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Abstract
We show the validity of the minimal model program (MMP) for threefolds in charac-
teristic 5.

1. Introduction
One of the fundamental goals of algebraic geometry is to classify all algebraic vari-
eties which, conjecturally, can be achieved by means of the minimal model program
(MMP). A major part of the MMP is now known to hold in characteristic 0 (see [3])
and in the last few years substantial progress has been achieved in positive charac-
teristic as well. Indeed, it has been shown that the program is valid for surfaces over
excellent base schemes (see [24], [25]) and for three-dimensional varieties of charac-
teristic p > 5 (see [15]; see also [2], [4], [9], [10], [12]).

However, little is known beyond these cases and new phenomena discovered by
Cascini and Tanaka [5] suggest that the low characteristic MMP is much more subtle.
Moreover, in view of [8], it has become apparent that understanding the geometry of
low characteristic threefolds is the most natural step towards tackling the MMP in
higher dimensions.

In [14], following some ideas of [12], we shed some light on the geometry of
threefolds in all characteristics p � 5. In particular, we show that the relative MMP
can be run over Q-factorial singularities and in families. As a consequence, we estab-
lish, among other things, inversion of adjunction, normality of purely log terminal
(plt) centers up to a universal homeomorphism, as well as the existence of Kollár’s
components and divisorial log terminal (dlt) modifications.

The goal of this article is to extend the MMP for threefolds to characteristic p D 5

in full generality. We believe that the methods developed in this paper will be useful
in tackling the MMP for threefolds in characteristics 2 and 3 as well as the MMP in
higher dimensions.
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Our main result is the following.

THEOREM 1.1
Let .X;�/ be a Q-factorial three-dimensional dlt pair over a perfect field k of char-
acteristic p D 5. If f W X ! Z is a .KX C �/-flipping contraction, then the flip
f C W XC ! Z exists.

Note that this result is known for p > 5 by [2], [12], and [15]. As a corollary of
Theorem 1.1, we get the following results on the MMP in positive characteristic.

THEOREM 1.2 (MMP with scaling)
Let .X;�/ be a Q-factorial three-dimensional Kawamata log terminal (klt) pair over
a perfect field k of characteristic p > 3, and let f W X ! Z be a projective con-
traction. Then we can run an MMP with scaling for KX C � over Z. If KX C � is
relatively pseudoeffective, then the MMP terminates with a log minimal model over
Z. Otherwise, the MMP terminates with a Mori fiber space.

In particular, Theorem 1.2 shows that Zariski’s conjecture on finite generatedness
of the canonical ring of smooth varieties is valid for threefolds in characteristic 5 (see
[27]). Also note that Theorem 1.2 may be extended to the dlt case (see Remark 7.3).

THEOREM 1.3 (Basepoint-free theorem)
Let .X;�/ be a three-dimensional klt pair over a perfect field k of characteristic
p > 3, and let f W X ! Z be a projective contraction. Let D be a relatively nef
Q-Cartier Q-divisor such that D � .KX C �/ is nef and big over Z. Then D is
semiample over Z.

THEOREM 1.4 (Cone theorem)
Let .X;�/ be a projectiveQ-factorial three-dimensional dlt pair over a perfect field k

of characteristic p > 3. Then there exists a countable number of rational curves �i

such that
� NE.X/ D NE.X/KX C��0 C

P
i RŒ�i �,

� �6 � .KX C �/ � �i < 0,
� for any ample R-divisor A,

.KX C � C A/ � �i � 0

holds for all but a finitely many �i , and so
� the rays RŒ�i � do not accumulate inside NE.X/KX C�<0.
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The above results, in this generality, were proved in [2], [4], and [12] (cf. [9],
[15], [17]) contingent upon the existence of flips with standard coefficients. Hence,
they follow immediately from Theorem 1.1. There are many other results around the
MMP (cf. [2], [4], [12], [16], [28]) that generalize to characteristic 5 in view of The-
orem 1.1. For example, every projective three-dimensional geometrically connected
normal variety of Fano type defined over a finite field of characteristic p D 5 admits
a rational point (cf. [12, Theorem 1.2]).

1.1. The idea of the proof of Theorem 1.1
For simplicity, we suppose in this subsection that the divisorial centers of the dlt pairs
we consider are normal. This is not far from the truth, as these divisorial centers are
normal up to a universal homeomorphism (see [14, Theorem 1.2]).

By the same argument as in [2, Theorem 6.3], we can suppose that the coefficients
of � are standard. By perturbation and reduction to prelimiting flips (pl-flips), we can
assume that � D S C B and .X;S C B/ is plt, where S is an irreducible divisor.
Let f W X ! Z be a pl-flipping contraction. The proof of the existence of flips for
threefolds in characteristic p > 5 (see [15]) consists of two steps:
(1) showing that the flip of f exists if .X;S C B/ is relatively purely F-regular,

and
(2) showing that .X;S C B/ is relatively purely F-regular when p > 5.
The first step holds in every characteristic. Unfortunately, the second statement is
false for p � 5 in general. To circumvent this problem, we construct pl-flips by a mix
of blowups, contractions, and pl-flips admitting dlt 6-complements.

PROPOSITION 1.5 (cf. Proposition 5.1)
Let .X;S C B/ be a Q-factorial three-dimensional plt pair with standard coefficients
over a perfect field k of characteristic p > 3, where S is an irreducible divisor, and let
f W X ! Z be a pl-flipping contraction. Assume that there exists a dlt 6-complement
.X;S C Bc/ of .X;S C B/. Then the flip f C W XC ! Z exists.

Let C D Exc.f /. For simplicity, assume that C is irreducible. We split the proof
of this proposition into three cases:
(1) .X;S C Bc/ is plt in a neighborhood of C , or
(2) C � E < 0 for a divisor E � bBcc, or
(3) C � E � 0 for a divisor E � bBcc intersecting C .
In case (1), write KS C BS D .KX C S C B/jS and

KS C Bc
S D .KX C S C Bc/jS :

Since .X;S C Bc/ is plt along C , we get that .S;Bc
S / is klt along C . Our key obser-

vation is the following: if a birational log Fano contraction of a surface pair with
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standard coefficients in characteristic p > 3 admits a klt 6-complement, then it is
relatively F-regular (see Proposition 3.1). Therefore, .X;S C B/ is relatively purely
F-regular by F-adjunction, and so the flip exists by [15] (see the aforementioned step
(1)). This is the main part of our arguments which we are unable to generalize to char-
acteristic 3. On the other hand, one might expect some analogue of this statement to
hold in higher dimensions for all bounded complements and p � 0.

In case (2), we can construct the flip explicitly as the closure of X under the
rational map defined by a pencil of sections spanned by kS and lE for some k; l 2 N
such that kS � lE .

In case (3), assume for simplicity that S and E are the only log canonical (lc)
divisors of .X;S C Bc/. Then we can show that .X;S C Bc � �E/ is relatively F-
split over Z for 0 < � < 1 by F-adjunction applied to S and S \ E . In fact, with a bit
more work one can show that it is relatively purely F-regular, and thus .X;S C B/ is
so as well. Hence the flip exists by [15] as in case (1).

In view of Proposition 1.5, it is important to construct complements of pl-flipping
contractions. By standard arguments, .S;BS / admits an m-complement .S;Bc

S / for
some m 2 ¹1; 2; 3; 4; 6º, and the following result shows that we can lift it to an m-
complement of .X;S C B/.

THEOREM 1.6
Let .X;S C B/ be a Q-factorial three-dimensional plt pair with standard coefficients
defined over a perfect field of characteristic p > 2, and let f W X ! Z be a flipping
contraction such that �.KX C S C B/ and �S are f -ample.

Then there exists an m-complement .X;S CBc/ of .X;S CB/ in a neighborhood
of Exc f for some m 2 ¹1; 2; 3; 4; 6º.

If m 2 ¹1; 2; 3; 4º, then one can show that the flipping contraction is relatively purely
F -regular in characteristic p D 5 (cf. Remark 4.8), and so it exists by [15]. In what
follows, we focus on the case of m D 6.

Although .X;S C B/ need not necessarily be relatively purely F-regular in gen-
eral, we can still apply F-splitting techniques to prove Theorem 1.6 as we do not need
to lift all the sections, but just some very special ones. Note that this result is new
even for p > 5.

In order to construct the flip of f from the flips of Proposition 1.5, we argue as
follows. Let .X;S C Bc/ be an m-complement of .X;S C B/ for m 2 ¹1; 2; 3; 4; 6º

which exists by Theorem 1.6. Take a dlt modification � W Y ! X of .X;S C Bc/

with an exceptional divisor E (see [14, Corollary 1.4]). Write KY C SY C Bc
Y D

��.KX CS CBc/, KY CSY CBY D ��.KX CS CB/, and run a .KY CSY CBY /-
MMP over Z. Note that it could happen that BY is not effective, but we can rectify this
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situation by taking a linear combination of BY and Bc
Y (see the proof of Theorem 1.1

for details). By the negativity lemma, if this MMP terminates, then its output is the flip
of X . Therefore, it is enough to show that all the steps of this MMP can be performed.

The first step of this MMP definitely exists. Indeed, either it is a divisorial con-
traction which can be shown to exist by [14] and [17], or it is a flipping contraction
followed by a flip with a dlt m-complement which exists by Proposition 1.5 and the
sentence after Theorem 1.6 (the Q-divisor BY may not have standard coefficients, so
one needs to be a bit more careful; see the proof for details). However, each step of
this .KY CSY CBY /-MMP is .KY CSY CBc

Y /-relatively trivial, and so the dlt-ness
of .Y;SY C Bc

Y / need not be preserved.
To rectify this problem, we employ the notion of qdlt singularities, that is, log

canonical pairs which are quotient singularities at log canonical centers (at least in
characteristic 0; see Definition 2.3 for the formal statement). In fact, Proposition 1.5
holds for qdlt-flipping contractions (Proposition 5.1), and we can show the existence
of a qdlt modification � W Y ! X with irreducible exceptional locus (Corollary 6.2).
Therefore, the output of any divisorial contraction in the .KY C SY C BY /-MMP
is automatically the flip of .X;S C B/. Moreover, the qdlt-ness of .Y;SY C Bc

Y / is
preserved by flops (Lemma 2.7) except in one special case in which we can construct
the flip of .X;S C B/ directly.

2. Preliminaries
A scheme X will be called a variety if it is integral, separated, and of finite type over
a field k. Throughout this paper, k is a perfect field of characteristic p > 0. We refer
the reader to [20] for basic definitions in birational geometry and to [13] for a brief
introduction to F-splittings. We remark that in this paper, unless otherwise stated, if
.X;B/ is a pair, then B is a Q-divisor. For two Q-divisors A and B , we denote by
A ^ B the maximal Q-divisor smaller or equal to both A and B . We say that .X;�c/

is an m-complement of .X;�/ if .X;�c/ is log canonical, m.KX C �c/ � 0, and
�c � ��, where �� WD 1

m
b.m C 1/�c. If � has standard coefficients, then �� D

1
m

dm�e, and so the last condition is equivalent to �c � �. We say that a morphism
f W X ! Y is a projective contraction if it is a projective morphism of quasiprojective
varieties and f�OX D OY .

