
controls both WPQs, as such, the data and metadata
can be load into the persistence domain atomically.

• Step 5-C (Write to NVM)When the data and meta-
data for this eviction round are all in the WPQ, an
“end" signal is sent to both WPQs, meaning that the
ORAM eviction is now atomic. Then the twoWPQs are
flushed back to the NVM-ORAM tree and the PosMap
in the NVM. Note that the storage format of PosMap
depend on the threat model: if the PosMap is kept
in a trusted region in the NVM, then the write back
can be done through direct updates to the table; if the
PosMap is not kept in a trusted NVM region, recur-
sive PosMap is needed to keep the writebacks secure.
Figure 4 shows the two formats of storing PosMap in
memory securely. We discuss the options to implement
the two PosMap WPQ flushing cases in Section 4.4.

Tracking the dirty PosMap entries and only putting them into
the WPQ can greatly reduce the performance overhead, by
removingmost of the redundantmetadatawrites. Meanwhile,
PS-ORAM can still achieve consistent metadata update and

2Writing back all metadata entries of blocks along the path can also achieve
the same design goals, with more write-back overhead. We refer it to the
Naïve-PS-ORAM in our experiments (Section 5.1).

atomic ORAM accesses to NVM. Otherwise, for all 𝑍 · (𝐿 + 1)
blocks on the path, we need to flush𝑍 · (𝐿+1) PosMap entries
as well (refers to Naïve-PS-ORAM in our experiments).

4.2.3 Discussions on persistence domain implementation choices.
We now discuss how PS-ORAM design can adapt to different
persistence domain technologies.
ADR-supported WPQs.We first describe the persistence
domain (WPQs) supported by ADR technology. Ideally, the
sizes of the data block WPQ and PosMap WPQ should be
large enough to hold the real data blocks and metadata of
one full path access, which depend on the ORAM tree size.
Considering the worst case that the all data blocks on the
evicted path are real blocks, the data block WPQ needs to
store 𝑍 · (𝐿 + 1) data blocks, and the PosMap WPQ needs to
store𝑍 ·(𝐿+1) path ids. Considering the ORAMparameters in
Section 5.1, the size of data block WPQ is 96-entry (6144B),
and the size of PosMap WPQ is 96-entry (672B). The WPQ
sizes in the persistence domain is about 2x of the current
size with ADR technology[21, 28, 39, 73], and 33.13% more
than SCA[40]. Note that, the dummy blocks in the ORAM
tree account for half of the total capacity[50, 58]. Therefore,
the number of real blocks on each path fluctuates around
𝑍 · (𝐿 + 1)/2 entries, and the WPQ sizes can be reduced to
half as well.
Limited persistence domain with few WPQ entries. If
theWPQ sizes are too small to hold𝑍 · (𝐿+1) entries, we need
to slightly modify the PS-ORAM eviction process to provide
guaranteed crash consistency by tracking the write orders
of real blocks. To prevent the data in the NVM from being
overwritten by the write-back blocks (cases in the Figure
3), we need to enforce the order of writing blocks back. For
example, in Figure 3, the evicted block 𝑒 overwrites 𝑐 , and
𝑐 overwrites 𝑏. If we only have a small WPQ, then evicted
real blocks should follow such an order: {𝑒 → 𝑐 → 𝑏 → · · · }.
Additional dummy blocks can be inserted in between of real
blocks during the eviction from the WPQ to the NVM.
Extended persistence domain with eADR. The eADR
technology can extend the persistent domain capacity to the
cache hierarchy [30, 54] and reduce the management over-
head for general data persistency. PS-ORAM protocols can
work seamlessly with the eADR technology to support both
crash consistency and security. The WPQs in the ideal case
can easily fit into the eADR supported persistence domain;
alternatively, if the WPQs are still limited, we can temporally
store a portion of blocks on the eviction path in the eADR
domain without losing them.
Note that, simply extending eADR to the entire on-chip

buffers of an ORAM system can lead to security issues during
a crash. For example, the content in the stash could be flushed
directly back to the NVM without following the ORAM pro-
tocol, which leads to information leakage. PS-ORAM is still

195

PS-ORAM: Efficient Crash Consistency Support for Oblivious RAM on NVM ISCA ’22, June 18–22, 2022, New York City, NY

Table 1: Energy cost estimation in case of system
crashes following [3]

Operation Energy Cost
Accessing Data from SRAM 1pJ/Byte
Moving data from L1D to NVM 11.839nJ/Byte
Moving data from L2, stash,
PosMap and WPQs to NVM 11.228nJ/Byte

needed in the presence of eADR. eADR has to support the
entire ORAM controller and provide extra energy to flush
data blocks to gain similar data persistency; however, the
overhead is much higher than PS-ORAM. We then show
the eADR-based ORAM system (eADR-ORAM) overhead in
section 4.2.4.
The impact of WPQ sizes on PS-ORAM performance.
The sizes of WPQs do not affect the performance of pro-
posed PS-ORAM system. The reason is that the WPQs are
not traversed when ORAM is accessed; only the stash and
PosMaps are used to look up a block. Therefore, no read or
write merge may happen in the WPQs. Also, we do not relax
the data persistence model – all modified data blocks are
persisted to NVM in-order without coalescing.

