Received: 16 December 2020

Accepted: 10 July 2022

Published on: 30 October 2022

DOI: 10.1111/rssb.12547

ORIGINAL ARTICLE

SeriesB

=

Exact clustering in tensor block model:
Statistical optimality and computational limit

Rungang Han'? | Yuetian Luo' | Miaoyan Wang! |

Anru R. Zhang!?345>

!Department of Statistics, University of
Wisconsin-Madison, Madison, WI, USA

2Department of Statistical Science, Duke
University, Durham, NC, USA

SDepartment of Biostatistics &
Bioinformatics, Duke University,
Durham, NC, USA

“Department of Computer Science, Duke
University, Durham, NC, USA

*Department of Mathematics, Duke
University, Durham, NC, USA

Correspondence

Anru R. Zhang, Department of Statistics,
University of Wisconsin-Madison,
Madison, WI, USA.

Email: anru.zhang@duke.edu

Funding information

NIH Grant, Grant/Award Number: R01
GM131399; NSF Grants, Grant/ Award
Numbers: CAREER-2203741,
CAREER-2141865, DMS-1915978,
DMS-2023239, EF-2133740; Wisconsin
Alumni Research Foundation

Abstract

High-order clustering aims to identify heterogeneous
substructures in multiway datasets that arise com-
monly in neuroimaging, genomics, social network stud-
ies, etc. The non-convex and discontinuous nature
of this problem pose significant challenges in both
statistics and computation. In this paper, we propose
a tensor block model and the computationally effi-
cient methods, high-order Lloyd algorithm (HLloyd),
and high-order spectral clustering (HSC), for high-order
clustering. The convergence guarantees and statistical
optimality are established for the proposed procedure
under a mild sub-Gaussian noise assumption. Under
the Gaussian tensor block model, we completely charac-
terise the statistical-computational trade-off for achiev-
ing high-order exact clustering based on three different
signal-to-noise ratio regimes. The analysis relies on new
techniques of high-order spectral perturbation analy-
sis and a ‘singular-value-gap-free’ error bound in tensor
estimation, which are substantially different from the
matrix spectral analyses in the literature. Finally, we
show the merits of the proposed procedures via extensive
experiments on both synthetic and real datasets.
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1 | INTRODUCTION

High-order tensors have received increasing recent attention in many fields including social net-
works (Kolda & Bader, 2006), computer vision (Koniusz & Cherian, 2016), neuroscience (Zhang
et al., 2019) and genomics (Hore et al., 2016). Tensors provide an effective representation of the
hidden structures in multi-way data. One of the popular structure utilised in tensor data analysis
is the so-called low-rankness, which decomposes the signal tensor into a low-dimensional core
tensor and multiple matrix factors, one on each modes (Kolda, 2001). Despite many celebrated
results in tensor data analysis under the low-rank formulation, such as tensor regression (Zhou
etal., 2013), tensor completion (Xia et al., 2021), tensor PCA (Zhang & Xia, 2018), and generalised
tensor learning (Han et al., 2022), another important model, multi-way tensor block model, has
not been well studied yet.

Figure 1 shows an example of multi-way tensor block model for an order-3 tensor in which
each of the modes is partitioned into several clusters. The goal is to identify the block structure
(clustering), as well as to recover the whole tensor data (estimation), from observed data. In com-
parison with the low-rankness, the discrete block structure is more interpretable, because of the
membership information encoded by loading matrices. The tensor block model and high-order
clustering arise commonly in practical applications. For example,

» Multi-tissue gene expression analysis. Gene expression profiles such as scRNA-seq and
micro-arrays are collected from multiple individuals across numbers of tissues (Melé
etal., 2015; Wang et al., 2019). Genes involved in the same biological function typically exhibit
similar expressions for some group of tissues and individuals, while these expression values
vary from group to group. Similarly, tissues/individuals exhibit clustering patterns due to the
similarity therein. Investigating the complex interactions among these three entities is of great
scientific interest.

« Multi-layer network analysis. Multi-layer networks arise commonly in longitudinal studies of
network (Lei et al., 2020) and multi-relational data (Nickel et al., 2011). A multi-layer network
consists of multiple directed/undirected graphs (or adjacency matrices), where each graph rep-
resents the connection among the same set of vertices. The multi-layer network data can be
organised as an order-3 tensor with the first two modes being vertices and the third mode being
the contexts under which the graph is observed. Depending on how the connection edges are
encoded, the tensor entries can be either binary (indicating presence/absence of connection)
or continuous (representing weighted connection strength).

« Online click-through prediction. In e-commerce, predicting click-through for user-item pairs
in a time-specific way plays an important role in online recommendation system (Shan
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FIGURE 1 High-order clustering aims to identify the block structure represented by membership matrices
on each of the modes. [Colour figure can be viewed at wileyonlinelibrary.com|
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et al., 2016; Sun et al., 2015). The click-through data in a specific day can be organised as an
order-3 tensor, where each entry indexed by (users, items, time) represents the total number of
user—item interactions in a time period (e.g., 24 different hours in that day). The users/items
often exhibit clustering structures due to similar preferences/attributes. In addition, the shop-
ping behaviour also varies in time, and this heterogeneity depends on the specific group of
users and items.

Additional applications of tensor block model include hypergraph clustering (Chien
et al., 2019; Ke et al., 2019), collaborative filtering (Zhang et al., 2021) and signal detection in
three-(3D)/four-dimensional (4D) imaging (Zhang et al., 2020), among others.

The multi-way structure of a data tensor imposes unique challenges to clustering analysis.
In the vector case, clustering methods find subgroups of the observations based on entrywise
similarity; while in the matrix case, bi-clustering algorithms seek to simultaneously identify the
block structure of observations (rows) and features (columns) (Busygin et al., 2008). Recent devel-
opments of tensor-based high-order clustering methods roughly fall into two types. The first
approach utilises the maximum likelihood estimation (MLE) (Wang & Zeng, 2019) to search for
the tensor block structure. The MLE, however, is a mixed-integer programming and therefore
NP-hard to compute in general (Aloise et al., 2009). The computational intractability renders the
statistical inference less useful in practice. The second approach adopts polynomial-time algo-
rithms for surrogate objectives. Efforts in this vein include convex relaxation (Chi et al., 2020) and
spectral relaxation (Wu et al., 2016; Zha et al., 2002). Despite the popularity, these methods often
sacrifice the statistical accuracy for computational feasibility. To our best knowledge, a provable
scheme that achieves both statistical and computational efficiency has yet to be developed.

In this paper, we develop a computationally efficient procedure for the task of high-order
clustering in tensor block model. The procedure operates in steps: High-order Spectral Clustering
(HSC) and High-order Lloyd (HLloyd). The proposed HSC algorithm involves a power iteration
procedure. While the statistical property of the power iteration has been recently established
under a strong singular value gap condition (Luo et al., 2021; Zhang & Xia, 2018), the previ-
ous result is not applicable to our analysis, because of the possible lack of singular value gap in
block tensors even under the model identifiablility conditions. This difference originates from
the unique ‘discrete’ low-rank structure in tensor block model as opposed to the ‘continuous’
low-rank structure considered in Zhang and Xia (2018). The discrete setting requires new theoret-
ical analysis for high-order clustering methods (see Section 2.2 and Remark 3). We then establish
the clustering error rate for HSC algorithm under modest conditions (see Section 4.2). The second
component of the proposed procedure, HLloyd algorithm, can be seen as a high-order extension
of Lloyd algorithm for one-dimensional k-means to order-d clustering. Compared to the analy-
sis of Lloyd algorithm for vector clustering with a single discrete structure (Lu & Zhou, 2016),
the multiple discrete structures in high-order clustering make the analysis more challenging (see
details in Remark 4). We prove that, under warm initialisation, our HLloyd algorithm solves the
high-order clustering problem with optimality guarantees in tensor block model.

Apart from the newly proposed algorithm, we discover an intriguing interplay between sta-
tistical optimality and computational efficiency of high-order clustering in tensor block model.
Specifically, we introduce a notion of signal-to-noise ratio (SNR) for tensor block model that
quantifies the minimum gaps between block means (see formal definition in Section 4.1) over
the noise level. This notion completely characterises the hardness of the high-order cluster-
ing in tensor block model. Our main phase transition results can be informally summarised
as follows.
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Theorem 1 (Informal results). Consider the high-order clustering on an order-d dimension-p
tensor under the Gaussian tensor block model (see (3) in Section 2.2). Suppose SNR = p’ and
p — co.

o« When y > —d/2, the proposed HLloyd + HSC algorithm performs exact clustering
(Theorem 4);

» Wheny < —(d — 1), no algorithm can achieve exact clustering (Theorem 6);

o When —(d — 1) < y < —d/2, MLE achieves exact clustering at the cost of being computa-
tionally intractable; and no polynomial-time algorithm can achieve exact clustering under
a computational hardness assumption for hypergraphic planted clique (HPC) detection
(Theorem 7).

