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We analyze the topological properties of the possible superconducting states emerging from a Cd;As,-like,
C4-symmetric Dirac semimetal, with two fourfold-degenerate Dirac points separated in the k, direction. Unlike
the simplest Weyl semimetal for which all pairing orders are topologically obstructed and nodal, we show that the
topological obstruction for pairing in Dirac semimetals crucially only exists for certain pairing symmetries. In
particular, we focus on odd-parity By, and B,, pairing states, both of which can be induced by Ising ferromagnetic
fluctuations. The Bj, and B,, pairing states inherit the topological obstruction from the normal state, which
dictates that these states necessarily host four Bogoliubov—de Gennes (BdG) Dirac point nodes protected by a Z,
monopole charge. By a Wannier state analysis, we show that the topological obstruction in the superconducting
states is of higher-order nature. As a result, in a rod geometry with gapped surfaces, arcs of higher-order Majorana
zero modes exist in certain k, regions of the hinges between the BdG Dirac points. Unlike Fermi arcs in Weyl
semimetals, the higher-order Majorana arcs are stable against self-annihilation due to an additional Z-valued
monopole charge of the BdG Dirac points protected by C, symmetry. We find that the same Z-valued charge is
also carried by B, and B,, channels, where the BAG spectrum hosts bulk “nodal cages,” i.e., cages formed by
nodal lines, that are stable against symmetry-preserving perturbations.

DOI: 10.1103/PhysRevB.106.214510

I. INTRODUCTION

Topological semimetals are gapless states that exhibit topo-
logically stable band crossings in the Brillouin zone (BZ),
including Weyl [1-11] and Dirac semimetals [12—19], nodal
line semimetals [20-28], and multifold fermions [29-31].
Owing to the nontrivial topology, topological semimetals
display interesting spectral and transport properties. For ex-
ample, in Weyl semimetals there exist gapless surface states
that are restricted in certain ranges in momentum space,
known as Fermi arcs, which leads to interesting features seen
in ARPES and quantum oscillation measurements [1-4].

Moreover, topological semimetals are fertile playgrounds
for the interplay between correlation effects and band topol-
ogy. In particular, interacting topological semimetals can host
novel superconducting instabilities upon doping, whose topo-
logical properties descend from the normal state [32,33]. For
example, in a Weyl semimetal with two Weyl points, it has
been shown that all possible pairing orders are necessar-
ily topologically obstructed, i.e., hosting point nodes in the
Bogoliubov—de Gennes (BdG) spectrum [32]. The topological
obstruction comes from a Chern number for surfaces enclos-
ing the Weyl points, which is inherited by the superconducting
state. As a consequence, the surface Fermi arcs in the normal
states get reconnected in the superconducting states and ter-
minate at the BAG point nodes instead [33].

Recently, the notion of band topology has been extended
to higher-order ones, with examples ranging from higher-
order topological insulators [34-39], higher-order topologi-
cal superconductors [28,40-66], and higher-order topologi-
cal semimetals [67-72]. In general, nth-order higher-order
topological phases are protected by spatial symmetries and
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host gapless or degenerate states on its (d — n)-dimensional
boundary (1 < n < d) while its bulk and surface spectra
are gapped. As examples, interesting higher-order topologi-
cal superconductivity has been shown to emerge from nodal
line semimetals [28], time-reversal-invariant Weyl semimetals
[40], and Dirac semimetals [41,42].

Different from Weyl semimetals [1-6], the topological sta-
bility of Dirac semimetals requires additional symmetry. In
Dirac semimetals such as Cd3As; and Au,Pb, the Dirac points
are protected by a Z, topological invariant in the presence
of time-reversal, inversion, and fourfold-rotational C4 sym-
metries [73-75]. In terms of bulk-boundary correspondence,
Dirac semimetals do not host stable Fermi arcs on the surfaces
[73,76-78]. Instead, recent studies have shown that certain
Dirac semimetals display higher-order Fermi arcs (HOFAs)
[79-81], which are one-dimensional (1D) degenerate disper-
sive states localized on the lower-dimensional hinges when
two open boundaries intersect [38,67-69]. The HOFAs termi-
nate at the projections of bulk Dirac points onto 1D hinges,
and are protected by the same symmetries protecting the bulk
Dirac points.

Superconductivity has been reported in Dirac materials
such as Cds;As; [82—-84] and Au,Pb [19], followed by several
theoretical investigations of topological superconductivity in
doped Dirac semimetals [73,85—-87]. In this work we investi-
gate possible topologically obstructed nodal superconducting
states from a C4-symmetric Dirac semimetal. If such super-
conducting states do exist, a natural issue is their indication
to the bulk-boundary correspondence. Given that the normal
state exhibits nontrivial higher-order topology, such pairing
states may display nodal higher-order topological supercon-
ductivity. A similar question was addressed in Ref. [87]. In
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that work, the normal state is Z, obstructed and the pair-
ing states that inherit the normal state obstruction present
nodal points on Fermi surfaces (FSs). The two-dimensional
(2D) Hamiltonian is a class DIII topological superconductor
due to a 2D composite time-reversal symmetry which satis-
fies (T M.)> = —1. For bulk-boundary correspondence, the
model studied in Ref. [87] displays surface helical Majo-
rana arcs connecting the projections of bulk gap nodes onto
surfaces. However, Ref. [87] considered a mirror reflection
symmetry that squares to +1, which does not apply to realistic
Dirac materials.

Motivated by these questions, we begin with a simple
tight-binding model for a doped Dirac semimetal with two
Dirac points protected by time-reversal symmetry and the Dy,
point group [73]. In the normal state, there are two closed
Fermi surfaces around each Dirac point. Such a model can
be thought of two copies of Weyl semimetals that are time-
reversal partners, with two types of spin-orbit coupling terms
A1 and A, at lowest order in k that couple the two copies.
These spin-orbit coupling terms eliminate the surface Fermi
arcs and reveal the HOFAs at the hinges.

We show that just like the normal state, the topological
obstruction of the superconducting state strongly depends on
spatial symmetries and, in particular, the irreducible repre-
sentation thereof [87]. Out of all possible pairing channels
that are irreducible representations of Dy, we show that By,
and B,, pairing channels, both of which are odd in parity,
inherit the topological obstruction from the normal state. This
is in sharp contrast with superconductivity in doped Weyl
semimetals with two Weyl points, in which all possible pair-
ing states are necessarily topologically obstructed and nodal
[32]. We compare the relative strength of these two pairing
instabilities. Assuming a scenario with Ising ferromagnetic
fluctuations, the effective interaction is attractive for both pair-
ing channels, and whether By, or By, is energetically favorable
is determined by the relative strength of A; and A,. Even
for a realistic system beyond the simple tight-binding model
we consider, we expect the result to hold for small Fermi
surfaces.