4.2.4 Draining Cost Comparison of PS-ORAM and eADR-
ORAM. eADR draining cost depends on the on-chip cache
and buffer sizes [3]. In this work, the experimental system
configuration is shown in the Table 3. Both the stash and
the (temporary) PosMap in ORAM system are volatile us-
ing SRAM, so the total on-chip cache and buffer size of the
system is 1.0625 + 0.012207 + 192 = 193.07MB. The energy
needed to access data in such SRAM cells is estimated to
be about 1pJ/Byte[3]. Table 1 shows the estimated energy
needed for draining data from different cache levels to NVM.
The numbers are derived from the analysis and discussion
in [3, 42].
Estimated energy comparison. We assume that in the
case of a system crash, eADR-ORAM design needs to pro-
vide enough energy to persist the data in the cache, stash and
(temporary) PosMap to NVM following ORAM protocol. Ta-
ble 2 presents the average energy needed to drain data from
caches (for eADR-ORAM) and from PS-ORAM, based on the
cost model discussed in [3]. This energy consumption does
not calculate the energy consumption of data block encryp-
tion, thus, this assumption produces an optimistic energy
data for eADR-ORAM. For different WPQs size settings (96
and 4-entries) in PS-ORAM, compare the energy consumed
by eADR-ORAM and PS-ORAM when the system crashes
to 2.286J and 76.530𝜇J (2.83𝜇J), respectively. Despite more
realistic estimates, PS-ORAM is 29870x and 807797x more
efficient than eADR-ORAM at different WPQ size settings,
respectively. The energy cost of PS-ORAM is 5 to 6 orders of
magnitude lower than eADR-ORAM.

Estimated draining time.We calculate the data draining
time based on [3, 32]. Table 2 shows the average time re-
quired for drain data for both eADR-ORAM and PS-ORAM
technologies. eADR-ORAM technology takes 4.817𝑚𝑠 . In
contrast, PS-ORAM only takes only 161.134𝑛s and 6.713𝑛s
for different WPQ size settings.

If eADR only supports the energy consumption of flushing
the cache and the stash, but does not support ORAM protocol
persistence (eADR-cache), the required energy consumption
and time are 12.653𝑚J and 26.638𝜇s respectively, which are
about 165x higher than PS-ORAM, as shown in Table 2.

4.3 Data Recovery Consistency Analysis
In this section, we show how PS-ORAM can guarantee a
consistent crash recovery through case studies. We revisit
the three cases in Section 3.3 and analyze why the prior
issues are addressed.
Case 1: In the original Path ORAM, PosMap has been up-
dated before step 3 of each ORAM access. As a result, when
the system crashes during step 3, data blocks stored in the
volatile stash are all lost. Therefore, it will cause a crash con-
sistency problem because the data in the volatile stash is not
persisted in time.

With PS-ORAM architecture, since step 2 is enhanced, the
new path ids of the accessed data blocks are not committed
directly into the PosMap but into the temporary PosMap
(volatile). Therefore, if the PS-ORAM system crashes in step
3, the data in the temporary PosMap, and stash will all be lost
at the same time. During the recovery process, the ORAM
controller can re-read this path id before remapping again
with consistent path id in the PosMap. Therefore, when per-
forming this ORAM access again, the matching PosMap can
still correctly access the data of interest in the original path
from the NVM-ORAM tree.
Case 2: When the system crash occurs at step 4 of the ORAM
access, the scenario is similar to case 1. The difference is
that the ORAM controller has fetched data blocks from a
path to stash, so the data blocks on that path are marked
as invalid. Invalidate data blocks in the NVM-ORAM tree
only happen with some updates on metadata, not the actual
data content, therefore, there is no data loss or mismatch
happening. During the recovery, the ORAM controller only
needs to restore the data that has been marked as invalid
to a valid during the read path. Then, the lost data can be
recovered from the data content region.
Case 3: If the ORAM system crash occurs in step 5 of the
ORAM access or before the next ORAM access, as discussed
before, it may cause inconsistency with partial writebacks
(either data or metadata). As a result, some valid data along

196

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

Table 2: Estimated draining energy and time cost for PS-ORAM vs. eADR.

Technology eADR PS-ORAM (WPQ sizes) Normalized to PS-ORAM (WPQ size=96 / 4)

System eADR-
cache eADR-ORAM 96-𝑒𝑛𝑡𝑟𝑖𝑒𝑠 4-

𝑒𝑛𝑡𝑟𝑖𝑒𝑠
eADR-cache eADR-ORAM PS-ORAM

Energy 12.653𝑚J 2.286J 76.530𝜇J 2.83𝜇J 165× / 4471× 29870× / 807797× 1
Time 26.638𝜇s 4.817𝑚s 161.134𝑛s 6.713𝑛s 165× / 3968× 29894× / 717563× 1

the path are no longer recoverable. Also, lost data in stash
and PosMap scenario is similar as Case 1 and 2.

We create the backup block for accessed block and write it
back to the original path 𝑙 together with other data blocks to
solve the overwritten problem. At the same time of writing
back, PosMap does not update the path id of the target block
that has not been evicted from stash, so the target block’s
original path id is still stored in PosMap (Section 4.2.1 Step
3). If the system crashes at this time, the target blocks that
have not been evicted in the stash are lost, but their backup
blocks can still be found and restored in the NVM-ORAM
tree.

