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Abstract
We consider the stochastic nested composition optimization problem where the objective
is a composition of two expected-value functions. We propose a new stochastic first-order
method, namely the accelerated stochastic compositional proximal gradient ( A S C - P G )
method. This algorithm updates the solution based on noisy gradient queries using a
two-timescale iteration. The ASC-PG is the first proximal gradient method for the stochas-
tic composition problem that can deal with nonsmooth regularization penalty. We show
that the A S C - P G  exhibits faster convergence than the best known algorithms, and that
it achieves the optimal sample-error complexity in several important special cases. We
demonstrate the application of A S C - P G  to reinforcement learning and conduct numerical
experiments.

Keywords: Large-scale optimization, stochastic gradient, composition optimization, sample
complexity.

1. Introduction

The popular stochastic gradient methods are well suited for minimizing expected-value
objective functions or the sum of a large number of loss functions. Stochastic gradient
methods find wide applications in estimation, online learning, and training of deep neural
networks. Despite their popularity, they do not apply to the minimization of a nonlinear
function involving expected values or a composition between two expected-value functions.

In this paper, we consider the stochastic composition problem, given by

x 2 X
H ( x )  : =  Ev ( fv (Ew (g w (x))) ) +R(x) (1)

= : F ( x )
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where f (g (x) )  =  ( f   g )(x)  denotes the function composition, gw () : < n  !  < m  and
fv ()  : < m  !  <  are continuously differentiable functions, v; w are random variables, and
R ( x )  : < n  !  <  [  f + 1 g  is an extended real-valued closed convex function, X  is a convex
and closed set. We assume throughout that there exists at least one optimal solution x  2  X  to
problem (1). We focus on the case where fv  and gw are smooth, but we allow R  to be a
nonsmooth penalty such as the ‘1-norm. We do no require either the outer function fv  or
the inner function gw to be convex or monotone. As a result, the composition problem
cannot be reformulated into a saddle point problem in general.

Our algorithmic objective is to develop efficient algorithms for solving problem (1) based
on random evaluations of fv , gw and their gradients. Our theoretical objective is to analyze
the rate of convergence for the stochastic algorithm and to improve it when possible. In the
online setting, the iteration complexity of our stochastic methods can be interpreted as a
sample-error complexity upper bound for estimating the optimal solution of problem (1).

1.1 Motivating Examples

One motivating example is reinforcement learning (Sutton and Barto, 1998). Consider a
controllable Markov chain with states 1; : : : ; S. Estimating the value-per-state of a fixed
control policy  is known as on-policy learning. It can be casted into an S   S  system of
Bellman equations:

P V  +  r  =  V ;
where  2  (0; 1) is a discount factor, P  is the transition probability from state s to state s~,
and r  is the expected state transition reward at state s. The solution V  to the Bellman
equation is the value vector, with V (s) being the total expected reward starting at state s.
In the blackbox simulation environment, P ; r  are unknown but can be sampled from a
simulator. As a result, solving the Bellman equation becomes a special case of the stochastic
composition optimization problem:

x 2 X
kE[A]x E[b]k2; (2)

where A; B ; b are random matrices and random vectors such that E[A] =  I    P  and E[b] =
r. It can be viewed as the composition of the square norm function f ( )   fv ()  =  kk and the
expected linear function g (x) =  E [A]x    E[b]. We will give more details on the
reinforcement learning application in Section 4.

Another motivating example is risk-averse learning. For example, consider the mean-
variance minimization problem

x 2 X
Ea;b[h(x; a; b)] +  Vara;b[h(x; a; b)];

where h(x; a; b) is some loss function parameterized by random variables a and b, and
>  0 is a regularization parameter. In particular, the mean-variance minimization takes the
composition form where g (x) =  (E[x]; E[h(x; a; b)]), and f (y1; y2) =  E[h(y1; a; b)] +

E  h(y1; a; b) y2 . Its batch version takes the form

x 2 X

1 X
h ( x ; a i ; b i )  +  

 X

i = 1                                              i = 1

h(x; ai ; bi )   
1 X

h ( x ; a i ; b i )

! 2  

:
i = 1
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Here the variance term is the composition of the mean square function and an expected loss
function.

Although the stochastic composition problem (1) was barely studied, it actually finds a
broad spectrum of emerging applications in estimation and machine learning (see Wang et al.
(2017) for a list of applications). Fast optimization algorithms with theoretical
guarantees will lead to new computation tools and online learning methods for a broader
problem class, no longer limited to the expectation minimization problem.