Since the existence of resolutions of singularities is not known in positive charac-
teristic in general, the classes of singularities are defined with respect to all birational
maps. For example, a log pair .X;�/ is klt if and only if the log discrepancies are
positive for every birational map Y ! X . Similarly, log canonical centers are defined
as images of divisors of log discrepancy zero under birational maps Y ! X . These
definitions coincide with the standard ones up to dimension 3, as log resolutions of
singularities are known to exist in this case.
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The starting point for the construction of flips is the following result from [15].
We say that a projective birational morphism f W X ! Z for a Q-factorial plt pair
.X;S C B/, with S irreducible, is a pl-flipping contraction if f is small, �.KX C

S C B/ and �S are relatively ample, and �.X=Z/ D 1.

THEOREM 2.1
Let .X;S CB/ be aQ-factorial three-dimensional plt pair defined over a perfect field
of characteristic p > 0 with S irreducible. Let f W X ! Z be a pl-flipping contrac-
tion. Let g W QS ! S be the normalization of S , and write K QS C B QS D .KX C S C

B/j QS . If . QS;B QS / is relatively globally F-regular over f .S/ � Z, then the flip of f

exists.

Note that the condition on the relative global F-regularity of . QS;B QS / is equivalent
to the relative pure F-regularity of .X;S C B/ by F-adjunction.

Proof
This follows from [15] as explained in [14, Remark 3.6].

Remark 2.2
By [15, Theorem 3.1] (cf. Proposition 2.9), the above assumption on F-regularity is
always satisfied when p > 5 and B has standard coefficients.

Note that [15] assumes that the base field is algebraically closed, but their results
extend to perfect fields as explained in [12] (cf. [14]).

2.1. Qdlt pairs
Qdlt singularities will play an important role in this article.

Definition 2.3 ([11, Definition 35])
Let .X;�/ be a log canonical pair. We say that .X;�/ is qdlt if for every log canon-
ical center x 2 X of codimension k > 0, there exist distinct irreducible divisors
D1; : : : ;Dk � �D1 such that x 2 V WD D1 \ � � � \ Dk .

Remark 2.4
Note that if .X;�/ is log canonical and x is a generic point of a stratum V WD D1 \

� � �\Dk of �D1, then codim x D k. Indeed, let QD1 ! D1 be the normalization of D1.
Then, by adjunction, . QD1;� QD1

/ is log canonical where K QD1
C� QD1

D .KX C�/j QD1
.

Moreover, by localizing at generic points of D1 \Dl and using surface theory, we see
that Dl j QD1

� �D1
QD1

have no mutually common components for 2 � l � k. Therefore,
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x is a generic point of E2 \ � � � \ Ek , where the El are some irreducible components
of Dl j QD1

. Now the claim follows by induction.

By [11, Proposition 34], in characteristic 0 the above definition of qdlt singular-
ities is equivalent to saying that .X;�/ is locally a quotient of a dlt pair by a finite
abelian group preserving the divisorial centers. In positive characteristic, we know the
following.

LEMMA 2.5
Let .X;�/ be a Q-factorial qdlt pair of dimension n � 3 defined over a perfect field
of characteristic p > 0. Then
(1) . QD;� QD/ is qdlt, where g W QD ! D is the normalization of a divisor D � �D1

and K QD C � QD D .KX C �/j QD ,
(2) the strata of �D1 are normal up to a universal homeomorphism,
(3) the log canonical centers of .X;�/ coincide with the generic points of the

strata of �D1.

Proof
We work in a sufficiently small neighborhood of a point of X .

If n � 2, then the lemma follows by standard results on surface pairs (cf. [19]).
Indeed, a two-dimensional pair .X;�/ is qdlt if either it is plt, or � D C1 C C2,
X is an Am-singularity, .X;�/ is simple normal crossing (snc) when m D 1, and,
when m > 1, the strict transforms of C1 and C2 intersect the exceptional locus of the
minimal resolution of X transversally at single points on the first and the last curve,
respectively. Thus, we may assume that n D 3.

First, note that irreducible divisors in �D1 are normal up to a universal homeo-
morphism. Indeed, if D � �D1 is an irreducible divisor, then .X;� � b�c C D/ is
plt and we can apply [14, Theorem 1.2].

Let x 2 QD be a log canonical center of . QD;� QD/. Then g.x/ is a log canonical
center of .X;�/. Indeed, otherwise there exists an nonzero divisor H passing through
g.x/ and � > 0 such that .X;� C �H/ is lc at g.x/. Thus, by adjunction, . QD;� QD C

�H j QD/ is lc at x, which is impossible.
Let k be the codimension of g.x/ in X . By definition of qdlt pairs, there exist

divisors D1; : : : ;Dk � �D1, with D1 D D, such that

g.x/ 2 D1 \ � � � \ Dk :

Then x 2 D2j QD \ � � � \ Dkj QD , where Di j QD � �D1
QD

for i � 2 have no mutually com-

mon components (cf. Remark 2.4). Since x is of codimension k � 1 in QD, this shows
that . QD;� QD/ is qdlt at x. Hence (1) holds.
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As for (2), pick a stratum V D D1 \ � � � \ Dk of �D1. If k D 1, then we are done
by the first paragraph. Otherwise,

g�1.V / D D2j QD1
\ � � � \ Dkj QD1

is a stratum of �D1
QD1

, where g W QD1 ! D1 is the normalization of D1 and K QD1
C

� QD1
D .KX C �/j QD1

. Note that each Dl j QD1
is irreducible, as otherwise .X;�/

admits a log canonical center of codimension 3 which is contained in only two divi-
sors, D1 and Dl , of �D1. By the surface case, g�1.V / is normal up to a universal
homeomorphism, and hence so is V , as g is a universal homeomorphism.

Now, we deal with (3). Since the images of log canonical centers of the surface
pair . QD;� QD/ in X , for the normalization QD of a divisor D � �D1, are log canonical
centers of .X;�/, we see that the generic points of the strata of �D1 are log canon-
ical centers. If x 2 X is a log canonical center of .X;�/ of codimension k, then by
definition x 2 V WD D1 \ � � � \ Dk for D1; : : : ;Dk � �D1 and codimX .V / D k (cf.
Remark 2.4). Thus, x is a generic point of V .

The following lemma generalizes the inversion of adjunction from [13, Corol-
lary 1.5].

LEMMA 2.6 (Inversion of adjunction)
Consider a Q-factorial three-dimensional log pair .X;S C E C B/ defined over a
perfect field of characteristic p > 0, where S , E are irreducible divisors and bBc D

0. Write K QS C C QS C B QS D .KX C S C E C B/j QS , where
QS is the normalization of

S , the divisor C QS D Ej QS is irreducible, and bB QS c D 0. Assume that . QS;C QS C B QS / is
plt. Then .X;S C E C B/ is qdlt in a neighborhood of S .

Proof
Assume by contradiction that .X;S C E C B/ admits a log canonical center Z of
codimension at least 2, different from C D S \ E , and intersecting S . Let H be a
general Cartier divisor containing Z. Then for any 0 < ı 	 1, we can find 0 < � 	 1

such that .X;S C .1 � �/E C B C ıH/ is not lc at Z. On the other hand, . QS; .1 �

�0/C QS C B QS C ıH j QS / is klt for any 0 < �0 	 1 and 0 < ı 	 1. This contradicts [14,
Corollary 1.5].

We will use qdlt singularities for log pairs with two divisorial centers. In this
case, the qdlt-ness is preserved under flops as long as the divisorial centers intersect
each other.
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LEMMA 2.7
Let .X;S1 C S2 C B/ be a Q-factorial three-dimensional qdlt pair, where S1, S2 are
irreducible divisors and bBc D 0. Let

f W .X;S1 C S2 C B/ ��� .X 0; S 0
1 C S 0

2 C B 0/

be a .KX C S1 C S2 C B/-flop of a curve † for a relative Picard rank-one flopping
contraction g W X ! Z. Suppose that † � S1 < 0. Then .X 0; S 0

1 C S 0
2 C B 0/ is qdlt

or S 0
1 \ S 0

2 D ; in a neighborhood of Exc.g0/, where g0 W X 0 ! Z is the flopped
contraction.

Proof
In proving the proposition, we can assume that X and X 0 are sufficiently small neigh-
borhoods of Exc.g/ and Exc.g0/, respectively. Further, we can assume that the flop is
nontrivial, and so a strict transform of a g-ample divisor is g0-antiample.

First, consider the case when † � S2 � 0. Pick a connected component C � S1 \

S2, and let QS1 ! S1 be the normalization of S1. Since .X;S1 C S2 C B/ is qdlt, C is
an irreducible curve. We claim that C is not g-exceptional. Indeed, otherwise, in view
of �.X=Z/ D 1, we have C � S2 � 0, which contradicts the following calculation:

C � S2 D C j QS1
� S2j QS1

D C j QS1
� .�C j QS1

/ < 0;

where � > 0. As a consequence, no component of S1 \ S2 is contained in Exc g, and
so divisorial places over Exc g have log discrepancy greater than zero with respect to
.X;S1 C S2 C B/. Since flops preserve discrepancies, we get that the codimension-
2 log canonical centers of .X 0; S 0

1 C S 0
2 C B 0/ are images of the generic points of

.S1 \S2/n Exc g, and so they are generic points of S 0
1 \S 0

2. Hence, the pair .X 0; S 0
1 C

S 0
2 C B 0/ is qdlt.

Therefore, we can assume that † � S2 < 0. In particular,

Exc g D S1 \ S2

up to replacing X by a neighborhood of Exc g. Indeed, if we pick an irreducible curve
C � Exc g, then C � Si < 0 for 1 � i � 2 as �.X=Z/ D 1, and so C � S1 \ S2. To
prove the inclusion in the opposite direction, assume that there exists a nonexceptional
irreducible curve C � S1 \S2 which intersects Exc g at some exceptional irreducible
curve C 0. As above, C is a connected component of S1 \ S2, and so C 0 � S1 \ S2.
In particular, C 0 � Si � 0 for some 1 � i � 2, which is a contradiction.

We aim to show that S 0
1 \ S 0

2 D ;. Assume by contradiction that S 0
1 \ S 0

2 ¤ ;.
By the above paragraph, we have that S 0

1 \ S 0
2 � Exc g0. Since S2 is g-antiample, S 0

2

is g0-ample and S 0
2j QS 0

1
is an exceptional effective relatively ample divisor, where QS 0

1

is the normalization of S 0
1. This is easily seen to contradict the negativity lemma.
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2.2. Surface lemmas
We prove a slightly stronger variant of the construction explained in the proof of [15,
Theorem 3.2].

