
Future Generation Computer Systems 140 (2023) 104–116

K

R
R
A
A

t
d
i
i
a
s
p
c

q
i
e
T
n
t
t
a
b

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

EdgeVPN: Self-organizing layer-2 virtual edge networks
ensworth Subratie, Saumitra Aditya, Renato J. Figueiredo ∗

Advanced Computing and Information Systems (ACIS) Lab, Electrical and Computer Engineering (ECE) Department, University of Florida, 968 Center
Drive, Gainesville, 32611, FL, USA

a r t i c l e i n f o

Article history:
eceived 12 May 2022
eceived in revised form 27 August 2022
ccepted 6 October 2022
vailable online 14 October 2022

MSC:
68M10
68M14

Keywords:
Edge computing
Fog computing
Virtualization
Overlay networks
Peer-to-peer
Software-defined networks

a b s t r a c t

The advent of virtualization and cloud computing has fundamentally changed how distributed appli-
cations and services are deployed and managed. With the proliferation of IoT and mobile devices,
virtualized systems akin to those offered by cloud providers are increasingly needed geographically
near the network’s edge to perform processing tasks in proximity to the data sources and sinks.
Latency-sensitive, bandwidth-intensive applications can be decomposed into workflows that leverage
resources at the edge — a model referred to as fog computing. Not only is performance important,
but a trustworthy network is fundamental to guaranteeing privacy and integrity at the network layer.
This paper describes Bounded Flood, a novel technique that enables virtual private Ethernet networks
that span edge and cloud resources — including those constrained by NAT and firewall middleboxes.
Bounded Flood builds upon a scalable structured peer-to-peer overlay, and is novel in how it integrates
overlay tunnels with SDN software switches to create a virtual network with dynamic membership —
supporting unmodified Ethernet/IP stacks to facilitate the deployment of edge applications. Bounded
Flood has been implemented as the core of the EdgeVPN open-source virtual private network software
system for edge computing. Experiments with the software demonstrate its functionality and scalability
— one of which includes Kubernetes with Flannel across Raspberry Pi 4 edge devices behind different
NATs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We are on the cusp of a new era of smart devices, the In-
ernet of Things, and smart spaces [1]. These ideas herald a
egree of social and technological change that will have profound
mpacts on the way humans interact with technology, includ-
ng cyber–physical systems that underscore the sense-analyze-
ctuate model [2], and pervasive computing [3,4]. The generalized
ense-analyze-actuate model is widely applicable to various as-
ects of everyday life, including farming, autonomous vehicles,
ommerce, and healthcare.
Emerging prototypes of these applications already exhibit re-

uirements that are difficult to meet using existing cloud comput-
ng models [5]. Alternative approaches being investigated include
dge, multi-access edge, cloudlet, mist, and fog computing [6].
hese leverage lightweight data centers distributed across the
etwork’s edge as processing nodes to bring compute and short-
erm storage closer to the data sources and sinks. This eliminates
he latency and throughput penalties incurred from moving data
cross large geographic distances and through high contention,
andwidth-limited links. However, it introduces an operation and

∗ Corresponding author.
E-mail address: renatof@ufl.edu (R.J. Figueiredo).
ttps://doi.org/10.1016/j.future.2022.10.007
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
management problem: it is necessary to interconnect all widely
distributed components to create a virtualized computing envi-
ronment. Unfortunately, software and methodologies designed
for the data center are typically poorly suited for fog computing
operations along the Internet’s edge due to constraints of the
Internet Protocol (IP).

The IPv4 protocol was never designed for the scale and com-
plexity of the modern Internet, and IPv6 has not yet seen wide de-
ployment, leaving most of the Internet still operating on IPv4 [7,
8]. A lack of public IPv4 addresses has been partially mitigated by
Network Address Translators (NAT); however, these hinder peer
communication as NATed devices do not have an address that is
routable over the public Internet. Furthermore, the lack of built-in
security and privacy in the IPv4 protocol means application-level
or transport-level mechanisms must be employed. While within
cloud computing data centers nodes can communicate without
the presence of NATs, edge computing applications that require
devices to communicate across different private networks must
deal with NAT traversal.

Network virtualization stands at a unique vantage point to
address these challenges. While existing Virtual Private Networks
(VPNs) can mitigate hurdles such as endpoint addressing and se-
cure communication, current VPN systems that use cloud-hosted
routers run counter to the key edge computing goal of pro-

cessing near data. In particular, as future IoT applications are

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2022.10.007
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.10.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:renatof@ufl.edu
https://doi.org/10.1016/j.future.2022.10.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

e
t
g
t
f
o
t
v
n
p

t
p
W
t
w
f
m
d
f
m
s
m
n
v
i
d

t
i
f
p
l
f
a
u
p
u
a
i
t
w
n
m
s
E

d
w
a
t

o
s

(
(

p
(
r
m
c

i

d
r
t
s
t
c

2

t
p
p
o
f
d
c

2

t
n
b
b
d
p
t
s
s
l
a
t
p
A
i
I
t
r
h
i
s
a
o
d
t

b
t
(
t
m

nvisioned to leverage geo-distributed, multi-edge clusters [9],
here is a need for direct edge-to-edge communication among
eographically-close edge data centers to support flexible orches-
ration. However, traditional tunneling-based VPNs lack support
or NAT traversal, while MPLS-based VPNs require configuration
f backbone equipment [10]. This need motivates a scalable sys-
em that supports dynamic membership across multiple sites,
irtualizes addressable endpoints to support existing software,
atively supports peer-to-peer communication behind NATs, and
rovides secure communications.
Edge networks [11], as used in the recent IoT context, refer to

he local networks that connect IoT devices (such as Wi-Fi access
oints and gateways) and exclude the IoT devices themselves.
hile Software-Defined Networking (SDN) provides a founda-

ion, current SDN-based approaches employed in data center net-
ork architecture and administration [12,13] are not well suited

or building and managing dynamic edge networks connecting
ultiple providers. Challenges arise from: (1) the geographic
istances over which equipment must be deployed and the ef-
ort to physically access these locations; (2) the heterogeneous
ix of components and configuration; (3) networks that must
pan multiple administrative control domains; and (4) dynamic
embership than can often be short-lived. New approaches are
ecessary to address these issues, leading to the observation that
irtualized networks are positioned to play an important role
n the orchestration and communication among geographically
istributed containerized applications [14–18].
The main contribution of this paper is the design, implementa-

ion, and experimental evaluation of a system that is novel in how
t supports structured peer-to-peer (P2P) control and data plane
or software-defined virtual private networking (VPN). While
revious work has described tradeoffs and conceptual choices
eading to the P2P VPN design [19], this paper presents for the
irst time a detailed discussion of the underlying mechanisms
nd protocols supporting scalable layer-2 Ethernet broadcast and
nicast and a comprehensive experimental evaluation of the
erformance of an open-source implementation that supports
nmodified middleware and applications, specifically for edge
nd fog computing. The Bounded Flood (BF) technique described
n this paper enables scalable VPNs with an overlay topology
hat supports heterogeneous node capabilities and configuration
hile providing private edge-to-edge, peer-to-peer (P2P) tun-
els among members behind NATs. Furthermore, BF supports
ultiple networks with dynamic membership and decentralized,
elf-configuring forwarding rules on standard SDN switches for
thernet broadcast and unicast.
This paper presents the novel design of Bounded Flood and

escribes its implementation in the open-source EdgeVPN soft-
are [20]. The implementation is used to qualitatively validate
nd quantitatively assess the functional requirements of the sys-
em, specified across the following seven broad categories:

(F1) Decentralization: (a) Each node acts independently of the
thers with respect to network processing, such that (b) layer-2
witching is fully distributed.
(F2) Scalability: (a) BF scales as network size increases, and

b) there are bounds on switching hops and maintenance cost
adding/removing a node) relative to network size.

(F3) Availability: (a) After topology changes, a path of bounded
length between two nodes must eventually be found if one exists.
(b) The protocol must support arbitrary arrival and departure of
nodes, where (c) link creation/trimming does not cause overlay-
wide communication interruption. (d) All overlay links are avail-
able for use and nodes can create and utilize direct links as
needed. (e) Existing unicast sessions should proceed unaffected
to the extent allowed by underlying physical connectivity.

(F4) Fault Tolerance: (a) The system must tolerate a known
degree of failure within the overlay without creating partitioned
105
networks. (b) Beyond this limit, it must remain operable within
individual partitions.

(F5) Resilience: (a) The system must autonomously repair a
partitioned overlay and resume overlay-wide functionality when
inter-partition links are restored.

(F6) Flexibility: (a) The system must provide multiple inde-
endent Ethernet broadcast domains with no forwarding loops.
b) Applications must have flexibility in how they assign and
elocate layer-3 virtual IP addresses. (c) Functional parameters
ust be configurable for operational tuning, and nodes can be
onfigured independently.
(F7) Simplicity: (a) The system design must be practical to

mplement and (b) require simple operational configuration.
The rest of this paper is organized as follows. Section 2 intro-

uces technologies that are foundational to this work and surveys
elated works. Section 3 details the design of Bounded Flood and
he implementation in EdgeVPN, while Section 4 describes the ba-
is for its functional and qualitative evaluation. Section 5 presents
he experimental findings and interprets the results. Section 6
onsiders future work, and presents concluding remarks.

. Background

While there is an extensive literature and implemented sys-
ems on overlay networks, SDNs, and virtual networks, the ap-
roach described in this paper is novel. It is the first system to
rovide self-assembling virtual private networks built on a P2P
verlay with scalable, software-defined and self-organizing flows
or Ethernet broadcast/unicast across decentralized SDN switches,
elivering virtual networking across devices in private networks
onstrained by NATs.