We further consider the topological nature and the resulting
bulk-boundary correspondence of By, and B, superconduct-
ing states. Crucially, we find that the topological properties
are completely determined by the transformation properties
of the order parameter under the point group Dg,. We find
that the superconducting order parameters create BAG Dirac
points residing on the north and south poles of each of the
two disjointed FSs in the BAG Hamiltonian. Higher-order
Majorana arcs (HOMAs) localized along the hinges of a 3D
rod geometry (finite in xy but infinite along z) exist, origi-
nating and terminating at the projections of bulk BdG Dirac
points onto the hinges. In the normal state, generally HOFAs
are dispersive in the spectrum for a finite chemical potential.
By contrast, HOMAs are always pinned at zero energy due
to the particle-hole symmetry. We show that the existence
of HOMAs can be detected by a Z, topological invariant
corresponding to the filling anomaly of the 2D subsystems
at a given k, within the relevant range, captured by the po-
sitions of the Wannier center of the 2D subsystem. The model
in Ref. [87] has a similar bulk spectra but the higher-order
topology is absent since it does not have C4s symmetry. In

TABLE 1. Surface states or corner states for a 2D k. slice in
different cases. “DSM” refers to Dirac semimetal and “DSC” refers
to Dirac superconductor. The DSM entry excludes the k, = 0 plane,
where gapless surface states are present due to a nontrivial mirror
Chern number. By, and B,, are orbital-singlet and spin-triplet pair-
ings given by Eq. (15). We use green dots to denote corner states in
normal state and red dots to denote corner Majorana zero modes in
superconducting state.

Sample Cut <>

DSM(k. # 0) HOFAs Q HOFAs
B1.-DSC HOMAs <> gapless
Bs,-DSC gapless Q HOMAs

Ref. [88] the authors proposed a second-order Dirac super-
conductor with flat-band Majorana arcs localized on hinges.
In their model the hinge Majorana arcs terminate at the pro-
jections of Dirac nodes from surface states, while our model
features bulk Dirac nodes.

Interestingly, unlike the normal state, in the pairing state
HOMA S only appear for certain vertical hinges, depending on
how the finite sample is cut. Preserving all the point-group
symmetries, the finite sample can either be in a “square cut”
or in a “diamond cut,” with edges at 45° relative to each other.
By, pairings and B,, pairings leave certain surfaces gapless.
These gapless surfaces are protected by mirror symmetries.
Naturally, a finite sample hosts HOMAs only when the sur-
faces are gapped, which we summarize in Table I.

We further show that the BdG Dirac points host an ad-
ditional Z monopole charge protected by the Cs symmetry,
which are the same at the same side of the Brillouin zone. As
a result, the BAG Dirac points at the north and south poles
cannot annihilate each other, and the corresponding HOMAs
at the hinges cannot be removed, at least in the weak-pairing
limit.

We note that a method based on inversion-symmetry indi-
cator has been proposed in Refs. [89-91]. However, directly
applying their results to our case would yield a trivial result.
This is because the indicator is only a diagnostic for HOMAs
at k, = 0, while in our cases HOMAs occur at finite k,’s.
Therefore, our results enrich the classification of HOMASs in
Ref. [89].

Based on the same method, we also analyze the topological
properties of other pairing channels, out of which we identify
By, and By, states as hosting the same monopole charges as
the By, and B,, states. However, these states host cages of
nodal lines in the spectra, thus, the higher-order topology is
not well defined. However, each nodal cage still hosts a well-
defined Z monopole charge of two, ensuring the stability of
the structure.

The rest of this paper is organized as follows. In Sec. I we
present the 3D model for a C4-symmetric Dirac semimetal and
the topological protections of bulk Dirac nodes. We perform
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a real-space Wannier orbital analysis on the 2D slice Hamil-
tonian between the two bulk Dirac points in Sec. I A and
find an inevitable filling anomaly. We claim in Sec. II B that
surface states are gapped out by SOC and HOFAs connecting
the projections of bulk Dirac points are present in the 3D rod
Hamiltonian. In Sec. III, we focus on the odd-parity pairing
states in By, /By, channels. We show that they are the lead-
ing instabilities induced by Ising ferromagnetic fluctuations,
shown in Sec. IIT A. In Sec. III B, a higher-order Z, invari-
ant from the C4 symmetry is defined by applying Wannier
orbital analysis to the 2D subsystem of the BdG Hamilto-
nian, which characterizes the higher-order corner Majorana
zero modes. An additional Z-valued topological invariant pro-
tecting HOMAs is identified in Sec. IIIC. In Sec IIID, we
elucidate the relation between HOMAs with gapless surface
states protected by mirror symmetries. We discuss the effects
of C4, time-reversal, and inversion-breaking perturbations in
Sec. III E. We briefly discuss other pairing channels in Sec. [V.
The results are summarized in Sec V.

II. DIRAC SEMIMETALS PROTECTED
BY C4 ROTATION SYMMETRY

An effective Hamiltonian of a well-known Dirac semimetal
such as CdsAs, is given by [73]

Hy(k) =[Mo — tyy(cos k, + cosk,) — t, cos k;]o,so
+ 1 sink.oys, — 1 sink,0ys0
+ Ay sink;(cos k, — cos k)o,s,
+ Az sink; sin k, sin kyo,s,, €))]
where My, t.y, t;, 1, A1, and X, are model parameters and o;
(s;) denotes Pauli matrices in orbital (spin) spaces. A pair of
Dirac points appear at (0, 0, ko) in the 3D Brillouin zone
(BZ) for t, > (Mo — 2t,,) > 0 and ko is defined by My =
1, cos kg + 2t,, with kg > 0. In particular, A; and A, are two
lowest-order spin-orbit coupling terms allowed by symmetry.
A momentum-dependent chemical potential p(k)opsy is not
included in Eq. (1) since it does not affect the topology.
The Hamiltonian preserves inversion Z, time-reversal 7T,

three mirror M, , ., and a C4 rotation symmetry about the z
axis, satisfying

THo(ky, ky, k)" = Ho(—ky, —ky, —k.),
THo(ky, ky, k)T ™' = Ho(—ky, —ky, —k),
CyHo(ky, ky, k)C; " = Ho(ky, —ky, k),
M Ho (e, ky, k)M = Ho(—ky, Ky, k),
My Ho(ky, ky, k)M = Ho(ky, —ky, k),
M Hy(ky, ky, k)M = Holky, ky, k), )
where
I=o, T=is,K, Ci= is e/
M, =is,, My =io.s,, M,=is,. 3)

The forms of the symmetry operators are chosen according
to the transformation properties of four spin-orbit coupled de-

grees of freedom with angular momenta J = :I:% andJ = :i:%.
The corresponding point group of Hy(Kk) is Dyy,.