In addition, the added on-chipWPQs can ensure the volatile
data in stash and PosMap enter the persistence domain at
the same time. We do not need to worry about the content
in the stash,and PosMap is gone with a crash.
If the system crashes before the “end" signal is received

by the write pending queue, the original data blocks on the
write-back path still exist and will not be overwritten, so the
data can be recovered. Therefore, with PS-ORAM writeback
operation, the data blocks in stash and PosMap can be con-
sistent, and the data blocks lost after the system crash can
be effectively recovered.

4.4 Implement and Persist Non-recursive
and Recursive PosMap in NVM

PosMap is the key component in ORAM system, as it stores
all mapping information for each memory request. Phan-
tom [41] is the first hardware ORAM prototype built on
FPGA. Since the FPGA memory is relatively small, the Phan-
tom design stores the entire PosMap on the chip. However,
if the ORAM tree size is large, it is hard to store the en-
tire PosMap on-chip. For example, a 4GB ORAM tree with
128bytes and 𝑍 = 4 requires a 93MB PosMap size [50]. To
solve the problem of large PosMap size, recursive ORAM
is proposed [19, 49]. In this way, the PosMap in untrusted
main memory is also stored as a small ORAM tree, while the
on-chip PosMap is a cache for most recently used PosMap
entries. Update the PosMap in the memory requires a small
ORAM tree write path operation.

A more ideal case would be, the PosMap can be stored in a
trusted memory region and any read or write operations to
the PosMap are free from most of security vulnerabilities [1,

2, 53]. In this case, a cmov-based oblivious update is desired
to further obfuscate the access pattern to the PosMap. The
oblivious PosMap update generates fake addresses for all
entries in the PosMap, but only the updated entries will be
actually written.

In this work, we consider both cases of implementing and
accessing PosMap on NVM main memory. We implement
the recursive ORAM and PosMap accesses following [19]
for untrusted memory. Also, we consider the non-recursive
PosMap is kept at a on-chip secure region (similar to [41])
and cmov-based PosMap updates [1, 2, 53] can ensure the
writebacks are still oblivious.

4.5 Apply PS-ORAM to Hybrid Memory
System.

The PS-ORAM workflow, such as persistent eviction and
in-place data backup, can be applied to the hybrid mem-
ory system, when the hybrid memory architecture is clearly
defined. When the memory is organized with multiple tech-
nologies, how to place the data across NVM and DRAM, how
often to persist data from DRAM to NVM, will change the
detailed steps of the design. We reserve this direction as our
future work.

4.6 Security Analysis
ORAM is designed to hide the original program’s memory
access pattern, and its security depends on the independence
of the label sequence, randomness, and the same length of
the access sequence [58]. In PS-ORAM, we modify the step
2,4 and 5 of ORAM access for the add-on persistency. How-
ever, we do not modify the random remapping process and
the redundant sequences of ORAM access. The added compo-
nents and data block backup steps all happen on the trusted
ORAM controller side. Therefore, the modifications do not
leak any access pattern information, or cause stash/ORAM
tree capacity overflow.
Claim 1: Step 2 does not leak additional information. The
backup label operation happens inside of the ORAM con-
troller, which is inside of the trusted boundary.
Claim 2: Step 4 does not leak additional information or cause
overflow.The backup data block is written back to the original
path each time. Therefore, the stash occupancy does not
change after each ORAM access. When the block is written

197

PS-ORAM: Efficient Crash Consistency Support for Oblivious RAM on NVM ISCA ’22, June 18–22, 2022, New York City, NY

back to its new path, the previous copied block is marked
as invalid, so occupied memory space is freed again. As a
result, we do not increase the stash and ORAM tree overflow
probability. A similar use case has been discussed in [70].
Claim 3: Step 5 does not leak information during the write-
backs. The data blocks written back from WPQ remain the
same as the baseline Path ORAM. As for the security of
PosMap, in this work, we consider two situations to protect
PosMap. When the PosMap is stored in an SGX-like trusted
memory region [34], the CMOV-based PosMap update ap-
proach [1, 53] is adopted to ensure the obliviousness. On the
memory address bus, all entries in the PosMap is touched,
but only the ones that require changes are written with new
values. If no trusted memory region is available, we store the
PosMap recursively [19], and the writing back one path id
updates involves a small PosMap ORAM path write. Hence,
PS-ORAM PosMap writeback does not introduce additional
access pattern leakage.
Claim 4: The backup block does not leak information when the
system crashes. After the crash, the system will always try to
access the last path that contains the backup block again and
follows the ORAM protocol. The content of backup block
will only be known in the stash after all blocks are read along
the path.
Claim 5: Reordering due to limited WPQ sizes does not leak
information. With a small WPQ size, we need to enforce the
order of eviction blocks to ensure no overwritten happens.
Such reordering scheme does not leak information, because
dummy blocks are inserted to form a full eviction path, and
the observed write back addresses are the same as original.

To summarize, PS-ORAM architecture and its access pro-
tocol support crash consistency without leaking additional
information on access patterns.

5 EVALUATION
In this section, we first describe the relevant settings for ex-
perimental evaluation. Then, the designs of the experimental
evaluation are described. Finally, the detailed evaluation re-
sults of each experimental design are given.