.1. Ethernet, SDN, and network virtualization

The link layer (layer 2), e.g., Ethernet [21], is concerned with
he point-to-point transmission of frames between devices con-
ected by a link. Multiple devices can be connected to a network
ridge and a switched network fabric to enable communication
etween any pair of endpoint devices. Hosted devices or leaf
evices are differentiated from bridges or switches in that they
erform no switching functionality. Each leaf or bridge device
hat participates in the same Ethernet namespace is also in the
ame broadcast domain. Ethernet has no support for loops, and
pecialized procedures must be implemented to protect against
ayer 2 broadcast storms. One approach is to design a network
rchitecture that is loop-free, such as a hierarchical topology. In
he absence of a loop-free topology, techniques must implement
rotocols to avoid loops that may occur naturally in a fabric.
simple and widely used approach that can be implemented

n the data plane is the Spanning Tree Protocol (STP) [22,23].
n STP, all the bridges in the domain agree on a root bridge
hat becomes the central coordinator in identifying and disabling
edundant links until a spanning tree remains. This approach,
owever, has several drawbacks: domain-wide communication
s interrupted each time a bridge is added or removed as the
panning tree must be recalculated; multiple links are disabled
nd left idle; contention for the existing links is increased, and the
verall throughput of the fabric is reduced. Furthermore, these
rawbacks are exacerbated in dynamic, distributed environments
hat are found in fog and edge computing.

There are other approaches [24] that implement software-
ased switching based on expectations of the topology. Critical to
he feasibility of such approaches is Software Defined Networking
SDN), which separates the switch into two components, the con-
rol and data planes. The data plane is concerned with efficiently
oving network frames across links, while the control plane is



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

i
s
D
c
a
S
t

c
s
p

i
F
b
i
t
c
v
a
p
c
t
c
t
t
t

2

v
m
r
c
a
h
a
s
s
s
a
s
—
n
(
c
e
o

t
3
t
l
a
o
m

2

o
t
s
t

mplemented in software using APIs, libraries, and frameworks
uch as OpenFlow [12], Ryu [25], and Open vSwitch. Software-
efined WANs (SD-WAN [26]) is an approach to describe and
ontrol wide-area networks with monitoring, traffic engineering,
nd QoS guarantees. While our work is related in that it also uses
DN switches for wide-area networks, a key difference is that in
hese systems there is a (logically) centralized SDN controller typ-
ically under a single administrative domain, while in EdgeVPN, SDN
ontrollers are decentralized along with the data plane, allowing the
ystem to scale as nodes join the overlay and leading to no single
oint of failure in the control plane.
Virtualizing a communication network by protocol tunnel-

ng is widely used as it is both powerful and flexible. Network
unction Virtualization (NFV) [27] and SDN enable the means
y which networks can be provisioned and operated entirely
n software. Virtual networks are now widely used to connect
enants within and across data centers — in particular, when
ontainer orchestration frameworks such as Kubernetes integrate
irtual networks to create a fully virtualized infrastructure. The
pproach proposed in this paper aims to support containerized
latforms to be deployed, unmodified, across multiple edge and
loud providers, and is novel in how it provides seamless connec-
ivity at the virtual network’s Ethernet layer despite connectivity
onstraints due to the asymmetry introduced by NATs/firewalls at
he physical Internet layer. This is a key difference with respect
o traditional tunneling-based VPNs that lack support for NAT
raversal between sites [10].

.2. Overlay and P2P networks

Overlay networks are application-level implementations of
alue-added network services built on existing underlying com-
unication infrastructure. They provide functionalities such as

esilient routing [28], distributed data structures [29], and multi-
ast [30]. Exploiting the properties of how nodes in an overlay
re arranged and interrelated can yield beneficial results. This
as been shown in the study of distributed hash tables (DHT)
nd structured P2P systems [29,31–33]. Structured P2P overlays
uch as Chord [29], Kademlia [34] and Symphony [33] have been
hown to be resilient, scalable, and to work well for large and
mall networks alike — even when participants independently
rrive and depart at arbitrary intervals. In this work, we leverage
tructured overlays for a different purpose, and in a novel way
as a fabric for virtual networking. In the virtualized overlay

etwork approach of this paper, SDN switches are the nodes
vertices) in the overlay, and Internet tunnels are the links (edges)
onnecting among nodes. Overlays can extend from cloud to
dge, enabling existing methodologies and utilities to be used for
rchestrating IoT containerized applications and services.
While overlay networks have been used through interfaces

hat include virtual network devices at layer-2 or layer-3 [35,
6], IP forwarding proxies [28], ‘‘convergence’’ layer below the
ransport stack [37], or ‘‘smart sockets’’ [38] at the application
ayer, this paper presents a novel approach where overlay links
re initiated and terminated at switch ports of a distributed fabric
f SDN switches organized as a P2P overlay and where endpoints
ay have private, non-routable Internet addresses.

.3. Virtualized infrastructure

The Container Network Interface (CNI) for Kubernetes is a set
f specifications and associated libraries for developing plugins
hat configure network interfaces in Linux containers. The CNI
pecification covers the network connectivity of containers and
he deallocation of resources when a container is terminated;
106
it is supported by Flannel [16], Calico [17], WeaveNet [18], Ro-
mana [39], and NSX [40]. As outlined below, CNI solutions vary in
sophistication and the number of supported virtualization levels.
However, they all assume that cluster nodes are routable — an
assumption that breaks when edge computing nodes are NATed.

Flannel limits the scope of its functionality to a layer 3 IPv4
network between multiple nodes in a cluster, giving an IP subnet
to each host for use with container runtimes. Project Calico is
a network security solution that virtualizes the IP layer and
attempts to avoid tunneling when workload endpoints are ad-
dressable. Weaveworks WeaveNet uses VxLAN encapsulation to
virtualize a layer 2 network and forwards traffic between nodes
in a mesh network. Weave peers communicate their knowledge
of the topology so that all peers learn about the entire topology.
Communication between peers occurs over TCP links using a
spanning-tree-based broadcast with neighbor gossip.

Romana Cloud Native Networks uses layer 3 network tech-
niques to build micro-segmented, cloud-native networks without
a virtual network overlay. Micro-segmentation is a method of
creating secure zones in data centers and cloud deployments by
logically dividing the data center into distinct security segments
down to the individual workload level, and then defining security
controls and delivering services for each unique segment.

VMware NSX also provides network and security virtual-
ization using micro-segmentation. Additionally, NSX provides
layers 2–4 (including switching, routing, load balancing, micro-
segmentation, and distributed firewalling) networking and secu-
rity virtualization platform by running these network layers’ stack
in software, decoupled from underlying physical hardware.

Midonet [41] provides virtualized layers 2–4 networking with
distributed layer 2 switching and layer 3 routing, in addition to
distributed load balancing and firewall services. Midonet uses
VxLAN for its layer 2 networking and supports integration with
VxGW (VXLAN Gateway) and hardware VTEP (VXLAN Tunnel End
Point) as specified in [42].

IBM Dove [43] (and its successor SDN VE) is an SDN-based
network virtualization solution built around the concept of cen-
trally controlled, platform terminated overlays and allows the
creation of multiple, isolated, and dynamic virtual networks over
shared physical infrastructure. It implements a proprietary NFV
switch as the datapath, which virtualizes both layers 2 and 3.
The system is managed from a centralized console that configures
each virtual network, and controls and disseminates policies to
the virtual switches. The administrator uses an intent-based mod-
eling abstraction for specifying the network as a policy governed
service and thus expressing the functionality of the desired virtual
network.

Google Andromeda [44] is the network virtualization environ-
ment for the Google Cloud Platform. It is a multi-component,
distributed system, using a hierarchical architecture that provides
layers 2–4 virtualization with features such as switching, routing,
monitoring, and firewall protection. To support throughput and
latency similar to what is available from the underlying hardware,
Andromeda uses a data plane that combines a set of user-space
packet processing paths to handle specialized workloads. The
Andromeda control plane is designed around a global hierarchy,
where every cluster runs a separate control stack for isolation.
It maintains information about where every VM in the network
currently runs, and through a hierarchy of controllers, selected
subsets of the controller state are installed at individual servers.

Zerotier [45] is developed as a global-scale VPN with SDN
management capabilities. It is functionally similar to EdgeVPN but
with distinct technical differences. Zerotier’s architecture imple-
ments two separate software layers, VL1 and VL2. The VL1 layer
is responsible for virtual link management, maintenance of the
DNS-like topology, and packet transport. A key difference from



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116
Fig. 1. System Overview. The EdgeVPN overlay consists of nodes identified by unique IDs and organized in a structured P2P topology based on Symphony. Node Nx
has a successor link s1 to node Ny , and a long-distance link k1 to node Nz ; an on-demand link o1 is being established in this example, in response to sustained
communication between Nx and Nz . The overlay controller maintains a local view of the node’s links – each is a P2P tunnel that terminates to a virtual Ethernet
device – and is connected to a local Open vSwitch (OVS) switch port. The SDN controller coordinates with the overlay controller to craft Bounded Flood FRB messages
upon broadcast requests, which are encapsulated, encrypted, and sent over P2P tunnels.
EdgeVPN is topology: ZeroTier uses twelve globally maintained
root servers in the V1 layer(with support for user-added sub-
root servers), while in EdgeVPN there are no roots but rather
a structured P2P ring. Each root node tracks its sub-nodes and
uses this information for node discovery and establishing peer
connections. Requests are propagated up the hierarchy from an
endpoint to the nearest root node until the target is known and
can be forwarded along the appropriate path. Root nodes use
this information to provide endpoint hints that can be used for
NAT traversal and building peer links. When NAT traversal is
impossible, root nodes can act as relay hosts. V1 connections
are cryptographically secured with end-to-end encryption, and
each node is uniquely identified on VL1 by a 40-bit (10 hex
digit) ZeroTier address. Additionally, ZeroTier virtual network is
managed by a single network controller, whereas in EdgeVPN the
SDN control is fully decentralized. Finally, a third major difference
is that Zerotier implements its own SSL-like capabilities for secure
transmissions and its own NAT traversal, while EdgeVPN uses
standards (SSL, STUN, and TURN).