To see how C4, T, and Z together protect the Dirac point,
we note that (7Z)*> = —1, which protects a twofold Kramers
degeneracy at any point in the BZ. Along k, =k, = 0, every
Bloch state can be labeled by its angular momentum under the
fourfold rotation symmetry, forming two Kramers pairs. The
Dirac points occur at k, = k, = 0 when the |J| = % bands and
|J| = % bands cross, which are robust against any symmetry-
preserving perturbations. Here it is important that the two
pairs of bands carry different absolute values of angular mo-
menta.

One can define a Z, monopole charge for the Dirac point
at (0, 0, ko) [73-75], given by

Av (ko) = [v;(kg) — vs(ky)] mod 2, “)
where
vy (ky) = [N;(0,0, k) — Ny(m, 7w, k)] mod 2 (5)

and N, (0, 0, k(j)t) is the number of occupied bands with C4
eigenvalue J at the C4-invariant momenta (0, O, kgt) above (be-
low) ko along the C, invariant axis. Time-reversal symmetry
and filling constraints ensure that v; is independent of the par-
ticular J one chooses, and in our model, it is straightforward
to verify that Av(%ky) = 1.

We will show in the following subsections that the charge
defined in Eq. (4) is a higher-order topological invariant con-
nected with the Wannier representation for each k, layer.

A. Wannier representation

Consider the 2D subsystem of Hy(K) at a fixed k, between
two Dirac points:

Hop (ky, ky) =M, — (cos ky + cos ky)]o.so
+ sin ko0, — sinky0,5¢
+ A} (cos ky — cos ky)oysy
+ A sin ky sin kyo,sy, (6)

where My = My — cosk;, A}, =Arjasink;, and we set
tyy =t; =n =1 without loss of generality. When k; # ko,
Hop(ky, ky) describes a 2D subsystem of a crystalline insu-
lator. Note that the slice Hamiltonian Hyp(k,, k) preserves a
2D time-reversal symmetry defined by the 3D time-reversal
operator 7 times the mirror reflection M., such that

T Hop(ky, k)T " = Hop(—ky, —k), 7

where T = T M, = is, K and T2 = +1. Such a time-reversal
symmetry does not enable a Kramers degeneracy and the
edges (corresponding to side surfaces at a given k;) are in
general gapped. Lacking protected edge states, Hop(ky, k) for
k, # *ko can be represented by Wannier states.

Constrained by spatial symmetries and 7Z symmetry,
there are two possible representations of two filled Wan-
nier states, with a pair of Wannier centers both at Wyckoff
position r = (%, %) or both at r = (0, 0). The configuration
corresponding to Hop(ky, ky) can be obtained by investigat-
ing the C4 eigenvalues of the occupied bands at C4-invariant
momentum I = (0,0) and M = (;r, ) in the 2D Brillouin

214510-3



ZHENFEI WU AND YUXUAN WANG

PHYSICAL REVIEW B 106, 214510 (2022)

e e e , e o o
HE HE N B E
e & & ' & o o

° @ e ' @ "] °

- --E---- .-

° L e @ [ 4 L4

° [ 4 ® @ [ 4 °

FIG. 1. Wannier representations for the nontrivial phase in 2D
subsystem of the Hamiltonian in Eq. (6). Cyan squares represent
atom sites and purple dots denote Wannier orbital centers at r =

%, %). Two dashed lines denote mirror planes and their crossing
point is the rotation axis. The corner atom site in the finite sample
acquires a charge :i:%e due to the filling anomaly.

zone, which we denote as Cre*'5 and Cye*'%. Due to TZ
symmetry ensuring Kramers doublets, Cy; and Cr are both
real numbers: for |J| = %, the corresponding Cy,r = 1 and
for |[J] = 2, Cyr = —1.

One can define a topological invariant

(=1)" = CuCr., ®

such that v = 1 represents the configuration of two Wannier
orbitals centered at the Wyckoff positionr = (%, %) andv =0
corresponds to the trivial case when the Wannier centers are at
r = (0, 0) [42] (details in Appendix A). Under open boundary
conditions, the nontrivial case v = 1 is sketched in Fig. 1 and
exhibits a filling anomaly, i.e., it is impossible for the system
to maintain both charge neutrality and C4 rotation symmetry
due to the fact that Wannier centers are shifted from the atomic
positions, leading to an obstructed atomic limit [92]. It is
separated by a gap-closing point to its trivial phase where
Wannier centers coincide with ionic sites. The 2D subsystem
is in a second-order topological insulating phase [34-38,81].
Even though we have only depicted a “square cut” geometry,
it can be readily verified that the filling anomaly exists for any
finite geometry that preserves the C; symmetry, including a
“diamond cut” along the diagonal direction.

From Eq. (6), for —2 < My — cosk; < 2, which is pre-
cisely the range of k, between the two Dirac points, the filled
bands carry |J| = % at I' and |J| = % at M. Therefore, for
this range of k,, we have v = 1, exhibiting a filling anomaly.
Note that the second-order topological invariant v defined here
is equivalent with v, defined in Eq. (4), and the topological
charge Av of the Dirac point can be interpreted as a relative Z,
invariant of two k-space layers sandwiching the Dirac point.

B. HOFAs

Corresponding to a nontrivial v = 1, one can show that
the system in a rod geometry hosts gapless HOFAs on the
vertical hinges, provided that the side surfaces are gapped

[72]. We note that this necessarily excludes the k, = O slice of
the side surfaces due to a mirror Chern number [73]. However,
surface states with momenta k, # 0, ko can all be gapped out
without breaking the symmetries. Our findings are consistent
with those obtained in Refs. [79-81], and we present our full
analysis here for completeness.

Indeed, this can be seen from splitting Eq. (6) in two parts:

Hyp =Hy + A (cos ky — cos ky)oSy
+ A sink, sin kyo,sy, 9)

where

Hy =[M — (cos ky + cos ky)]o,s0

+ sin k0,5, — sin ky0y5. (10)

It can be readily verified that H, hosts helical surface states.
On the yz surfaces they satisfy

05, | W) = £|W). (11)

For small k,, the Hilbert space of the surface Hamiltonian is
spanned by oy, = 1) ® |s; = 1) and |0, = —1) ® |5, = —1),
giving rise to

HY* ~ kys.. (12)

The surface dispersion H;* on the xz surface can be similarly
obtained. It then follows that A term in (9) gets projected onto
the surface and becomes A} (k2)s,, which gaps out the surface
Hamiltonian [77,78,93]. To see how hinge modes emerge, it
is helpful to set A, = 0, and consider a smooth hinge where
xz and yz surfaces are smoothly connected. On this smooth
manifold, due to the cos k, — cos k, dependence, A} term nec-
essarily vanishes in the diagonal direction, indicating a mass
domain wall of the helical fermion in Eq. (12), therefore
leading to a localized zero mode at the hinge. The 1), term has
a nonzero projection at the corner, i.e., the diagonal direction,
and shifts the energy of the hinge mode. Nonetheless, due to
the C4 symmetry, such an energy shift is the same for all four
corners, and thus the hinge modes are degenerate.