1.2 Related Works  and Contributions

Contrary to the expectation minimization problem, “unbiased" gradient samples are no longer
available for the stochastic composition problem (1). The objective is nonlinear in the joint
probability distribution of (w; v), which substantially complicates the problem. In a recent
work by Dentcheva et al. (2016), a special case of the stochastic composition problem, i.e.,
risk-averse optimization, has been studied. A  central limit theorem has been established,
showing that the K-sample batch problem converges to the true problem at the rate of
O(1= K )  in a proper sense. For the case where R ( x )  =  0, Wang et al. (2017) has proposed and
analyzed a class of stochastic compositional gradient/subgradient methods (SCGD). The SCGD
involves two iterations of different time scales, one for estimating x  by a stochastic quasi-
gradient iteration, the other for maintaining a running estimate of g(x). Wang and Liu
(2016) studies the SCGD in the setting where samples are corrupted with Markov noises
(instead of i.i.d. zero-mean noises). Both works establish almost sure convergence of the
algorithm and several convergence rate results, which are the best-known convergence rate
prior to the current paper.

The idea of using two-timescale quasi-gradient traced back to the earlier work Ermoliev
(1976). It proposed for the first time a stochastic iteration that updates the solution and
an auxiliary variable using two different stepsizes. The incremental treatment of proximal
gradient iteration has been studied extensively for the expectation minimization problem, see for
examples Nedić and Bertsekas (2001); Nemirovski et al. (2009); Wang et al. (2015); Wang and
Bertsekas (2016) and references therein. However, except for Wang et al. (2017) and Wang
and Liu (2016), all of these works focus on variants of the expectation minimization problem
and do not apply to the stochastic composition problem (1). Another work partially related to this
paper is by Dai et al. (2017). They consider a special case of problem (1) arising in kernel
estimation, where they assume that all functions fv ’s are convex and their conjugate functions fv

’s can be easily obtained/sampled. Under these additional assumptions, they essentially rewrite
the problem into a saddle point optimization involving functional variables.

In this paper, we propose a new accelerated stochastic compositional proximal gradient
(ASC-PG) method that applies to the penalized problem (1), which is a more general problem
than the one considered in Wang et al. (2017). We use a coupled martingale stochastic analysis to
show that ASC-PG achieves significantly better sample-error complexity in various cases. We
also show that ASC-PG exhibits optimal sample-error complexity in two important special cases:
the case where the outer function is linear and the case where the inner function is linear.
Note that the current work has a preliminary conference version (Wang et al., 2016).
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The current journal version provides more complete technical details as well as important
theoretical extensions (Theorem 3).

Our major contributions are summarized as follows:

1. We propose the first stochastic proximal-gradient method for the stochastic composition
problem. This is the first algorithm that is able to address the nonsmooth regularization
penalty R ( )  without deteriorating the convergence rate.

2. We obtain a convergence rate O ( K  4=9) for smooth optimization problems that are
not necessarily convex, where K  is the number of queries to the stochastic first-order
oracle. This improves the best known convergence rate and provides a new benchmark
for the stochastic composition problem.

3. We provide a comprehensive analysis and results that apply to various special cases. In
particular, our results contain as special cases the known optimal rate results for the
expectation minimization problem, i.e., O(1= K )  for general objectives and O(1=K )
for strongly convex objectives.

4. In the special case where the inner function g() is a linear mapping, we show that it is
sufficient to use one timescale to guarantee convergence. Our result achieves the non-
improvable rate of convergence O(1=K ) for optimal strongly convex optimization and
O(1= K )  for convex optimization and nonconvex smooth optimization. It implies that
the inner linearity does not bring fundamental difficulty to the stochastic composition
problem.

5. We show that the proposed method leads to a new on-policy reinforcement learning
algorithm. The new learning algorithm achieves the optimal convergence rate O(1= K )
for solving Bellman equations based on K  observations of state-to-state transitions.

In comparison with Wang et al. (2017), our analysis is more succinct and leads to stronger
results. To  the best of our knowledge, Theorems 1,2,3 in this paper provide the best-known
rates for the stochastic composition problem.

Paper Organization. Section 2 states the sampling oracle and the accelerated stochastic
compositional proximal gradient algorithm (ASC-PG). Section 3 states the convergence rate
results in the case of general nonconvex objective and in the case of strongly convex objective,
respectively. Section 4 describes an application of A S C - P G  to reinforcement learning and
gives numerical experiments.