SoftEther [46] is a multi-protocol VPN that tunnels Ethernet
over HTTPS (SoftEther protocol), L2TP over IPSec, PPP over HTTPS
(Microsoft SSTP), and IP over UDP (OpenVPN). SoftEther imple-
ments roles for VPN clients and bridges, where clients connect to
bridges, and bridges can be connected to create ad-hoc structures.
The UDP mode of SoftEther VPN supports NAT traversal. SoftEther
provides compatibility with many traditional VPNs but does not
support automatic link management, dynamic membership, or
network fabric (network topology with cycles).

In summary, while several virtualization solutions exist (e.g.
Calico, Flannel), many of them only work if all nodes in a cluster
are routable, i.e. in the same network address space (such as
within a cloud data center), or across the Internet (if all nodes
have public IP addresses). Additionally, these related solutions
do not support dynamic membership, and they do not apply
to the environments that this paper focuses on – multi-edge
deployments – and therefore, we do not perform a direct com-
parison in the evaluations. Nonetheless, we demonstrate that,
while CNIs such as Flannel do not work natively when nodes
are NATed, they do work, unmodified, on top of EdgeVPN (Sec-
tion 4). In other words, compared to these related works, the
techniques described in this paper are different in a fundamen-
tal way to cater to edge computing use cases. Bounded Flood
works in a decentralized fashion using a structured P2P over-
lay topology coupled to a decentralized set of SDN controllers,
107
and as a system, EdgeVPN is unique in how it integrates de-
centralized control and a datapath that recovers connectivity
across NATed devices using standard NAT traversal and security
protocols (STUN, TURN, SSL), thereby enabling existing software
(including Kubernetes with Flannel) to work unmodified both
edge-to-cloud and edge-to-edge.

3. Design

The goal of Bounded Flood is to deliver scalable layer 2 for-
warding for dynamic edge and cloud network environments
where the peer nodes act as software-defined bridges. Bounded
Flood has been implemented in a virtual network software pack-
age, which integrates a structured P2P topology and a decentral-
ized SDN-enabled layer-2 switching fabric. Each BF node runs
two major modules (Fig. 1): (1) the Overlay Controller is solely
focused on overlay creation and maintenance, while (2) the
SDN Controller programs the corresponding switching rules. Each
node or peer runs the same software with the same functional be-
havior, and independently maintains its instances of the Overlay
and SDN controllers. While there are no centralized components
for overlay management and SDN-programmed switching, it uses
a messaging service (XMPP [47] for peer authentication and mes-
saging, and STUN/TURN [48,49] servers for endpoint discovery
and tunnel bootstrapping.

3.1. Overlay controller

The Overlay Controller’s topology module builds a Symphony
(1-D Kleinberg routable small-world network [50]) structured
overlay in a P2P fashion, where each link is an Internet tunnel
supporting NAT traversal (Fig. 1). The topology defines three
types of links: successor, long-distance, and on-demand. Succes-
sors are arranged on the ring’s perimeter, in increasing order by
their unique ID, and each node is configured to link to its s closest
successors. As each node creates its successor links (accommodat-
ing for wrap-around) the loop is closed and forms the ring. The
ordered ring ensures a foundation for P2P messaging: nodes are
routable using greedy forwarding based on overlay identifiers.

On-demand links are used elastically: they are created and
destroyed as needed to establish a direct tunnel between peers
based on observed demand. Using on-demand tunnels reduces
the switching hops and removes the traffic burden on interme-
diate bridges that lie on the communication path. Long-distance



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

l
p
s
l
a
f

p

v
N
d
a
i
o
t
f
r

a
a
l
a
l
f

D

k
s
l
a
f

t
c
n
A
f
i
c
b
r
d
s
t
b
r
a
r
e
p

3

w
u
t
p
n
f
a

inks are used as shortcuts across the ring and reduce the average
ath length between any two nodes. Bounded Flood implements
hortcuts based on Symphony long-distance links [33]. In an over-
ay with n nodes, each node maintains k ≥ 1 long-distance links
nd selects long-distance peers by drawing a random number x
rom the following probability distribution function (pdf):

(x=n) = e(log(n)∗(rand(0,1)−1.0)) (1)

The product n ∗ x specifies the clockwise distance, from the
source node to the furthest peer. When creating a link, the closest
node ID at a distance less than n ∗ x is selected.

There are two components integral to the functionality pro-
ided by the Overlay Controller’s topology module. They are the
etwork Graph Builder, which creates a representation of the
esired network state (from the local standpoint of the node),
nd the Network Orchestrator, which transitions the node from
ts current state to the desired one. As nodes join and leave the
verlay (a process known as churn) the composition and size of
he graph changes. Peers which were previously ideal candidates
or links become less favorable, triggering the graph builder to
eevaluate the desired link set.

The Network Graph Builder receives as its input the currently
vailable link candidates, targeted amounts for each type of link,
nd the current local network graph (i.e. the peer’s adjacency
ist). It selects new successor and long-distance nodes based on
vailable candidates and replaces existing, less favorable ones. A
ong-distance peer is considered too close and is discarded if it
alls within the distance given by:

c = ⌊(n ∗ e(−1∗log(n)))⌋ (2)

When configured to maintain k long-distance links per node,
candidates are selected as long-distance peers and k peers can
elect this node as their long-distance peer (i.e. 2k long-distance
inks per node). Nodes must be prepared to accept as many links
s they create, or the resulting imbalance would cause cascading
ailures in link creation.

The Network Orchestrator uses the generated network graph
o modify the node’s adjacency list. The differences between the
urrent and desired states provide the context to generate the
ew network state via update, remove, and add link operations.
s each node acts independently, each Network Orchestrator ef-
ectively manages a star graph with the local node at the center of
ts adjacent peers. It is by the graph builder’s careful selection of
andidates at each peer that the distributed set of local topologies
ecomes the structured P2P ensemble. The Network Orchestrator
eliably transitions the local network state by identifying the
ifferences between the current realized state and the desired
tate. It removes deprecated links and initiates the creation of
hose that need to be added. It prioritizes creating successor links
efore removing existing ones to avoid partitioning the overlay’s
ing and to maintain routability. It negotiates with peers to cre-
te links, rejecting requests when link quantity thresholds are
eached. It handles link interruption and bootstrapping failure,
nsuring the overlay’s network state is consistent and the node
articipation is correct.

.2. SDN controller

The novel Bounded Flood SDN Controller developed in this
ork is a Ryu-based [25], OpenFlow-compliant [12] module that
tilizes a specialized method for broadcast that exploits the struc-
ured P2P topology to discover acyclic network paths between
eer nodes in a dynamic, decentralized way. Each node along a
etwork path uses its local information to build its data plane
orwarding database. Each forwarding record in the database is
n OpenFlow flow rule which specifies the egress action when
108
a specific ingress, source, and destination MAC is observed. The
Learning Table, Flood Route and Bound (FRB), and Flooding Bound
are three key components that form the core of the Bounded
Flood SDN Controller. They are explained below.

3.2.1. Learning table
The learning table is a compound structure that maintains

decision-making data that is used to build the SDN data plane for-
warding database. It performs both Ethernet address learning [22]
and root bridge learning. Within an overlay, leaf devices are the
initial producers and final consumers of network messages, and
they connect to the overlay through their respective root bridge.
The table learns of leaf devices and their associated root bridge
by observing encountered FRB headers (described in the next
section).

Each entry in the root bridge table contains a peer switch
descriptor, as observed from the local switch’s perspective. The
peer switch descriptor comprises the peer node ID, the local
port number if the peer is adjacent, and the set of observed leaf
devices managed by the peer switch. This data, which is regarded
as an incomplete and potentially globally inconsistent descriptor
of the peer switch, is treated as soft state and maintained for
building on-demand tunnels.

When flow metrics indicate data rates above or below spec-
ified thresholds, on-demand tunnels are created or destroyed,
respectively. To establish an on-demand tunnel, the host bridge
for each leaf device is identified from the root bridge table. The
FRB protocol, explained next, guarantees that at least one BF
controller in a communicating pair will know of its peer’s root
bridge.

3.2.2. Flood Route and Bound (FRB)
Flood Route and Bound (FRB) is a custom Ethernet proto-

col used by BF for SDN peer-to-peer controller communication
through overlay tunnels. FRB serves two purposes. First, when
the bridge is required to perform a broadcast to another peer
bridge, it replaces the operation with an FRB. Hence, the FRB
becomes the method for performing duplicate-free broadcasts in
an environment with layer 2 link cycles. The FRB is also used to
share the local leaf devices hosted by the switch with its adjacent
peers. In this role, the FRB includes the Node ID (NID) of the
initiating switch (the root NID) and the list of leaf MAC addresses
that are connected to the bridge. This exchange is performed
whenever a tunnel is established between peers.

In the former role, the FRB header must specify, in addition
to the root NID, a bound NID for limiting broadcasts, and the
payload that is the original broadcast frame. The bound NID is the
identifier of a BF node in the overlay; it indicates to the message
recipient how far along the ring the broadcast can be safely
propagated and hence prevents message duplication. The bound
NID must be recalculated for each of the local bridge ports on
which the FRB is transmitted, and this is done using the Flooding
Bound Algorithm.