The same argument can be applied to obtain hinge states in
a “diamond cut,” in which the relevant surfaces are (x + y), z
and (x — y), z. Without A/ , terms, the gapless edge states are
given by, e.g., ’

Héx_5')z > (ke — ky)(oys; + 0y50) (13)

and

Oy + 0y,
V2

The A term gaps out the surface states such that when viewed
as a smooth edge, the gap changes sign from the (x — y), z
surface to the (x + y), z surface, leading to a zero mode.
Further, the A term displaces the bound state energies while
maintaining their degeneracy for all corners.

In Fig. 2 we show numerical results confirming the ex-
istence of higher-order corner states in a 2D square cut
subsystem. We schematically plot the HOFAs in the rod
Hamiltonian Hy(x, y, k;) in Fig. 3.

W) = £|W). (14)
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FIG. 2. (a) Energy spectrum of the rod Hamiltonian Hy(x, y, k;)
as a function of k, for N =20. A momentum-dependent term
—0.3(cos k, + cos ky)opsy is added in the numerics to lift the “ac-
cidental” particle-hole symmetry. Hinge states are marked green.
(b) Wave-function distributions of the midgap states on a 2D slice
in (a) at k; = m /4. Parameters are My =2 and t,, =t, =n =7} =
Lo = 1. The corner states are visible.

III. By, AND B, PAIRING IN DIRAC SEMIMETALS

With a nonzero chemical potential, there exist two closed
Fermi surfaces near the two Dirac points. In this section we
focus on the odd-parity pairing states belonging to Bj, and

-
“““““““
-

-----""--- e

FIG. 3. The C4-symmetric Dirac semimetal phase in a rod geom-
etry. Two blue dots denote the bulk Dirac points and the cyan plane
corresponds to a nontrivial mirror Chern number at k, = 0. HOFAs
(green) cross k, = 0 and terminate at the projections of bulk Dirac
nodes onto four vertical hinges.

B,, irreducible representations. They are described by the
following equal-spin pairing terms:

Bi,: Ay (K)(oys0)¥ ' (—K),
By, Myt (K)(oys )Y (—K), (15)

and we list their transformation properties under point-group
symmetries of Dyj, in Table II. Note that, due to the particle-
particle nature, the pairing order transforms under symmetry
operations as, e.g.,

Ajoysy — Alj\/lxayso/\/lz = —A10,5. (16)

These pairing channels are favored by certain electronic
interactions, for example, ferromagnetic spin fluctuations. In
fact, we show below that in the presence of short-ranged Ising
ferromagnetic fluctuations, the leading pairing instabilities are
in these two channels. We will then analyze the topological
properties of these two pairing states.

A. By, vs B,, instabilities

Let us consider an electronic interaction that is attractive
in both B;, and B,, channels. For concreteness, we focus
on interactions mediated by short-ranged Ising ferromagnetic

TABLE II. Transformation properties of A; and A,, which form B, and B,, irreps of Dyj,.

. .. . ;T . .
Representative pairing order Irrep Cy = is,e' 7% IT=o, M, =is, M, =io_s, M, =is
A10'y Blu - - - - -
AQO‘ySZ BZu - - =+ + -
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fluctuations, given by in second-quantized form

Him =V / dr[y" (r)(oos) ¥ (017, (17)

where V < 0 is the strength of the ferromagnetic fluctuation.
It is well known that ferromagnetic spin fluctuations suppress
spin-singlet s-wave (A ) pairing and promote odd-parity pair-
ing [28,94,95]. It turns out the leading instabilities with this
interaction are in the Bj, and Bj, channels that are equal
spin, orbital singlet, and constant in k. The linearized gap
equations are given by

Aoy =—T Y Vs,G(k)(A10y)G (—k)s;.  (18)
k
Ayoys. = =T Y Vs:G(k)(Ag0ys:)G" (—k)s.,  (19)
k

where k = (iw,, K), G(k) = [iw, — Hy(k) + ]! is the
(matrix) fermionic Green’s function, and w,, is the fermionic
Matsubara frequency. It can be straightforwardly verified that
Aoy, and Ajoys; are indeed eigenvectors of the kernel.

After multiplying both sides, respectively, by o, and oys.
and taking the trace, we have

—1/V =T ) Trl0,G(k)oyG" (=k)]
k
e(k) M

T2
= ZFl( e o (20)

—1)V =T, Z Tt[oys,G(k)oys.G' (—k)]
k

tanh <X—x

_ZFg(k) 2o Q1)

where €(k) is the dispersion of Hy(k) and we have assumed
u > 0. Note that the momentum summation FS_ indicates
that only electrons near two Fermi surfaces surrounding
(0, 0, £kp) form Cooper pairs. Beyond the specific inter-
action we consider, we note that Egs. (20) and (21) hold
for any short-ranged interaction attractive in these channels.
For example, these pairing channels can also be induced by
interorbital attractive interactions which dominate over in-
traorbital ones [73,85].

The derivations of form factors Fj (k) are given in Ap-
pendix B, where we find that

kK—kIN2 .
kZ + kg + A3 (=5) " sin® ko

Fi(k) =~ pE ; (22)
k2 + kf, + A3k2k?Z sin® ko
F(k) ~ 2 : . (23)

Here in Fj,(k) we have set €(k) = u and hence the ~
sign. For approximately spherical Fermi surfaces, we find
that Y, Fi(k) > Y, F>(k), ie., T, > T, when |A;| > |A,],
thus favoring A, as the pairing state, and vice versa. This
conclusion holds for small Fermi surfaces that can be suffi-
ciently approximated by a k - p Hamiltonian. For larger Fermi
surfaces a more detailed analysis of the realistic band structure
is needed.

We note that F (k) vanishes at k, = k, = 0, which are the
polar points on the two disjoint Fermi surfaces. These k points
thus do not participate in pairing. In fact, as we shall see, there
exist gapless nodal points at the poles of the Fermi surfaces.

B. Higher-order topology and HOMAs

The corresponding Bogoliubov—de Gennes (BdG) Hamil-
tonian for the By, (By,) pairing state is

Hpyg(K) = (Mo — cosk, — cos ky, — cosk;)o. T,
+ sink,o0ys, — sink,0,T; — T,

+ Ay sink(cos ky, — cos ky )oxSy

+ Ay sink, sink, sink,0,5,T;

+ Aoy T (+A20,5,Ty), (24)

where 7,/,,, are Pauli matrices in the Nambu space. The sym-
metry operators are elevated to the BdG level as

I=o1, T=isK, Ci=is, /TS (25)

Mirror symmetry operators are different for By, and B,, order,
such that

for By, My =is,, M,
for By,, My =isct,, M,

= i0,8yT;,
= i0,5y. (26)

Since A and A, in general do not coexist from our energetic
analysis, all point-group symmetries are preserved. In addi-
tion, a particle-hole symmetry P = ,K is present, such that
PHpac(kK)P~! = —Hpac(—K).