Notations and Definitions. For x  2  <n ,  we denote by x0 its transpose, and by kxk its
Euclidean norm (i.e., kxk= x0x). For two sequences fy k g  and fzk g, we write y k  =  O(zk )
if there exists a constant c >  0 such that kyk k ckzkk for each k. We denote by Ivalue

the indicator function, which returns “value” if the “condition” is satisfied; otherwise 0. We
denote by H  the optimal objective function value of problem (1), denote by X  the set of

optimal solutions, and denote by P S ( x )  the Euclidean projection of x  onto S  for any convex
set S . We also denote by short that f ( y )  =  Ev [fv (y)] and g (x) =  Ew [gw (x)].

4
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2. Algorithm

We focus on the black-box sampling environment. Suppose that we have access to a stochastic
first-order oracle, which returns random realizations of first-order information upon queries.
This is a typical simulation oracle that is available in both online and batch learning. More
specifically, assume that we are given a Sampling Oracle ( S O )  such that

 Given some x  2  < n ,  the S O  returns a random vector gw (x) and a noisy subgradient
rg w (x ) :

 Given some y  2  <m , the S O  returns a noisy gradient r f v ( y ) :

Now we propose the Accelerated Stochastic Compositional Proximal Gradient ( A S C - P G )
algorithm, see Algorithm 1. A S C - P G  is a generalization of the S C G D  proposed by Wang et
al. (2017), in which a proximal step is used to replace the projection step.

Algorithm 1 Accelerated Stochastic Compositional Proximal Gradient (ASC-PG)
Require: x1  2  < n ,  S O ,  K ,  stepsize sequences f k g K      , and f k g K      .
Ensure: f x k g K

1: Initialize z1 =  x1  and y1 =  0.
2: for k =  1; ; K do
3: Query the S O  and obtain gradient samples r f v k  (yk ), r g w k  (zk ):
4: Update the main iterate by

x k + 1 =      prox
k R()      x k       k r g w k  

( x k ) r f v k  (yk )  :

5: Update auxillary iterates by an extrapolation-smoothing scheme:

z k + 1 = 1   
k

x k  +  
k 

xk + 1 ;  y k + 1

=      (1 k )yk  +  k gw k + 1 (zk +1 );

where the sample gw k + 1 (zk + 1 )  is obtained via querying the S O .
6: end for

In Algorithm 1, the extrapolation-smoothing scheme (i.e., the (y; z)-step) is critical to
the acceleration of convergence. The acceleration is due to the fast running estimation of
the unknown quantity g (xk )  : =  Ew [gw (xk )]. At iteration k, the running estimate y k  of
g (xk ) is obtained using a weighted smoothing scheme, corresponding to the y-step; while the
new query point z k + 1  is obtained through extrapolation, corresponding to the z-step. The
updates are constructed in a way such that y k  is a nearly unbiased estimate of g(xk ): To  see
how the extrapolation-smoothing scheme works, we let the weights be

(k )

(
t  

Q
i = t + 1 ( 1  i );

k ;
if k >  t  0
if k =  t  0:

(3)
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Then,we can verify the following important relations:

x k + 1  =  
X ( k ) z t + 1 ;
t=0

y k + 1  =  
X ( k ) g w t + 1 ( z t + 1 ) ;
t=0

which essentially say that x k + 1  is a damped weighted average of fzt+1 gk +1  and y k + 1  is a
damped weighted average of fgwt + 1 (zt+1 )g0 .

A n  Analytical Example of the Extrapolation-Smooth Scheme Now consider the
special case where gw () is always a linear mapping gw (z) =  Aw z +  bz and k =  1=(k +  1).
We can verify that (k )  =  1=(k +  1) for all t. Then we have

g (xk + 1 )  =
1 X

E [ A w ] z t + 1  +  E[bw ];
t=0

k k

y k + 1  =  
k +  1 

t=0  
Awt + 1 z t + 1  +  

k +  1 
t=0  

bwt + 1 :

In this way, we can see that the scaled error

k k

k (yk + 1  g (xk + 1 ))  = (A w t + 1  E[Aw ])zt+1 + (bw t + 1  E[bw ])
t=0                                                                t=0

is a zero-mean and zero-drift martingale. Under additional technical assumptions, we have
E[kyk + 1  g(xk +1 )k2 ]  O

k
:

Note that the zero-drift property of the error martingale is the key to the fast convergence
rate. The zero-drift property comes from the near-unbiasedness of yk , which is due to the
special construction of the extrapolation-smoothing scheme. In the more general case where
gw is not necessarily linear, we can use a similar argument to show that y k  is a nearly
unbiased estimate of g(xk ). As a result, the extrapolation-smoothing (y; z)-step ensures that
y k  tracks the unknown quantity g (xk ) efficiently.