LEMMA 2.8
Let .X;B/ be a two-dimensional klt pair defined over a perfect field of characteristic
p > 0, and let f W X ! Z be a projective birational map to a normal surface germ
.Z; z/ such that �.KX C B/ is relatively nef. Then there exist an f -exceptional irre-
ducible curve C on a blowup of X and projective birational maps g W Y ! X and
h W Y ! W over Z such that
(1) g extracts C or is the identity if C � X ,
(2) .Y;C C BY / is plt,
(3) .W;CW C BW / is plt and �.KW C CW C BW / is ample over Z,
(4) h�.KW C CW C BW / � .KY C C C BY / � 0,
where KY C bC C BY D g�.KX C B/ for C � Supp BY , CW WD h�C ¤ 0, and
BW WD h�BY .

The variety W is the canonical model of �.KY C C C BY / over Z. By saying that g

extracts C , we mean that Exc.g/ D C .

Proof
Let � be as in [15, Claim 3.3], that is, such that .X;B C �/ is lc and admits a unique
non-klt place C exceptional over Z and KX C B C � �Q;Z 0. Let g W Y ! X be
the extraction of the unique non-klt place C of .X;B C �/, or the identity if C is a
divisor on X (see the proof of [15, Theorem 3.2]). By construction, (1) and (2) hold.

Let G WD g�� � g�� ^ C . Note that g�� ^ C D .1 � b/C . Let h W Y ! W be
the output of a G-MMP over Z (which is equivalent to a �.KY C C C BY /-MMP;
also note that it is equivalent to a .g�.KX C B C �/ C �G/-MMP for 0 < � 	 1 and
G has no common components with C , which justifies the existence of this MMP).
Let GW WD h�G. Now, (4) follows by the negativity lemma.

To prove (3), notice that since C is not contained in the support of G, then G �C �

0 and so C is not contracted by Y ! W . Since

KY C C C BY C G D g�.KX C B C �/ �Q;Z 0

is plt, it follows that .W;CW C BW C GW / is plt, and hence so is .W;CW C BW /.
Since W is a G-minimal model over Z, then �.KW C CW C BW / �Q;Z GW is
nef and in particular semiample over Z. To conclude the proof of (3), we need to
show that .KW C CW C BW / � CW < 0. Indeed, if this is true, then the associated
semiample fibration does not contract CW and so we can replace W by the image
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of the associated semiample fibration to make �.KW C CW C BW / ample without
giving up the plt-ness of .W;CW C BW /.

Assume by contradiction that .KW CCW CBW / �CW D 0. Let � be an effective
Q-divisor constructed as a connected component of

h�.KW C CW C BW / � .KY C bC C BY /

containing C . Since � is exceptional over Z, we have �2 < 0. This contradicts the
following calculation:

�2 D � �
�
h�.KW C CW C BW / � .KY C bC C BY /

�
� � � h�.KW C CW C BW /

D h�� � .KW C CW C BW / D 0;

as Supp h�� D CW .

The above result allows for a shorter proof of [15, Theorem 3.1].

PROPOSITION 2.9 ([15, Theorem 3.1])
With notation as in the above lemma, suppose that B has standard coefficients and
p > 5. Then .X;B/ is globally F-regular over Z.

Proof
By [15, Proposition 2.11, Lemma 2.12], it is enough to show that .W;CW C BW / is
purely globally F-regular over Z, and so, by F-adjunction (see [13, Lemma 2.10]),
it is enough to show that .C;BC / is globally F-regular, where KC C BC D .KW C

CW C BW /jC and C is identified with CW . Since �.KC C BC / is ample and BC has
standard coefficients, this follows from [29, Theorem 4.2].

Remark 2.10
If p D 5, then the above proposition holds true unless BC D 1

2
P1 C 2

3
P2 C 4

5
P3 for

three distinct points P1, P2, and P3 (see [29, Theorem 4.2]).

The following result will be needed below.

LEMMA 2.11
With notation as in Lemma 2.8, suppose that p > 3 and .X;B/ admits a 6-
complement .X;E CBc/, where E is a nonexceptional irreducible curve intersecting
the exceptional locus over Z. Then .X;B/ is globally F-regular over Z.

Note that we do not assume that B has standard coefficients.
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Proof
As in the proof of Proposition 2.9, it is enough to show that .W;CW C BW / is purely
globally F-regular over Z, and so, by F-adjunction (see [13, Lemma 2.10]), it is
enough to show that .C;BC / is globally F-regular, where KC C BC D .KW C CW C

BW /jC and C is identified with CW .
By pulling back the complement to Y and pushing down on W , we obtain a

sub-lc pair .W;aCW C EW C Bc
W / for a (possibly negative) number a 2 Q such

that 6.KW C aCW C EW C Bc
W / �Z 0, a nonexceptional irreducible curve EW

intersecting the exceptional locus over Z, and an effective Q-divisor Bc
W such that

EW C Bc
W � BW . Let TW be an effective exceptional antiample Q-divisor on W ,

and let � � 0 be such that the coefficient of CW in aCW C �TW is 1. By the Kollár–
Shokurov connectedness theorem (see, e.g., [25, Theorem 5.2]), the pair .W;aCW C

�TW C EW C Bc
W / is not plt along CW (otherwise, EW is disjoint from CW and

moreover, by connectedness, CW must be the whole non-klt locus of .W;aCW C

�TW C EW C Bc
W / which is impossible as it is also non-klt at the intersection of EW

with the exceptional locus). In particular, Bc
C contains a point with coefficient at least

1, where

.KW C aCW C �TW C EW C Bc
W /jC D KC C Bc

C :

Since TW is antiample over Z, we have that KC C Bc
C is antinef. In particular, there

exists a Q-divisor BC � B 0
C � Bc

C such that .C;B 0
C / is plt (but not klt) and �.KC C

B 0
C / is nef.

If �.KC C B 0
C / is ample, then .C;B 0

C / is purely F-regular by [7, Lemma 2.9]
(applied to perturbations of .C;B 0

C /), and so .C;BC / is globally F-regular. If
�.KC C B 0

C / is trivial, then a D 1, � D 0, 6.KC C Bc
C / � 0, and .C;Bc

C / is plt
(but not klt). Since GCD.p; 6/ D 1, [7, Lemma 2.9] implies that .C;Bc

C / is globally
F-split, and so .C;BC / is globally F-regular by [23, Corollary 3.10].

2.3. Dual complexes
Let .X;�/ be a three-dimensional dlt pair. Its dual complex D.�D1/ is a simplex with
nodes corresponding to irreducible divisors of �D1 and k-simplices between k C 1

nodes corresponding to k C 1 divisors containing a common codimension-.k C 1/

locus.
Let � W Y ! X be a projective birational morphism such that .Y;�Y / is dlt,

where KY C �Y D ��.KX C �/. In characteristic 0 one can show, using the weak
factorization theorem, that D.�D1

Y / is homotopy equivalent to D.�D1/. In character-
istic p > 0, the weak factorization theorem is not known to hold, but a similar result
may be obtained by running an MMP and using the proof of [11, Theorem 19] (cf.
[21, Section 2.3]).
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For the convenience of the reader, we give a direct proof of a consequence of the
above result, one that we will need later. Here we say that an irreducible divisor D in
�D1 is an articulation point if �D1 � D is disconnected.

LEMMA 2.12
Let .X;�/ be a Q-factorial dlt threefold over a perfect field, and let � W Y ! X be
a projective birational morphism such that .Y;��1

� � C E/ is dlt, where E is the
exceptional locus of � . Write KY C �Y D ��.KX C �/. Let S be an irreducible
divisor in �D1, and let SY be its strict transform. If SY is an articulation point, then
so is S .

Proof
Assume that SY is an articulation point of D.�D1

Y /, and let h W Y ��� X 0 be the output
of a .KY C ��1

� � C E/-MMP over X (which we can run by [13, Theorem 1.1]).
Further, let

�X 0 WD h��Y D h�.��1
� � C E/

and SX 0 WD h�SY . First, we show that SX 0 is an articulation point of D.�D1
X 0 /. To this

end, we claim that there is a natural inclusion of dual complexes

D.�D1
X 0 / � D.�D1

Y /

which identifies the nodes of these dual complexes. Indeed, decompose h W Y ��� X 0

into flips and divisorial contractions of the .KY C ��1
� � C E/-MMP:

Y DW Y1

h1��� Y2

h2��� � � �
hk�1��� Yk WD X 0:

Denote the strict transforms of �Y by �Y1
; : : : ;�Yk

and �X 0 , respectively, and
denote the projections to X by �i W Yi ! X . Note that KY C��1

� �CE �X;Q a1E1 C

� � � C amEm for all exceptional divisors E1; : : : ;Em � �D1
Y and a1; : : : ; am > 0, and

so, by the negativity lemma, this MMP contracts exactly those divisors in E which
are not contained in �D1

Y . In particular, it preserves the nodes of D.�D1
Y /.

Set �Yl
D .��1

l
/�� C Exc.�l/. Note that there is no log canonical center of

.Yl ;�Yl
/ contained in Exc..hl�1/�1/ by the negativity lemma. Indeed, suppose

that there is such a center Z. Then Z is also a log canonical center of .Yl ;�Yl
/,

and there exists an exceptional divisorial place EZ over Yl with center Z such that
aEZ

.Yl ;�Yl
/ D 0. Since hl�1 is not an isomorphism over the generic point of Z,

[20, Lemma 3.38] implies that

0 � aEZ
.Yl�1;�Yl�1

/ < aEZ
.Yl ;�Yl

/ D 0;

which is a contradiction.
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Now, projecting by hl�1 provides a bijection

¹Zl�1 2 LCC.Yl�1;�Yl�1
/ j Zl�1 � Exc.hl�1/º $ ¹Zl 2 LCC.Yl ;�Yl

/º

for any 1 < l � k. In particular, this induces an inclusion D.�D1
Yl

/ � D.�D1
Yl�1

/, and
so the claim holds and SX 0 is an articulation point.

Let � 0 W X 0 ! X be the induced morphism. Note that KX 0 C�X 0 D .� 0/�.KX C

�/ and that the divisor Exc.� 0/ is contained in �D1
X 0 . First, we show that

� 0.�D1
X 0 � SX 0/ � Supp.�D1 � S/:

To this end, pick an irreducible divisor D � Supp.�D1
X 0 � SX 0/. Then � 0.D/ is a log

canonical center of .X;�/, and so, since .X;�/ is dlt, there exists a divisor S 0 �

Supp.�D1 � S/ such that � 0.D/ � S 0. This shows the above inclusion.
Now, note that

� 0jSupp.�D1
X0 �SX0 / W Supp.�D1

X 0 � SX 0/ ! Supp.�D1 � S/

has connected fibers. Indeed, Exc.� 0/ � Supp.�D1
X 0 � SX 0/ and � 0 has connected

fibers. Therefore, �D1
X 0 � SX 0 is disconnected if and only if so is �D1 � S . In partic-

ular, S is an articulation point.

3. Complements on surfaces
The following proposition is fundamental in showing that flips admitting a qdlt 6-
complement exist. Note that every two-dimensional log pair with standard coefficients
and which is log Fano with respect to a projective birational map admits a relative m-
complement for m 2 ¹1; 2; 3; 4; 6º (cf. [15, Theorem 3.2]).