Before we analyze the higher-order topology, it can be
directly checked that Eq. (24) has a mirror Chern number
Cy = 2 at k, = 0. Compared with the normal states, the dou-
bling in Cy; comes from the Nambu space. This corresponds
to protected gapless surface states at k, = 0. For all other k;
values the 2D subsystem does not have nontrivial first-order
topology, but may still possess nontrivial second-order topol-
ogy.

By directly diagonalizing the Hamiltonian, we see that A
and A, pairing terms both create nodal points on the north
and south poles of the spherical Fermi surface in the bulk BdG
spectra. For the B;, order parameter A, we write Hpqg(K) in
Eq. (24) along (0, 0, k,):

Hpag,r(k;) = —put, — cosk.0,7, + A0y Ty, (27)

where we set My = 2 without loss of generality. The corre-
sponding energy dispersion is

E = +cosk, £.,/pu? + A2, (28)

which we plot in Fig. 4(a). We see that there exist four
fourfold-degenerate crossing points at zero energy: these are
the Dirac points in the BdG spectrum (hereafter referred to as
“BdG Dirac points”) pinned to zero energy by particle-hole
symmetry. Their locations are at (0, 0, k,) with

k. = +k; = Farccos (y/u? + A?) and

kz = :|:k2 = :|:(7T — kl) (29)
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FIG. 4. Energy spectrum of (a) Hy(0, 0, k;) and (b) Hy(w, 7, k;)
with My =2 and u = A, = 0.4. All bands are twofold degener-
ate due to the product of time-reversal and inversion symmetries
(TI)? =-1. Purple bands correspond to |J| = % while blues bands
correspond to |J| = % Dashed lines denote BAG shadow bands. In
(a), there are four BdG Dirac points (marked by red dots) at k, = £k,
and +k,, between which the 2D slice Hamiltonian represents a non-
trivial higher-order topological superconducting phase.

In the weak-pairing limit A <« u, and the BAG Dirac points
are located at the north and south poles of the two Fermi
surfaces.

Using By, order parameter as an example (the analysis
for the B, order parameter A, is exactly the same until
Sec. III D), the 2D subsystem of Hpqg(K) for a k; slice is given
by

Hgag, 20 (ky, ky) = (M{, — cos ky — cos ky)o, T
+ sin ko0, — sink,0,7;
+ A} (cos ky — cos ky)oysy
+ A sin ky sin kyo,sy T,
+ AjoyTy, — 4T 30)
Hpag(ky, ky) satisfies the 2D version of time reversal,
particle-hole, chiral symmetries and a BdG version of G, =

diag{C4, —Cj}. The system above can be regarded as an insu-
lator before taking the particle-hole symmetry into account,

e e . oo o
e o o o o
o & €& ' &6 o o

e o ¢ o o
° L 4 e @ o °
- - -@---0--
° e o o o °

o [ 4 ® ' @0 4 °

FIG. 5. Wannier representations for the nontrivial phase in 2D
subsystem of the BAG Hamiltonian in Eq. (30). Two Wannier orbitals
are centered at r = (0,0) and the other two at r = (%, %). Each
corner acquires a charge :I:%e due to the filling anomaly, indicating
Majorana zero modes.

and we can deduce a similar topological invariant follow-
ing the HOFAs case. The difference is that the corner states
in this Hamiltonian are pinned at zero energy due to the
particle-hole symmetry, hence, they are Majorana zero modes.
Equation (30) then describes a second-order topological su-
perconducting phase in 2D.

In Fig. 4, we label the angular momenta of each BdG band.
We see that for |k,| > k;, and for |k,;| < k;, the four negative-
energy bands of the 2D subsystem in Eq. (30) carry the same
C4 eigenvalues both at I and M. For k; < k, < ky and —k; <
k, < —kj, there are two negative-energy bands with |J| = %
(i.e., C4 = €¢*'%) and the other two negative-energy bands with
] =3 (e, Cy = ¢*1%) in Hyag(T'): this is simply derived
from the normal state band structure. On the other hand,
both pairs of negative-energy bands at M point have |J| = %
[see Fig. 4(b)].

Formally, the same Z, topological invariant for the 2D
subsystem can be constructed as a characterization of the
second-order topological superconducting phase. With four
negative-energy BdG bands, the topological invariant v is
given by

1" =[] Cr.iCui. 31

where Cr; is defined the same way as in (8) and i runs
over two sets of twofold-degenerate BAG bands. It is now
straightforward to see that v =1 for —k, < k, < —k; and
ki < k, < ky, while v = 0 otherwise. Mapping to real space,
the nontrivial 2D system corresponds to the configuration
sketched in Fig. 5, where two Wannier orbitals are centered
atr = (%, %) and two Wannier centers are at r = (0, 0), dis-
playing a filling anomaly. The two k, slices sandwiching each
of the four BdG Dirac points at (0, 0, k) and (0, 0, £k»)
differ by Av = 1, which can be viewed as the Z, monopole
charge of the BdG Dirac points.
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To highlight the role of the pairing order in determining
the topology, it is helpful to go to the weak-pairing limit
A < W, 1.e., when the pairing order does not change the band
structure away from the Fermi surfaces. Note that at M, one
of the negative-energy bands with J = :i:% is the same as
the normal state, while the other is the BAG shadow of the
unfilled band with J = :t%. Importantly, the By, /B5, pairing
order parameter carries an angular momentum AJ = 2, which
causes the shadow band to take a different angular momentum
from the original band, which is

J=(F3+2) mod4==+1 (32)

The above result comes from the nontrivial anticommutation
relation between the 2D particle-hole symmetry and C4 sym-
metry

{PM.,Cs} = 0. (33)

For an arbitrary band v, carrying angular momenta J;
at a Cy-invariant point that satisfies Cyyr = €271y, its
BdG shadow band (PM,y,) carries angular momenta (2 —
J1) mod 4 according to C4(PM.y) = —PM.e'7/y =
€221 (PM ), which agrees with Eq. (32).

As at the I" point all the negative-energy states have J =
j:%, i%, there is a mismatch between I and M points, which

leads to one pair of Wannier states centered at r = (%, %
in Fig. 5. Here we see that the nontrivial pairing symmetry
By, /By, plays an important role, just as much as the normal
state band structure. Had the pairing order transformed triv-
ially under C4, the BdG shadow band would carry instead
J = :t%, leading to an onsite Wannier center at r = (0, 0) and
no filling anomaly.

By the same token as in the normal state in a rod geom-
etry, due to the filling anomaly, as long as the side surfaces
are gapped (see further discussion on this in Sec. IIID),
there should be HOMAs in the rod Hamiltonian Hgqg(x, y, k;)
in these k, regions. However, here due to an effective 2D
particle-hole symmetry P’ = P M. of the BAG Hamiltonian,
the HOMAss are pinned exactly at zero energy.