Here, the exact clustering means that the clustering labels are precisely recovered with high
probability.

Figure 2 summarises the phase transitions in high-order clustering under the tensor block
model. In the strong SNR region A (SNR = p?, y > —d/2), we prove that the combination of HSC
and HLloyd achieves exact clustering in polynomial time. We find that the estimation error bound
of the target tensor is free of the tensor dimension (Theorem 5), which is distinct from the tensor
estimation error bounds in the literature under the continuous low-rank structure (see Remark 7).
In the weak SNR region B (y < —(d — 1)), we develop a minimax lower bound to show that no
algorithm succeeds in high-order clustering for tensor block model. In the modest SNR region C
(=(d-1) < y < —d/2), we show that the problem is statistically possible while computationally
infeasible. That is, computing any estimate that achieves exact clustering is as hard as solving
a version HPC detection problem which is conjectured to be polynomial-time unsolvable (see
details in Section 5). Note that the former two SNR regions apply to matrix biclustering (d = 2)
while the latter statistical-computational gap region exists only for high-order tensors with d >
3. To the best of our knowledge, we are among the first to establish both of the statistical and
computational limits for high-order clustering in tensor block models.

1.1 | Related literature

Our work is related to but also clearly distinctive from several lines of existing work. Classic
clustering algorithms such as k-means (Jain, 2010) and spectral clustering (Von Luxburg, 2007)
have been widely used in statistics and machine learning. In the order-1 (vector) case,
the clustering problem is usually formulated under Gaussian mixture model. The opti-
mal statistical guarantee has been developed for the state-of-art clustering algorithms,

-1 log,(SNR) —d-1)  —d/2 log,,(SNR)
Bi-clustering High-order clustering for d > 3

FIGURE 2 Phase transition diagram for high-order clustering in order-d tensor block model with
dimension (p, ... , p). A statistical-computational gap (Region C) arises only for tensors of order 3 or greater.
[Colour figure can be viewed at wileyonlinelibrary.com]
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including spectral clustering (Loffler et al., 2021), EM algorithm (Wu & Zhou, 2019)
and Lloyd algorithm (Lu & Zhou, 2016). In the order-2 (matrix) case, clustering meth-
ods have been studied under the stochastic block model (Abbe, 2017), bi-clustering (Gao
et al, 2016), and bipartite community detection (Zhou & Amini, 2019). These existing
methods and theories are inapplicable to high-order clustering due to the distinct algebraic
properties of general order-d tensors. The high-order clustering also exhibits many distinct
features compared to the clustering for vectors or bi-clustering for matrices, for example,
the statistical-computational gap arises only from tensors of order 3 or greater as shown
in Figure 2.

In addition, our work is related to the recent development on low-rank tensor decom-
position, in which the main goal is to find the best low-rank approximation of a tensor.
Numerous algorithms have been proposed, such as truncated power iteration (Anandkumar
et al., 2014), high-order singular value decomposition (SVD) (De Lathauwer et al., 2000b),
high-order orthogonal iteration (HOOTI) (De Lathauwer et al., 2000a), sparse tensor SVD (Zhang
& Han, 2019). Although the block structure implies low-rankness (see Section 2.2), the
classic low-rank tensor spectral methods fail to fully utilise the structural information of
tensor block model. Moreover, the singular value gap condition, which was commonly
imposed in the literature on tensor decomposition, does not generally hold in the ten-
sor block model, and thus new technical tools are required for our high-order clustering
problem.

Another related topic is on the statistical and computational trade-off in high-dimensional
statistics. This topic focuses on the gap between SNR requirements under which the problem
is information-theoretically solvable versus polynomial-time solvable. Some common struc-
tures yielding these trade-offs include sparsity (Chen & Xu, 2016; Ma & Wu, 2015), robust-
ness (Diakonikolas et al., 2017), tensors (Barak & Moitra, 2016; Richard & Montanari, 2014),
etc. In the last decade, a number of schemes have been proposed to provide rigorous evi-
dence for the gap between computational and statistical limits, such as average-case reduction
(Brennan et al., 2018; Wang et al., 2016), sum of squares (Barak et al., 2019), statisti-
cal query (Feldman et al., 2017), low-degree polynomials (Hopkins & Steurer, 2017), etc.
We refer readers to the recent survey (Wu & Xu, 2021) for a review. In this work,
we reveal the statistical and computational trade-off for high-order clustering in the ten-
sor block model and give rigorous evidence for the computational limit via average-case
reduction.

1.2 | Organisations

The rest of the paper is organised as follows. After a brief review of basic tensor algebra in
Section 2.1, we introduce the tensor block model and the high-order tensor clustering problem
in Section 2.2. Then, the HSC and HLIoyd algorithms are proposed to solve this problem in
Section 3. We present the statistical proprieties of the algorithms in Section 4. We study the fun-
damental statistical and computational limits of high-order clustering in tensor block model in
Section 5. Extensive numerical analyses on simulated data, flight route network data, and online
click-through data are presented in Sections 6 and 7, respectively. Conclusion and discussion are
given in Section 8. Proof sketches for the main results are provided in Section 9, and all detailed
proofs are collected in Appendix S1. Codes for running the simulations and real data analyses of
this paper are available at https://github.com/Rungang/HLloyd.
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2 | MULTI-WAY TENSOR BLOCK MODEL
2.1 | Notations and preliminaries

We use lowercase letters (a, b, x ... ) to denote scalars/vectors. Foranya,b € R,leta Abanda Vv b
be the minimum and maximum of a and b, respectively. Suppose {a, }, {b, } are two sequences of
positive numbers. We denote a,, < by, or a, = O(b,) (respectively, a, > b,)if there exists a constant
C > 0 such that a,, < Cb,, (respectively, a, > Cb,) for all n; and we denote a, =< b, if there exists
¢, Csuch thatca, < b, < Ca, for all n. We denote matrices by bold uppercase letters (A, B, U, ...).
Let @, be the collection of all p-by-r matrices with orthonormal columns: O, , = {U € RP*":
U'U =1}, where I is the identity matrix. We use A, A;:, and A to denote the (i, j) th entry, the
i th row, and the j th column of A, respectively. Let 4;(A) > 4,(A) > - - - > 0 be the singular val-
ues of A in descending order and we use SVD,(A) to denote the matrix comprised of the top r
left singular vectors of A. We use [|A|| = 41(A) to denote the spectral norm of A and use ||A||r =

i=14&dj=1
R™ and B € RXXL, the Kronecker product is defined as the (IK)-by-(JL) matrix AQ B =
[a; ®B---a; ® B].

Recall that tensors are multi-way arrays. We call the number of modes of a tensor as its order.
We use calligraphy letters (A, X, Y ...) to denote tensors of order 3 or higher. For example, if
a tensor X represents a d-way array of size p; X p, X - -+ X pg, we say X is an order-d tensor
and write X € RP*P4, The (iy, ... ,ig) th element of a tensor X' is written as & . ;. Let X
and Y be two tensors of the same dimension, the inner product of them is defined as (X, Y) =
Zil’._ iy Xi.... i,V ... iy- The Frobenius norm of the tensor X is defined as || X||r = (X, X)1/2. The
multi-linear multiplication of a tensor S € R"***"a by matrices Uy, € RP-*'k is defined as

P1 yb2 Al.zj =4/ Zf;?p 222(A) to denote its Frobenius norm. For any matrix A = [ay, ... ,a;] €

15t Tq
(Sx1Urx--xaUay o= D DS go(Uni, -+ (Ui
Jji=1 Ja=1

which results in an order-d (pi, ... , pq)-dimensional tensor. We also introduce the matriciza-

tion operator that transforms tensors to matrices. Particularly the mode-1 matricization for
X € RP>**Pu is defined as

Mu(X) € RPXPP0), - where [Mi( X)), jy4pyy-1)+-4ppas (=1 = Koo g

Each row of My(X) is the vectorisation of a mode-k slice. The following identity that relates the
matrix-tensor product and matricization will be used extensively in our analysis:

M(S X Up X+ X4 Ug) = UM(S) (U1 ® - @ Us QU1 ® - - - @ Upy)

We say a tensor X € PPr**Pa has Tucker-rank (ry, ... ,7g) if rp = rank(My(X)). In this case X
admits a Tucker decomposition:

X=Sx,U; x---%x4Uy (1)

for some S € R"*"* and U, € RP"«, The readers are referred to Kolda and Bader (2009) for a
more comprehensive tutorial on tensor decomposition.
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A clustering that partitions p entities into r clusters is represented by a vector z € [r]P such
that the i th entry of z equals to s if and only if the i th entity belongs to the s th cluster.
Here, we use shorthand [r] := {1, 2, ... ,r} to denote the r-set. For two clusters a = (aq, ... ,ap)T,
b=(by, ... ,bp)T € [r]P on the same set, we denote the misclassification rate as:

p
1
h(a.b) = min- ;H{ai # n(by)},

where I, is the collection of all permutations z on [r] and I(-) is the indicator function. Let Z be
an estimator of z € [r]P. As sample size goes to infinity, we say 2 is consistent if