PROPOSITION 3.1
Let .S;B/ be a two-dimensional klt pair with standard coefficients defined over a
perfect field of characteristic p > 3, and let S ! T be a birational contraction such
that �.KS C B/ is relatively nef but not numerically trivial. Assume that .S;B/ is
not relatively globally F-regular over T .

Then every 6-complement of .S;B/ is non-klt and has a unique non-klt valuation
which is exceptional over T .

Proof
We work over a sufficiently small neighborhood of a point t 2 T . By Lemma 2.8, there
exist an irreducible, exceptional over T , curve C on a blowup of S and projective
birational maps g W Y ! S and h W Y ! W over T such that
(1) g extracts C or is the identity if C � S ,
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(2) .Y;C C BY / is plt,
(3) .W;CW C BW / is plt and �.KW C CW C BW / is ample over T ,
where CW WD h�C ¤ 0, BW WD h�BY , and KY C bC C BY D g�.KS C B/ for
C � Supp BY .

By Proposition 2.9 and Remark 2.10, .KW C CW C BW /jCW
D KCW

C 1
2
P1 C

2
3
P2 C 4

5
P3 for some three distinct points P1, P2, and P3.

Now, let .S;Bc/ be any 6-complement of .S;B/. By the negativity lemma,
Supp.Bc �B/ contains a nonexceptional curve. Let KY CaC CBc

Y D g�.KS CBc/,
where C � Supp Bc

Y , and let Bc
W WD h�Bc

Y . Since 6.KS CBc/ �T 0 is lc, we get that

.W;aCW C Bc
W /

is sub-lc and 6.KW C aCW C Bc
W / �T 0. In particular, 6Bc

W is an integral divisor.
Moreover, Bc

W � BW as Bc � B .
To prove the proposition, it is now enough to show that a D 1. Indeed, in this case

�.KW C CW C Bc
W / �Q;T 0 and, by the Kollár–Shokurov connectedness lemma,

the non-klt locus of .W;CW C Bc
W / is connected (note that W ! T is birational so

�.KW C CW C Bc
W / is relatively nef and big). The only 6-complement of

�
CW ;

1

2
P1 C

2

3
P2 C

4

5
P3

�

is .CW ; 1
2
P1 C 2

3
P2 C 5

6
P3/, so .W;CW C Bc

W / is plt along CW by adjunction, and
connectedness of the non-klt locus implies that .W;CW C Bc

W / is in fact plt every-
where. In particular, .S;Bc/ admits a unique exceptional over T non-klt valuation.

In order to prove the proposition, we assume that a < 1 and derive a contradic-
tion. We will not need to refer to .S;B/ or .Y; aC C BY / anymore, so, for ease of
notation, we replace CW , BW , and Bc

W by C , B , and Bc , respectively.
If .Bc �B/ �C ¤ 0, then Lemma 3.2 applied to .W;C CBc/ implies that .KW C

C C Bc/ � C D 0. This is impossible because

.KW C C C Bc/ � C < .KW C aC C Bc/ � C D 0:

Hence, we can assume that .Bc � B/ � C D 0. Since Supp.Bc � B/ contains a nonex-
ceptional curve, the exceptional locus over T cannot be irreducible (otherwise it is
equal to C and .Bc � B/ � C > 0), and so as the exceptional locus is connected we
can pick an irreducible exceptional curve E ¤ C such that E \C ¤ ;. Since E Š P1

and E2 < 0, we may contract E over T . Let f W W ! W1 be a contraction of E , and
let C1, Bc

1 be the strict transforms of C and Bc . We have that

.KW C C C Bc/ � E > .KW C aC C Bc/ � E D 0;
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and hence for some t > 0 and with the natural identification C ' C1,

.KW1
C C1 C Bc

1 /jC1
D f �.KW1

C C1 C Bc
1/jC

D .KW C C C Bc C tE/jC

� KC C
1

2
P1 C

2

3
P2 C

4

5
P3 C tEjC :

As before, .KW1
C C1 C Bc

1/ � C1 < .KW1
C aC1 C Bc

1 / � C1 D 0. By applying
Lemma 3.2 to .W1;C1 C Bc

1 /, we again obtain a contradiction.

In the following result, it is key that � is nonzero.

LEMMA 3.2
Let .S;C C B/ be a two-dimensional log pair, and let f W S ! Z be a projective
birational morphism such that the irreducible normal divisor C is exceptional and
.KS C C C B/ � C � 0. Assume that 6B is an integral divisor and that

BC D
1

2
P1 C

2

3
P2 C

4

5
P3 C �

for distinct points P1;P2;P3 2 C and a nonzero effective Q-divisor �, where .KS C

C C B/jC D KC C BC . Then .KS C C C B/ � C D 0.

Proof
Assume by contradiction that .KS C C C B/ � C < 0. Since 1

2
C 2

3
C 4

5
D 2 � 1

30
, we

obtain

�
1

30
< .KS C C C B/ � C < 0:

Set yi WD 1
2
; 2

3
; 4

5
for i D 1; 2; 3, respectively, and write

BC D x1P1 C x2P2 C x3P3 C �0;

where �0 � 0 and Pi � Supp �0. We have that

yi � xi < yi C 1=30;

and so xi < 4
5

C 1
30

D 5
6

. Further, deg �0 < 1
30

. By adjunction, .S;C CB/ is plt along
C .

Let �i be the intersection matrix of the singularity of S at Pi . Recall that det �i

is the Q-factorial index of Pi ; that is, for any Weil divisor D, it holds that .det �i /D
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is Cartier at Pi (see [7, Lemma 2.2]). By [19, Corollary 3.45],

xi D 1 �
1

det �i

C
k

6 det �i

for some integer k � 0; in particular, it is of the form m
6 det �i

. Moreover, det �i � 5, as

otherwise xi � 5
6

.
We claim that xi D yi . If i 2 ¹1; 2º, then 6.det �i /yi 2 N and so either xi D yi

or

xi � yi C
1

6 det �i

� yi C
1

30
;

which is a contradiction. If i D 3, then since det �3 � 5, it is easy to see that

5 det �3 � 1

6 det �3

�
4

5
� x3 <

5 det �3

6 det �3

D
5

6
:

Since xi D m
6 det �3

, it follows that x3 D y3 D 4
5

and det �3 D 5.
Hence, xi D yi for all i 2 ¹1; 2; 3º and �0 D �. In particular, either Supp � is

contained in the smooth locus of S and deg � � 1
6

� 1
30

, or deg � is bounded from
below by the smallest standard coefficient: 1=2. In either case, this is a contradiction.

4. Lifting complements
The new building blocks for the low characteristic MMP are flips admitting a qdlt
6-complement. Therefore, it is fundamental to construct 6-complements of flipping
contractions. This is done by lifting them from divisorial centers as described by
Theorem 1.6. Before we move on to the proof of this result, we need to show some
results about Frobenius-stable sections for Q-divisors.

4.1. Frobenius-stable sections and integral adjunction
In this subsection, we assume the existence of log resolutions of singularities admit-
ting relatively antiample effective exceptional divisors. In particular, the results of this
section are valid up to dimension 3. Further, we denote the Frobenius-stable sections
of a line bundle L with respect to the Frobenius trace map associated to .X;�/ by
S0.X;�IL/. Note that this space is often denoted by S0.X;	.X;�/ ˝ L/. We refer
to [22] and [15] for the definition and a comprehensive treatment of S0.

Let .X;�/ be a positive characteristic log Fano pair. Fix m 2 N, and set A WD

�.KX C �/. We want to study the sections in H 0.X; bmAc/ which are Frobenius
stable with respect to a carefully chosen boundary.

If � has standard coefficients, then the theory of complements gives a natural
candidate: ˆ WD ¹.m C 1/�º. Indeed, in this case,
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bmAc � .KX C ˆ/ D �.m C 1/.KX C �/

is ample (see (1)), which suggests that one should look at the subspace

S0
�
X;ˆI bmAc

�
� H 0

�
X; bmAc

�
:

Since standard coefficients are not stable under log pullbacks or perturbations,
we need to work in a more general setting.

SETTING 4.1
As mentioned before, we assume the existence of log resolutions of singularities
admitting relatively antiample effective exceptional divisors.

Fix a natural number m 2 N and a perfect field k of characteristic p > 0. Let
.X;S C B/ be a sublog pair which is projective over an affine k-variety Z and such
that S is a (possibly empty) reduced Weil divisor, bBc � 0, and A WD �.KX CS CB/

is nef and big.
We are ready to define

ˆ WD S C
®
.m C 1/B

¯
;

D WD dmBe �
�
.m C 1/B

˘
; and

L WD bmAc C D:

For the sake of future perturbations, we choose an effective Q-divisor ƒ with suffi-
ciently small coefficients, no common components with S , and such that KX C S C

B C ƒm is of Cartier index nondivisible by p > 0, where ƒm WD 1
mC1

ƒ. Such ƒ

exists by Remark 4.3.

We call D the defect divisor and say that .X;S C B/ has zero defect if D D 0.
Note that .X;S C B/ has zero defect when B has standard coefficients. In general,
since bBc � 0, we have

D D dmBe �
�
.m C 1/B

˘
D
˙
mB � .m C 1/B C

®
.m C 1/B

¯�
D
˙
�B C

®
.m C 1/B

¯�
� 0:

Moreover,

bmAc D �m.KX C S/ � dmBe

D �m.KX C S/ �
�
.m C 1/B

˘
� D

D KX C ˆ � .m C 1/.KX C S C B/ � D;
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and so

L � .KX C ˆ/ D �.m C 1/.KX C S C B/ D .m C 1/A (1)

is nef and big. In particular,

L � .KX C ˆ C ƒ/ D �.m C 1/.KX C S C B C ƒm/; (2)

and so the Weil index of KX C ˆ C ƒ is not divisible by p.

Definition 4.2
With notation as above, define C 0

ƒ.X;S C BIL/ WD S0.X;ˆ C ƒIL/ � H 0.X;L/.

By Noetherianity and the fact that ƒ is assumed to have sufficiently small coeffi-
cients, we can replace ƒ by any ƒ0 satisfying the assumptions of Setting 4.1, having
sufficiently small coefficients, and such that Supp ƒ0 D Supp ƒ.

Remark 4.3
There always exists ƒ as in Setting 4.1. Indeed, we can assume that KX is such that
S � Supp.A/. Pick a sufficiently ample Cartier divisor M , use Serre vanishing to find
M 0 � M vanishing along Supp.A/ with high multiplicity but without vanishing along
S , and set ƒ WD .m C 1/.M 0 C A/. Moreover, given such ƒ, we can replace it by �ƒ

for some 0 < � 	 1 by the same argument as in [30, Lemma 2.10].

The following lemma allows for calculating C 0 on a log resolution.

LEMMA 4.4
With notation as in Setting 4.1, suppose that .X;S C B/ is plt and has zero defect.
Let � W Y ! X be a projective birational map, and set KY C SY C BY D ��.KX C

S C B/ with SY WD ��1
� S . Then

C 0
ƒY

.Y;SY C BY ILY / D C 0
ƒ.X;S C BIL/;

where LY is defined for .Y;SY C BY / as in Setting 4.1, and ƒY WD ��ƒ.