3. Main Results

We present our main theoretical results in this section. Note that for ease of presentation, we
defer all detailed proofs for the theorems, and technical lemmas to Appendix. Let us begin
by stating our assumptions. Note that all assumptions involving random realizations of v; w
hold with probability 1.

Assumption 1 The samples generated by the S O  are unbiased in the following sense:

1. E f w k ; v k g (rgw k  
( x ) r f v k  (y ) )  =  r g > ( x ) r f ( y ) 8k =  1; 2; ; K; 8x; 8y.

2. Ew k  (gwk  (x) )  =  g (x) 8x.

Note that wk and vk are not necessarily independent.

Assumption 2 The sample gradients and values generated by the S O  satisfy

Ew (kgw (x) g(x)k2 )  2 8x:

6
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Assumption 3 The sample gradients generated by the S O  are uniformly bounded, and the
penalty function R  has bounded gradients.

k r f v ( x ) k  (1); krg w (x)k  (1); k@R(x)k (1) 8x; 8w; 8v

Assumption 4 There exists L F  ; L f ; L g  >  0 such that

1. F ( z )  F ( x )   h r F ( x ) ; z  x i  +  2 
 kz xk2 8x 8z.

2. k r f v ( y )  r f v (w ) k  L f k y  wk 8y 8w 8v:

3. kg(x) g(z) r g ( z ) > ( x  z)k 2 kx zk2 8x 8z:

Condition 1 of Assumption 4 requires that the function F ( )  is Lf -smooth. Condition 2
requires that fv  has Lipschitz gradient for all v. Condition 3 requires that the function g() is
L g  smooth. Note that the case where L f  =  0 or L g  =  0 coincides with the special case where
either fv  or g is linear, respectively. The constants L F  ; L f ; L g  jointly characterize the
smoothness and complexity of stochastic composition optimization. They do not admit any
straightforward dependence relation.

Our first main result concerns with general optimization problems which are not necessarily
convex.

Theorem 1 (Smooth (Nonconvex) Optimization) Let Assumptions 1, 2, 3, and 4 hold.
Denote by F ( x )  : =  (Ev (fv )   Ew (gw ))(x) for short and suppose that R ( x )  =  0 in (1) and
E ( F ( x k ) )  is bounded from above. Choose k =  k a and k =  2k b where a 2  (0; 1) and b 2
(0; 1) in Algorithm 1. Then we have

P
k = 1  E (k r F ( x k ) k 2 )  

 O (K a  1 +  L 2 L g K 4 b  4aI4a 4b=1 +  L 2 K  b +  K  a): (4)

If L g  =  0 and L f  =  0, choose a =  5=9 and b =  4=9, yielding

P
k = 1  E (k r F ( x k ) k 2 )  

 O ( K  4=9): (5)

If L g  =  0 or L f  =  0, choose a =  b =  1=2, yielding

P
k = 1  E (k r F ( x k ) k 2 )  

 O ( K  1=2): (6)

The result of Theorem 1 strictly improves the best-known results given by Wang et al.
(2017). First the result of (5) improves the finite-sample error bound from O(k 2=7) to
O(k 4=9) for general convex and nonconvex optimization. This improves the best known
convergence rate and provides a new benchmark for the stochastic composition problem.
Note that it is possible to relax the condition “ E(F (xk ))  is bounded from above" in Theorem 1.
However, it would make the analysis more cumbersome and yield an additional term log K  in the
error bound.

7
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Our second main result concerns strongly convex objective functions. We say that the
objective function H  is optimally strongly convex with parameter  >  0 if

H ( x )  H ( P X ( x ) )   kx P X (x)k 2 8x: (7)

(see Liu and Wright (2015)). Note that any strongly convex function is optimally strongly
convex, but the reverse does not hold. For example, the objective function (2) in on-policy
reinforcement learning is always optimally strongly convex (even if E ( A )  is a rank deficient
matrix), but not necessarily strongly convex.

We point out that there are other class of functions that are not strongly convex, for
which first-order algorithms still achieve linear convergence. See Karimi et al. (2016) and
Necoara et al. (2015) for examples. For ease of presentation, in this work, we only consider
optimally strongly convex functions.