P(h(,2) > ) = 0, Ve > 0;

and we say £ exactly recovers z if
P(h(z,2) =0) - 1.
Finally, we use C, Cy, Cy, ... and ¢, ¢, c1, ... torepresent generic large and small positive con-
stants, respectively. The actual values of these generic symbols may differ from line to line. We

introduce the following notions for p; X - - - X pg tensors with rank (ry, - - - , rg):

p=max p, p=min pt, p. = [[ pe» P« = p./pr

keld] - keld] keid)
¥ =max ry,r, = H Vi, T—fg = Vi /Tk.
keld]
keld]
2.2 | Tensor block model
Let Y € RPr**Pa be an order-d (p;, ... , pq)-dimensional data tensor of interest. The tensor block

model assumes an underlying checkerbox structure in the signal tensor (see Figure 1). Specifi-
cally, suppose there are r; clusters in the k th mode of the signal tensor for all k € [d], and we
represent the clustering along k th mode by a vector z; € [r]P+. Then, the entries V; .. ;, are
realisations from the following block model:

Vioooda = 5(z1)h,...,(zd)jd + & . gy V(015 .- 5ja) € [P1]1 X+ - X [pal )

where S € R is the core tensor with collected block means, and & ... ;, s are some
mean-zero observational noises. Model (2) can be equivalently written in a form of tensor-matrix
product:

YV=SxX M X:---XgMy+ &, (3)

where & € RP* P4 js the noise tensor, My € {0, 1}P+*x is the membership matrix associated with
Zx such that (My); = 1 if and only if (zx); =j. That is, My has one copy of 1 and (rx — 1) copies
of 0s in each row. We will use forms (2) and (3) interchangeably throughout the paper. Note that
EY admits a Tucker low-rank structure (1) with Tucker-rank bounded by, but may not equal
to, (1, ... ,rq). The discrete structure in My makes the model more informative and brings new
challenges as we mentioned in Section 1.

We impose the following distributional assumption on the noise tensor &:
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Assumption 1 (Sub-Gaussian noise). Suppose each entry of £ follows an independent
zero-mean sub-Gaussian distribution with sub-Gaussian norm bounded by o:

Eexp (1€, ..4,) <72, VieR.

Assumption 1 holds in some specific problems arising in applications:

« Gaussian tensor block models (GTBM): each entry V), .. ;, is Gaussian-distributed with mean
Sy, (zp;, and variance 2. This setting is suitable to model a tensor Y with continuous
entries on R;

« Stochastic tensor block models (STBM): the core tensor S € [0,1]"* "« and each entry
Yy, szay, ~ Bernoulli(Se), ... @, )- Let £ =Y —EY. Then Assumption 1 holds for o <
1/4. This setting is suitable to model a tensor Y with binary entries on {0,1}.

In this paper, we mainly focus on two tasks on the inference for tensor block model:

« Clustering. Recover the membership matrix My, or equivalently the label vector zj, for each
mode.

- Estimation. Estimate the underlying signal tensor X :=E(Y).

3 | ALGORITHMS FOR HIGH-ORDER CLUSTERING

We introduce the procedure for high-order clustering in this section. The procedure includes two
algorithms, HSC and HLloyd, which will be elaborated in the next two subsections.

3.1 | High-order Lloyd algorithm

As a starting point, it is natural to consider the following least squares estimator of S and zj:

N . 2
(5,21, Zd) = arg min Z <)7j1,...Jd - 5<z1)j1,4..,(zd)jd) . 4

Sz €l Pk k=1, ""djl, e da

This scheme is a mixed-integer programming with one continuous (S) and d discrete (z;, ... ,Z4)
arguments. In general, (4) is non-convex and computationally intractable.
Therefore, we propose a new iterative method to solve this problem. Suppose at step ¢, we have

estimators S®, z(lt), cee ,zg) and want to update them at step ¢ + 1. On one hand, given the block

membership vectors (Z?), SR g)), the optimisation objective function (4) becomes quadratic of S

and the optimal solution can be computed via a block-wise average:

2
(t+1) — i . -
St = arg min > (3711,..-Jd S(Z?))jlww(z(”)jd)

d

Jis - da
== Si(ltf‘l_)!l.d = Average ({yjl,“,h : (zl(f))j‘c =i, Vk € [d]}) s (5)
where Average(-) computes the sample mean given a set of values.
On the other hand, given S and (d — 1) block memberships (zgt), ,z;ﬁl,zgil, ,zg)),

(t+1)

the update of membership vector z,

can be obtained by performing a nearest neighbour
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search in a dimension-reduced space. Specifically, we first aggregate all mode-k slices of ) to a

dimension-reduced space using {zl(:,)} w#k> the block information from the other d — 1 clusters.

That is, we calculate 37,?) € RNX XN XPiXTie XXl gg
t) . 0 :
(y}i Vi di g .. iy = AVerage ({yh Je-1ddkes - dg (zl )j, = vl e [d]/k}> : (6)

® ® 0 ®
RTINS SR

to the truth, such an aggregation can significantly reduce the noise level within )7](;). Then, we
perform the nearest neighbour search to update the estimate for (zx);:

Intuitively speaking, when the other d — 1 memberships (z ) are close

2
(M) = (Mu(s),, .

J:

(Z,(;“))j = arg min
a€lr]

(7

The full procedure is presented in Algorithm 1 and is referred to as the HLloyd algorithm.

Remark 1. Our updating scheme of zZJrl) is slightly different from the updating scheme in the

classic Lloyd algorithm. In particular, (7) is not an exact local greedy solution for (5) for fixed
S® and (z(lt), ,z;:il, zl(:rl, ,zg)). In comparison, the computational complexity for the
proposed updating scheme, that is, (6) and (7), is O(p.. + p«r.), while the complexity of local
greedy method is O(p..r), since the proposed updating scheme performs nearest neighbour

search only on an r_,-dimensional space rather than the original p_,-dimensional space.

Algorithm 1. High-order Lloyd algorithm

Require: Data tensor Y € RP**Pq_initialisation labels {z(ko) € [ri]Pr}, iteration number T

forallt=0toT—1do
Update the block means S via

Si(lt,).--vid = Average ({yjl,_“i,d : (z;{l)>jk =i, Vk € [d]}> .

forallk=1,...,ddo
forallj=1,...,prdo
Calculate y;{” € RN XN XPiXnea X Xra quch that

®
(Y iy iy

= Average <{))jl*'"xiklxi1ik+1v"-\id : <Z;f))ﬂ =j,vle [d]/k}) .

Update the mode-k membership for the jth entity (z](c”l)) _via
J

2

(M) = (M),

J:

(t4+1) _ :
(zk ) = arg min

J a€g(r] 2

end for
end for
end for
return Estimated block memberships {zl(cT), k=1,...,d}
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3.2 | High-order spectral clustering

While HLloyd provides an iterative optimisation strategy for tensor clustering, initialisa-
tion of labels z,(co) remains unaddressed and turns out to be crucial to the clustering per-
formance. In this section, we propose the HSC algorithm for initialisation. This algorithm
is a generalisation of the classic spectral clustering method but with a number of fun-
damental novelties as we describe below. Note that the main step for spectral clustering
is to estimate the singular sub-space of the membership matrix M. By tensor algebra,
we have

EMi(Y) = Mp(X) = MMi(S) Mi1 @ - @ Mg QM) ® - - - @ My—1).
It is tempting to estimate the singular sub-space of My, by
Ui = SVD, (Mk(D)), k=1,....d. (®)

This method is referred to as the high-order singular value decomposition (HOSVD)
(De Lathauwer et al., 2000a). However, we find that Uy here does not fully utilise the low-rank
structure in all modes of the data. We propose to further improve the estimate by making the
projection of Y onto the pre-estimated sub-spaces of the other (d — 1) modes, that is,

N - T ~ T -~ T ~ T
s = SVDminir ) (M 51 OF X+ i Oy Xt Uy X+ xa TD) ©)

(0)

After obtaining {U}¢ _, we get the initialisation labels 2,

k=1’
of the following projected matrix:

by performing k-means on p; rows

N A AT AT AT AT AT
Vi = OO Me (5007 X+ 31 Ok et O -+ xa 07 ). (10)

The pseudocode of HSC is given in Algorithm 2. In particular, since the exact k-means may be
computationally difficult, we use a relaxed k-means in Step (11), which can be efficiently solved
by approximation algorithms, such as k-means++ with relaxation factor M = O(logr) (Arthur &
Vassilvitskii, 2006).

Our algorithm takes ry ’s as inputs. In our theory, ri’s are allowed to grow with the tensor
dimension. In our simulation studies, we assume the true r;’s are known for simplicity; while in
practice, we recommend rank selection using data-driven criteria (see (29) in Section 7) such as
the Bayesian information criterion (BIC) and/or prior knowledge.