Note that ��LY D L, but LY is rarely the pullback of L. This lemma holds for any
Q-divisor ƒY satisfying the assumptions of Setting 4.1 and such that Supp ƒY D

Supp ��ƒ.

Proof
Set ƒm

Y WD 1
mC1

ƒY . Since .X;S C B/ is plt, we have that bBY c � 0. The subspace
S0.Y;ˆY C ƒY ILY / is given as the image of
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H 0
�
Y;F e

� OY

�
.1 � pe/.KY C ˆY C ƒY / C peLY

��
! H 0

�
Y;OY .LY /

�
for a sufficiently divisible integer e > 0. Therefore, it is enough to show the following
two identities: ��OY .LY / D OX .L/ and

��OY

�
.1 � pe/.KY C ˆY C ƒY / C peLY

�
D OX

�
.1 � pe/.KX C ˆ C ƒ/ C peL

�
:

We begin by checking the first one. Since ��LY D L, there is an inclusion
��OY .LY / 
 OX .L/. Since mAY CDY D ��.mA/CDY , where DY is an effective
Weil divisor, we have

LY D bmAY c C DY D
�
��.mA/

˘
C DY � ��

�
bmAc

�
C DY D ��L C DY :

Here we used the fact that the defect D D 0. Since DY is effective and exceptional,
��OY .DY / D OX . The inclusion ��OY .LY / � OX .L/ now follows from the pro-
jection formula.

We will now show the second one. To this end, we can use (2) to write

.1�pe/.KY CˆY CƒY /CpeLY D .1�pe/.mC1/.KY CSY CBY Cƒm
Y /CLY :

Since KY C SY C BY C ƒm
Y D ��.KX C S C B C ƒm/ is Cartier up to multi-

plying by pe � 1 for a sufficiently divisible integer e > 0, the second identity follows
from the first one by the projection formula.

The following lemma allows for lifting sections.

LEMMA 4.5
With notation as in Setting 4.1, suppose that .X;S C B/ is plt with standard coeffi-
cients, S is an irreducible divisor, and A WD �.KX C S C B/ is ample. Assume that
Supp ƒ contains the non-snc locus of .X;S C B/, and write A QS WD �.K QS C B QS / D

�.KX C S C B/j QS for the normalization QS of S . Then, by restricting sections, we get
a surjection

C 0
ƒ

�
X;S C BI bmAc

�
! C 0

ƒ QS

�
QS;B QS I bmA QSc

�
;

where ƒ QS WD ƒj QS .

Proof
Let � W Y ! X be a log resolution of .X;S C B/ which is an isomorphism over the
simple normal crossings locus. We can write

KY C SY C BY D ��.KX C S C B/ and

KSY
C BSY

D .KY C SY C BY /jSY

for SY WD ��1
� S . Define LY , LSY

, ˆY , ˆSY
as in Setting 4.1.
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Pick a �-exceptional effective antiample divisor E . Let

ƒY WD ��ƒ C �E

for 0 < � 	 1 such that ƒY satisfies the assumptions of Setting 4.1 and Supp ƒY D

Supp ��ƒ. Set ƒSY
WD ƒY jSY

.
By the standard adjunction for S0 (see, e.g., [15, Proposition 2.3]), since

LY � .KY C ˆY C ƒY / D �.m C 1/.KY C SY C BY C ƒm
Y /

is ample, restricting sections induces a surjective map

S0.Y;ˆY C ƒY ILY / ! S0.SY ;ˆSY
C ƒSY

ILSY
/:

Indeed, KSY
C ˆSY

D .KY C ˆY /jSY
and LY jSY

D LSY
as .Y;SY C BY / is log

smooth. Thus, C 0
ƒY

.Y;SY C BY ILY / ! C 0
ƒSY

.SY ;BSY
ILSY

/ is surjective, and
the claim follows from Lemma 4.4 applied to both sides. Note that even though
the hypothesis ƒY D ��ƒ is not satisfied, we have ��ƒ � ƒY � ��ƒ0, where
the supports of ƒ and ƒ0 coincide and we may assume that C 0

ƒ.X;S C BIL/ D

C 0
ƒ0.X;S C BIL/.

Finally, we show that C 0 gets smaller when the boundary gets bigger.

LEMMA 4.6
Let .X;S C B/ and .X;S 0 C B 0/ be two sublog pairs satisfying the assumptions of
Setting 4.1. Suppose that S 0 C B 0 � S C B , and define L and L0 for .X;S C B/ and
.X;S 0 C B 0/, respectively, as in Setting 4.1.

Then L � L0 � 0 and the inclusion H 0.X;OX .L0// � H 0.X;OX .L// induces
an inclusion

C 0
ƒ0.X;S 0 C B 0IL0/ � C 0

ƒ.X;S C BIL/;

where ƒ, ƒ0 are as in Setting 4.1 and Supp ƒ � Supp ƒ0 [ .S 0 � S/.

Note that it would be too restrictive to assume that Supp ƒ � Supp ƒ0. Indeed,
ƒ0 as in Setting 4.1 has no common components with S 0, while ƒ has no common
components with S but will often have common components with S 0 � S .

Proof
Let ˆ and ˆ0 be defined for .X;S C B/ and .X;S 0 C B 0/ as in Setting 4.1. By (1),
we have
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L � L0 D ˆ � ˆ0 C .m C 1/.S 0 C B 0 � S � B/

D S � S 0 C
�
.m C 1/.S 0 C B 0/

˘
�
�
.m C 1/.S C B/

˘
;

and so L � L0 � 0.
We may assume that ƒ � ƒ0 C .m C 1/.S 0 C B 0 � S � B/. Then

S0.X;ˆ0 C ƒ0IL0/ � S0
�
X;ˆ0 C ƒ0 C .L � L0/IL

�
D S0

�
X;ˆ C ƒ0 C .m C 1/.S 0 C B 0 � S � B/IL

�
� S0.X;ˆ C ƒIL/:

4.2. The proof of Theorem 1.6
We are ready to show that m-complements of pl-flipping contractions exist for m 2

¹1; 2; 3; 4; 6º. With notation as in Setting 4.1, note that

bmAc D
�
�m.KX C S C B/

˘
D �m.KX C S C B�/

for B� WD 1
m

dmBe � B . When B has standard coefficients, then the defect is zero,
B� D 1

m
b.m C 1/Bc, and L D bmAc D �m.KX C S C B�/.

Proof of Theorem 1.6
We may assume that Z is affine. Let QS be the normalization of S . By Lemma 4.5,
restricting sections gives a surjective map

C 0
ƒ

�
X;S C BI�m.KX C S C B�/

�
! C 0

ƒ QS

�
QS;B QS I�m.K QS C B�

QS
/
�
;

where K QS CB QS D .KX CS CB/j QS , B�
QS

D 1
m

dmB QS e, and ƒ is as in Setting 4.1 with
Supp ƒ containing Exc.f / and the non-snc locus of .X;S C B/. Set ƒ QS WD ƒj QS , and
note that it satisfies the assumptions of Setting 4.1 for . QS;B QS /.

By Lemma 4.7, there exists � QS 2 j�m.K QS C B�
QS
/j such that . QS;Bc

QS
/ is an m-

complement of . QS;B QS / for Bc
QS

D B�
QS

C 1
m

� QS and which moreover lifts to

� 2
ˇ̌
�m.KX C S C B�/

ˇ̌
:

Set Bc D B� C 1
m

� . Then m.KX CS CBc/ � 0 and .KX CS CBc/j QS D K QS CBc
QS
.

By inversion of adjunction (see [14, Corollary 1.5]) applied to .X;S C .1 � �/Bc/ for
0 < � 	 1, we get that .X;S C Bc/ is lc in a neighborhood of Exc f , and hence it is
an m-complement of .X;S C B/.

In the above proof, we used the following lemma.
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LEMMA 4.7
Let .X;B/ be a two-dimensional klt pair with standard coefficients defined over a
perfect field of characteristic p > 2, and let f W X ! Z be a projective birational
map such that �.KX C B/ is ample. Then there exists m 2 ¹1; 2; 3; 4; 6º and

s 2 C 0
ƒ

�
X;BI�m.KX C B�/

�
� H 0

�
X;�m.KX C B�/

�
such that .X;B� C 1

m
�/ is an m-complement of .X;B/ in a neighborhood of Exc.f /,

where B� WD 1
m

dmBe and � is the divisor corresponding to s. Here ƒ is as in Set-
ting 4.1.

Proof
By Lemma 2.8, there exist an irreducible, exceptional over Z, curve C on a blowup
of X and projective birational maps g W Y ! X and h W Y ! W over Z such that
(1) g extracts C or is the identity if C � X ,
(2) .Y;C C BY / is plt,
(3) .W;CW C BW / is plt and �.KW C CW C BW / is ample over Z,
(4) BC

Y � BY � 0,
where KY C bC C BY D g�.KX C B/ for C � Supp BY , CW WD h�C ¤ 0, BW WD

h�BY , and KY C C C BC
Y D h�.KW C CW C BW /.

We have

C 0
ƒ.X;BIL/ D C 0

ƒY
.Y; bC C BY ILY /

� C 0

ƒ
C
Y

.Y;C C BC
Y ILC

Y /

D C 0
ƒW

.W;CW C BW ILW /;

where L, LY , LC
Y , and LW are defined as in Setting 4.1 and the defects D and DW

vanish as B and CW C BW have standard coefficients. The first and third equalities
hold by Lemma 4.4, and the middle inclusion holds by Lemma 4.6 since C C BC

Y �

bC C BY . Here, the perturbation divisors were chosen in the following way. First, we
set ƒY WD g�ƒ. Second, we pick ƒW for .W;CW C BW / as in Setting 4.1. By the
construction in Remark 4.3, we can assume that ƒW contains g.Supp.ƒY � ƒY ^

C / [ Exc.h// and the non-snc locus of .W;CW C BW / in its support. Lastly, we set
ƒC

Y WD h�ƒW .
Note that L D �m.KX C B�/ and LW D �m.KW C CW C B�

W / for B�
W D

1
m

dmBW e. By Lemma 4.5, restricting sections thus gives a surjective map

C 0
ƒW

�
W;CW C BW I�m.KW C CW C B�

W /
�

! C 0
ƒC

�
C;BC I�m.KC C B�

C /
�
;

where C is identified with CW and KC C BC D .KW C CW C BW /jC . As usual,
B�

C WD 1
m

dmBC e and ƒC WD ƒW jC .
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Let m 2 ¹1; 2; 3; 4; 6º be the minimal number such that .C;BC / admits an m-
complement. By Lemma 4.9, .C; ¹.m C 1/BC º/ is globally F-regular, and so

C 0
ƒC

�
C;BC I�m.KC C B�

C /
�

D H 0
�
C;�m.KC C B�

C /
�
:

In particular, there exists an lc m-complement .C;Bc
C / of .C;BC / for some m 2

¹1; 2; 3; 4; 6º (and hence of .C;B�
C / as mB�

C D dmBC e) which can be lifted to W .
More precisely, there exists a nonzero section

s 2 C 0
ƒW

�
W;CW C BW I�m.KW C CW C B�

W /
�

with associated divisor � such that m.KW C CW C Bc
W / � 0 and

.KW C CW C Bc
W /jC D KC C Bc

C ;

where Bc
W WD B�

W C 1
m

� . By inversion of adjunction, .W;CW CBc
W / is lc along CW .