We numerically solve the BdG Hamiltonian (24) and the
results that visualize the corner Majorana modes are shown
in Fig. 6. At k, = 0, the gapless surface modes are due to the
mirror Chern number, as we mentioned [see Fig. 6(a)]. The 3D
rod Hamiltonian Hgqg(x, Y, k;) displays hinge HOMAs that
terminate at the projections of bulk BdG Dirac points, together
with surface Majorana helical states at the nontrivial mirror
plane k, = 0. Generally, the HOMAs in this C4-symmetric
Dirac superconductor are disconnected (see Fig. 7).

As a comparison, a higher-order topological Dirac su-
perconductor phase protected by Cg rotation and inversion
symmetry is introduced in Ref. [89], which hosts 3D bulk
Dirac nodes, 2D gapped surface states, and 1D HOMAs si-
multaneously in the BAG spectrum. The authors also propose
an inversion-symmetry indicator ky; at k; = 0 to character-
ize the 1D HOMAs. However, this symmetry indicator as a
justification of HOMASs does not apply to our case because
HOMAs do not cross the k, = 0 plane in general. The Z,
higher-order topological invariant on a k,-slice Hamiltonian
defined in Eq. (31) is sufficient to diagnose the HOMAs, as
long as the surface is gapped. Our C4-symmetric Dirac su-

=~ oL
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10.025
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0.015
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0.005

FIG. 6. (a) Energy spectrum of the BdG rod Hamiltonian
Hgyg(x, Y, k;) as a function of k, for N = 20. Red lines represent
the midgap Majorana zero modes on hinges. (b) Wave-function
distributions of the Majorana corner states on a 2D slice in (a) at
k, = 2m /3. Parametersare My = 1.5,¢t,, =t, =n=A; = 1,1, =0,
and u = A; =0.4.

perconductor instead displays a hybrid higher-order topology
[96].

C. Irremovability of HOMAs due to additional
Z-valued monopole charges

In Sec. III B we have identified a nontrivial Z, monopole
charge hosted by each of the four BAdG Dirac points. If that
were the only the monopole charge hosted by a BdG Dirac
point, then any of the two Dirac points could annihilate each
other. In particular, if the BdG Dirac points at (0, 0, k;) and
(0, 0, kp) annihilated, the HOMA terminating at k, = k; and
ky would disappear. Since for small Fermi surfaces (small w)
ki and k, are close, this naturally raises the question whether
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FIG. 7. A schematic plot of the C4-symmetric Dirac supercon-
ductor phase with hybrid higher-order topology. Two brown spheres
represent a pair of disjointed FSs and four blue dots denote the bulk
BdG Dirac points on the north and south poles of two FSs. Red lines
denote HOMAs which sink into the bulk at hinge projections of the
four Dirac points. The cyan plane at k, = O carries a nontrivial mirror
Chern number, ensuring surface Majorana zero modes.

the BAG Dirac points and HOMAs are stable beyond small
perturbations.

Fortunately, the BdG Dirac points are stabilized by an ad-
ditional monopole charge € Z protected by the C4 symmetry.
To this end, we note that for each k, layer

Mk;) = Ny=1/2(0,0,k;) € Z, (34

i.e., the occupation number of the band with J = % at the I’
point is a topological invariant which cannot change without a
gap closing. From Fig. 4(a) it is straightforward to read off that
for A =0 for |k,| < ki, A =1 for k; < |k;| < ky, and L =2
for |k;| > k.

We can thus similarly assign a monopole charge AA = 1
for the BAG Dirac points at k, = k;, and AL = —1 for
k; = —kj > to the BAdG Dirac points. Importantly, we see that
the BAG Dirac points originating from the same normal state
Dirac point, e.g., with k, = k; and k,, cannot annihilate, since
they carry a total Z monopole charge AL = 2.! Just like the
Z, = 1 monopole charge Av we showed in Sec. III B, the
origin of AA = 2 can be traced back to the nonzero angular
momentum carried by the B;, and B,, pairing order.

Thus, we conclude that the BdG Dirac points are stable
due to the additional Z monopole charge protected by Cy4
symmetry. As a result, the HOMA connecting the BdG Dirac
points is a stable spectral feature that cannot be removed by

'"The BdG Dirac points can only annihilate with those from another
Dirac point. However, that does not happen in the A <« p limit for
the Dirac semimetal normal state.

perturbations. Indeed, in the BdG Hamiltonian (24), as © — 0
the two BdG Dirac points with the same sign of &, coincide,
but as w changes sign the two BdG Dirac points simply cross
each other without annihilating each other.

In spirit, our argument here is similar to the doubly charged
topological nodes studied in Ref. [22] with inversion sym-
metry only, where an additional topological monopole charge
protects the nodal structure from annihilating itself. Our argu-
ment goes beyond the classification there since the C4 rotation
symmetry plays an important role in defining the additional
monopole charge and protecting the HOMAs.

D. Mirror-protected gapless surface states and HOMAs

While the higher-order topology and BdG Dirac points are
protected by C4 and TZ symmetries alone, the system has
many additional spatial symmetries, such as mirror symme-
tries. As the existence of HOMAs requires the surface states
to be gapped, the surfaces need to avoid the orientations in
which there are mirror-protected gapless surface states. In
this section, we show that the By, state exhibits robust gap-
less states on the side surfaces in the (x & y), z (diagonal)
direction, and similarly for the B,, state on surfaces in the
xz and yz directions. Therefore, By, and By, states exhibit
HOMAs in different geometrical configurations. Moreover,
we show that the HOMASs obtained previously have a close
relationship to these surface states from the perspective of
mirror symmetries.

Let us first focus on the B,, state. For definiteness, we
consider a 2D subsystem with k, = ko, a plane that contains
the normal state Dirac point and is topologically nontrivial.
Without loss of generality, we set u = 0, and from Eq. (24),
the BdG Hamiltonian can be written as

Hpac,op(ky, ky) = (2 — cos ky — cos ky)o, T, + Aoy, T
+ sink,o,s; — sink,0,7;
+ A (cos ky — cos ky )OSy
+ A sin k, sin kyoysy, (35)

where M, = 2 at k, = ko. We consider the edge of the system
along the x and y directions. For the x edge, k, is a good
quantum number and we set k, = 0. The 1D Hamiltonian is

Hip(ky) = (1 —cosk,)o. T, + Ayoys, T,
+ sinkcoys, + A7 (1 — cos ky)oysy, (36)

which is symmetric under several composite symmetries, in-
cluding an effective time-reversal symmetry

T =TMMI=s.K (37)
and an effective particle-hole symmetry
P =PMI =o0.510.K (38)

satisfying 7> = +1 and P? = 41. The two symmetries
together place the 1D subsystem Hip(k,) in class BDI
[66,97-101], which admits a Z classification given by a wind-
ing number. Via a direct computation (see Appendix C), we
find that the winding number is w = 2, corresponding to two
Majorana zero modes. Extended to finite k,, this indicates that
the x edge hosts helical Majorana states. Therefore, the yz and
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TABLE III. List of representative pairing orders (to the lowest order in k) for all irreducible representations of Dy, and their corresponding
characters. Entries with O correspond to 2D representations with opposite eigenvalues.