Remark 2. In the matrix bi-clustering setting (d = 2), the step of refined SVD (10) can be removed
from the algorithm, since U, and U, are provably the same. Moreover, Uy has guaranteed
accuracy due to the Eckart—-Young-Mirsky theorem (Eckart & Young, 1936; Mirsky, 1960).
In contrast, computing the best low-rank approximation of Y when d > 3 is NP-hard in
general (Hillar & Lim, 2013), and the estimator Uy does not yield the desired accuracy. We
thus introduce an indispensable refinement (10), because the additional projection of Y on
the pre-estimated multi-linear sub-spaces substantially reduces the noise in Uy. This step
makes the proposed HSC method distinct from a simple extension of the classic spectral
methods in the matrix setting.
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Algorithm 2. High-order spectral clustering

Require: Y € RP»*Pa_rq, ..., 1y, relaxation factor in k-means: M > 1
Compute Uy = SVD, (M(Y)) fork =1,....d
forallk=1toddo
Compute the singular space estimator Uy via

Ui = SVDmingrr ) (MY X1 OT X+ X1 UL X1 O, X+ xa TD).

end for
forallk=1toddo
Calculate ¥y = U, U] M, <;)7 X U7 X+ X OF | X U X+ X ﬁ;)

Find zl({o) € [riJPx and centroids X, ... , X, € R"™* such that

Pk |
Jj=1

11)

A T A
(%))~ %)

5 ) Pk T 2
<M min Z H (Yk)j: — X,
=

>
2 xl,...,xrke]erk 2
ZiEr 1Pk

end for
return {zf{o) € [P, k=1,...,d}

4 | STATISTICAL THEORY
In this section, we study the statistical properties of the proposed algorithms.
41 | Assumptions

We first assume a non-degenerate condition on the separation among block means (i.e. core
tensor) to ensure the identifiability for clustering:

8% = A3(S) 1= min [[M(S)y: = MiSD:[; > 0. (12)

In particular, we set Ai = o0 if r, = 1. Roughly speaking, this condition means all mode-k slices
of the core tensor S are distinct; otherwise the number of blocks, (71, ... , ), should be reduced
to smaller. Generally speaking, clustering is easier to achieve when the separation is larger or the
noise level is smaller. Recall ¢ is the sub-Gaussian norm of the noise distribution in Assumption 1.
Therefore, we define the SNR as
SNR := A’

2 /o®, where A2 :=minA;. (13)

keld) ¥

Remark 3. Itis worth mentioning that an identifiable core in tensor block model may have degen-
erate ranks, that is, rank(M(S)) < r¢. This is significantly different from most literatures
on low-rank tensor decomposition, where the singular value gap 4, (M(S)) was assumed
to be sufficiently large (Richard & Montanari, 2014; Xia et al., 2021; Zhang & Xia, 2018).
For example, consider the following core tensor S representing 2-by-2-by-2 clusters:

1 -1 -1 1
Sy = s Sy = .
-1 1 1 -1
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Note that the rank of M (S) is 1, which is smaller than the number of clusters at mode-k.
The above example has non-zero separation Afnin(s ) = 16, so the two clusters on each mode
are still identifiable.

Since permuting the cluster labels does not alter the clustering result (e.g. naming {1, 3},
{2,4} as Cluster I/II is equivalent to naming them as Cluster II/I), the cluster label vector zi
on mode-k is estimable only up to a permutation of cluster labels. Given the initialisation label

ZI(CO)’ let ”1(60) : [rk] — [r] be the optimal permutation that minimises the mismatches between z;:))
and zy, that is,

Pk
.1
”]({0) := arg min — E I {(zf))j *(n ozk)j} ., where (7 ozy); 1= 7(()))-
ﬂEHrk j=1

Let t be the iteration index in HLloyd algorithm. We define h;:) as the mode-k misclassification
rate at the ¢ th iteration of HLloyd algorithm:

P
hy = izk‘,ﬂ {@# @ oz0r}. (14)
PriH

We also impose the following ‘balanced cluster size’ assumption for technical convenience. Such
an assumption is widely used in the literature of mixture model clustering (Gao & Zhang, 2022;
Loffler et al., 2021; Wu & Yang, 2020).

Assumption 2. There exists universal positive constants 0 < @ < 1 < g such that

ape/re < | € [l © @) = a}| < Bpi/ T Va € [r], k € [d], 15)

where | - | is the cardinality of a given set.

4.2 | Algorithmic theoretical guarantees

Now we are in a position to establish the theoretical guarantees for HLloyd and HSC.
In order to prove our main theoretical result in Theorem 4, we introduce the following
more convenient measure of misclassification loss in addition to the classification error
rate hg):

Pk

o ._ 1 2

L o= p_kEH(Mk(S))(Z;:))jI ~ M0 oz, Hz (o)
=

The following lemma establishes a relationship between hg) and lg), which implies that it suffices

to bound lg) in order to develop the target upper bound for hl(:).

Lemma 1. Define h;{” and lg) asin (14) and (16). Then, hg) < l;{” / Ai.
Our first result is the local convergence of HLloyd.

Theorem 2 (Local convergence of HLloyd). Suppose Assumptions 1 and 2 hold. Let {z* }d=1 be

k
the initialisation of HLloyd algorithm and {zg)}zzl be the estimations at step t. Assume the
initialisation satisfies
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l;{o) < cA2/ry, 17)
and the SNR satisfies
Cpr¥rlogp
A2 Jo? > ———. (18)
D
Then with probability at least 1 — exp(—cp) — exp <—%‘ %),for allt > 0,
cp. A2 Az
19 < Co?exp | - P _min )4 _mn s vk e [d]. (19)
k 2 t
rpo 2

Remark 4. Recently, Gao and Zhang (2022) provided the convergence analysis of iterative algo-
rithms for the inference problems with a single discrete structure, including the Lloyd
algorithm for Gaussian mixture model as a special instance. Their techniques do not apply
to our problem as the tensor block model admits multiple discrete structures (i.e. clusters
in each mode). One specific technical challenge for proving Theorem 2 is to characterise
the impact to misclassification rate in mode-k by those in the other d — 1 modes. See more
discussions in the proof sketch in Section 9.

The inequality (19) and Lemma 1 together imply that when T > 2[logp],

cpSNR

h"” < C-SNR™'exp < —
r.p

) 7L (20)
Pk

Therefore, HLloyd algorithm guarantees exact recovery of clustering under the SNR
condition (18).

We also need a good initialisation satisfying (17) in order to apply Theorem 2. Our initialisation
accuracy is guaranteed by the proposed HSC (Algorithm 2).

Theorem 3 (Upper bound on misclassification rate of HSC). Suppose Assumptions 1 and 2 hold
and each entry of € has equal variance. If the SNR satisfies

A2;,/0% 2 CM (priFlogh/p. + r.F/pl” ), @1)

then, with probability at least 1 — C exp(—cp), Vk € [d],

1 < CM -2 (re/pa) (1 + BF +pL/7F) < a2 /ri,

WO < CM - (r_i/p.) (r* +pr +pY 27) o2 /A2

min”

The combination of Theorems 2 and 3 yields the following main result of our paper.

Theorem 4. Denote {z(t)

k
{z,(co) Z=1 being the output of HSC. Under the same conditions of Theorem 3, with probability at

}z=1 as the membership vectors in the iteration t of HLloyd algorithm with
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least 1 — exp(—cp) — exp (—i*_ i) we have exact recovery of {Zk}z:1 when T > 2[logp];

4r,p o2

that is, there exist a set of permutations {xy }Z=1 such that

ZI(CT)zﬂ'kOZk, Vk=1,...,d.

In particular, if the numbers of clusters ry are fixed, T > [2logp], p1 < - -+ < pg < p, and the
SNR satisfies
AZ

min

/62 >C (p—d/z Vp—(d—l) logp) , (22)

then Z;CT) achieves exact clustering with high probability.

In comparison, if one only applies the proposed HSC algorithm without HLloyd refinement, the
same condition (22) would only guarantee consistent clustering according to Theorem 3.

Remark 5 (Comparison with theory for matrix spectral method). A key intermediate step for the
proof of Theorem 3 is to evaluate the estimation error for the projected tensor observation:

1y - Xz, where ¥ = Yx, 0,0 x---x; 0,00 for U, in ). (23)

In matrix case (d = 2), the estimation error bound can be simply derived by the algebraic
property of SVD. However, for high-order tensors (d > 3), such an error bound was usu-
ally established under strong singular value gap condition (Zhang & Xia, 2018) that does
not hold in tensor block model. To overcome this issue, we develop the following new
singular-value-gap-free bound on tensor estimation for Y.

Proposition1 (A singular-value-gap-free tensor estimation error bound). SupposeY = X + € €
RPv**Pa - X has Tucker-rank (ry, ... ,¥q), and & satisfies Assumption 1 with equal variance
Var(,,.. ;) = 62, Y(j1, ... »ja) € [p1] X - - - X [pql. Let Y be defined according to (23). Then,
with probability at least 1 — C exp(—cp),

|9 - %7 < co* (pF+PF +1.).