Theorem 2 (Strongly Convex Optimization) Suppose that the objective function H ( x )  in
(1) is optimally strongly convex with parameter  >  0 defined in (7). Set k  =  Cak a and k =
Cb k b where Ca  >  4, Cb  >  2, a 2  (0; 1], and b 2  (0; 1] in Algorithm 1. Under Assumptions
1, 2, 3, and 4, we have

E ( k x K  P X ( x K ) k 2 )   O K  a +  L 2 L g K  4a+4b +  L 2 K  b: (8)

If L g  =  0 and L f  =  0, choose a =  1 and b =  4=5, yielding

E ( k x K  P X ( x K ) k 2 )   O ( K  4=5): (9)

If L g  =  0 or L f  =  0, choose a =  1 and b =  1, yielding

E ( k x K  P X ( x K ) k 2 )   O ( K  1): (10)

Let us discuss the results of Theorem 2. In the general case where L f  =  0 and L g  =  0, the
convergence rate in (9) is consistent with the result of Wang et al. (2017). Now consider the
special case where L g  =  0, i.e., the inner mapping is linear. This result finds an immediate
application to Bellman error minimization problem (2) which arises from reinforcement
learning problem in (and with ‘1 norm regularization). The proposed ASC-PG algorithm is
able to achieve the optimal rate O(1=K ) without any extra assumption on the outer function
fv . To  the best of our knowledge, this is the best (also optimal) sample-error complexity for
on-policy reinforcement learning.

Theorem 3 (General Convex Optimization) Suppose that both F ( x )  and H ( x )  are convex,
and the feasible set X  is bounded. Set k  =  (k a) and k =  (k b) with a 2  (0; 1), and b 2
(0; 1] in Algorithm 1. Under Assumptions 1, 2, 3, and 4, we have for any c >  0:

H ( x )  H   O K a  1 +  K a  c Ilog K  +  K  a (11) 
2

5a+4b+c log K 2        a b +c  log K
6a 4b c=1 2a+b c=1

8
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where x K  : =  
P

k
K + 1  

k x k  . If L g  =  0 and L f  =  0, choose a =  5=7, b =  4=7, c =  1,
yielding k = 2

H ( xK )  H   O ( K  2=7): (12)

If L g  =  0 or L f  =  0, choose a =  1=2, b =  1, and c =  1, yielding

H ( xK )  H   O ( K  1=2 log K ) : (13)

Theorem 3 gives stronger results than the best-known results of Wang et al. (2017) and
requires milder assumptions. In the general case where L f  =  0 and L g  =  0, the convergence
rate in (12) matches the result of Wang et al. (2017). When either L g  =  0 (i.e., the inner
mapping is linear or L f  =  0 (i.e., the outer ma ping is linear), the proposed A S C - P G
algorithm is able to achieve the optimal rate O(1= K )  up to a logarithmic factor.

Remarks Theorems 1, 2, and 3 give important implications about the special cases where
L f  =  0 or L g  =  0. In these cases, we argue that our convergence rate (10) is “optimal"
with respect to the sample size K .  To  see this, it is worth pointing out the O(1=K )
rate of convergence is optimal for strongly convex expectation minimization problem.
Because the expectation minimization problem is a special case of the problem (1), the
O(1=K ) convergence rate must be optimal for the stochastic composition problem too.
Similarly, the O(1= K )  rate of convergence is also optimal for general convex
optimization due to the same argument.

 Consider the case where L f  =  0, which means that the outer function fv () is linear with
probability 1. Then the stochastic composition problem (1) reduces to an expectation
minimization problem since (Ev fv   Ew gw )(x) =  Ev (fv (Ew gw (x))) =  Ev Ew (fv   gw )(x).
Therefore, it makes a perfect sense to obtain the optimal convergence rate.

 Consider the case where L g  =  0, which means that the inner function g() is a linear
mapping. The result is quite surprising. Note that even g() is a linear mapping, it
does not reduce problem (1) to an expectation minimization problem. However, the
A S C - P G  still achieves the optimal convergence rate. This suggests that, when inner
linearity holds, the stochastic composition problem (1) is not fundamentally more
difficult than the expectation minimization problem.

The convergence rate results unveiled in Theorems 1 and 2 are the best known results for
the composition problem. We believe that they provide important new result which provides
insights into the complexity of the stochastic composition problem.