Representative pairing order Irrep Cy = is el 5o IT=o, M, = is, M, =io.s, M, =is,
Aoy By, - - - - -
AzO’)-SZ BZu — — + + —
A3kzsxa A4](2‘7z*§‘<\‘ Alu + - - - -
Ask.kyoy, Mgk} — k7 )oys: Ay, + - + + -
Aq(0ySx, 04Sy), Agk (02, 57) E, 0 — 0 0 +
AngO’XSZ Blg — + —+ + +
Ajok.0y By, - + - - +
A]]Sy, A]zdzs). Alg + + + + +
A13kz(k§ - k\z)gx» A14kzkxkva¥‘vz AZg + + - - +
A5k (0,5, 0y8,) E, 0 + 0 0 -

xz (related to yz by a C4 rotation) surfaces for the B, state are
gapless.

Similar considerations show that the Bj, state also hosts
gapless surfaces. While By, and B;, order parameters trans-
form differently under mirror reflection, it can be directly
verified that the (x &= y), z surfaces are gapless, protected by
the diagonal reflection symmetries M Xty = M vyCa.

As the existence of HOMAS requires gapped surfaces, we
conclude that the By, state hosts HOMAs in a “square cut”
(with xz and yz surfaces), and the B,, state hosts HOMAS in
a “diamond cut” [with (x & y), z surfaces]. This is the central
result of this work, illustrated in Table I.

We note that the existence of HOMAS can be analytically
understood from the gapless surfaces as well, using an argu-
ment similar to that in Sec. II B. Namely, one can view the
hinge as a curved surface in the extreme limit. For the B,,
state, as the surface curls away from the yz direction, the
surface helical states acquire a mass, and by continuity the
induced mass should change sign as the curved surfaces turn
from (x 4 y), z direction to (x — y), z direction. Therefore, at
the mass domain wall there exists a Majorana zero mode,
which is localized at the hinge.

E. Symmetry-breaking effects

Like those in the normal state, the BAG Dirac points and
the HOMAs are stabilized by 7Z and C4 symmetries. The
mirror symmetries we discussed in Sec. III D can be broken
by adding a small sin k, sin k, sin k; component to the A; term,
or by mixing B, and By, states, and gapless surface modes
will be removed. Nevertheless, the BdG Dirac points and the
HOMASs remain robust due to the remaining C4 symmetry.

In a system with an additional inversion-breaking term
such as sin k;s,, or an additional time-reversal-breaking Zee-
man term [86] such as ms, T, the BAG Dirac points spilt into
two Weyl points with opposite chiralities along the z axis. Sur-
face Majorana arcs appear in k, regions between Weyl points
with opposite chiralities because the corresponding 2D sub-
system carries a nontrivial Chern number and it is not Wannier
representable. Since HOMAs are locally protected by a 2D
version of particle-hole symmetry P.M_, the hinge modes are
stable under time-reversal-breaking perturbations. Therefore,
the 7 -breaking phase is a higher-order Weyl superconductor
defined in Ref. [89], in which HOMAs and surface Majorana

arcs coexist. On the other hand, an inversion-breaking term
breaks M, and correspondingly destroys HOMAs.

Moreover, C4 symmetry can be broken down to C,, e.g., by
mixing a Ay, pairing term sin ks, 7, with By,, which gaps out
the bulk BdG Dirac points. The 2D slice Hamiltonian thus
becomes a boundary obstructed topological superconductor
[42], in which corner Majorana modes still exist and are
protected by the surface gap instead of the bulk gap. In this
case the bulk is fully gapped and the HOMA terminates at a
surface gap-closing point instead.

IV. TOPOLOGICAL PROPERTIES
OF OTHER PAIRING STATES

So far we have focused on the B;, and B, pairing channels
in a Dirac semimetal. Remarkably, we have shown the topo-
logical properties are largely determined by their symmetry
properties, in particular, the transformation of the pairing or-
der under the C, rotations. In this section we briefly discuss the
topological properties of the system in other pairing channels.

In Table III we list all irreducible representations of the
point group Dy, and their representative order parameters to
the lowest orders in k. However, as is the case for By, and B,,,,
the analysis of their topological properties does not depend on
the detailed k£ dependence of the order parameters but rather
only on their symmetry properties, unless there are accidental
nodes.

We note that By, and B,, orders transforms under C4 the
same way as By, and B,,, but are of even parity. Direct di-
agonalization of the corresponding BAG Hamiltonians shows
that the system exhibits C4-symmetric cages of nodal lines
[25] in both pairing states between k; < |k;| < k», shown in
Fig. 8. These nodal lines are fourfold degenerate, and are
protected by a 27 topological invariant in the AZ + 7 clas-
sification table [22]. The gaplessness of the 2D subsystem for
ki < |k;| < k, renders the higher-order topological invariant
v, and consequently the HOMAs, ill defined. However, the
monopole charge AAL = A(k > ky) — A(k < ky) is still valid.
As X in Eq. (34) is solely determined by C4 operations, which
is identical for Bi,/B», and for By,/B,, we conclude, by
a similar analysis to that in Secs. III B and IIIC, that the
nodal cage also carries a monopole charge of AL = 2. For this
reason, the nodal cages are stable and cannot self-annihilate.
Indeed, as u goes through zero, the nodal cages shrink to
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FIG. 8. Schematic plots of bulk nodal cages(marked blue) in the
3D BZ for (a) By, and (b) By, channels, both C; symmetric. Brown
spheres denote Fermi surfaces.

a point but then reemerges. In this case they are protected
by a doubly charged monopole beyond the classification in
Ref. [22].

The entries (E, and E,) with characters 0 indicates these ir-
reps are two dimensional. Indeed, they have angular momenta
41, each of which breaks time-reversal symmetry. In these
cases the system either breaks time-reversal or C4 symmetry,
but cannot preserve both. Yet, they may still exhibit interesting
topological properties. However, we will restrict ourselves to
time-reversal and C4-invariant systems in this work and leave
a detailed analysis of the E, and E, states to a future study.

All other pairing channels transform trivially under Cy4
rotation, and it is straightforward to show that they do not
carry any nontrivial Z, or Z monopole charges in relation
to HOMAs studied here. A recent study [102] investigated a
A\, pairing channel with a special form factor in doped Dirac
semimetals. The authors found a second-order topological
superconducting phase with helical Majorana modes on the
top and bottom hinges. However, this nontrivial phase requires
a fine tuning of model parameters. The conclusion that a Dirac
semimetal is topologically obstructed only for certain pairing
channels was also obtained in Ref. [87]. However, the sym-
metries in consideration are different from those in our case.