3.2.3. Flooding bound algorithm
This algorithm builds upon FRB messages to handle broadcasts

in the presence of cycles in the structured P2P topology, prevent-
ing duplicates and allowing all links to be effectively utilized —
unlike STP, no links are disabled in BF. The algorithm produces,
for each destination NID, the corresponding peer NID that will
terminate further propagation of the message, i.e., its propagation
boundary. The approach relies on: (1) the previously described
structured topology ordered by unique NIDs, (2) the overlay’s
adjacency list consisting of peer nodes that are connected by an
edge, and (3) each adjacent peer bridge that receives the FRB



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

(
A
a
b

d
i

i
f
t
t
p
t
D

b
p
t
o
t
k
f
i

3

h
s
t
i
d
e
b
a

p
e
t
t
s
f
t
s

Fig. 2. Example of bounded flood algorithm and FRB messages. For simplicity,
this example shows a segment of a small overlay with NIDs from 0–63 (whereas
NIDs are 128 bits long). Successor links are colored orange, and long-distance
links blue. Dashed lines show FRB messages disseminated in a decentralized
fashion as a result from an ARP broadcast sent from leaf device 0. The ARP is
encapsulated at the OVS switch in node 0 and FRBs and transmitted on each
port with the appropriate bound: e.g. NID = 1 propagates to the [1,10) range
including its leaf devices), while NID = 10 propagates to the [10,30) range. The
RP message is delivered to leaf devices at each node; if a node matches the IP
ddress in the ARP payload and replies, the message traverses the return path
ack to node NID = 0.

elivers the payload to its leaf devices and forwards the FRB to
ts peers that lie within bounds.

Each output tuple produced by the algorithm is a closed-open
nterval [i, j) specifying the recipient i of the message, and the
urthest node boundary j to which the recipient may forward
he message. This is based on the clockwise distance between
wo nodes. The NID is an integer representing its distance from
osition 0, and the furthest possible node is at a distance equal to
he maximum value of the node identifier’s m-bit address space
max = 2m

− 1. Node ni is considered at distance 0 from itself; its
distance to node nj is given as dn = nj − ni for nj > ni; otherwise
nj = nj + Dmax.

To determine the bound, the initiating node selects two ad-
jacent peers: n1 (the message recipient) and n2 such that n2 is
the next greater node ID after n1 in its sorted (by NID) adjacency
list. The Flooding Bound tuple is then [n1, n2). This procedure is
depicted in Fig. 2. This repeats for every such pair in its adjacency
list, and for the entry preceding its own, the switch uses its own
NID as the bound.

On receipt of an FRB, the SDN controller evaluates its adjacent
peers to determine which lie within the received bound and
to calculate a new bound for each one. Determining the new
bound is done using the same procedure as described above.
This distributed algorithm partitions the NID address space into
progressively smaller bounds, and results in an acyclic logical
forwarding tree that spans the entire graph. Each logical tree is
associated with a unique source MAC address, and rooted at the
broadcast initiator (NID = 0 in Fig. 2), where multiple such trees
can co-exist, cycle-free, in the same overlay. These logical trees
109
are inferred by the flow rules programmed in a decentralized
fashion by the SDN controllers at each peer, and are learned in
a self-organizing fashion — flows are built/expired dynamically
as nodes join and depart the overlay and on demand based on
messages including ARP. This is a key differentiating aspect of
the scalability of the Bounded Flood protocol compared to STP:
BF supports multiple logical trees that are associated with different
MAC addresses and root switches, while STP only supports a single
tree.

The flooding bound algorithm ensures that broadcast frames
are never duplicated and are delivered to all devices in the over-
lay, eventually terminating. Furthermore, as FRBs are propagated
throughout the overlay, they are tracked at each node’s SDN
controller to update its local learning table — thereby program-
ming unicast flows across the SDN switches. This information
collectively provides a return route across the overlay to the
FRB initiator. Taking ARP as an example, the protocol uses FRB
controller-to-controller messages to broadcast the ARP request,
while also learning and programming the return path. As there
are potentially multiple valid paths between any two peers, the
network path identified between two nodes is not guaranteed
to be the shortest path due to the greedy clockwise routing
procedure used for discovery in the flooding process. However,
it is bounded by O((1/k) ∗ log2(n)) [33]. The Bounded Flood
design imposes no restrictions on the number of links a node
can create over its operational lifespan; furthermore, each node
can independently and dynamically vary the number of long-
distance links it creates. Thus, when k = logn, the average overlay
switching path is reduced to O(log(n)).

3.2.4. Overlay churn
As nodes join and leave the overlay, the restructuring of the

topology can potentially disrupt network connectivity within the
overlay. This is mitigated by using a configurable number of
redundant successor links. In general, to tolerate the concurrent
departure of n successors, n+ 1 successor links are required.

Churn can trim any edge along an active communication path
etween nodes. As Bounded Flood routing decisions occur inde-
endently at each peer, a root bridge will have no indication if
he failure involves nodes outside its adjacency list. However,
ther nodes on the path will detect the failure and will attempt
o rediscover a new route to the destination. When no path is
nown for forwarding the request, the node performs a bounded
lood for the forwarding operation. The frame is delivered to the
ntended recipient at the extra cost of the broadcast.

.3. Implementation

The Bounded Flood architecture as described in this paper
as been successfully implemented and made available as open-
ource software in EdgeVPN [20]. The implementation is used in
he experiments described in subsequent sections. To deploy an
nstance of the EdgeVPN virtual network, it requires networking
ata and control plane modules (named Evio-core) that run on
ach of the edge nodes joining the network, as well as the cloud-
ased supporting services which facilitates node credentialing
nd P2P link bootstrapping.
The signaling service allows nodes to authenticate, discover

eers belonging to the same network, and use short messages to
xchange network endpoints and security keys to bootstrap P2P
unnels. This is leveraged in the form of a service that supports
he XMPP [47] (eXtensible Messaging and Presence Protocol)
tandard, such as the open-source Openfire and eJabberd plat-
orms. NAT traversal services support the negotiation of NAT
raversal endpoints for devices that are in private networks and
ubject to NAT/firewall middleboxes. This is leveraged in the form



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

2
s
a
i
E
p
p

a
t
a

r
s
a
p

F

k
b
f
s

v
n
T
p
d
e
i

(
s
h
k
e
2
o

p
t
k
f
w
s
W
e
b

a
E
g
o
p
h
l
n

o
H
2
r
r
t
t

o
F
2
f
b
T
i

a
K
R
a
t
t
D

t
a

Fig. 3. Visualization of an overlay topology with 128 EdgeVPN peers. Each peer
is highlighted as a green dot, while links are shown in white lines.

of services that supports the standards of STUN [48], TURN [49],
and ICE [51] protocols, such as the open-source coturn plat-
form. The data plane of each EdgeVPN node performs packet
capture and forwarding using software-based switches and IP
tunnels. The tunnel abstraction connects two peers and comprises
a virtual Network Interface Card (vNIC) on each host and a We-
bRTC [52] transport. The tunnels at each EdgeVPN node are bound
to an Open vSwitch instance which uses OpenFlow to dynamically
program its forwarding rules. There are two separate components
in the control plane, one responsible for overlay management
and the other forwarding rules management. The overlay con-
troller determines peer membership in an overlay and maintains
the topology. The SDN controller performs route discovery be-
tween peers (by observing ARP broadcasts) and programs the
forwarding rules.

Fig. 3 shows a snapshot of the topology of a 128-node overlay
deployed using the EdgeVPN software and used in the evaluation
of the Bounded Flood technique.

4. Evaluation

4.1. Experiment test cases

Bounded Flood has been implemented in software, as a layer
VPN supporting the techniques described in Section 3. The

ystem supports ARP and IP unicast protocols and self-configures
n overlay with nodes across multiple edge and cloud endpoints,
ncluding private endpoints behind NAT. The following test cases
1–E10 have been conducted to validate functional behavior as
er the F1–F6 requirements outlined in Section 1 and assess
erformance.
E1. The ARP test verifies (F6.a). An ARP is generated using

rping, and each BF node records its received ARP requests. The
est ensures that every BF node receives at most one ARP request,
nd the initiator receives the ARP reply.
E2. The reassign IP address test verifies (F6.b). An IP configu-

ation for the same subnet is applied to two nodes and Node 1 is
hown to ping Node 2. Node 2 is then powered down and its IP
ddress is reassigned to Node 3. Node 1 is shown to successfully
ing the IP address relocated from Node 2 to 3.
E3. Connectivity within partitions test verifies (F1.b, F3.c, F4.b,

5.a). An overlay was instantiated with parameters n = 64, s = 1,
110
= 2. A node was then selected, and two ping tests were initiated
etween the node and (1) its successor’s successor and (2) the
irst long-distance linked peer which follows its successor. We
hut down the successor node and observe the output of ping.
E4. Resilience against (n-1) failures with n successors test

erifies (F1, F4.a). An overlay was instantiated with parameters
= 64, s = 2, k = 2, and the procedure in T4 in repeated.

he ping test was then invoked between the node and (1) its
eer (pn3) located 3 successor edges away and (2) the first long-
istance peer which follows pn3. Both nodes at 1 and 2 successor
dges distance were shut down and the output of the ping tests
s observed.