4. Application to Reinforcement Learning

In this section, we apply the proposed ASC-PG algorithm to conduct policy value evaluation in
reinforcement learning through attacking Bellman equations. Suppose that there are in
total S  states. Let the policy of interest be . Denote the value function of states by V  2  < S ,
where V (s) denotes the value of being at state s under policy . The Bellman equation of the
problem is

V (s1) =  Efrs 1 ; s 2  +    V (s2)js1g for all s1; s2 2  f1; :::; Sg;

9
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Figure 1: Empirical convergence rate of the ASC-PG algorithm and the GTD2-MP algorithm
under Experiment 1 averaged over 100 runs, where wk denotes the solution at the k-
th iteration.

where rs1 ;s2 denotes the reward of moving from state s1 to s2, and the expectation is taken
over all possible future state s2 conditioned on current state s1 and the policy . We have
that the solution V  2  < S  to the above equation satisfies that V  =  V . Here a moderately
large S  will make solving the Bellman equation directly impractical. To  resolve the curse of
dimensionality, in many practical applications, we approximate the value of each state by
some linear map of its feature s  2  <d , where d <  S  to reduce the dimension. In particular,
we assume that V (s)  T  w for some w 2  <m .

To  compute w, we formulate the problem as a Bellman residual minimization problem
that

S

min (T  w q;s(w))2;
s = 1

where q;s(w) =  Efrs;s0  +     0wg =         0 P  
0 (frs;s0  +     0w);  <  1 is a discount factor, and rs;s0  is

the random reward of transition from state s to state s0. It is clearly seen that the proposed
ASC-PG algorithm could be directly applied to solve this problem where we take

g(w) =  (T  w; q;1(w); :::; T w; q;S (w)) 2  <2 S ;

f ( T  w; q;1(w); :::; T w; q;S (w))
 
=  

X
( s w  q;s(w))2 2  < :  s = 1

10
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We point out that the g() function here is a linear map. By our theoretical analysis, we
expect to achieve a faster O(1=k) rate of convergence, which is justified empirically in our
later simulation study.

We consider three experiments, where in the first two experiments, we compare our
proposed accelerated ASC-PG algorithm with accelerated SCGD (a-SCGD) algorithm (Wang et
al., 2017) and the recently proposed GTD2-MP algorithm (Liu et al., 2015). Also, in the
first two experiments, we do not add any regularization term, i.e. R ( )  =  0. We point out
here that in experiments 1 and 2, since there is no penalization term, i.e., R ( )  =  0, the
A S C - P G  algorithm essentially matches the a-SCGD algorithm in Wang et al. (2017).
However, note that the choice of stepsizes fk g and fk g of ASC-PG are different from the
stepsizes of a-SCGD, where for ASC-PG k =  k 1 and k =  k 1, and for a-SCGD k =  k 1 and
k =  k 4=5. In the third experiment, we add an ‘1-penalization term kwk1. In all cases, we
choose the step sizes via comparison studies as in Dann et al. (2014):

 Experiment 1: We use the Baird’s example (Baird, 1995), which is a well-known
example to test the off-policy convergent algorithms. This example contains S  =  6
states, and two actions at each state. We refer the readers to Baird (1995) for more
detailed information of the example.

 Experiment 2: We generate a Markov decision problem (MDP) using similar setup as in
White and White (2016). In each instance, we randomly generate an MDP which
contains S  =  100 states, and three actions at each state. The dimension of the Given
one state and one action, the agent can move to one of four next possible states. In our
simulation, we generate the transition probabilities for each MDP instance uniformly
from [0; 1] and normalize the sum of transitions to one, and we generate the reward for
each transition also uniformly in [0; 1].

 Experiment 3: We generate the data same as Experiment 2 except that we have a
larger d =  100 dimensional feature space, where only the first 4 components of w are
non-zeros. We add an ‘1-regularization term, kwk1, to the objective function.

Denote by wk the solution at the k-th iteration. For the first two experiments, we
report the empirical convergence performance kwk wk and kwk wk, where  =
(1; :::; S )T 2  < S d  and w =  V , and all wk’s are averaged over 100 runs, in the first two
subfigures of Figures 1 and 2. It is seen that the ASC-PG algorithm achieves the fastest
convergence rate empirically in both experiments. To  further evaluate our theoretical results,
we plot log(t) vs. log(kwk   wk) (or log(kwk   wk) averaged over 100 runs for the first
two experiments in the second two subfigures of Figures 1 and 2. The empirical results
further support our theoretical analysis that kwk  wk2 = O(1=k) for the ASC-PG algorithm
when g() is a linear mapping.

For Experiment 3, as the optimal solution is unknown, we run the ASC-PG algorithm for
one million iterations and take the corresponding solution as the optimal solution w, and we
report kwk wk and kwk wk averaged over 100 runs in Figure 3. It is seen the the
ASC-PG algorithm achieves fast empirical convergence rate.