The proof sketch of Theorem 3 and Proposition 1 are presented in Section 9.

Remark 6 (Heteroskedastic errors). The guarantee for local convergence in Theorem 2 applies
to the general sub-Gaussian noise under Assumption 1, which covers both GTBMs and
STBMs. Our theoretical guarantee for initialisation (Theorem 3) is established under
an additional homoscedasticity condition, which excludes some interesting STBMs with
Bernoulli distributions. Nevertheless, our simulation study in Section 6 illustrates that our
algorithm still performs well in practice for a wide range of STBMs. The theoretical error
bound for heteroskedastic HSC will be left as future work.

In addition to recovering cluster memberships in the tensor block model, another impor-
tant task is to recover the block means S, or equivalently, to denoise the observed tensor ) and
obtain an estimate of X. Given the estimates of labels zﬁT) - ,z;T) , a natural estimator for X is

the aggregated mean in each estimated block, that is,
&5, = Average ({ .y @) = @0, € el VK € [d]}).

We have the following guarantee for X.
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Theorem 5 (Upper bound of estimation error for HLloyd + HSC). Under the same conditions

of Theorem 3, we have with probability at least 1 — exp(—cr,.) — exp(— cp) —exp ( 4r}) ;"2‘“ )
that
N 2
l < Co’r,. (24)

Remark7 (Comparison with HOOTI). Recall the tensor block model (3) naturally admits a Tucker
low-rank structure. A tempting strategy is to apply HOOI on Y to estimate X. By theorem 1
of Zhang and Xia (2018), the HOOI estimator Xnoor achieves the following statistical rate
under a strong singular gap condition:

EHQA(HOOI — XHIZT < Co? <}"* + ipk?’k> . (25)
k=1

Compared to Theorem 5, (25) has an additional dimension-dependent term. The intuition
behind this phenomenon is that HOOI only fits a low-rank model while fails to capture the
discrete structure in the tensor block model. This theoretical result is also supported by our
numeric experiments in Section 6.1.

5 | STATISTICAL AND COMPUTATIONAL TRADE-OFFS

In this section, we study the statistical and computational limits of high-order clustering in the
tensor block model (3). We assume the distribution of &; | . ;, is i.i.d. Gaussian.
We specifically focus on the following parameter space,

({Ak}k 1 ’ﬁ) =

S e RV, AK(S) 2 Ak, 2z € [l

26
a’;—:s|{je[pk]:(zk)j=a}|sﬂ‘j—:, Va € [rc], k € [d] 20

(8,21, ... ,Za) -

Here, the constraints in the parameter space (26) correspond to assumptions in Section 4.1. We
further introduce the following parameter regime

A2 Jo*=p’ and p;x<---x<pg=p. (27)
5.1 | Statistical limit

The following theorem establishes the SNR lower bound for exact label recovery, which reveals
the statistical limit of high-order clustering in the tensor block model.

Theorem 6 (Statistical lower bound). Consider the tensor block model (3). Suppose ry = o(pl/ %,
and —;‘? < ¢ for some constant cy > 0. Then, for any estimator Z,
[ 'S
sup  Emin ZH{(zk), # (moz)y} > 1. (28)

(S.2ps ... 2g)€® €N =
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Theorem 6 suggests the impossibility of exact clustering under the parameter regime (27),
when 7y ’s are constants and y < —(d — 1). Furthermore, it was shown that the MLE (4), while
being computationally intractable, achieves consistent clustering given y > —(d — 1) (Wang &
Zeng, 2019). Therefore, yg,: := —(d — 1) serves as the statistical limit for the clustering in tensor
block model: when y > yqa,¢, there exists an algorithm that can successfully recover the clustering
labels; when y < ygat, all algorithms, regardless the computational complexity, fail to do so.

In comparison, according to the discussion in Section 4.2, the combination of HSC and HLloyd
algorithms achieves exact clustering when y > —d/2 =: ycomp, which seems more stringent than
the statistical limit yy, for d > 3. However, we should point out that, unlike MLE, our algorithm
(HSC and HLIloyd) is polynomial-time implementable. In the next section, we show that y > ycomp
is indeed necessary for any polynomial-time algorithm to succeed.

5.2 | Computational limit

In this section, we establish the computational limit for high-order clustering under model (3).
We first introduce the HPC detection problem and its hardness conjecture, which are building
blocks for the main results on computational limit.

A d-hypergraph can be seen as an order-d extension of regular graph. In a d-hypergraph
G = (V(G), E(G)), each hyperedge e € E includes a set of d different vertices in V. Define
Ga(N,1/2) as the Erdds-Rényi d-hypergraph with N vertices, where each hyperedge (iy, ... ,ig)
is independently included in E with probability 1/2. Also we define G4(N,1/2,«) as the HPC
model with the clique size «. To generate G ~ Gg(N,1/2, k), we sample a random hypergraph
from G4(N, 1/2), pick x vertices uniformly at random from [N], denote them as K, and connect
all hyperedges e if all vertices of e are in K. The HPC detection can be formulated as the following
hypothesis testing problem:

Hy : G~Gy(N,1/2) vs. Hy : G~ Gy(N,1/2,x). (29)

We consider the following version of HPC detection conjecture, which was introduced and
studied in the literature (Brennan & Bresler, 2020; Luo & Zhang, 2020; Zhang & Xia, 2018).

Conjecture 1 (HPC detection conjecture). Suppose d > 2 is a fixed integer. Suppose
lim sup log k' / log \/ﬁ <1-¢ forany € > 0.
N-oo

Then, for any sequence of polynomial-time tests {¢}y : G — {0,1}, liminfy_ Py,
(@(G) =1) + Py, (¢(G) =0) > 1/2.

Zhang and Xia (2018) observed that spectral method solves HPC detection efficiently if
K = Q(\/ﬁ) but fails when x = N'/27¢ for any € > 0. Recently, it has also been shown that many
classes of powerful algorithms, including metropolis algorithms and low-degree polynomial
algorithms, fail to solve the HPC detection problem in polynomial time under the conjec-
tured hard regime (Brennan & Bresler, 2020; Luo & Zhang, 2022). Several open questions on
HPC detection—in particular, whether HPC detection is equivalently hard as PC detection—are
discussed in Luo and Zhang et al. (2020).

With the HPC detection hardness conjecture, we have the following computational lower
bound for high-order clustering in the tensor block model.
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Theorem 7 (Computational lower bound). Consider the tensor block model (3) under the
parameter regime (27) and Conjecture 1. If y < —d/2 = ycomp, then for any polynomial-time
estimator (21, ... ,24), we have

Pk
liminf sup P (Elk € [d] s.t. 7{211{1 2]1 {(2k)j *(n OZk)j} > 1) >1/2.
k Jj=

P=o (S, .20)EB@

Combining Theorems 2,6, and 7, we have finished the proof for the informal statement of
Theorem 1 and established the phase transition diagram of Figure 2 in the introduction section.
These results render the whole picture of the statistical and computational limits of the high-order
clustering in the tensor block model.

6 | NUMERICAL STUDIES

In this section, we first study the performance of the proposed HLloyd and HSC algorithms.
Then we compare the proposed algorithms with other state-of-the-art methods. Unless otherwise
noted, we consider order-d tensor block models withp; =---=pg =p,r =--- =ry = rand bal-
anced cluster sizes across all modes throughout the simulations. In each experiment, we report
the averaged statistics and the standard error across 100 replications.

6.1 | Properties of HLloyd and HSC

We first study the clustering performance of the proposed HLlIoyd and HSC algorithms using
clustering error rate (CER). The CER is calculated using the disagreement between estimated and
true partitions, that is, one minus adjusted random index (Milligan & Cooper, 1986). A lower CER
implies a better clustering and CER = 0 means exact clustering. In the first four experiments, we
consider the Gaussian tensor block models with variance 2 = 1, and in the fifth experiment, we
study the performance of the proposed algorithms on stochastic tensor block models.

6.1.1 | Statistical and computational phase transition

The first experiment investigates the phase transition of high-order clustering with respect to
SNR. We perform the proposed polynomial-time HLIoyd algorithm with HSC initialisation on
both matrix and order-3 tensor block models. We setr = 5, p € {200, 400} for the matrix case, and
p € {80,100} for the order-3 tensor case. We assess the SNR phases by plotting CER as a function
of the signal strength y for which Afni » = O(p”). The performance of our estimator is compared
to MLE (4), that is, the global optimum. Since MLE is NP-hard to compute, we approximate the
global optimum using oracle initialisation refined by HLloyd and call the estimate the ‘oracle
estimate’. The oracle initialisation is specified as the perturbed ground truth contaminated by 20%
random labelling.