5.1 Methodology
To evaluate our design, we use the cycle-accurate gem5 sim-
ulator [10] for on-chip components and NVMain 2.0 [45]
for the NVM-based main memory. Table 3 summarizes the
configurations of processor, ORAM controller, and main
memory. We modeled an in-order core at 3.2GHz[63, 64].
Since we focus on the memory system, using in-order or
out-of-order core does not affect the overall memory access
overhead. To minimize the possibility of stash overflow, the
ORAMutilization rate is set to 50%, following previous works
[50, 63, 64, 70, 71]. Therefore, to store 2GB of data, 4GB of

Table 3: Experimental Setting Configurations
(a) On-chip processor and cache

Core type/frequency in-order (1 core), 3.2 GHz
L1 I/D cache 32KB/32KB, 2-way LRU
L1 read/write 2/2-cycle
L2 cache 1MB shared, 8-way LRU
L2 read/write 20/20-cycle

(b) ORAM controller

Data block size 64B
Data ORAM capacity 4GB (𝐿 = 23)
Block slots per bucket (𝑍) 4
Stash size (𝐶) [50] 200-entry
Temporary PosMap size (𝐶𝑡𝑃𝑜𝑠) 96-entry
AES-128 latency 32 cycles [19, 70]

(c) Persistence domain

PCM [16, 45] 4GB, 400MHz ,
𝑡𝑅𝐶𝐷/𝑡𝑊𝑃 /𝑡𝐶𝑊𝐷/𝑡𝑊𝑇𝑅/𝑡𝑅𝑃 /𝑡𝐶𝐶𝐷

=48/60/4/3/1/2
STTRAM[45] 4GB, 400MHz ,

𝑡𝑅𝐶𝐷/𝑡𝑊𝑃 /𝑡𝐶𝑊𝐷/𝑡𝑊𝑇𝑅/𝑡𝑅𝑃 /𝑡𝐶𝐶𝐷

=14/14/10/5/1/2
WPQs 96/4-entry for PosMap WPQ,

96/4-entry for Data WPQ

Table 4: Workloads and their MPKIs

Workload MPKI Workload MPKI
401.bzip2 61.16 464.h264ref 19.74
403.gcc 1.19 471.omnetpp 7.84
429.mcf 4.66 483.xalancbmk 8.99
445.gobmk 29.60 444.namd 8.08
456.hmmer 4.53 453.povray 6.12
458.sjeng 110.99 470.lbm 18.38
462.libquantum 18.27 482.sphinx3 17.51

NVM is required. Without loss of generality, we use phase-
change memory (PCM) [16, 45]. The data block size is set to
64B to match cacheline size [63, 64, 70, 71]. Considering the
worst case, the size of the Temporary PosMap (𝐶𝑡𝑃𝑜𝑠) is set
to 96-entry. We set the data block and PosMap WPQ sizes
to 96-entry and 96-entry, respectively (hardware overhead
details in Section 4.2.3). For other system-related parame-
ters, we use the default values of gem5 and NVMain 2.0. We
use 14 workloads from SPEC 2006 [25] benchmark suite in
the experiments, following the experimental settings of [21].
The MPKIs of each workload are shown in the Table 4. We
use simpoint to collect 5,000,000 samples per trace in each
workload. we assume the overall AES encryption latency
to be 32 cycles [19, 70], and we overlap fetching data with
encryption pad generation [68].

We implement and evaluate four different persistent ORAM
system protocols and compare them with the baseline non-
recursive/recursive ORAM protocols without data persis-
tency, as described below.

• Baseline: It refers to the baseline Path ORAM protocol
implementation with NVM system, without data crash

198

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

consistency. Compare with a non-ORAM system with
NVM main memory, in a single-channel configuration,
the ORAM overhead is from 2x to 24x, and an average
of about 11x. In a 4-channel configuration, the ORAM
overhead is from 1.8x to 21x, with an average overhead
of about 6.5x.

• FullNVM: It refers to a system with on-chip stash and
PosMap, and off-chip memory built with PCM. It does
not support crash-consistent ORAM because the meta-
data and data blocks are not written back atomically.
FullNVM (STT) uses STTRAM to construct on-chip
stash and PosMap, and PCM as the main memory.

• Naïve-PS-ORAM: It refers to the approach of persist-
ing all the accessed data blocks and metadata entries
into the ORAM tree and the trusted NVM each time
an ORAM access is performed.

• PS-ORAM: It refers to the approach of persisting all
the accessed data blocks and dirty metadata entries
into the ORAM tree and the trusted NVM each time
an ORAM access is performed.

• Rcr-Baseline: It refers to the baseline implementation
of the recursive ORAM [19] protocol with NVM. The
metadata in PosMap is written back to untrusted NVM
in a tree organization every time. Similar to the Base-
line without recursion, this scheme does not support
data crash consistency.

• Rcr-PS-ORAM: It refers to recursive version of PS-
ORAM: the metadata in PosMap is written back to
untrusted NVM in a tree organization every access.
Moreover, the dirty blocks in the stash are persisted
for crash recoverability.

5.2 Evaluation Results
In this subsection, we compare the performance and intro-
duced addtional read and write accesses of our proposed
designs (see section 5.1 for details) and reported the normal-
ized results to the Baseline (without data persistency).