Note that

KW C CW C �BW C .1 � �/Bc
W

is thus plt along CW and Q-equivalent over Z to �.KW C CW C BW /, and hence by
the Kollár–Shokurov connectedness principle (cf. [25, Theorem 5.2]), it is plt for any
0 < � < 1. Hence .W;CW CBc

W / is lc and thus an m-complement of .W;CW CBW /.
Let KY C C C Bc

Y D h�.KW C CW C Bc
W / and Bc WD g�.C C Bc

Y /. Then
.X;Bc/ is an m-complement of .X;B/ which, by the above inclusions of C 0, corre-
sponds to a section in C 0

ƒ.X;BI�m.KX C B�//.

Remark 4.8
With notation as in Theorem 1.6, if .X;S C B/ is not purely relatively F-regular
and p D 5, then m D 6. Indeed, under these assumptions, . QS;B QS / is not relatively
F-regular by F-adjunction, and hence, in the proof of Lemma 4.7, we have that BC D
1
2
P1 C 2

3
P2 C 4

5
P3 for distinct points P1, P2, and P3, by Remark 2.10. The smallest

m for which this .C;BC / admits an m-complement is m D 6.

LEMMA 4.9
Let .P1;B/ be a log pair with standard coefficients and deg B < 2 defined over a
perfect field of characteristic p > 2. Let m 2 ¹1; 2; 3; 4; 6º be the minimal number
such that .P1;B/ admits an m-complement. Then .P1; ¹.m C 1/Bº/ is globally F-
regular.

Proof
If B is supported at two or fewer points, then so is ¹.m C 1/Bº, and hence .P1; ¹.m C
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1/Bº/ is globally F-regular. Indeed, one can always increase one of the coefficients
to 1 and apply global F-adjunction.

Thus, we can assume that B D a1P1 C a2P2 C a3P3 for distinct points P1, P2,
P3 and .a1; a2; a3/ 2 ¹.1

2
; 1

2
; 1 � 1

n
/; .1

2
; 2

3
; 2

3
/; .1

2
; 2

3
; 3

4
/; .1

2
; 2

3
; 4

5
/º, where n 2 N is

arbitrary. These are 2-, 3-, 4-, and 6-complementary, respectively.
Therefore, ¹.m C 1/Bº D b1P1 C b2P2 C b3P3 for

.b1; b2; b3/ 2
°�1

2
;
1

2
;
1

2

�
;
�1

2
;
1

2
;
n � 3

n

�
;
�
0;

2

3
;
2

3

�
;
�1

2
;
1

3
;
3

4

�
;
�1

2
;
2

3
;
3

5

�±
;

where n � 3.
To solve the first two cases, it is enough to show that .P1; 1

2
P1 C 1

2
P2 C .1 �

1
n

/P3/ is globally F-regular which follows by [29, Theorem 4.2]. For the next two
cases, we can argue as in the first paragraph: by increasing the biggest coefficient to 1

(obtaining .0; 2
3
; 1/, .1

2
; 1

3
; 1/) and applying F-adjunction. When p � 5, the last case

follows by increasing 3
5

to 3
4

and applying [29, Theorem 4.2] again.
We are left to show the last case for p D 3. By Fedder’s criterion, it is enough

to check that .x C y/c1xc2yc3 contains a monomial xi yj for some i; j < pe � 1

and e > 0, where cr WD d.pe � 1/bie and r 2 ¹1; 2; 3º. Take e D 3. Then we have
.c1; c2; c3/ D .13; 18; 16/ and

.x C y/13x18y16 D � � � C

 
13

9

!
x22y25 C � � � ;

where 3 does not divide
�

13
9

�
D 10�11�12�13

4Š
.

5. Flips admitting a qdlt complement
The goal of this section is to show the existence of flips for flipping contractions
admitting a qdlt k-complement, where k 2 ¹1; 2; 3; 4; 6º.

PROPOSITION 5.1 (cf. Proposition 1.5)
Let .X;�/ be a Q-factorial three-dimensional qdlt pair with standard coefficients
over a perfect field k of characteristic p > 3. Let f W X ! Z be a .KX C �/-flipping
contraction such that �.X=Z/ D 1, and let † be a flipping curve. Assume that there
exists a qdlt 6-complement .X;�c/ of .X;�/ such that † �S < 0 for some irreducible
divisor S � b�cc. Then the flip f C W XC ! Z exists.

Proof
Write � D aS C D C B , where 1 � a � 0, the divisor D is integral, S � Supp.D C

B/, and bBc D 0. By replacing � by S C .1 � 1
k

/D C B for k � 0, we can assume
that .X;�/ is plt. As explained in the introduction, we split the proof into three cases:
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(1) .X;�c/ is plt along the flipping locus, or
(2) † � E < 0 for a divisor E � b�cc different from S , or
(3) † � E � 0 for a divisor E � b�cc intersecting the flipping locus.

Cases (1) and (3) follow from Propositions 5.2 and 5.4, respectively, applied to
.X;�/. Case (2) follows from Proposition 5.3 applied to .X;� C bE/, where b � 0

is such that multE .� C bE/ D 1.

PROPOSITION 5.2
Let .X;S C B/ be a Q-factorial three-dimensional plt pair over a perfect field k

of characteristic p > 3 with S irreducible and B having standard coefficients. Let
f W X ! Z be a pl-flipping contraction such that �.X=Z/ D 1. Assume that there
exists a plt 6-complement .X;S C Bc/ of .X;S C B/ over Z. Then the flip exists.

Proof
Write K QS C B QS D .KX C S C B/j QS and K QS C Bc

QS
D .KX C S C Bc/j QS for the

normalization QS of S . The pair . QS;Bc
QS
/ is a klt 6-complement, and so . QS;B QS / is

relatively F-regular by Proposition 3.1. In particular, the flip exists by Theorem 2.1.

The following proposition addresses case (2). The idea is due to Mori [18, Theo-
rem 20.11] and it was suggested to us by James McKernan.

PROPOSITION 5.3
Let .X;�/ be a Q-factorial three-dimensional qdlt pair over a perfect field k of char-
acteristic p > 0, let f W X ! Z be a flipping contraction such that �.X=Z/ D 1,
and let † be a flipping curve. Assume that there exist distinct irreducible divisors
S;E � b�c such that S � † < 0 and E � † < 0. Then the flip of † exists.

Proof
Note that Q-divisors which are numerically equivalent over Z are automatically Q-
linearly equivalent over Z by an appropriate pl-contraction theorem (see, e.g., [12,
Lemma 2.4]).

We may assume that Z is a sufficiently small affine neighborhood of Q WD f .†/.
Let k; l 2 N be such that kS �Z lE are Cartier, and consider a pencil h W X ��� P1

Z

given by the linear system in jkS j induced by these two divisors. We set X 0 to be the
closure of the image of X under h.

Since .X;S C E/ is qdlt and Exc.f / � S \ E , we get that S \ E D Exc.f /.
Thus the induced map g W X 0 ! Z is an isomorphism over Z nQ, and g is a small
birational morphism. If S 0 is the strict transform of S , then kS 0 is the restriction of
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a section of P1
Z , and so S 0 is Q-Cartier and relatively ample. Let � W XC ! X 0 be

the normalization of X 0. Then X ��� XC is a small birational morphism of normal
varieties, and we have thatM

m2Z�0

H 0.X;mS/ D
M

m2Z�0

H 0.XC;m��S 0/

is finitely generated. Since KX C � �Q aS for a 2 Q>0, the flip of X exists by [20,
Corollary 6.4].

Now, we deal with case (3). Note that we will apply this proposition later in the
case when B does not have standard coefficients.

PROPOSITION 5.4
Let .X;S C B/ be a Q-factorial three-dimensional qdlt pair over a perfect field k of
characteristic p > 3 with S irreducible, and let f W X ! Z be a flipping contraction
such that �.X=Z/ D 1, �.KX C S C B/ is relatively ample, and �S is relatively
ample. Let † be a flipping curve. Assume that there exists a 6-complement .X;S C

E C Bc/ of .X;S C B/ such that E is irreducible, E � † � 0, and E \ † ¤ ;. Then
the flip of † exists.

We remind the reader that Bc � 0 as .X;S C Bc/ is by definition log canonical.

Proof
Let QS be the normalization of S . By perturbing the coefficients of bBc, we may
assume that .X;S C B/ is plt. The pair . QS;B QS / admits a 6-complement . QS;Ej QS C

Bc
QS
/, where K QS C B QS D .KX C S C B/j QS and K QS C Ej QS C Bc

QS
D .KX C S C E C

Bc/j QS .
We claim that Ej QS is not exceptional over Z. Indeed, otherwise

0 > .Ej QS /2 D E � .E \ S/ D E �
X

�i†i � 0

for some flipping curves †i and some �i > 0, which is a contradiction. We have used
the fact that as �.X=Z/ D 1, if E � † � 0, then E � †i � 0 for every flipping curve
†i .

By Lemma 2.11, the pair . QS;B QS / is relatively F-regular over a neighborhood of
f .†/ in f .S/, and so the flip exists by Theorem 2.1.

6. Divisorial extractions
In [14], we have shown that dlt modifications exist. In our proof of the existence of
flips, it is important to construct minimal qdlt modifications of flipping contractions.
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To this end, we need to extract a single divisorial place, and the following proposition
shows that this can be done for 6-complements.

PROPOSITION 6.1
Let .X;�/ be a Q-factorial three-dimensional lc pair defined over a perfect field
of characteristic p > 3 such that X is klt and 6.KX C �/ � 0. Let E be a non-
klt valuation of .X;�/ over X . Then there exists a projective birational morphism
g W Y ! X such that E is its exceptional locus.

Proof
Let � W Y ! X be a dlt modification of .X;�/ such that E is a divisor on Y (see [14,
Corollary 1.4]). Let Exc.�/ D E C E1 C � � � C Em. For some � > 0, write

KY C �Y D ��.KX C �/;

KY C .1 � �/��1
� � C aE C a1E1 C � � � C amEm D ��

�
KX C .1 � �/�

�
;

where a;a1; : : : ; am < 1 as X is klt, and set

�0 D .1 � �/��1
� � C aE C E1 C � � � C Em:

By taking 0 < � 	 1, we can assume that a > 0. Note that

KY C �0 �Q;X .1 � a1/E1 C � � � C .1 � am/Em; (3)

so that the .KY C �0/-MMP over X will not contract E and the contracted loci are
always contained in the support of the strict transform of .1 � a1/E1 C � � � C .1 �

am/Em. The negativity lemma implies that the output of a .KY C �0/-MMP over X

is the sought-for extraction of E . Hence, it is enough to show that we can run such an
MMP.