Figure 3 shows the SNR phases in the clustering problem for matrices and for order-3 tensors.
We find that, in the matrix case, our method and oracle estimates undergo similar SNR phase
transitions. A flat, high clustering error is observed for both estimates when y < —1, and the error
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FIGURE 3 Signal-to-noise ratio phase transition for clustering in tensor block model under the setting
r=>5, Afmn = O(p”). The error bar on each point represents the SE. (a) Matrix clustering p = 200, 400, y € (-2,0);

(b) Tensor clustering d = 3, p = 80, 100, y € (—2.8, —1.2) [Colour figure can be viewed at wileyonlinelibrary.com]

d=3), (d=4)
o o
| | 7
QCo7s Qo.75- [
Q Q
*@‘ § % Delta
- I N 0.3
o 0.50- " 0050 ' - 05
o I 5 , =07
(o)) / (o)) 2
£0.25 £025 I I
8 i g ;o
O 0.00- &r &S E T Lrdrdgm& T O 0.00- &8t OGBS~
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Contamination rate Contamination rate

FIGURE 4 Impactofinitialisation to the performance of high-order Lloyd algorithm. The clustering error
rate and the SE are plotted against the contamination rate from 0 to 0.6 under the settings
Amin € {0.3,0.5,0.7,1,2}, p = 50, r = 5. [Colour figure can be viewed at wileyonlinelibrary.com]

immediately decreases as y > —1. Note that our theory in Section 4.2 has implied an optimal SNR
O(p™) for order-2 cases, and this critical ratio is indeed achieved by the proposed algorithm. In
contrast to the matrix case, the order-3 tensor clustering reveals a striking gap between HLloyd
and oracle estimates. In particular, the phase transition occurs around y = —2 for oracle esti-
mates, whereas y = —1.5 for HLloyd estimates. This gap reflects the statistical-computational gap
p~@) <« SNR <« p~#?2 for clustering in tensor block model when d > 3, which corroborates our
theoretical results in Section 5.

6.1.2 | Impact ofinitialisation to HLloyd

The second simulation examines the impact of initialisation to the performance of the HLloyd. We
consider CER for p = 50,7 = 5,d € {3,4},and Api, € {0.3,0.5,0.7,1, 2}. Given a contamination
rate e, we generate initialisation labels by randomly shuffling 100¢% labels of the ground truth
and then run HLloyd. Figure 4 shows that the clustering error decreases as the signal strength
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FIGURE 5 Clustering of high-order spectral clustering and spectral initialisation with high-order Lloyd
refinement, for r = 5, p € {80, 100}, and varying y [Colour figure can be viewed at wileyonlinelibrary.com]|

Amin increases or the contamination rate decreases in both d = 3 and 4 settings. This shows
that stronger signal and better initialisation enhance the clustering performance of the HLloyd
algorithm. The experiment also indicates that a proper initialisation is crucial for the success of
HLloyd. We will show next that the proposed HSC algorithm can achieve a proper initialisation.

6.1.3 | Clustering via HLloyd + HSC algorithms

In the third simulation, we assess the clustering accuracy for the proposed approaches: HSC-only
algorithm and the combined algorithm (HLloyd + HSC). We consider the settings r =5,
p € {80,100}, and Afnin = O(p~") for a range of y. Figure 5 shows that both approaches achieve
nearly exact recovery as the signal level increases in the tensor block model. For a wide range of
settings, given the initialisation by HSC, HLloyd can greatly improve the HSC-only algorithm and
achieves more accurate clustering. This confirms our theoretical results that HLloyd algorithm

effectively boosts the clustering performance of HSC.

6.1.4 | Tensor estimation via HLloyd + HSC algorithms

We use the following experiment to compare the tensor estimation errors of HLloyd + HSC and
HOOL. Figure 6a shows the root mean squared error (RMSE) || X — X || for p € {40, 50, ... ,100},
r=2,d e {3,4}, and Apin, = 2. As p increases, the tensor estimation error of HLloyd + HSC is
almost flat over the range of p. This matches our theoretical results in Theorem 5 that the tensor
estimation bound of the proposed algorithm is free of dimension p. In contrast, the estimation
error of HOOI grows almost linearly with respect to p. This demonstrates the benefit of HLLoyd
+ HSC over previously tensor algorithm HOOI on tensor estimation in tensor block model.

6.1.5 | Simulations on stochastic tensor block models

We also assess our algorithm on stochastic tensor block models. Let re€ {3,5,7},
p € {40,50, ... ,100}, d = 3. The memberships z;, ... ,z4 are generated in the same way as
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FIGURE 6 (a) Comparison of tensor estimation error of HLloyd + HSC and high-order orthogonal
iteration for r = 2, p € {40, 50, ... ,100}; (b) Clustering of high-order Lloyd (HLloyd) with spectral initialisation
for stochastic tensor block model withd = 3, r € {3,5,7}, and p € {40, 50, ... ,100} [Colour figure can be viewed
at wileyonlinelibrary.com|

before. Each entry in the core tensor S, which encodes the connection probability in each cluster,
is generated uniformly at random from [0,0.1]. Then we generate data tensor Y with inde-
pendent Bernoulli entries V), ... ( oy~ Bernoulli(S(Zl)j]’__,,(Zd)jd). We consider low-probability
because the binary tensors in practice often have low average connection probability (see esti-
mated connection probability in real data in the forthcoming Figures 11 and 12). The simulation
results are provided in Figure 6b. We can see as p increases, the clustering error of the pro-
posed algorithm decreases as expected. The results validate our main results in Section 4. In
particular, our algorithm performs well under a general class of sub-Gaussian noises in tensor
block model.

6.2 | Comparison with other algorithms
In this section, we compare HLloyd + HSC with two other classic tensor clustering algorithms:

(a) HOSVD + Kmeans: apply high-order SVD (HOSVD) on Y (De Lathauwer et al., 2000a;
Ghoshdastidar & Dukkipati, 2015), then perform k-means on the outcome factors of
HOSVD;

(b) CP + Kmeans: apply CANDECOMP/PARAFAC (CP) decomposition on Y (Carroll &
Chang, 1970), then perform k-means on the outcome factors of CP decomposition.

In the first three simulations, we compare these algorithms under the Gaussian tensor block
model; in the fourth simulation, we compare these algorithms under the stochastic tensor block
model.

In the first simulation, we let r = 5,p = 80 and Afnin = p” with varying y. The comparison
results in Figure 7 show that HLloyd greatly improves the other two methods for most of y consid-
ered. When d = 4 and y is large, the HOSVD-based clustering method has a similar performance
to HLloyd, and both of them achieve better accuracy than the CP-decomposition-based algorithm.
However, the performance of CP-based algorithm becomes even worse as d increases, which is
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FIGURE 7 Comparison of HLloyd + HSC with HOSVD-/CP-decomposition-based clustering methods for
p = 80,r = 5 and varying y [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Comparison of HLloyd + HSC with HOSVD-/CP-decomposition-based clustering methods
with different numbers of clusters along each mode [Colour figure can be viewed at wileyonlinelibrary.com]

because the CP decomposition can hardly capture dense core tensor structure in the tensor block
model.

Next, we compare the performance of these algorithms when the number of clusters along
each mode differs. We set p and A, to be the same as the previous experimentandr; = 3,r, = 5,
rs =7whend=3;r =3,r, = 5,13 =7,r, = 9when d = 4. Figure 8 shows the averaged CER for
these methods. We find that HLlIoyd + HSC still outperforms the other two algorithms and its
CER SE is low and stable for all the ranges of y considered.

Third, we examine the effect of imbalanced cluster size on the performance of these algo-
rithms. In this setting, we let each mode have two clusters, that is, » = 2, and the proportion of
cluster 1 in each mode is £&. We let p, Apin be the same as before with fixed y = —1.4. Figure 9
illustrates the clustering performance of these algorithms as one gradually increases ¢ from 0.05
to 0.5 and it can be observed that the proposed algorithm is more robust against the imbalanced
cluster size than the other two baseline methods.