5.2.1 System Performance. Figure 5 shows the normalized
execution time in a single channel memory system. Figure
5(a) illustrates the impact of different designs on the perfor-
mance of non-recursive ORAM systems when performing
different workloads. We have the following observations:
a) FullNVM and FullNVM(STT), compared with Base-

line, degrades the performance by about 90.54% and 37.69%
on average, respectively. Because the read/write latency of
STTRAM and PCM is longer than that of SRAM/DRAM, the
performance loss is high.

b) Naïve-PS-ORAM has a slightly better performance than
that of FullNVM design. Compared with the Baseline, the
average performance is reduced by 73.92%, performance im-
proved by 16.63% over FullNVM. This is mainly because the

0
0.5

1
1.5

2
2.5

N
or

m
al

iz
ed

 T
im

e

Benchmarks

Baseline FullNVM FullNVM(STT) Naïve-PS-ORAM PS-ORAM

(a) Performance comparison of different designs in single-channel system.

0

0.5

1

1.5

2

2.5

N
o

r
m

a
li

z
e
d

 T
im

e

Benchmarks

Baseline Rcr-Baseline Rcr-PS-ORAM

(b) Performance comparison of PS-Recursive ORAM in single-channel system.

Figure 5: Performance comparison (𝑍 = 4, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 1,
𝑐𝑜𝑟𝑒 = 1).

traditional non-volatile stash on the chip side is faster than
NVM to read/write. However, since all the data blocks and
metadata entries of one ORAM access need to be persisted,
the data persistency overhead is still high.
c) PS-ORAM, compared with the Baseline, the perfor-

mance loss of PS-ORAM design is only about 4.29%. Com-
pared with FullNVM and Naïve-PS-ORAM, the performance
of PS-ORAM is improved by 86.26% and 69.63%, respectively.
This is because the PS-ORAM design only persists dirty meta-
data entries and the path with accessed data in the write-back
path, reducing unnecessary redundant metadata write oper-
ations.
Figure 5(b) shows the performance of persistent recur-

sive ORAM (Rcr-PS-ORAM) compared to Rcr-Baseline. Ob-
viously, both the Rcr-Baseline and Rcr-PS-ORAM have a
high overhead compared to the non-recursive Baseline. The
average performance loss is about 68.93% and 75.10%, re-
spectively. However, compared with the performance of Rcr-
Baseline, the overhead of Rcr-PS-ORAM is relatively small,
about 3.65%. This is because Rcr-Baseline already support
PosMap persistency with write backs on every ORAM ac-
cess, so Rcr-PS-ORAM only needs to provide additional data
persistence for the data blocks in the stash.

5.2.2 NVM read/write traffic. Figure 6 shows the compari-
son of memory read/write traffic between an ORAM system
without a persistent design and an ORAM system with a
persistent design in a single channel system. From Figure
6(a), we can see that when recursive ORAM executes ORAM
read access, compared to Baseline, the number of read ac-
cesses increases significantly, the average increase was about

199

PS-ORAM: Efficient Crash Consistency Support for Oblivious RAM on NVM ISCA ’22, June 18–22, 2022, New York City, NY

0
0.5
1
1.5
2
2.5

Benchmarks

Baseline FullNVM Naïve-PS-ORAM

PS-ORAM Rcr-Baseline Rcr-PS-ORAM

(a) Compare the number of reads

0
0.5
1
1.5
2
2.5

Benchmarks

Baseline FullNVM Naïve-PS-ORAM

PS-ORAM Rcr-Baseline Rcr-PS-ORAM

(b) Compare the number of writes

Figure 6: Comparison of reads and writes of different designs.

90.28% and 90.54%, respectively. For other evaluated ORAM
systems, read accesses remain unchanged. This is because
recursive ORAM performs additional path access for reading
PosMap entries, resulting in a significant increase in reading
traffic accesses.
For the write traffic, from Figure 6(b), we can see that

the FullNVM design has the largest persistent write traffic
overhead, which is 111.63% more than the Baseline. Since
every ORAM access needs to transfer massive data from the
NVM-ORAM tree to the on-chip NVM stash and PosMap,
the writes to the on-chip NVM is significant.

Other designs have shown similar memory read/write traf-
fic. The PS-ORAM design has the least increment in write
traffic, with an average of about 4.84%. Compared with Full-
NVM and Naïve-PS-ORAM, the write traffic of PS-ORAM
decreased by 106.79% and 96.07%, respectively. As we’ve dis-
cussed, PS-ORAM only write back dirty metadata entries in
the PosMap. Compared with the Naïve-PS-ORAM design,
the PS-ORAM design reduces many redundant data persis-
tency operations of PosMap metadata. Compared with the
Rcr-Baseline and the Rcr-PS-ORAM design, the write traffic
of the Rcr-PS-ORAM design increases, about 15.54% , which
is caused by the fact that the Rcr-PS-ORAM design needs
to back up the accessed target data blocks every time the
execution is a stash eviction.