By induction, we can assume that we have constructed the nth step of the MMP
h W Y ��� Yn and we need to show that we can construct the .n C 1/st step. Let
�n W Yn ! X be the induced morphism, and let �0

n WD h��0, �n D h��Y . By abuse
of notation, we denote the strict transforms of E;E1; : : : ;Em by the same symbols.

The cone theorem is valid by [17] (cf. [14, Theorem 2.4]). Let R be a KYn
C �0

n

negative extremal ray. By (3), we have that R � Ei < 0 for some i � 1. Thus the
contraction f W Yn ! Y 0

n of R exists by [14, Theorem 1.2, Proposition 2.6].
If f is divisorial, then we set YnC1 WD Y 0

n. If f is a flipping contraction, then
the proof of [14, Lemma 3.1] applied to .Yn;�n/ over X implies the existence of
a divisor E 0 � Exc.�n/ such that R � E 0 > 0. Since .Yn;�0

n/ is dlt, .Yn;�n/ is lc,
6.KYn

C�n/ ��n
0, and E 0 � �n, we can apply Proposition 5.4 to infer the existence

of the flip of f .
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The termination of this MMP follows by the usual special termination argument.

Let .X;S CB/ be a three-dimensional plt pair with different BS , and let .X;S C

Bc/ be a k-complement with different Bc
S . Assume for simplicity that S is nor-

mal. Then .S;Bc
S / is a k-complement of .S;BS /. Assume that .S;Bc

S / admits a
unique non-klt place; that is, it has a dlt modification with an irreducible exceptional
curve. Such complements are of fundamental importance in this article due to Propo-
sition 3.1. By inversion of adjunction, .X;S C Bc/ has a unique log canonical center
strictly contained in S , but infinitely many log canonical places over this center. Thus,
its dlt modifications might be very complicated with many exceptional divisors. The
following corollary shows that this problem may be solved by allowing qdlt singu-
larities: under the above assumptions it stipulates that there exists a qdlt modification
with an irreducible exceptional divisor.

COROLLARY 6.2
Let .X;S C B/ be a Q-factorial three-dimensional plt pair defined over a perfect
field of characteristic p > 3, where X is klt and S is a prime divisor. Assume that
.X;S C B/ admits a 6-complement .X;S C Bc/ such that . QS;Bc

QS
/ has a unique

non-klt place, where K QS C Bc
QS

D .KX C S C Bc/j QS and QS is the normalization of S .
Then .X;S C Bc/ is qdlt in a neighborhood of S , or bBcc is disjoint from S and

there exists a projective birational map � W Y ! X such that .Y;SY C Bc
Y / is qdlt

over a neighborhood of S , the exceptional divisor E is irreducible, and E � bBc
Y c,

where KY C SY C Bc
Y D ��.KX C S C Bc/.

In particular, this corollary implies that if .X;S C Bc/ is not qdlt, then the log
canonical centers in a neighborhood of S are the generic points of �.SY \ E/, �.E/,
and S itself. Note that SY \E must be irreducible as . QS;Bc

QS
/ has a unique log canoni-

cal place. Now there are two possibilities: either �.E/ � S , in which case .X;S CB/

admits a unique log canonical center �.E/ D �.SY \ E/ (a point or a curve), or
�.E/ � S is a curve intersecting S at the point �.SY \E/. Moreover, if .X;S CBc/

is qdlt, then the proof below shows that bBcc is irreducible in a neighborhood of S

and intersects S at its unique non-klt place (which is a curve).

Proof
We work in a sufficiently small open neighborhood of S . First, suppose that bBcc is
nonempty and intersects S . Under this assumption, the unique log canonical cen-
ter of . QS;Bc

QS
/ must be an irreducible curve given as bBccj QS . In particular, bBcc
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is irreducible (cf. Remark 2.4), the pair . QS;Bc
QS
/ is plt, and .X;S C Bc/ is qdlt by

Lemma 2.6.
Thus, we can assume that bBcc D 0, and so the dlt modification � W Y ! X is

nontrivial. Set KY C �c
Y D ��.KX C S C Bc/, and pick an irreducible exceptional

divisor E1 which is not an articulation point of D.�
c;D1
Y / (e.g., pick any divisor with

the farthest distance edgewise in D.�
c;D1
Y / from the node corresponding to S ). Let

g W X1 ! X be the extraction of E1 (see Proposition 6.1), and write

KX1
C S1 C E1 C Bc

1 D g�.KX C S C Bc/;

where S1, Bc
1 are the strict transforms of S , Bc , respectively. Note that S1 intersects

E1.
We claim that .X1; S1 C E1 C Bc

1 / is qdlt in a neighborhood of S1. To this end,
we note that

K QS1
C Bc

QS1
WD .KX1

C S1 C E1 C Bc
1 /j QS1

D .gj QS1
/�.K QS C Bc

QS
/;

where QS1 is the normalization of S1. Since . QS;Bc
QS
/ admits a unique non-klt place, we

obtain that . QS1;Bc
QS1

/ is plt. In particular, Lemma 2.6 implies that .X1; S1 CE1 CBc
1 /

is qdlt in a neighborhood of S1.
Therefore, it is enough to show that .X1; S1 C E1 C Bc

1 / does not admit a log
canonical center which is disjoint from S1 and intersects E1. Assume by contradic-
tion that it does admit such a log canonical center. Let h W W ! X1 be a projective
birational morphism which factors through Y ,

g ı h W W
hY
��! Y

�
�! X;

and such that g ı h is a log resolution of .X;S C B/. Write KW C �c
W D h�.KX1

C

S1 C E1 C Bc
1 /. Since S1 \ E1 is disjoint from the other log canonical centers, the

strict transform EW;1 of E1 is an articulation point of D.�
c;D1
W /. Since KW C �c

W D

h�
Y .KY C �c

Y /, Lemma 2.12 implies that E1 is an articulation point of D.�
c;D1
Y /,

which is a contradiction. In particular, S1, E1, and the irreducible curve S1 \ E1 are
the only log canonical centers of .X1; S1 C E1 C Bc

1/.

7. Existence of flips
In this section, we prove the main theorem. We start by showing the following result.

THEOREM 7.1
Let .X;�/ be a Q-factorial three-dimensional klt pair with standard coefficients
defined over a perfect field k of characteristic p D 5. If f W X ! Z is a flipping
contraction, then the flip f C W XC ! Z exists.
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Proof
We will assume throughout that Z is a sufficiently small affine neighborhood of Q WD

f .Exc.f //. We say that a Q-Cartier divisor D is ample if it is relatively ample over
Z.

By Shokurov’s reduction to pl-flips, it suffices to show the existence of pl-flips.
Let .X;S C B/ be a plt pair with standard coefficients, and let f W X ! Z be a pl-
flipping contraction. In particular, �S and �.KX C S C B/ are f -ample, and so
Exc.f / � S . By Theorem 2.1, the flip exists unless . QS;B QS / is not globally F-regular
over T D f .S/, where K QS C B QS D .KX C S C B/j QS and QS is the normalization of
S . Thus, we can assume that . QS;B QS / is not globally F-regular over T .

Theorem 1.6 shows the existence of an m-complement .X;S C Bc/ of .X;S C

B/ for m 2 ¹1; 2; 3; 4; 6º. Since .X;S C B/ is not relatively purely F-regular,
Remark 4.8 implies that m D 6. Let . QS;Bc

QS
/ be the induced 6-complement of

. QS;B QS /. By Proposition 3.1, the pair . QS;Bc
QS
/ has a unique place C of log discrep-

ancy zero which is exceptional over T .
If .X;S C Bc/ is qdlt, then the flip exists by Proposition 5.1. Thus, by Corol-

lary 6.2, we may assume that bBcc D 0 and there exists a qdlt modification g W X1 !

X of .X;S C Bc/ with an irreducible exceptional divisor E1. Let S1 be the strict
transform of S , let f1 W X1 ! Z be the induced map to Z, and write KX1

C S1 C

B1 C aE1 D g�.KX C S C B/ and KX1
C S1 C Bc

1 C E1 D g�.KX C S C Bc/. In
particular, S1 \ E1 is the unique log canonical place of . QS;B QS /, and so there are two
possibilities: either g.E1/ � S and f1.E1/ D Q, or g.E1/ � S is a curve intersecting
S .

We would like to run a .KX1
C S1 C B1 C aE1/-MMP. It could possibly happen

that a < 0, so we take 0 < � 	 1 and set

�1 WD �.S1 C B1 C aE1/ C .1 � �/.S1 C E1 C Bc
1/

so that KX1
C �1 �Q;Z �.KX1

C S1 C B1 C aE1/, and .X1;�1/ is plt.
Since �.X=Z/ D 1 and both �.KX C S C B/ and �S are ample over Z, it

follows that KX C S C B �Z;Q 
S for some 
 > 0 and so

KX1
C �1 �Z;Q �.KX1

C S1 C aE1 C B1/ �Z;Q �
S1 C �0E1; (4)

where �0 � 0. Note that �0 > 0 if g.E1/ � S and �0 D 0 if g.E1/ � S .

CLAIM 7.2
There exists a sequence of .KX1

C �1/-flips X1 ��� � � � ��� Xn over Z such that
either Xn admits a .KXn

C �n/-negative contraction of En of relative Picard rank
one, or KXn

C �n is semiample with the associated fibration contracting En. Here
�n and En are strict transforms of �1 and E1, respectively.
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In the course of the proof we will show that the qdlt-ness of .X1; S1 CE1 CBc
1/ is

preserved (see Lemma 2.7) except possibly at the very last step before the contraction
takes place. Therefore, all the flips in this MMP exist by Proposition 5.1.

Proof
Let fi W Xi ! Z be the induced map to Z. Since we work over a sufficiently small
neighborhood of Q 2 Z, we can assume that all the flipped curves are contracted
to Q under fi , and so X1 ��� Xn is an isomorphism over Z n ¹Qº. Let .Xi ;�i /

and .Xi ; Si C Ei C Bc
i / be the appropriate strict transforms. The latter pair is a 6-

complement of .Xi ; Si CEi CBi /, where the strict transforms Bi of B1 have standard
coefficients. Note that E1 is not contracted as X1 ��� � � � ��� Xn is a sequence of flips,
thus inducing an isomorphism on the generic point of E1.

Suppose that KXn
C �n is nef. There are two cases: either g.E1/ � S and

f1.E1/ D Q, or g.E1/ � S . We claim that the former cannot happen. Indeed, assume
that f1.E1/ D Q, and let �1 W W ! X1 and �n W W ! Xn be the normalization of
the graph of X1 ��� Xn so that �1 and �n are isomorphisms over Z n ¹Qº. Since
KXn

C �n is nef and KX1
C �1 is antinef (but not numerically trivial) over Z,

��
n .KXn

C �n/ � ��
1 .KX1

C �1/

is exceptional, nef, and antieffective over Z by the negativity lemma. Moreover, its
support must be equal to the whole exceptional locus over Z as it is nonempty and
contracted to Q under the map to Z (cf. [20, Lemma 3.39(2)]). This is impossible,
because E1 is not contained in its support while f1.E1/ D Q.