E5. Overlay with mixed configuration parameters verifies
F1.a, F6.c). An overlay was configured such that BF nodes had
eparate amounts of successor and long-distance links, and some
ad on-demand tunnels enabled or disabled. Nodes 1–8 s = 1,
= log n, OND = disabled, nodes 9–16 s = 2, k = 1, OND =

nabled, nodes 17–24 s = 2, k = log n, OND = disabled, nodes
4–32 s = 2, k = log n, OND = enabled. The functionality was
bserved.
E6. On-demand tunnel test verifies (F3.c, F3.d). Using the

arameters n = 128, s = 2, OND threshold = 100 MB, total
ransfer size = 3 GB; 3 overlays were instantiated such that (1)
= 4, BF forwarding with on-demand enabled (2) k = log(n), BF

orwarding with on-demand disabled (3) k= 128, STP forwarding
ith MAC learning. We randomly selected 100 pairs of nodes and
equentially ran iperf, followed by ping, between each node pair.
e record the bandwidth and average latency for each test in

ach scenario and noted the differences in average path length
etween the 2 BF overlays of different k.
E7. The latency test verifies (F2, F7). Overlays were instanti-

ted with parameters s = 2, k = log n and n = 8, 32, 64, 128.
ach node in the overlay pinged another node in the overlay,
enerating an FRB in the process. Each node received at least
ne FRB (broadcast) from every node in the overlay during this
rocess and it allows recording the path length, in switching
ops, from every sender. Each node recorded its maximum path
ength and the average of all path lengths between itself and its
eighbors.
E8. Dynamic network (churn) verifies (F2.a, F3.a, F3.b). An

verlay is configured with parameters s = 2, k = 2 and n = 32.
alf the nodes in the overlay were booted and iperf ran between
nodes (without a direct link). We resumed booting of the

emaining nodes at 60-s intervals. Next, nodes randomly left and
ejoined the overlay until the iperf test completes. We observed
he throughput over the duration of the transfer, including any
imeouts or failures.

E9. STP vs. BF path utilization test verifies (F3.d). The purpose
f this test is to show reduced link contention when using BF.
irst, an overlay is configured and booted with parameters n =

25, k = log n, and STP. STP disables links until a spanning tree is
ormed. 300 client/server pairs were randomly selected and the
andwidth and latency for each pair were individually measured.
he test was repeated on a similar overlay using Bounded Flood
nstead of STP and with the same node selections.

E10. This test verifies support for unmodified middleware
nd applications for edge computing use cases. We deploy a
ubernetes cluster across four different sites — including on
aspberry Pi 4 devices on two distinct NAT-ed home networks
nd with private, non-routable IP addresses. The cluster is used
o deploy Docker containers (including Flannel) and allow them
o communicate seamlessly, without any changes to Kubernetes,
ocker, or Flannel.
E11. This test determines the latency overhead introduced by

he overlay. It measures and evaluates (1) the time for creating
new tunnel, (2) the time to relocate an IP address to a new



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

s
t
s
1
r
f
F
a

4

o
C
D
d
m
v
c
n
v
n
p
p
e

l
t

witch, i.e., when an existing node is replaced by another in
he overlay, and (3) the tunneling overhead introduced at each
witching node. An overlay is instantiated with parameters n =

00, s = 1, k = log(n). A node n is randomly selected and stopped,
econfigured with a new NID and started. We measure the time
or IP connectivity to be restored between n and its successor.
inally, we measure the overhead of tunneling latency introduced
t each switching node.

.2. Testbeds

For experiments E1–E9, a testbed was deployed as clusters
f Docker containers on physical hosts from CloudLab [53] and
hameleon [54] distributed across the Internet. The choice of
ocker captures a target use case for edge computing and vali-
ates that the system is operational in current container environ-
ents. The processes of each BF node, which included an Open
Switch (OVS) instance, were executed in a privileged Docker
ontainer and created the overlay network within the container’s
etworking namespace. The virtualized network is never directly
isible to the host. This approach allowed experiments to scale to
etworks consisting of hundreds of nodes (up to 200 containers
er host). The hosts have enough RAM such that no memory
ages are swapped during execution. A single host is used for the
xperiments, except for E9, where 3 physical hosts each with 75

containers are used. The hosts are connected via WAN links which
exhibit lower bandwidth and higher latencies compared to the
links between containers on the same host. Finally, all the clusters
participate in the same virtual Ethernet broadcast domain.

In each container, a secondary bridge was instantiated, and
its internal port appropriately configured with an IPv4 address,
and a patch link established between it and the OVS. Applications
(e.g. iperf) bound a socket to this internal port such that frames
were patched over to the local BF bridge, switched across the
overlay to the destination BF bridge, patched to the destination
application bridge, and delivered to the recipient application.

For E10, a heterogeneous ARM-64 cluster with 13 nodes and
distributed geographically across four different domains was
used. Three of the nodes were EC2 US-West t4 g.medium in-
stances (2 VCPUs. 4 GB memory) ran the Kubernetes control
plane and etcd; nine of the nodes were CloudLab m400 (Utah)
instances (8 cores and 64 GB memory), and two of the nodes were
Raspberry Pi 4 edge devices (4 cores, 4 GB memory) deployed in
two different residential ISP providers, behind different NATs. All
nodes ran Ubuntu 20.04, Docker 20.10.7, and Kubernetes 1.21.3,
and were all connected by EdgeVPN version 21.6.0. The entire
Kubernetes cluster was installed via the overlay using Kubespray,
Ansible, and SSH.

For E11, we have deployed 100 nodes as containers with their
respective virtual network interfaces in a single AMD-64 host
with 4 hyperthreaded cores and 32 GB RAM. This allows us to
capture data that is intrinsic to our system and independent from
physical network characteristics.

5. Results and analysis

5.1. Cost of soft state

The SDN data plane forwarding database must store two flow
rules per pair of communicating leaf devices. If a bridge has Llocal
eaf devices and there are Lremote other leaf devices on the overlay,
hen the bridge must maintain at most 2 ∗ Llocal ∗ Lremote flow
entries in the worst case. The flow rules are set to expire over
an idle threshold, and typical workloads do not exhibit the worst-
case pattern, because each leaf device (e.g. a client or server) only
actively communicates with a subset of other leaf devices.
111
The learning table maintains an ephemeral table for every peer
switch and its leaf devices. The data is used to determine flow
rules and the endpoints for on-demand tunnels.

The topology state tracks the identifier of each node present
in the overlay. Extended structural information is only kept for
adjacent peers, which is 2 ∗ (s+ k)+ o, where s is the number of
successors, k is the number of long-distance and o is the number
of on-demand links.

5.2. Join/departure cost

When a node attempts to join an overlay, an XMPP sign-in
presence message is exchanged with each online peer for an
O(2n) cost. Creating a single link is a constant O(1) cost that
includes the messages related to Interactive Connectivity Estab-
lishment (ICE) [51] and the exchange of endpoint data between
the two hosts for NAT traversal. Each node creates s successors
and k long-distance links and receives at most the same amount
of incoming links, resulting in 2∗(k+s) links for the join operation.
The join cost is O(2n+ 2(k+ s)).

When a node leaves the overlay, s successor links must be
repaired. If the departure resulted in a change of ⌊log(n)⌋, n links
in the overlay are discarded and relinking occurs. However, only
one long-distance link per node possibly requires relinking. The
cost to leave is O(n+ s) in the worst case, and otherwise O(s) on
average.

5.3. Switching overhead

To measure switching overhead in experiment E11, we have
instrumented virtual NIC devices to gather timestamps, and used
end-to-end ping round-trip time (RTT) measurements. For this
network, the average link creation time was 2.4 s and the average
time to resolve IP relocation was 6.15 s.

The switching overhead is primarily due to the user-space pro-
cessing in the tunneling module — responsible for encapsulation,
decapsulation, encryption, and decryption. In the E11 testbed,
round trip times are dominated by the user-space processing; we
also measured the kernel-level processing due to Open vSwitch,
and it is negligible compared to the user-space tunneling module.
We performed experiments to measure the latency between a
pair of nodes that were separated by 0 to 4 switching nodes.
Increasing the number of switching nodes on the path increases
the RTT, and the increase at each step is attributed to the over-
head of the additional switching node. It measures the combined
switching time for the request and response at that node. Hence,
the average switching time of a node is one half the increase in
RTT.

The measured switching overhead was 0.37 ms per switched
packet. While this overhead is negligible over WAN connections,
its impact is more noticeable on low-latency LAN links.

5.4. Route discovery cost

BF is used as a replacement to Ethernet broadcast for route dis-
covery between a pair of communicating hosts. A single message
must be delivered from the initiator to each participant in the
overlay, but only once. Hence, the message cost of route discovery
is the same as broadcast and is simply O(n). Multiple successor
links provide redundancy for fault tolerance. The long-distance

links are used for efficiency and are not necessary for correctness.



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

t
p
e
e
t
t

5

I
s
b
b
d
t
d
t
d
t

w
e
b
l

c
a
a
9

l
s
h
o
e

Fig. 4. Cumulative distribution of average latency: BF and BF+OND (on-demand
unnels). Larger values are better as they indicate a larger percentage of
aths with lower latency. Latency is measured after the OND tunnel has been
stablished. BF+OND improves the distribution of latency compared to BF; for
xample, with BF+OND, around 80% of measured samples have a latency smaller
han 0.5 ms, while for BF without OND, 80% of samples have a latency larger
han 0.5 ms.