11
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Figure 2: Empirical convergence rate of the ASC-PG algorithm and the GTD2-MP algorithm
under Experiment 2 averaged over 100 runs, where wk denotes the solution at the k-
th iteration.
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Figure 3: Empirical convergence rate of the A S C - P G  algorithm with the ‘1-regularization
term kwk1 under Experiment 3 averaged over 100 runs, where wk denotes the
solution at the t-th iteration.

5. Conclusion

We develop the first proximal gradient method for stochastic composition optimization with
nonsmooth penalties. The algorithm updates by interacting with a stochastic first-order
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oracle. Finite-sample convergence rates are established under a variety of assumptions,
which provide new rate benchmarks that improve the best-known results prior to this paper.
Application of the A S C - P G  to reinforcement learning leads to a new on-policy learning
algorithm, which achieves faster convergence than the best known algorithms. For future
research, it remains open whether or under what circumstances the current O ( K  4=9) can be
further improved. Another direction is to customize and adapt the algorithm and analysis to
more specific problems arising from reinforcement learning and risk-averse optimization, in
order to fully exploit the potential of the proposed method.
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Appendix

This appendix includes all detailed proofs for the theorems in the main text. The key idea of
deriving the rate convergence of our algorithm is to find a sequence of random vectors
associated with the output solutions at each iteration, which converge at fast rates. To  better
analyze the convergence process, we have constructed two auxiliary sequences of random
variables fmk g and fnk g, which are defined in the beginng of Lemma 7, that converge jointly to
0 at a fast rate. The convergence of fmk g and fnk g further imply that fx k g  and fy k g
converge rapidly to their limits respectively. Then we are able to improve the convergence
rate of yk . Intuitively, we show that the improved iterate y k  tracks the unknown quantity
E[g(xk )] more closely than in the previous work. This explains why our new algorithm
achieves an improved rate of convergence and sample complexity.

A .  Proof to Theorem 1

In this section, we provide the detailed proof for Theorem 1. We start by some technical
lemmas, The first one provides a convergence result of the generated solutions, where we
bound the term kxk xk +1 k2 as k increases.

Lemma 4 Under Assumption 3, two subsequent iterates in Algorithm 1 satisfy

kxk xk +1 k2  (2 ):

Proof From the definition of the proximal operation, we have

x k + 1 =      prox
k R () (xk  k r g w k  

( x k ) r f v k  (yk ) )

13
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=      arg min 
2

kx x k  +  k r g w k  
( x k ) r f v k  (yk )k2 + k R(x) :

The optimality condition suggests the following equality:

x k + 1  x k  =   k ( r g w k  
( x k ) r f v k  (yk )  +  sk +1 ) (14)

where sk +1 2  @ R(xk+1 ) is some vector in the sub-differential set of R ( )  at xk + 1 .  Then apply
the boundedness condition in Assumption 3 to yield

kxk + 1  xk k

which implies the claim.

=

(Assumption 3)

k k( rg w k  
( x k ) r f v k  (yk )  +  sk+1 )k

k ( k r g >  ( x k ) r f v k  (yk )k+ksk +1 k)

k ( k r g >  ( x k ) kk r f v k  (yk )k+ksk +1 k)

(1)k ;

Next, we provide a simple bound which quantifies the difference between the random
variable k r g w ( x ) r v f ( g ( x ) )  r g w ( x ) r v f ( y ) ) k  and its population version ky g(x)k.

Lemma 5 Under Assumptions 3 and 4, we have

k r g w ( x ) r v f ( g ( x ) )  r g w ( x ) r v f ( y ) ) k           ( L f k y  g(x)k):

Proof We have

k r g w ( x ) r f v ( g ( x ) )  r g w ( x ) r f v ( y ) ) k

It completes the proof.

(Assumption 3)

(Assumption 4)

krg w (x )kkr f v (g (x ) )  r f v ( y ) k

(1)krfv (g (x) )  r f v ( y ) k

( L f ) k y  g(x)k:

Then, we prove two lemmas which provides the convergence rate of E(kyk  g(xk )k2 ).