Finally, we compare the performance of these algorithms in the stochastic tensor block mod-
els. Consider the setting r = 5,p € {40, 50, ... ,100} and every entry in the core tensor S is
generated uniformly at random from [0, 0.1]. The comparison result is given in Figure 10. We can
see that in both settings d = 3 and d = 4, the proposed algorithm performs much better than the
other two algorithms.
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FIGURE 9 Comparison of HLlIoyd + HSC with HOSVD-/CP-decomposition-based clustering methods
when cluster sizes are imbalanced [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Comparison of HLloyd+HSC with HOSVD-/CP-decomposition-based clustering methods in
stochastic tensor block model [Colour figure can be viewed at wileyonlinelibrary.com]

7 | REAL DATA ANALYSIS
7.1 | Flight route network

In the first application, we study a subset of the worldwide air routes networks! based on 66,765
global flight routes from 568 airlines and 3409 airports. We focus on the top 50 airports with
the highest numbers of flight routes and obtain an order-3 tensor Y of size 39 X 50 X 50, where
the entry YV equals to 1 if there exists a flight route from airport j to airport k in airline i
and equals to 0 otherwise. We perform tensor clustering using HLloyd initialised by HSC with
rank (ri,r,, 1) = (5,5,5). Here, r; and r, are chosen from {3,4, 5,6} that they (i) do not result
in a singleton in any cluster and (ii) minimise the following BIC for block models (Wang &
Zeng, 2019),

d
BIC(ry, ... ,74) = p. log(|| X — YR+ <r* + Zpk log rk> log p.. (30)
k=1

! Available at: https://openflights.org/data.html\#route.
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TABLE 1 Clustering of airlines based on the global flight routes network

Airlines
Cluster 1 AA, UA, US (USA)
Cluster 2 BA, AY, IB (Europe)
Cluster 3 SU, AB, Al, AM, NH, AC, AS, FL, DE, etc (Mixture)
Cluster 4 CA, MU, CZ, HU, 3U, ZH (China)
Cluster 5 AF, AZ, KL (Europe), DL (USA)

TABLE 2 Clustering of airports based on global flight route network

Airports

Cluster 1 PHX, SFO, LAX, EWR, IAH, ATL, DEN, LAS, YYZ,
MEX (North America)

Cluster 2 TPE, HKG, DEL, KUL, SIN, BKK, ICN,

DME, etc (Southeast Asian)

Cluster 3 BRU, FRA, DUS, MUC, MAN, AMS, BCN, MAD, FCO,
ZRH (Europe)
Cluster 4 PEK, CAN, XIY, KMG, HGH, CKG, CTU, PVG(China)
Cluster 5 MIA, DEW, PHL, JFK, ORD, CLT (United States), LHR (United Kingdom)

Tables 1 and 2 show the clustering results for airlines and airports, respectively. The clusters
well capture the underlying geographic and traffic information. Meaningful regions, such as the
United States, Europe, China, Southeast Asia, were identified in the airline clusters and/or airport
clusters. We also find several mixture clusters: Airline Cluster 3 is a mixture cluster consisting
relatively small airlines around the world; Airline Cluster 5 consists of three airlines from Europe
and Delta Airlines from United States.

Figure 11 shows the estimated block mean S corresponding to the US airline cluster (Air-
line Cluster 1) and the mixture airline cluster (Airline Cluster 3), respectively. The rows and
columns of each matrix represent Airport Clusters 1-5 listed in Table 2. The value in each
matrix represents the connectivity of airports from each pair of clusters. We find that the US
airline block mean matrix shows multiple zeros/small values among South Asian, European
and Chinese airports. The matrix also shows high values among airports connected to United
States. This result reveals that US airlines operate few flights between airports in Europe or
Asia. In contrast, for the mixture airline cluster, the mean matrix has many non-zero but small
entries. This reflects that this cluster consists of many small-scale airports scattered around
the world.

We also compare the proposed HLloyd + HSC method with the HOSVD- and
CP-decomposition-based clustering algorithms (see Section 6.2). We find the proposed method
yields more meaningful results than the other two. For example, Table 3 collects the air-
line clustering result of the HOSVD-based clustering algorithm. Comparing Tables 1 and 3,
the proposed algorithm has a better performance on clustering US and China airlines.
More clustering results of the HOSVD-/CP-decomposition-based algorithms can be found
in Appendix A.
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US Airline Cluster Estimated Block Mean Mixture Airline Cluster Estimated Block Mean
USA+UK -. 0.048 . USA+UK  0.019 0.006 0.04 0 0.013
China  0.023 0.062 China  0.001 0.004 0.003 0.018 0

EU 0.058 0.026 0.015 0 . EU 0.013 0.017 0.008 0.003 0.008

SA  0.035 0.033 0.013 0.061 SA  0.007 0.021 0.007 0.004 0.005
USA+Canada . 0.055 . 0.042 . USA+Canada 0.029 0.006 0.045 0.001 0.033

USA+Canada SA EU China USA+UK USA+Canada SA EU China USA+UK
(a) US airlines (b) Mixture airlines

FIGURE 11 Heatmaps of two matrix slices in the estimated block mean corresponding to the clusters of
US airlines and mixture airlines in clustering results of global flight routes network. Here ‘EU’ is short for Europe
and ‘SA’ is short for Southeast Asia. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Clustering of airlines of the high-order singular value decomposition-based algorithm

Airlines
Cluster 1 AA, US (USA)
Cluster 2 UA (USA)
Cluster 3 3U (China), SU, AB, Al, AM, NH, AC, AS, FL, DE, etc (Mixture)
Cluster 4 CA, MU, CZ, HU, ZH (China)
Cluster 5 AF, AZ, KL (Europe), DL (United States)

TABLE 4 Clustering of US airlines based on the US flight route network

Airlines
Cluster 1 UA(547), DL(633), WN(664), FL(420)
Cluster 2 AA(640), US(590)
Cluster 3 G4(6), B6(136), NK(134)

TABLE 5 Clustering of US airports based on US flight route network

Airports
Cluster 1 PHX(137), LAX(148), DFW(130), ORD(151), PHL(110), JFK(108),
CLT(159)
Cluster 2 BOS(91), MCI(68), SFO(76), CLE(52), CVG(50), EWR(73), etc
Cluster 3 OAK(28), MEM(46), HOU(47), SAT(48), IAD(57), HNL(22),

SIC(33), etc
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FIGURE 12 Clustering outcomes of online click-through data. Each matrix represents a mode-3 slice of K
for different daily time cluster. The users clusters U1, U2, U3, U4 have 13, 25, 22, 40 members; the item clusters
I1,12,13,14 have 31,11, 3, 5 members, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

Finally, we perform a similar analysis for the US flight routes network. Specifically, we pick the
top 50 airports and nine airlines with the most traffic and present the clustering results based on
proposed algorithm in Tables 4 and 5. We find the airports are grouped mainly based on their traf-
fic sizes rather than their geographic information. We also find the three main airlines—United
Airlines, Delta Airlines, American Airlines—are in different clusters, although they share sim-
ilar numbers of flight routes. One possible reason is that these major airline companies are
competitors, and the geometric distributions of their flight routes complement each other.

7.2 | Online click-through data

In this section, we illustrate the application of proposed algorithms to time-dependent user-item
collaborative filtering on an e-commerce dataset. The goal is to identify user clusters and item
clusters in a longitudinal study. Specifically, we use the users’ online click-through behaviour
data on Taobao.com, one of the most popular online shopping website in China. The data? of
user—item interaction records are collected over eight consecutive days from 25 November to 2
December 2017. Due to the high dimensionality of the original dataset (~10° users and ~10*
item categories), we only select the most active 100 users and the most popular 50 items in our
analysis. For the m th day, we construct a binary tensor Y, € {0, 1}105%24 ‘where the (i, j, k) th
entry of Y, equals to one if and only if the i th user has an interaction with the j th item (i.e.
make a click) in the k th hour in that day. Let Y = %an:lyi be the averaged observation, and
we apply the proposed method to Y. For the hour-mode, we set the number of clusters r; = 4,
as we expect the behaviours might be separated into four time periods including dawn, morn-
ing, afternoon and evening; for the other two modes, we set the cluster numbers ry, r, to be the
largest possible values that do not result in a singleton in any cluster. This leads to r; =4 and
r,=4.

Figure 12 shows the estimation of block means S € [0, 1]%%4, where S'ijk is the estimated
probability that a user from the i th group click some item from the j th group in the daily time
period of the k th group. The clustering results show that the time mode is well separated into four
consecutive periods: 12am-6am (before dawn), 6:00 AM to 6:00 PM (daytime), 6:00 PM to 9:00 PM
(evening) and 9:00 PM to 12:00 AM (late night). We find the average activity is extremely low in

2 Available at: https://tianchi.aliyun.com/dataset/dataDetail?datald=649.
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Period I (before dawn) and high in Period III (evening), as most people are sleeping in Period I and
could spend more time on online shopping after their daily work in Period III. For fixed user/item
groups, we find some specific time-dependent behaviours. For example, by comparing the last
heatplot with the previous two in Figure 12, we identify a particular group of users U3, whose
activities almost vanish after 9:00 PM; this might corresponds to middle-aged people or seniors
who sleep and rise early. On the other hand, U1 could be the group of young people since they
have the most clicks in the late-night while being the least active in the early morning before 6:00
AM. Due to the lack of users/items features, we can not exactly verify our analysis. Nevertheless,
the identified similarities among entries without external annotations illustrate the applicability
of our method to clustering analysis.

8 | DISCUSSION

This paper develops a polynomial-time high-order clustering algorithm consisting of HLloyd
iterations and HSC initialisation. Critical thresholds for SNR are established, revealing
the intrinsic distinctions between (vector) clustering, (matrix) bi-clustering and (tensor)
tri-clustering/high-order clustering. In particular, we provide both statistical and computational
limits for high-order clustering in the tensor block model.