Finally, while we demonstrated from a microscopic calcu-
lation that B;, and By, pairing orders are naturally induced
by Ising-ferromagnetic fluctuations, an interesting open prob-
lem is what microscopic interactions promote other nontrivial
pairing channels, such as Bj, and B,.

V. SUMMARY

In this work, we analyzed the higher-order topology in
superconducting Dirac semimetals protected by fourfold-
rotation, spatial-inversion, and time-reversal symmetries. In
the normal state, the Dirac semimetal is known [79-81] to ex-
hibit HOFAs. We showed that in certain pairing channels the
normal state topology gets inherited in the superconducting
state.

First, we showed that in the presence of an Ising-
ferromagnetic fluctuation, the leading pairing instability of

the system is toward Bj, or B, pairing orders. These pair-
ing states display Dirac nodal points in the BAG spectrum.
In a rod geometry, they display HOMA states at the hinges
that terminate at the projections of bulk BdG Dirac points
onto the hinges. While HOFAs are generally dispersive in the
energy spectrum, HOMAs are pinned at zero energy due to
the particle-hole symmetry. Importantly, the BdG Dirac points
and the HOMAs are protected by an additional Z-valued
monopole charge defined via the C4 symmetry.

Moreover, the recipe for diagnosis of higher-order topol-
ogy and monopole charge here can be directly applied to all
other pairing orders, which are irreps of the Dy, group. In
particular, we found that B, or B,, displays nodal cages with a
monopole charge, each of which is stable under C4-symmetric
perturbations.

In this work we showed that Dirac semimetals are
promising “parent states” for higher-order topological super-
conducting states. Since HOFAs have been experimentally
confirmed in the Dirac semimetal Cd;As, [103,104], it would
be interesting to search for nontrivial pairing states in these
systems.
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APPENDIX A: WYCKOFF POSITIONS FROM C,
EIGENVALUES AT I' AND M

In this Appendix, we briefly explain how to get Fig. 1
from C, eigenvalues at high-symmetry points I' and M in BZ.
For Wannier functions centered at the Wyckoff position r =
(%, %), we plot the relative phases of spatial parts of Wannier
functions at four C4 related corners of the unit cell in Fig. 9,
for I and M separately. Under C,4 rotation, the spatial part of
the Wannier function at M acquires a minus sign compared
with T.

From Eq. (6), we obtain that the nontrivial phase [v = 1
defined in Eq. (8)] corresponds to C4 = ¢*'% for the two oc-
cupied bands at I" and Cs = T for the two occupied bands
at M. With a relative minus sign for C, eigenvalues at I and
M, the real-space picture matches the configuration plotted
in Fig. 9. Note that the exact eigenvalue of C; comes from
both the spatial part and the intrinsic part (e.g., orbital or spin
indices) of the Wannier function and the latter is not important
when determining the Wannier centers.

On the other hand, the trivial phase (v = 0) corresponds
to the same C4 eigenvalues at I and M so that the Wannier
functions are centered at ionic sites r = (0, 0) which is an
atomic limit without filling anomaly.

APPENDIX B: DERIVATIONS OF FORM FACTORS F; (k)

We simplify the form of the normal state Hamiltonian
Hy(k) in Eq. (1) as

Hy(k) = fi(k)o: + fa(K)oxs: + f3(K)o,

+ f4(k)0xsx + fS(k)sty~ (Bl)
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FIG. 9. The relative phases (marked red) of spatial parts of Wan-

nier functions centered at Wyckoff positions r = (:I:%, :I:%) at(a) T
and (b) M. The blue square is a unit cell and we assume no edges.

The Green’s function for finite p is given by
Go (i, k) = [iwn — Ho(k) + p] ™!
_ (ion + 1)ooso + Ho(k)
(iwm + p)* — €

where w,, = 2m + 1) T is the fermionic Matsubara fre-

; (B2)

quency and € = Zle / f7(K) is the dispersion. The trace in

Eq. (20) can be explicitly evaluated as (e.g., for Aj)
Tr[oyGoliwm, K)oyGy (—iwm, —k)]
= Tr{[(iwn + 1)o0so + oyHo(K)oy]

x [(—iwm + wooso + Hy (—k)]}
1
" Niwm + )2 — Nl(—ian + p) — €2

Tr{(a),zn + uz)aoso + oyHo(k)ayHOT(—k)}
(@2 + (¢ + w2][w2 + (e — 1)?]
Hw? + p? — 2 +2[f2Kk) + f2(Kk) + f2(K)]}

[a),%1 + (e + /L)Z][a),zn + (e — ;,L)z]
2[f7 (k) + f7 (k) + f7(K)]
pAwp + (€ — 2]

(B3)

where we take € ~~ p in the last step. The sum over Matsubara
frequencies yields

Z fz &)+ f2 k) + f7(K)]
Ta ~ 2[w2 + (e — n)?]
fz K) + f3 (:i) + f2(k) tanh 57 ' (B4)
i €— L1

There are two nearly spherical Fermi pockets surrounding
the Dirac points at (0, 0, £k¢). By expanding f>(k), f3(k),
and f;(k) in lowest order of momentum, we obtain the cor-
responding Fj(K) in the main text. F(k) can be derived
similarly.

APPENDIX C: TOPOLOGICAL INVARIANT
OF THE 1D HAMILTONIAN H;p (k)

We follow Ref. [97] to derive the topological invari-
ant of the Hamiltonian in Eq. (36). Note that Hip(k,) has
a chiral symmetry defined as S = 7'?P’ = o.1,, such that
SHip(k,)S™! = —Hp(k,). It can be made purely off diagonal
by a unitary transformation in the particle-hole space

H(k) = UHip()UT = [ A("”], (C1)

AT (ky)
where U = ¢~'T% and we obtain

A(ky) = (1 — cosky)sov, + (sinky, + iAj)s, v,
+ A7 (1 — cos ky)sy vy, (C2)

where v, ,, . are Pauli matrices spanning the subspace (0,7, =
1lo;tjlo,t, = —1). The topological invariant in BDI class is
defined as the winding number of the phase factor carried by
detA(k,), which is

—i (5= dz(ky)
w=— —, (C3)
T Jk,=0 z(ky)

where z(k,) = e?*) = detA(k,) /|detA(k,)|. Note that
detA(k,)

=[(1+22)1 A3 +2iA;sink,]’

(C4)

— cosky)? + sin kf —

and A, < 1 in the weak pairing limit. Hence, 6(k,) shifts
from k, = 0 to k, = 7 by 27, which gives rise to a winding
number w = 2.
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