.5. Verification of correctness tests

All tests for correctness, E1–E5 completed as expected. E1:
nspection of the Ethernet broadcast of ARP using BF indicated a
ingle request/response exchange and the host was found via the
roadcast. E2: The IP address was successfully located via ping
efore and after its relocation to a different node and MAC ad-
ress in the overlay. E3: Ping to the second successor failed when
he 1st successor was shut down; however, ping to the first long-
istance node was uninterrupted. This indicates a partitioning in
he network between the failed node and up to the 1st long-
istance peer. As the network repaired its topology the failed
ransmission resumed. E4: Using s = 2 prevents the network
partitioning experienced in the previous test, but only against
a single node being shut down. When two adjacent nodes are
shut down, the transmission interruption manifests again. As a
note, the overlay tolerated two nodes shutting down once they
were not immediate successors. E5: The overlay converged to a
stable state where, in the absence of churn, no new links were
being created. ARP, ICMP, and TCP between nodes were tested
successfully.

5.6. On-demand tunnels

Experiment E6 validates the benefits of using on-demand tun-
nels with BF (Figs. 4 and 5) and shows that on-demand (OND)
tunnels have a detrimental effect on STP (Fig. 6).

Bounded Flood with on-demand links (BF+OND) shows im-
provement in both bandwidth and latency, despite fewer links
available in the overlay and a longer average path length than BF.
For instance, inspecting an inflection point in Fig. 4 at 0.6 ms, we
observe in overlay BF+OND, 82% of latencies below 0.6 ms, while
only 12% were below 0.6 ms in overlay BF; a 6.8x improvement.
Additionally, Fig. 5 shows 96% of bandwidth tests were over 330
Mbps in overlay BF+OND as opposed to 41% in overlay BF, a 2.4x
improvement.

Overall, STP suffers from disruptions when the topology
changes (Fig. 6), while BF can gracefully adapt. Overlay BF+OND
(OND enabled) is configured to use fewer long-distance links
than Overlay BF (OND disabled) and shows the expected increase
in overlay average path length. Overlay BF+OND average path
length is 4.32 with a mean deviation of 0.31, while overlay BF
average path length is 3.41 with a mean deviation of 0.27. It takes
112
Fig. 5. Cumulative distribution of bandwidth: BF and BF+OND (on-demand
tunnels). Smaller values are better as they indicate a smaller percentage of
paths with low bandwidth. BF+OND improves the distribution of bandwidth
compared to BF; for example, with BF+OND, around 80% of measured samples
have bandwidth larger than 330 Mbps, while for BF without OND, around 60%
of samples have bandwidth smaller than 330 Mbps.

Fig. 6. Bandwidth variation: STP and STP+OND (on-demand tunnels). When a
new link is added, the STP spanning tree must be recalculated, and network
transmission is interrupted until the process completes. As this interruption
takes several seconds (aroundt = 24 to t = 72 s), on-demand tunnels are
detrimental to performance in STP.

approximately an additional switching hop on average to deliver
a frame between each pair of nodes.

By employing on-demand (OND) tunnels, a BF+OND over-
lay can achieve better bandwidth and latencies than without
it, while using fewer long-distance links. As tunnels incur an
ongoing maintenance cost, using a lower k reduces the associated
overhead for each node.

5.7. Network switching latency (path length in hops)

The average switching cost of the overlay is O((1/k) ∗ log2(n))
hich simplifies to O(log(n)) when k is configured as log(n). From
xperiment E7, each node records the maximum number of hops
etween itself and every other peer, and the average of all path
engths to every peer.

The results in Table 1 indicate that while the maximum hop
ount observed at each node can exceed the expected bound, for
n overlay with 128 nodes, only 3 paths had a length of 12, and
pproximately three-quarters of the paths had a length less than
.
Fig. 7 shows the network average path length scales sub-

inearly with the number of nodes in the overlay; for the network
izes evaluated, it is approximately 1/2log(n) bound. As switching
ops varies with the path length, it can be bound to a function of
verlay size. Furthermore, as BF handles Ethernet loops, a direct
dge can be placed between nodes to reduce the cost of switching



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

n
d
a

t
b

5

t
c
a
F
s
e
n
t

5

Table 1
Maximum path lengths. Frequency and cumulative percentages, in an overlay of
size n = 128, of each node’s maximum path length, i.e., its furthest neighbor.
Max hops Frequency Cummulative %

5 1 0.78%
6 14 11.7%
7 32 36.7%
8 21 53.1%
9 27 74.2%
10 22 91.4%
11 8 97.7%
12 3 100.0%

Fig. 7. Average path length (log scale) vs. network size. In this experiment, each
ode reports its average path length as the sum of all discovered path lengths
ivided by the number of paths. The network-wide average path length is the
verage across all nodes.

o a single hop. This supports the claim that BF works well for
oth small and large overlays.

.8. Dynamic network churn

Experiment E8 validates that BF forwarding remains func-
ional in a dynamic and changing topology. Within the specifi-
ations of the test, the switching flows can be reprogrammed,
nd the topology updated without impact to existing TCP streams.
rom a converged overlay, 8 nodes were randomly selected and
equentially started and stopped, with a 15-s interval between
ach event, while active iperf flows were present among other
odes. While there were fluctuations in throughput, no iperf
ransmission failure or timeout was observed

.9. BF vs. STP performance

Experiment E9 validates that BF allows multiple paths to be
safely utilized to deliver a performance benefit over STP. From
Fig. 8, BF shows a greater occurrence of low latency paths com-
pared to STP, with 97% more nodes with a latency less than 36 ms.
The maximum bandwidths reported in two similarly configured
overlays were similar, but Fig. 9 shows that BF had more paths
with higher bandwidth than STP. Examining inflection point at 60
Mbps, approximately 37% of BF measured bandwidth is greater,
while only 18% of STP bandwidth was above 60 Mbps – a 2.2x
increase in the number of such paths. Compared to STP, BF ex-
hibits better latencies and bandwidth, experiencing reduced link
contention and fewer switching hops, as a result of utilizing all
available links for transmission. STP must selectively disable links
to create its spanning tree, which has the effect of creating longer
paths with increased sharing
113
Fig. 8. Cumulative distribution of latency for BF (green) vs. STP (orange). Larger
values are better as they indicate a larger percentage of paths with lower latency.

Fig. 9. Cumulative distribution of latency for BF (green) vs. STP (orange). Smaller
values are better as they indicate a smaller percentage of paths with low
bandwidth.

5.10. Kubernetes edge cluster

Experiment E10 demonstrates that BFenables unmodified
middleware and applications, and quantifies overheads in net-
work latency and throughput. Kubernetes, Docker, and Flannel
were deployed successfully across the distributed cluster using
Kubespray — only a single YAML configuration line was cus-
tomized to set Flannel to bind to the virtual network bridge.
The functional behavior of the cluster was verified by executing
kubectl commands to deploy daemon sets for Flannel and iperf3
pods.

While the cluster had 13 deployed nodes, we focus on three
of them for the quantitative evaluation: nodeAWS (control-plane
AWS EC2 instance), nodePiA, and nodePiB (Pi 4 edge devices on
residential ISP’s A and B). The nodePiA, nodePiB devices have
private local IP addresses that are translated dynamically by their
respective NATs, whereas nodeAWS has a private local IP address
that is statically mapped to a public address during instance
startup.

The first quantitative experiment considers the round-trip la-
tency (100 ICMP ping messages with 1 s wait times) between
nodePiA and nodeAWS for three different scenarios: physical
(nodePiA pings nodeAWS using the AWS-exposed address), BF
(pings are sent over the BF interface), and Flannel (pings are sent
over Flannel, which encapsulates over BF). The results, summa-
rized in Table 2, show a negligible difference in average ping



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

u
n
s
s
d
d

b
3
d
(
I
c
t

6

—
l
t
u
n
(
u
t
a
t

i
d
f
c
r
d

w
t

Table 2
ICMP round-trip latency (ms) between nodePiA and nodeAWS. Avg/Stdev across
100 samples.
Interface Min Max Avg Stdev

Physical 88 106 92.8 2.20
BF 89 100 91.5 1.73
Flannel+BF 89 105 92.4 2.68

Table 3
iperf3 throughput (Mbit/s) between nodePiA and nodeAWS. Median/Avg/Stdev
across 300 samples.
Interface Median Avg Stdev

Physical 31.5 31.1 9.05
BF 31.5 29.8 8.04
Flannel+BF 31.5 29.1 7.25

Table 4
iperf3 throughput (Mbit/s) between nodePiA and nodePiB. Median/Avg/Stdev
across 300 samples.
Interface Median Avg Stdev

Physical N/A N/A N/A
BF 33.9 32.8 6.12
Flannel+BF 32.3 32.4 5.36

latency that is well within the standard deviation of the physical
network path between the devices

The second experiment considers the throughput (measured
sing TCP/IP transfers using the iperf3 benchmark) between
odePiA and nodeAWS. Three 100 s runs were performed for each
cenario, and throughput was sampled/recorded by iperf3 every
econd. The results, summarized in Table 3, also show a small
ifference in average throughput that is well within the standard
eviation of the physical network path between the devices
Next, we evaluate iperf3 throughput (same method as above)

etween nodePiA and nodePiB. Table 4 shows that BF delivers a
0 Mbps+ virtual network flow between the two nodes, where
irect connectivity over the physical network is not applicable
N/A) because the private IPs are not routable on the public
nternet. With BF, a NAT-traversing STUN tunnel is seamlessly
reated between nodePiA and nodePiB to carry virtual network
raffic.

. Conclusions

While contemporary IoT applications use a tiered architecture
from device to edge to cloud, this does not imply that the over-

ay topology must necessarily be a tree. The foundational struc-
ured overlay topology with the ring and long-distance nodes
sed in BF offers several key benefits: self-organization in dy-
amic environments (nodes join/leave independently), scalability
O(log(N) routing)), and availability (no central points of fail-
re), and additional on-demand links can respond dynamically
o capture the traffic patterns of a tiered architecture, in essence
llowing for traffic-driven tree topologies to self-organize atop
he foundational topology.