5.2.3 Multi-Channel Performance. We show how memory
bandwidth may affect the performance of each design. By
increasing the memory channel number from 1 to 4, we ob-
serve better performance for all schemes, as shown in Figure
7. The performance of the PS-ORAM design in the 2-channel
and 4-channel settings is 51.26% and 53.76% higher than the
performance under the single-channel setting, respectively.
The Rcr-PS-ORAM design improved performance by 46.50%
and 55.21% in the 2-channel and 4-channel settings over the
single-channel Settings, respectively. In the 2-channel and 4-
channel settings, the performance of PS-ORAM is lower than
that of Baseline by 4.94% and 5.32%, respectively. Similarly,
the performance of Rcr-PS-ORAM is lower than Rcr-Baseline
by 2.12% and 5.36% respectively.

When the number of memory channels increases to 4, the
performance is not significantly improved over 2-channel
setting. This is because when the number of channels in-
creases, it is hard to allocate the memory accesses to each
channel equally to gain the optimal throughput [63, 64], that
is, the relationship between the number of channels and
performance is not linear.

0
0.5
1
1.5
2
2.5

1-channel 2-channel 4-channel

Figure 7: Performance comparison in multi-channel
systems.

6 CONCLUSIONS
In this paper, we introduce PS-ORAM, to support efficient
crash consistency for general ORAM protocols on NVM. To
the best of our knowledge, this is the first work to solve the
crash consistency problem of the ORAM system. We first
analyze the basic ORAM protocol without data persistency,
and find that if the system crashes when performing ORAM
access, the data cannot be effectively recovered automati-
cally, which eventually leads to the error of ORAM access. To
address the challenge of providing crash consistency support
for ORAM, we propose several viable solutions and the best
protocol with low overhead. The experimental results show
that the proposed data persistency method is not only ap-
plicable to traditional ORAM systems, but also to recursive
ORAM systems. We believe that our work provides holistic
system support for data persistency, crash consistency, and
security for future NVM systems.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers for this work inHPCA
2021 and 2022, MICRO 2021 and ISCA 2022 for their con-
structive feedback.

200

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

REFERENCES
[1] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and

Byoungyoung Lee. 2019. OBFUSCURO: A Commodity Obfuscation
Engine on Intel SGX.. In NDSS.

[2] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and
Byoungyoung Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem
for Intel SGX.. In NDSS.

[3] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James
Tuck, and Yan Solihin. 2021. BBB: Simplifying Persistent Programming
using Battery-Backed Buffers. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 111–124.

[4] Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile
memory database management system. In Proceedings of the 2017 ACM
International Conference on Management of Data. 1753–1758.

[5] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s
talk about storage & recovery methods for non-volatile memory data-
base systems. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 707–722.

[6] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. 2017.
Obfusmem: A low-overhead access obfuscation for trusted memories.
In Proceedings of the 44th Annual International Symposium on Computer
Architecture. 107–119.

[7] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair.
2019. Triad-nvm: Persistency for integrity-protected and encrypted
non-volatile memories. In Proceedings of the 46th International Sympo-
sium on Computer Architecture. 104–115.

[8] Sundeep Bajikar. 2002. Trusted platform module (tpm) based security
on notebook pcs-white paper. Mobile Platforms Group Intel Corporation
1 (2002), 20.

[9] Brad Benton. 2017. CCIX, GEN-Z, OpenCAPI: OVERVIEW & COM-
PARISON. In 13th ANNUAL WORKSHOP 2017.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM
SIGARCH computer architecture news 39, 2 (2011), 1–7.

[11] Dingyuan Cao, Mingzhe Zhang, Hang Lu, Xiaochun Ye, Dongrui Fan,
Yuezhi Che, and Rujia Wang. 2021. Streamline Ring ORAM Accesses
through Spatial and Temporal Optimization. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE,
14–25.

[12] Yuezhi Che, Gang Liu, and Rujia Wang. 2021. Seeds of SEED: Efficient
Access Pattern Obfuscation for Untrusted Hybrid Memory System. In
2021 International Symposium on Secure and Private Execution Environ-
ment Design (SEED). IEEE, 63–69.

[13] Yuezhi Che and Rujia Wang. 2020. Multi-Range Supported Oblivious
RAM for Efficient Block Data Retrieval. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
369–382.

[14] Yuezhi Che, Yuanzhou Yang, Amro Awad, and Rujia Wang. 2020. A
LightweightMemory Access Pattern Obfuscation Framework for NVM.
IEEE Computer Architecture Letters 19, 2 (2020), 163–166.

[15] Jianxi Chen, Qingsong Wei, Cheng Chen, and Lingkun Wu. 2013. FS-
MAC: A file system metadata accelerator with non-volatile memory.
In 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 1–11.

[16] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan
Chang, Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin
Kwon, Jung Sunwoo, et al. 2012. A 20nm 1.8 V 8Gb PRAM with
40MB/s program bandwidth. In 2012 IEEE International Solid-State
Circuits Conference. IEEE, 46–48.

[17] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
making persistent objects fast and safe with next-generation, non-
volatile memories. ACM SIGARCH Computer Architecture News 39, 1
(2011), 105–118.

[18] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. 133–
146.

[19] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk,
and Srinivas Devadas. 2015. Freecursive ORAM: [Nearly] Free Recur-
sion and Integrity Verification for Position-based Oblivious RAM. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. 103–116.

[20] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk,
Emil Stefanov, Dimitrios Serpanos, and Srinivas Devadas. 2015. A low-
latency, low-area hardware oblivious RAM controller. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines. IEEE, 215–222.