It is worth mentioning that while our focus is on clustering for tensor block models, the devel-
oped results are useful in a broader variety of applications. For example, the block-wise constant
structure in our tensor model is closely related to non-parametric graphon modelling (Amini
& Levina, 2018; Klopp et al., 2017). In the high-order case, our framework lends itself well to
tri-clustering (Hore et al., 2016) and multi-layer pattern recognition (Lee & Wang, 2020; Lei
et al., 2020). The tensor block model is a building block for more complex structures includ-
ing latent space models (Wang & Li, 2020), low-rank models (Young et al., 2018) and isotonic
models (Pananjady & Samworth, 2022). In principle, complex tensor data can still be fitted by
block models, at a cost of a large r. In this regard, we review our block models as the first step
towards theoretical understanding of more complicated models. Building flexible models for
general tensor data is an important future question.

While this paper mainly considers the tensor block model under Gaussian noise, our
algorithm and proof techniques can also be generalised to other statistical settings, such as miss-
ing observations, non-continuous observations (e.g. dichotomous or count data), and heavy-tailed
noises. For example, when the tensor entries are observed under Huber’s e-contamination model,
one can change the aggregated mean procedure in HLloyd algorithm to aggregated median for
robustness. On the other hand, it is also interesting to combine the discrete block assumption
with other popular low-dimensional structures such as sparsity, monotonicity, and smoothness.
In addition, our current lower bounds focus on settings with i.i.d. Gaussian noise; the statistical
and computational lower bounds for stochastic tensor block models with Bernoulli distribution
remain a challenging and open problem.

9 | PROOF SKETCHES AND TECHNICAL OVERVIEW OF
MAIN RESULTS

In this section, we briefly discuss the high-level ideas and sketches of proofs for Theorem 3,
Proposition 1, and Theorem 2. The complete proofs are deferred to Section B in Appendix S1.
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9.1 | Proofsketch of Theorem 3

Our analysis is conducted on the misclassification loss lg) defined in (16). We specifically discuss

0)
1

ing outcome of applying k-means on rows of ¥; (Y, is defined in (10)). One can check applying
k-means on the rows of Y; is equivalent to applying k-means on the rows of

how to bound lgo) while the same argument applies to the other lg)) s. Recall z,” is the cluster-

?1 = PﬁlMl <J7><21P’02 X"-Xd]P)de> € RP¥P-1,

A AT . .. . i s
where Py :=UU is the projection operator. Under proper regularity conditions, we can
prove that

Mr_1

(0)
2 <
D+

¥ = M7 (31)
Thus, to bound l(lo), we only need to bound ||Y; — M, (X )||%, that is, the difference of Y, to its popu-

lation counterpart EM; (V) = M;(X), which is exactly the goal of Proposition 1. Then Theorem 3
can be concluded by combining (31), Proposition 1, and Lemma 1.

9.2 | Proofideas of Proposition 1

We assume r < r_ for the convenience of illustration. One can show by tensor algebra that
d 2 T T
Y9 _ 2 < (" ( e (
1Y = X113 3 I;HUMM;((X)HF + |25 00 % xa Oa | (32)

where Uy, is the perpendicular subspace of Uy. The second term in (32) can be bounded by
sub-Gaussian concentration inequalities while the analysis on the first term (|| Uy LMk(X)H%) is
more involved. Recall that

U = SVD,, (M) (U @+ @ T @ T @+ ® i) ).
Uy = SVD,, (M (D).

A classic scheme to analyse 10 Mi(20)||F is by establishing an upper bound on the principle
angles between the sub-spaces spanned by the preliminary estimated singular vectors (Uy) and
the true singular vectors (U := SVD,, (M(X))) in the sine-theta distance: || sin O, Uyl =
||I:ILUk||. To obtain an upper bound on || sin ®(Uy, Uy)||, a singular value gap condition, that is,
some lower bound on 4, (Mg(X)) — Ar 41(M (X)), is crucial as indicated by the classic literature
on matrix perturbation theory (Davis & Kahan, 1970; Wedin, 1972). Since there is no singular
value gap condition in the context of Proposition 1, it is difficult to prove the desired bounds via
bounding || sin ®(Ty, Uy)||.

Let U;C = SVD,L (Mp(X)) for some r]’c < 1. Our main idea for proving Proposition 1 is to
decompose X into two parts:

X=X"+(X-X"), where X’ :=X><1[F’U;><---><dIP’U;.
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By appropriately choosing 7/, X’ can be taken as the ‘strong signal’ tensor with large singu-
lar values; while X — X’ is the ‘weak signal’ tensor with small singular values. With such a
decomposition, we only focus on estimating X’ while leaving X — X’ as a bias term. To this
end, we first introduce a deterministic matrix perturbation bound for subspaces of different
dimensions.

Lemma 2. Suppose the first r and the rest p, — r singular vectors of Y € RPP2 are U e Op,.r
and U, € Op, p,—r» respectively. For some 1 <1’ <r, let W € O, ,» be any p,-by-r' column
orthonormal matrix and W, € O, ,, _» be the orthogonal complement of W. Given that
v (W'Y) > 6,,1(Y), we have

or (WTY)||[W]YPyryll
. .
o2(W'Y) - 62, (Y)

i

Here Pp = A(ATA)"AT is the projection operator.
To apply it to our problem, we further obtain the following probabilistic bound under the
additive heterogeneous sub-Gaussian noises.

Lemma3. Let Y = X + Z € RPP: where X is a rank- r matrix. Let U = SVD.(Y), U, = SVD,(X)
for some 1 <1 <r. Suppose Z; are independent mean-zero sub-Gaussian entries with
EZizj = 1 and ||Z;l|,, < C. Then, with probability at least 1 — exp(—cp1 A p2),

_ ()

”IAJIU,J +

X 02(X)

Here, || Z;]l|,, denotes the sub-Gaussian norm of Zj.

Applying Lemma 3 to Uy and U/, we can obtain a neat bound for ||ﬁ11U;(||, which can be
further used to analyse the estimation error of X’ via the bound of || Uy My (X")||r. The complete
proof is postponed to Section B.2.

Remark 8. We highlight the difference between the analyses of clustering in the matrix case (order
d = 2) and the high-order tensor case (order d > 3) and illustrate the necessity of developing
these techniques here. Note that in Gaussian mixture or bi-clustering models, the estimator
Y, is essentially the rank-r; truncated-SVD estimator of ) € RP1*P:2 and it be can directly
obtained that

¥ = &7 < 2r|[¥0 = & < 4r <||Y1 ~ Y|P + 11X - y||2)
(%) ) 5 G
<8nllX = Y| =8nllZlI° < 8(pr+p)ri.  whp.

Here, (*) comes from the optimality of SVD while (**) comes from the spectral norm of
Gaussian random matrix. Note that the above argument is free of any singular value gap asit
does not involve any analysis on singular sub-space estimators. In contrast, there is no such
an analytic property for the estimator Y; when d > 3 and we have to analyse the accuracy
of the singular subspace estimators {ﬁk}zzl in a more complicated way. This makes the
theoretical analysis fundamentally more difficult without the singular value gap condition
in the tensor setting.
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9.3 | Proofsketch of Theorem 2

To prove Theorem 2, we establish a local contraction property on lg). Inspired by the convergence
analysis of iterative algorithm for single discrete structure (Gao & Zhang, 2022), we introduce an
oracle clustering procedure S, 7 as follows:

Siy...ig =Average ({¥), .y, 1 @), =i.Vke[dl}), i €[nd,
~ 2
@y = arg min (M) Vie= (M), [ € b (33)

where Vi :=W; @ -+ Wi.; @ Wi @ - - - ® Wg and Wy := M(diag (1;—kMk))_1 is the weighted
membership matrix.

Consider the mode-1 clustering, for the oracle procedure (33), by definition j € [p;],
(Z1)j # (zy); if and only if there exists b € [r1] \ (z1);, such that

2
[t vi= @), | > At vi - (@), | (34)

Note that (34) is equivalent to

(M@ Vi, (M) ), = (M), )

)

1 . 2 .
<3 <—H(M1(s))(zl)j; - (Mi®), ||+ H(Ml(S))(Zl)j; - (Mi®),,,.

1 2
~ =5 Mg — M|
Therefore, we define the quantity

(M@ Vi (MB) ), = (M), )
Alj = - ’

||(M1(5))<zl>,.; = (M) ||2

and the following oracle loss with some small ‘tolerace’ constant 6 € (0, 1):

We can similarly define & for each k € [d]. Intuitively speaking, & can be taken as a surrogate
for the misclassification loss of the oracle clustering estimator Z: we expect & is closely related
to lg) in (16) and may serve as the iteration limiting point. Different from the regular clustering,

(. 1
k

HLloyd algorithm involves iterations of all d memberships z,”; and , the misclassification loss

atstep (t + 1), depends on lf:,) forall k' € [d]. This makes the error contraction analysis for HLloyd
much more involved. With a dedicated loss decomposition and error estimation, we can prove
the following contraction inequality:

3 1
=D < 2 —max [V, 36
L 2€k+ 2keld] k (36)
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By sub-Gaussian concentration, one can further prove that with high probability

2
opi A
Cl e (37)
r—i (o2

& Solexp| —

Combining (36), (37), and Lemma 1, we establish the loss convergence (19) in Theorem 2.
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