The flexibility of the system allows peers to be parameter-
zed independently and reflects the conditions encountered in
istributed and heterogeneous operational environments of the
og. Nodes within the overlay may very likely be owned and
ontrolled by independent entities, each with its distinct configu-
ation criteria. Nonetheless, we have demonstrated the ability to
eploy unmodified software under such conditions.
114
There are many challenges to building and maintaining a
resilient overlay, and it must handle the traditional P2P vulner-
abilities to rogue members. Even with good faith participants,
transient environmental problems can delay timely repairs to the
overlay. Design choices that are practical to implement are critical
to a system such as this. The importance of resilience within the
overlay and the disruptive impact of churn was a major factor
in selecting Symphony over Chord. Chords must be maintained
at each log n node, whereas Symphony requires only that the
less stringent conditions of its harmonic function are met, which
results in fewer changes to existing links.

Kademlia [34], which offers comparable performance char-
acteristics to Chord and Symphony, can also be reasonably im-
plemented in an EdgeVPN/BoundedFlood system. The similarities
with address space, identifiers, and routing for node lookup allow
critical abstractions to map from one to the other. For example,
the KAD routing table translates to the EdgeVPN overlay con-
troller’s adjacency list, and Kademlia’s concurrent, recursive node
lookup operation translates to the BF broadcast operation.

Our experiments show that using values of k = 4 vs. k = 7
when n = 128 results in an additional switching cost of approx-
imately one extra hop. This setup can be used in environments
where the increased switching latency can be tolerated for the
benefit of reduced tunnel overhead.

There are clear benefits that have been illustrated when using
BF versus STP. STP must disable edges in the presence of loops
to create the spanning tree; hence, it cannot utilize all available
links in the topology. Using fewer links result in longer paths
with increased latency, and the utilized links experience higher
contention as more traffic is routed over them. Additionally, the
addition or removal of a link in the overlay requires interrupting
network transmission until a new spanning tree is evaluated. As
such, no benefits are derived from on-demand edges with STP.
In topologies with multiple layer 2 loops, BF outperforms STP
providing lower latency and increased available throughput.

CRediT authorship contribution statement

Kensworth Subratie: Conceptualization, Methodology, Soft-
are, Investigation, Experiments, Original draft prepara-
ion. Saumitra Aditya: Conceptualization, Software. Renato
J. Figueiredo: Supervision, Conceptualization, Methodology,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

All the source code is available as open-source code on GitHub.
Data from experiments will be provided on request.

Acknowledgments

This material is based upon work supported by the
National Science Foundation, USA under Grants OAC-2004441,
OAC-2004323, and CNS-1951816. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of

the National Science Foundation.



K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116

R
eferences

[1] N. Gershenfeld, R. Krikorian, D. Cohen, The internet of things, Sci Am. 291
(4) (2004) 76–81, http://dx.doi.org/10.1038/scientificamerican1004-76.

[2] E.A. Lee, Cyber physical systems: Design challenges, in: 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), 2008, pp. 363–369, http://dx.doi.org/10.
1109/ISORC.2008.25.

[3] K. Ashton, That ‘internet of things’ thing, RFID J. 22 (7) (2009) 97–114.
[4] M. Satyanarayanan, Pervasive computing: vision and challenges, IEEE Pers.

Commun. 8 (4) (2001) 10–17, http://dx.doi.org/10.1109/98.943998.
[5] B. Zhang, N. Mor, J. Kolb, D.S. Chan, N. Goyal, K. Lutz, E. Allman, J.

Wawrzynek, E. Lee, J. Kubiatowicz, The cloud is not enough: Saving iot
from the cloud, in: Proceedings of the 7th USENIX Conference on Hot
Topics in Cloud Computing, HotCloud ’15, 2015, p. 21.

[6] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J.
Kong, J.P. Jue, All one needs to know about fog computing and related
edge computing paradigms: A complete survey, J. Syst. Archit. 98 (2019)
289–330, http://dx.doi.org/10.1016/j.sysarc.2019.02.009.

[7] Internet society - state of IPv6 deployment 2018, 2022, https://
www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018,
Accessed May 4, 2022.

[8] Google IPv6 statistics, 2022, https://www.google.com/intl/en/ipv6/
statistics.html, Accessed May 4, 2022.

[9] M.A. Tamiru, G. Pierre, J. Tordsson, E. Elmroth, Mck8s: An orchestra-
tion platform for geo-distributed multi-cluster environments, in: ICCCN
2021 - 30th International Conference on Computer Communications and
Networks, Athens, Greece, 2021, pp. 1–12, URL https://hal.inria.fr/hal-
03205743.

[10] F. Palmieri, VPN scalability over high performance backbones evaluating
MPLS VPN against traditional approaches, in: Proceedings of the Eighth
IEEE Symposium on Computers and Communications. ISCC 2003, 2003,
pp. 975–981 vol.2, http://dx.doi.org/10.1109/ISCC.2003.1214243.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646, http://dx.doi.org/10.1109/JIOT.
2016.2579198.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner, Openflow: Enabling innovation in campus
networks, SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74, http:
//dx.doi.org/10.1145/1355734.1355746.

[13] N. Feamster, J. Rexford, E. Zegura, The road to SDN: An intellectual history
of programmable networks, SIGCOMM Comput. Commun. Rev. 44 (2)
(2014) 87–98, http://dx.doi.org/10.1145/2602204.2602219.

[14] Enterprise container platform, 2022, https://www.docker.com, Accessed
May 4, 2022.

[15] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, Borg, omega, and
kubernetes: Lessons learned from three container-management systems
over a decade, ACM Queue 14 (1) (2016) 70–93, http://dx.doi.org/10.1145/
2898442.2898444.

[16] Flannel, 2022, https://github.com/flannel-io/flannel, Accessed May 4, 2022.
[17] Project calico, 2022, https://www.tigera.io/project-calico/, Accessed May 4,

2022.
[18] Weave net, 2022, https://www.weave.works/docs/net/latest/overview/,

Accessed May 4, 2022.
[19] K. Subratie, S. Aditya, V. Daneshmand, K. Ichikawa, R. Figueiredo, On

the design and implementation of IP-over-P2P overlay virtual private
networks, IEICE Trans. Commun. E103-B (1) (2020).

[20] EdgeVPN.io: Open-source VPN for edge computing, 2022, https://edgevpn.
io, Accessed May 4, 2022.

[21] C.E. Spurgeon, Ethernet: The Definitive Guide, O’Reilly Media, Inc, 2000.
[22] C.E. Spurgeon, J. Zimmerman, Ethernet Switches: An Introduction to

Network Design with Switches, O’Reilly Media, Inc, 2013.
[23] IEEE Standard for Local and Metropolitan Area Networks: Media Access

Control (MAC) Bridges, IEEE Std 8021D-2004 Revis. IEEE Std 8021D-1998,
2004.

[24] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, A. Vahdat, Portland: A scalable fault-tolerant
layer 2 data center network fabric, in: Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM ’09, Association for
Computing Machinery, New York, NY, USA, 2009, pp. 39–50, http://dx.doi.
org/10.1145/1592568.1592575.

[25] Ryu SDN framework, 2022, https://ryu-sdn.org/, Accessed May 4, 2022.
[26] Z. Yang, Y. Cui, B. Li, Y. Liu, Y. Xu, Software-Defined Wide Area network

(SD-WAN): Architecture, advances and opportunities, in: 2019 28th Inter-
national Conference on Computer Communication and Networks (ICCCN),
2019, pp. 1–9, http://dx.doi.org/10.1109/ICCCN.2019.8847124.
115
[27] B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network function virtualization:
Challenges and opportunities for innovations, IEEE Commun. Mag. 53 (2)
(2015) 90–97, http://dx.doi.org/10.1109/MCOM.2015.7045396.

[28] D. Andersen, H. Balakrishnan, F. Kaashoek, R. Morris, Resilient overlay
networks, SIGOPS Oper. Syst. Rev. 35 (5) (2001) 131–145, http://dx.doi.
org/10.1145/502059.502048.

[29] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H.
Balakrishnan, Chord: a scalable peer-to-peer lookup protocol for internet
applications, IEEE/ACM Trans. Netw. 11 (1) (2003) 17–32, http://dx.doi.org/
10.1109/TNET.2002.808407.

[30] H. Eriksson, MBONE: The multicast backbone, Commun. ACM 37 (8) (1994)
54–60, http://dx.doi.org/10.1145/179606.179627.

[31] B.Y. Zhao, L. an Huang, J. Stribling, S.C. Rhea, A.D.J. Joseph, J.D. Kubiatowicz,
Tapestry: A resilient global-scale overlay for service deployment, IEEE J. Sel.
Areas Commun. 22 (1) (2004) 41–53.

[32] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems, in: R. Guerraoui (Ed.),
Middleware 2001, Springer Berlin Heidelberg, 2001, pp. 329–350.

[33] G.S. Manku, M. Bawa, P. Raghavan, Symphony: Distributed hashing in a
small world, in: Proceedings of the 4th Conference on USENIX Symposium
on Internet Technologies and Systems, 2003.

[34] P. Maymounkov, D. Mazières, Kademlia: A peer-to-peer information system
based on the XOR metric, in: Peer-To-Peer Systems, Springer Berlin
Heidelberg, 2002, pp. 53–65.

[35] X. Jiang, D. Xu, VIOLIN: Virtual internetworking on overlay infrastructure,
in: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Parallel and Distributed
Processing and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg,
2005, pp. 937–946.

[36] A.I. Sundararaj, A. Gupta, P.A. Dinda, Dynamic Topology Adaptation of
Virtual Networks of Virtual Machines, LCR ’04, Association for Computing
Machinery, New York, NY, USA, 2004, pp. 1–8, http://dx.doi.org/10.1145/
1066650.1066665.