[21] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin.
2020. Persist Level Parallelism: Streamlining Integrity Tree Updates for
Secure Persistent Memory. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 14–27.

[22] Oded Goldreich. 1987. Towards a theory of software protection and
simulation by oblivious RAMs. In Proceedings of the nineteenth annual
ACM symposium on Theory of computing. 182–194.

[23] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and
simulation on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996),
431–473.

[24] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. 2017.
Platform storage performance with 3D XPoint technology. Proc. IEEE
105, 9 (2017), 1822–1833.

[25] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1–17.

[26] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji,
Xinfeng Xie, Yufei Ding, Chang Liu, Timothy Sherwood, et al. 2020.
DeepSniffer: A DNN Model Extraction Framework Based on Learning
Architectural Hints. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems. 385–399.

[27] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineer-
ing convolutional neural networks through side-channel information
leaks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[28] Jianming Huang and Yu Hua. 2021. Update the Root of Integrity Tree
in Secure Non-Volatile Memory Systems with Low Overhead. arXiv
preprint arXiv:2103.03502 (2021).

[29] Intel. 2020. Intel Optane Technology: Revolutionizing Memory and
Storage. Retrieved 2022 from https://www.intel.com/content/www/
us/en/architecture-and-technology/intel-optane-technology.html

[30] intel. 2021. eADR: New Opportunities for Persistent Memory
Applications. Retrieved 2022 from https://software.intel.com/content/
www/us/en/develop/articles/eadr-new-opportunities-for-persistent-
memory-applications.html

[31] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012.
Access Pattern disclosure on Searchable Encryption: Ramification,
Attack and Mitigation.. In Ndss, Vol. 20. Citeseer, 12.

[32] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R
Dulloor, et al. 2019. Basic performance measurements of the intel op-
tane DC persistent memory module. arXiv preprint arXiv:1903.05714

201

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html

PS-ORAM: Efficient Crash Consistency Support for Oblivious RAM on NVM ISCA ’22, June 18–22, 2022, New York City, NY

(2019).
[33] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu, Xiaoxing Ma, and

Jian Lu. 2016. Crash consistency validation made easy. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 133–143.

[34] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank
Mckeen. 2016. Intel® software guard extensions: Epid provisioning
and attestation services. White Paper 1 (2016), 1–10.

[35] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory
encryption. White paper (2016).

[36] Kimberly Keeton. 2015. The machine: An architecture for memory-
centric computing. In Workshop on Runtime and Operating Systems for
Supercomputers (ROSS), Vol. 10.

[37] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada
Popa. 2020. An off-chip attack on hardware enclaves via the memory
bus. In 29th {USENIX} Security Symposium ({USENIX} Security 20).

[38] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. 2000. Architectural
support for copy and tamper resistant software. Acm Sigplan Notices
35, 11 (2000), 168–177.

[39] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-
Yuan Michael Wang. 2014. NVM Duet: Unified working memory and
persistent store architecture. ACM SIGARCH Computer Architecture
News 42, 1 (2014), 455–470.

[40] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash
consistency in encrypted non-volatile main memory systems. In 2018
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 310–323.

[41] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste
Asanovic, John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical
oblivious computation in a secure processor. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. 311–
324.

[42] Dhinakaran Pandiyan and Carole-Jean Wu. 2014. Quantifying the
energy cost of data movement for emerging smart phone workloads
onmobile platforms. In 2014 IEEE International Symposium onWorkload
Characterization (IISWC). IEEE, 171–180.

[43] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. 2014. All file systems are not created
equal: On the complexity of crafting crash-consistent applications. In
11th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 14). 433–448.

[44] Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A
comprehensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019),
1–36.

[45] Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-
friendly memory simulator to model (non-) volatile memory systems.
IEEE Computer Architecture Letters 14, 2 (2015), 140–143.

[46] Joydeep Rakshit and Kartik Mohanram. 2018. LEO: Low overhead
encryption ORAM for non-volatile memories. IEEE Computer Archi-
tecture Letters 17, 2 (2018), 100–104.

[47] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutiu. 2015. ThyNVM: Enabling software-transparent
crash consistency in persistent memory systems. In 2015 48th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 672–685.

[48] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten Van Dijk, and Srinivas Devadas. 2015. Constants Count:
Practical Improvements to Oblivious RAM.. In USENIX Security Sym-
posium. 415–430.

[49] Ling Ren, Christopher W Fletcher, Xiangyao Yu, Albert Kwon, Marten
van Dijk, and Srinivas Devadas. 2014. Unified Oblivious-RAM: Im-
proving Recursive ORAM with Locality and Pseudorandomness. IACR
Cryptol. ePrint Arch. 2014 (2014), 205.

[50] Ling Ren, Xiangyao Yu, Christopher W Fletcher, Marten Van Dijk, and
Srinivas Devadas. 2013. Design space exploration and optimization
of path oblivious ram in secure processors. In Proceedings of the 40th
Annual International Symposium on Computer Architecture. 571–582.

[51] AndyM Rudoff. 2016. Deprecating the pcommit instruction. Retrieved
2021 from https://software.intel.com/content/www/us/en/develop/
blogs/deprecate-pcommit-instruction.html

[52] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano
Tessaro. 2016. Taostore: Overcoming asynchronicity in oblivious data
storage. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
198–217.