Now, assuming that g.E1/ � S is a curve intersecting S , we will show that
KXn

C �n �Q;Z �
Sn is semiample. Let G WD f �1
n .P / for a (non-necessarily

closed) point P 2 Z. By [6, Theorem 1.1], it is enough to show that SnjG is
semiample. Since X1 ��� Xn is an isomorphism over Z n ¹Qº, S1 D g�S , and
S is semiample over Z n ¹Qº, we obtain that SnjG is semiample when P ¤ Q.
Thus, we may assume that P D Q. By [17, Theorem], it is enough to verify that
SnjE.SnjG/ is semiample. Since G is one-dimensional, every connected component
of E.SnjG/ � G is either entirely contained in Sn or is disjoint from it. In particular,
it is enough to show that SnjSn

, or equivalently .KXn
C �n/jSn

, is semiample.
Recall that Sn � b�nc, and so K QSn

C � QSn
D .KXn

C �n/j QSn
is semiample by [26,

Theorem 1.1], where QSn is the normalization of Sn. Since QSn ! Sn is a universal
homeomorphism (see [14, Theorem 1.2]), .KXn

C �n/jSn
is semiample and so is

KXn
C �n. Since .KXn

C �n/jEn
is relatively numerically trivial over Z n ¹Qº (as

so is .KX1
C �1/jE1

), we get that the associated semiample fibration contracts En.
From now on, KXn

C �n is not nef. In order to run the MMP, we assume that
.Xn; Sn C En C Bc

n/ is qdlt by induction. The cone theorem is valid by [17] (cf. [14,
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Theorem 2.4]). Pick †n a .KXn
C �n/-negative extremal curve. By (4), we have

KXn
C �n �Z;Q �
Sn C �0En, and so †n � Sn < 0 or †n � En < 0. The contraction

of †n exists by [14, Theorem 1.2, Proposition 2.6] applied to .Xn;�n/ in the former
case and to .Xn; Sn C En C Bn/ in the latter ([14, Theorem 1.2, Proposition 2.6]
assumes that the singularities are dlt, but we can immediately reduce the qdlt case to
the plt case by making the coefficients smaller).

If the corresponding contraction is divisorial, then we are done as it must contract
En. Hence, we can assume that †n is a flipping curve. If En � †n � 0, then �.KXn

C

Sn C Bn C En/ has standard coefficients, is qdlt, and is ample over the contraction of
†n, so the flip exists by Proposition 5.1 as .Xn; Sn C En C Bc

n/ is a 6-complement.
If En � †n > 0, then the flip exists by Proposition 5.4 applied to .Xn;�n/.

To conclude the proof, we shall show that .XnC1; SnC1 C EnC1 C Bc
nC1/ is qdlt

unless XnC1 admits a contraction of EnC1. By Lemma 2.7, we can suppose that
SnC1 \ EnC1 D ; and aim for showing that the sought-for contraction exists.

Let †0 be a curve which is exceptional over Q 2 Z, contained neither in SnC1

nor EnC1, but intersecting SnC1 (it exists by connectedness of the exceptional locus
over Q 2 Z, and the fact that both SnC1 and EnC1 intersect this exceptional locus),
and let C � EnC1 be any exceptional curve such that C � EnC1 < 0 (it exists by the
negativity lemma as EnC1 is exceptional over Z). We claim that C 0 � SnC1 > 0 for
every exceptional curve C 0 � EnC1. To this end, assume by contradiction that there
exists C 0 � EnC1 satisfying C 0 � SnC1 � 0. Since �.XnC1=Z/ D 2, we get that

C 0 
 aC C b†0;

for a; b 2 R. Given C �SnC1 D 0 and †0 �SnC1 > 0, we have b � 0. As C 0 �EnC1 � 0,
C � EnC1 < 0, and †0 � EnC1 � 0, we have a � 0. Therefore, for an ample divisor A

we have

0 < C 0 � A D .aC C b†0/ � A � 0;

which is a contradiction.
Since SnC1 \ EnC1 is empty, SnC1 is thus nef and E.SnC1/ � EnC1 (see [6] for

the definition of E in the relative setting). Hence SnC1 is semiample by [6, Propo-
sition 2.20] and induces a contraction of EnC1. It does not contract †0, and so is of
relative Picard rank one. Moreover,

.KXnC1
C �nC1/ � C �Z;Q 
�SnC1 � C C �0EnC1 � C D �0EnC1 � C � 0;

and so either �0 D 0 and KXnC1
C �nC1 �Z;Q 
�SnC1 is semiample with the asso-

ciated fibration contracting EnC1, or �0 > 0, .KXnC1
C �nC1/ � C < 0, and so the

above contraction is a .KXnC1
C �nC1/-negative Mori contraction of relative Picard

rank one.
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Let � W Xn ! XC be the contraction of En as in the claim, let �C WD ���n, let
SC WD ��Sn, and let BC WD ��Bn. The projection onto Z factors through a small
contraction �C W XC ! Z and �.XC=Z/ � 1. Recall that

KXn
C �n �Z;Q �.KXn

C Sn C aEn C Bn/ �Z;Q �
Sn C �0En:

Since � is either .KXn
C Sn C aEn C Bn/-negative of Picard rank one or .KXn

C

Sn C aEn C Bn/-trivial, the discrepancies of .XC; SC C BC/ are not smaller than
those of .Xn; Sn CaEn CBn/. Moreover, since KX1

CS1 CaE1 CB1 is antinef over
Z and not numerically trivial, at least one step of the .KX1

C�1/-MMP (equivalently,
.KX1

CS1 CaE1 CB1/-MMP) has been performed (i.e., n � 2 or � is a .KXn
C�n/-

negative contraction of En). In particular, there exists a divisorial valuation for which
the discrepancy of .XC; SC CBC/ is higher than the discrepancy of .X1; S1 CaE1 C

B1/, which in turn coincide with the discrepancy of .X;S C B/.
Therefore, KXC C �C cannot be relatively antiample, because then .XC; SC C

BC/ would be isomorphic to .X;S C B/, which is impossible as the MMP has
increased the discrepancies. If KXC C �C is relatively numerically trivial, then we
claim that KXC C �C �Z;Q 0. Indeed,

KXC C �C �Z;Q �
SC;

for �;
 > 0, and since SC intersects the exceptional locus, we must in fact have that
Supp Exc.�C/ � SC. By [6, Proposition 2.20], it is thus enough to show that K QSC C

� QSC D .KXC C�C/j QSC is semiample, where QSC ! SC is the normalization of SC,
which in turn follows from [26, Theorem 1.1]. Here we used the fact that QSC ! SC is
a universal homeomorphism (see [14, Theorem 1.2]). As a consequence, SC descends
to Z. This is impossible as its image (equal to the image of S ) in Z is not Q-Cartier.

Therefore, KXC C �C is relatively ample, and so XC ! Z is the flip of X ! Z

by [20, Corollary 6.4].

7.1. The proof of Theorem 1.1
Given Theorem 7.1, the following proof follows the same strategy as in [2, Theo-
rem 6.3]. For the convenience of the reader, we provide a brief sketch of Birkar’s
argument in the projective case.

Proof of Theorem 1.1
First, we can assume that every component S of Supp � is relatively antiample. Fur-
ther, let �.�/ be the number of components of � with coefficients not in the set
� WD ¹1º [ ¹1 � 1

n
j n > 0º. If �.�/ D 0, then the flip exists by Theorem 7.1. By

induction, we can assume that the flip exists for all flipping contractions of log pairs
.X 0;�0/ such that �.�0/ < �.�/.
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By replacing � with � � 1
l
b�c for l � 0, we can assume that .X;�/ is klt

without changing �.�/. Write � D aS C B , where S � Supp B and a … � . Let
� W W ! X be a log resolution of .X;S C B/ with exceptional divisor E , and set
BW WD ��1

� B C E . Since KX C � 
Z 
S for some 
 > 0, we have that

KW C SW C BW D ��.KX C �/ C .1 � a/SW C F


Z .1 � a C 
/SW C F 0;

where SW WD ��1
� S , and F , F 0 are effective Q-divisors exceptional over X .

Run a .KW C SW C BW /-MMP over Z. By induction, all flips exist in this
MMP as �.SW C BW / < �.�/. Moreover, by the above equation, every extremal ray
is negative on .1 � a C 
/SW C F 0 and hence on an irreducible component of bSW C

BW c. In particular, all contractions exist by [14, Theorem 1.2, Proposition 2.6]. The
cone theorem is valid by a result of Keel (see, e.g., [14, Theorem 2.4]). Let h W W ���
Y be an output of this MMP, and let SY , BY , and FY be the strict transforms of SW ,
BW , and F , respectively.

Now, run a .KY C aSY C BY /-MMP over Z with scaling of .1 � a/SY . In par-
ticular, if R is an extremal ray, then R � SY > 0 and

.KY C BY / � R < 0:

As �.BY / < �.�/, all the flips in this MMP exist by induction. By the same argument
as in the above paragraph, the cone theorem is valid in this setting and all contractions
exist. Let .XC; aSC C BC/ be an output of this MMP. We claim that this is the flip
of .X;aS C B/.

To this end, we notice that the negativity lemma applied to a common resolution
�1 W W 0 ! X and �2 W W 0 ! XC implies that

��
1 .KX C aS C B/ � ��

2 .KXC C aSC C BC/ � 0:

Since .X;aS C B/ is klt, this shows that bBCc D 0 and all the divisors in E were
contracted. In particular, X ��� XC is an isomorphism in codimension 1. We claim
that KXC C aSC C BC is relatively ample over Z and so .XC; aSC C BC/ is the
flip of X .

To this end, we note that �.XC=Z/ D 1 (cf. [1, Lemma 1.6]). Indeed,

�.W=XC/ C �.XC=Z/ D �.W=Z/ D �.W=X/ C �.X=Z/

and �.W=X/ D �.W=XC/ is equal to the number of exceptional divisors. Since
�.X=Z/ is equal to one, so is �.XC=Z/. In particular, to conclude the proof of the
theorem, it is enough to show that KXC C aSC C BC cannot be relatively numeri-
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cally trivial over Z. Assume by contradiction that it is relatively numerically trivial.
Then

��
1 .KX C aS C B/ � ��

2 .KXC C aSC C BC/

is exceptional and relatively numerically trivial over X . Thus, it is empty by the neg-
ativity lemma which contradicts the fact that it is exceptional and non-numerically
trivial over Z.

Theorem 1.2, Theorem 1.3, and Theorem 1.4 now follow by exactly the same
proof as [4, Theorems 1.5, 1.7], [4, Theorem 1.2], and [4, Theorem 1.1], respectively,
in view of [12, Section 2.3].

Remark 7.3
Theorem 1.2 may be extended to the dlt case. The main issue is to show termination
of flips. To this end, one can either argue as in [16], or use special termination to
automatically reduce the problem to the termination of klt flips. The latter statement
requires the termination of all flips (as opposed to the termination with scaling proved
in [4]). Such a stronger termination follows from the argument of [1, Section 2] in
view of the non-vanishing conjecture for klt pair (which can be proved by exactly the
same argument as in [31, Theorem 3], now that we extended [4] to p D 5).
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