[37] D. Joseph, J. Kannan, A. Kubota, I. Stoica, K. Wehrle, OCALA: An architecture
for supporting legacy applications over overlays, in: 3rd Symposium
on Networked Systems Design & Implementation (NSDI 06), USENIX
Association, San Jose, CA, 2006.

[38] J. Maassen, H.E. Bal, Smartsockets: Solving the connectivity problems in
grid computing, in: Proceedings of the 16th International Symposium
on High Performance Distributed Computing, HPDC ’07, Association for
Computing Machinery, New York, NY, USA, 2007, pp. 1–10, http://dx.doi.
org/10.1145/1272366.1272368.

[39] Romana networking, 2022, https://romana.readthedocs.io/en/latest/
Content/networking.html, Accessed May 4, 2022.

[40] Network and security virtualization software platform - NSX, 2022, https:
//www.vmware.com/products/nsx.html, Accessed May 4, 2022.

[41] MidoNet - virtualized networking for public and private clouds, 2022,
https://github.com/midonet/midonet, Accessed May 4, 2022.

[42] M. Mahalingam, et al., Virtual extensible local area network (VXLAN):
A framework for overlaying virtualized layer 2 networks over layer 3
networks, 2014, https://www.rfc-editor.org/info/rfc7348, Accessed May 4,
2022.

[43] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke, C.
Minkenberg, M. Gusat, R. Recio, V. Jain, An intent-based approach for
network virtualization, in: Proceedings of the IFIP/IEEE Int. Symp. on
Integrated Network Management, 2013, pp. 42–50.

[44] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs, D. Rubinstein,
E.C. Zermeno, E. Rubow, J.A. Docauer, J. Alpert, J. Ai, J. Olson, K. DeCabooter,
M. de Kruijf, N. Hua, N. Lewis, N. Kasinadhuni, R. Crepaldi, S. Krishnan, S.
Venkata, Y. Richter, U. Naik, A. Vahdat, Andromeda: Performance, isolation,
and velocity at scale in cloud network virtualization, in: 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18),
USENIX Association, Renton, WA, 2018, pp. 373–387.

[45] Zerotier protocol design whitepaper, 2022, https://docs.zerotier.com/
zerotier/manual/, Accessed Aug 26, 2022.

[46] SoftEther VPN project, 2022, https://www.softether.org/, Accessed Aug 26,
2022.

[47] The universal messaging standard, 2022, https://xmpp.org, Accessed May
4, 2022.

[48] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, STUN - simple traversal of
user datagram protocol (UDP) through network address translators (NATs),
in: Internet Engineering Task Force (IETF), RFC 3489, 2003.

[49] R. Mahy, P. Matthews, R. J., Traversal using relays around NAT (TURN):
Relay extensions to session traversal utilities for NAT (STUN), in: Internet
Engineering Task Force (IETF), RFC 5766, 2010.

http://dx.doi.org/10.1038/scientificamerican1004-76
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb3
http://dx.doi.org/10.1109/98.943998
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb5
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018
https://www.internetsociety.org/resources/2018/state-of-ipv6-deployment-2018
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://hal.inria.fr/hal-03205743
https://hal.inria.fr/hal-03205743
https://hal.inria.fr/hal-03205743
http://dx.doi.org/10.1109/ISCC.2003.1214243
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2602204.2602219
https://www.docker.com
http://dx.doi.org/10.1145/2898442.2898444
http://dx.doi.org/10.1145/2898442.2898444
http://dx.doi.org/10.1145/2898442.2898444
https://github.com/flannel-io/flannel
https://www.tigera.io/project-calico/
https://www.weave.works/docs/net/latest/overview/
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb19
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb19
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb19
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb19
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb19
https://edgevpn.io
https://edgevpn.io
https://edgevpn.io
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb21
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb22
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb22
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb22
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb23
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb23
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb23
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb23
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb23
http://dx.doi.org/10.1145/1592568.1592575
http://dx.doi.org/10.1145/1592568.1592575
http://dx.doi.org/10.1145/1592568.1592575
https://ryu-sdn.org/
http://dx.doi.org/10.1109/ICCCN.2019.8847124
http://dx.doi.org/10.1109/MCOM.2015.7045396
http://dx.doi.org/10.1145/502059.502048
http://dx.doi.org/10.1145/502059.502048
http://dx.doi.org/10.1145/502059.502048
http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1145/179606.179627
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb31
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb32
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb32
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb32
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb32
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb32
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb33
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb33
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb33
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb33
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb33
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb34
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb34
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb34
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb34
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb34
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb35
http://dx.doi.org/10.1145/1066650.1066665
http://dx.doi.org/10.1145/1066650.1066665
http://dx.doi.org/10.1145/1066650.1066665
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb37
http://dx.doi.org/10.1145/1272366.1272368
http://dx.doi.org/10.1145/1272366.1272368
http://dx.doi.org/10.1145/1272366.1272368
https://romana.readthedocs.io/en/latest/Content/networking.html
https://romana.readthedocs.io/en/latest/Content/networking.html
https://romana.readthedocs.io/en/latest/Content/networking.html
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://github.com/midonet/midonet
https://www.rfc-editor.org/info/rfc7348
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb43
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb44
https://docs.zerotier.com/zerotier/manual/
https://docs.zerotier.com/zerotier/manual/
https://docs.zerotier.com/zerotier/manual/
https://www.softether.org/
https://xmpp.org
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb48
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb48
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb48
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb48
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb48
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb49
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb49
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb49
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb49
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb49


K. Subratie, S. Aditya and R.J. Figueiredo Future Generation Computer Systems 140 (2023) 104–116
[50] J. Kleinberg, The small-world phenomenon: An algorithmic perspec-
tive, in: Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, STOC ’00, Association for Computing Machinery,
New York, NY, USA, 2000, pp. 163–170, http://dx.doi.org/10.1145/335305.
335325.

[51] J. Rosenberg, Interactive connectivity establishment (ICE): A protocol
for network address translator (NAT) traversal for offer/answer protocols,
2010, https://www.rfc-editor.org/rfc/rfc5245.txt, Accessed May 4, 2022.

[52] Real-time communication for the web, 2022, https://webrtc.org, Accessed
May 4, 2022.

[53] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller,
M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landwe-
ber, C. Elliott, M. Zink, E. Cecchet, S. Kar, P. Mishra, The Design and
Operation of Cloudlab, in: USENIX ATC ’19, USENIX Association, USA, 2019,
pp. 1–14.

[54] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad, P. Ruth,
Chameleon: A scalable production testbed for computer science research,
in: Contemporary High Performance Computing, 2019, pp. 123–148, http:
//dx.doi.org/10.1201/9781351036863-5.

Dr. Kensworth Subratie is a Post-Doctoral Researcher
in the College of Engineering (Electrical and Computer
Engineering) at the University of Florida. He graduated
with a Ph.D. in ECE From the University of Florida
in 2019. His research interests lie in fog computing,
autonomic and peer-to-peer systems, virtual networks
and software system design.
116
Dr. Saumitra Aditya is a Senior Software Engineer at
Akamai Technologies. He graduated with a Ph.D. in ECE
From the University of Florida in 2020. His research
interests broadly span networked systems and their
applications in realization of smart communities.

Dr. Renato J. Figueiredo is a Professor of Elec-
trical and Computer Engineering at the University
of Florida, where he leads research on topics that
include resource virtualization (virtual machines, net-
works, and storage), cloud computing, peer-to-peer
systems, autonomic computing, high performance and
high-throughput computing, and network overlay ap-
plications in distributed systems. He graduated with a
Ph.D. in ECE from Purdue University in 2001, joined
Northwestern University as an Assistant Professor in
2001, and subsequently the University of Florida as

an Assistant Professor in 2002. His research has been funded by government
and industry sponsors that include the National Science Foundation, Intel Corp.,
IBM Corp., NOAA, and NASA. He has published over 140 technical papers in
conferences and journals, and served as Technical Program Committee Co-Chair
for the International Conference on Autonomic Computing (ICAC, 2010) and the
International Symposium on High-Performance Parallel and Distributed Comput-
ing (HPDC, 2013). He served as site co-director of the NSF Industry/University
Cooperative Research Center (I/UCRC) for Cloud and Autonomic Computing
(CAC).

http://dx.doi.org/10.1145/335305.335325
http://dx.doi.org/10.1145/335305.335325
http://dx.doi.org/10.1145/335305.335325
https://www.rfc-editor.org/rfc/rfc5245.txt
https://webrtc.org
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://refhub.elsevier.com/S0167-739X(22)00323-5/sb53
http://dx.doi.org/10.1201/9781351036863-5
http://dx.doi.org/10.1201/9781351036863-5
http://dx.doi.org/10.1201/9781351036863-5

	EdgeVPN: Self-organizing layer-2 virtual edge networks
	Introduction
	Background
	Ethernet, SDN, and Network Virtualization
	Overlay and P2P Networks
	Virtualized Infrastructure

	Design
	Overlay Controller
	SDN Controller
	Learning Table
	Flood Route and Bound (FRB)
	Flooding Bound Algorithm
	Overlay Churn

	Implementation

	Evaluation
	Experiment Test Cases
	Testbeds

	Results and Analysis
	Cost of Soft State
	Join/Departure Cost
	Switching overhead
	Route Discovery Cost
	Verification of Correctness Tests
	On-demand Tunnels
	Network Switching Latency (Path Length in Hops)
	Dynamic Network Churn
	BF vs. STP Performance
	Kubernetes Edge Cluster

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