[53] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. 2017. Zero-
Trace: Oblivious Memory Primitives from Intel SGX. IACR Cryptology
ePrint Archive 2017 (2017), 549.

[54] Steve Scargall. 2020. Programming Persistent Memory: A Comprehensive
Guide for Developers. Springer Nature.

[55] Priya Sehgal, Sourav Basu, Kiran Srinivasan, and Kaladhar Voruganti.
2015. An empirical study of file systems on nvm. In 2015 31st Sympo-
sium on Mass Storage Systems and Technologies (MSST). IEEE, 1–14.

[56] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, et al. 2013. RowClone: fast
and energy-efficient in-DRAM bulk data copy and initialization. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture. 185–197.

[57] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, Todd C Mowry, and Trishul
Chilimbi. 2015. Page overlays: An enhanced virtual memory frame-
work to enable fine-grained memory management. ACM SIGARCH
Computer Architecture News 43, 3S (2015), 79–91.

[58] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an ex-
tremely simple oblivious RAM protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM, 299–
310.

[59] Shivam Swami, Joydeep Rakshit, and Kartik Mohanram. 2016. SE-
CRET: Smartly encrypted energy efficient non-volatile memories. In
Proceedings of the 53rd Annual Design Automation Conference. 1–6.

[60] Shruti Tople, Yaoqi Jia, and Prateek Saxena. 2019. Pro-oram: Practi-
cal read-only oblivious {RAM}. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID} 2019). 197–211.

[61] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
Roy H Campbell, et al. 2011. Consistent and Durable Data Struc-
tures for Non-Volatile Byte-Addressable Memory.. In FAST, Vol. 11.
61–75.

[62] Haris Volos, Andres Jaan Tack, andMichael M Swift. 2011. Mnemosyne:
Lightweight persistent memory. ACM SIGARCH Computer Architecture
News 39, 1 (2011), 91–104.

[63] Rujia Wang, Youtao Zhang, and Jun Yang. 2017. Cooperative path-
oram for effective memory bandwidth sharing in server settings. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 325–336.

[64] RujiaWang, Youtao Zhang, and Jun Yang. 2018. D-oram: Path-oram del-
egation for low execution interference on cloud servers with untrusted
memory. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 416–427.

[65] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack,
Zili Shao, and Song Jiang. 2016. Nvmcached: An nvm-based key-value

202

https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html

ISCA ’22, June 18–22, 2022, New York City, NY Gang Liu, et al.

cache. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on
Systems. 1–7.

[66] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and Jiwu Shu. 2019.
No compromises: Secure NVMwith crash consistency, write-efficiency
and high-performance. In 2019 56th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[67] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing consistency cost
for NVM-based single level systems. In 13th {USENIX} Conference on
File and Storage Technologies ({FAST} 15). 167–181.

[68] M. Ye, C. Hughes, and A. Awad. 2018. Osiris: A Low-Cost Mecha-
nism to Enable Restoration of Secure Non-Volatile Memories. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 403–415. https://doi.org/10.1109/MICRO.2018.00040

[69] Vinson Young, Prashant J Nair, and Moinuddin K Qureshi. 2015.
DEUCE: Write-efficient encryption for non-volatile memories. ACM
SIGARCH Computer Architecture News 43, 1 (2015), 33–44.

[70] Xian Zhang, Guangyu Sun, Peichen Xie, Chao Zhang, Yannan Liu,
Lingxiao Wei, Qiang Xu, and Chun Jason Xue. 2018. Shadow block:
accelerating ORAM accesses with data duplication. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 961–973.

[71] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao
Wang, Yiran Chen, and Jia Di. 2015. Fork path: improving efficiency
of oram by removing redundant memory accesses. In 2015 48th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 102–114.

[72] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. 2004. HIDE: an
infrastructure for efficiently protecting information leakage on the
address bus. ACM SIGOPS Operating Systems Review 38, 5 (2004),
72–84.

[73] Pengfei Zuo, Yu Hua, and Yuan Xie. 2019. SuperMem: Enabling
application-transparent secure persistent memory with low overheads.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 479–492.

203

https://doi.org/10.1109/MICRO.2018.00040

	Abstract
	1 Introduction
	2 Background And Motivation
	2.1 Threat Model
	2.2 ORAM Basics
	2.3 Persistent System with NVM
	2.4 Crash-consistent ORAM Systems
	2.5 Limitations with Software-based Crash Consistency Support
	2.6 Design Challenges and Scope of This Work

	3 Design Requirements for Crash Recoverable ORAM
	3.1 Consistent Metadata Update
	3.2 Atomic ORAM Accesses to NVM
	3.3 Case Studies on Crash Recoverability

	4 The Design of Crash Consistency ORAM
	4.1 PS-ORAM Architecture Overview
	4.2 PS-ORAM Workflow
	4.3 Data Recovery Consistency Analysis
	4.4 Implement and Persist Non-recursive and Recursive PosMap in NVM
	4.5 Apply PS-ORAM to Hybrid Memory System.
	4.6 Security Analysis

	5 Evaluation
	5.1 Methodology
	5.2 Evaluation Results

	6 Conclusions
	Acknowledgments
	References