Lemma 6 Given two sequences of positive scalars fsk gk =1  and fk gk = 1  satisfying

sk +1  (1 k +  C1
2 )sk +  C2k a (15)

where C1   0, C2   0, and a  0. Letting k 2  <  as k =  C3k b where b 2  (0; 1] and C3  >  2, the
sequence can be bounded by

vk  C k  c

where C  and c are defined as

C  : = max s kc +
C2 and c : =  a b:

k ( C 1 C 3  ) 1 = b +1 3

In other words, we have
sk  (k a+b ):
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Proof We prove it by induction. First it is easy to verify that the claim holds for
k  (C1 C 2 )1=b from the definition for C .  Next we prove from “k” to “k +  1”, that is, given sk
C k  c for k >  (C1C 2)1=b , we need to prove sk +1  C (k +  1) c.

sk +1      (1 k +  C1
2 )sk +  C2k a

     (1 C3k b +  C1 C 2 k  2b)C k c +  C2k a

=      C k  c C C3 k  b c +  C C1 C 2 k  2b c +  C2k a: (16)

To  prove that (16) is bounded by C (k +  1) c, it suffices to show that

 : =  (k +  1) c k c +  C3k b c C1 C 2 k  2b c >  0 and C   
C2k a 

:

From the convexity of function h(t) =  t c, we have the inequality (k + 1) c  k c  ( c)k c 1.
Therefore we obtain

(b1; k > ( C  C 2 ) 1 = b )

( C 3 > 2 )

 ck c 1 +  C3k b c C1 C 2 k  2b c

(C3  2)(k b c)

0:

To  verify the second one, we have

C2k a C2  a + b + c  ( c = a + b ) C2

C3       2                                C3  2

where the last inequality is due to the definition of C .  It completes the proof.

Lemma 7 Choose k to be k =  Cb k b where Cb  >  2, b 2  (0; 1], and k =  Cak a. Under
Assumptions 1 and 2, we have

E(kyk  g(xk )k2 )  Lg (k  4a+4b ) +  (k b): (17)

Proof Denote by mk +1

mk +1 : =  
X ( k ) k x k + 1  zt+1 k2

t=0

and nk +1                                                                 
k

nk +1 : =          (k ) (gw t + 1 (zt+1 )      g (zt+1 ))
t=0

for short.
From Lemma 10 in (Wang et al., 2017), we have

2

kyk g(xk )k2
2 

mk +  nk  Lg mk +  2nk: (18)
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From Lemma 11 in (Wang et al., 2017), mk +1 can be bounded by

mk +1      (1 k )mk +  k qk +  
k 

kxk  xk +1 k2 (19)

where qk is bounded by

qk +1

(Lemma 4)

(1 k )qk +  
k 

kxk + 1  xk k2

(1 k )qk +  
(1)2

(1 k )qk +  (k 2a+b ):

Taking sk =  qk, and k =  k , applying Lemma 6 implies the following decay rate

qk  (k 2a+ b + b ) =  (k 2a+2b):

Together with (19), we have

mk +1      (1 k )mk +  k qk +  
k 

kxk  xk +1 k2

(1 k )mk +  (k 2a+b ) +  (k 2a+b )      (1

k )mk +  (k 2a+b );

which leads to
mk  (k 2a+2b ) and m2  (k 4a+4b): (20)

by using Lemma 6 again. Then we estimate the upper bound for E(n2 ). From Lemma 11 in
(Wang et al., 2017), we know E(nk ) is bounded by

E(n2
+1 )  (1 k )2E(knk k2) +  22 =  (1 2k +  2)E(knk k2) +  22:

By using Lemma 6 again, we have

E(n2 )  (k b): (21)

Now we are ready to estimate the upper bound of kyk + 1  g(xk +1 )k2 by following (18)

E(kyk  g(xk )k2 )
(20)+(21)

Lg E(mk )  +  2E(nk )

Lg (k  4a+4b ) +  (k b):

It completes the proof.

Now we are ready to prove Theorem 1.

Proof to Theorem 1. From the Lipschitzian condition in Assumption 4, we have

F ( x k + 1 )  F (x k )
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(Lemma 6)

=

hrF ( x k ) ;  x k + 1  x k i  +  
2 

kxk + 1  xk k2

 k hrF (x k ) ;  r g >  ( x k ) r f v k  (y k ) i  +  (2 )

 k k r F ( x k ) k 2 + k  h rF ( x k ) ;  r F ( x k )  r g >  ( x k ) r f v k  (y k ) i

= : T

+ ( k ) (22)

Next we estimate the upper bound for E(T ):

E(T ) =

(Assumption 1)

(Lemma 5)

E (hrF ( x k ) ;  r F ( x k )  r g w k  
( x k ) r f v k  (g (xk )) i )

+ E ( h r F ( x k ) ;  r g w k  
( x k ) r f v k  (g (xk )) r g w k  

( x k ) r f v k  (y k ) i )

E (hrF ( x k ) ;  r g w k  
( x k ) r f v k  (g (xk )) r g w k  

( x k ) r f v k  (y k ) ) i )

2
E(krF (x k )k 2 )  +  

2
E ( k r g >  ( x k ) r f v k  (g (xk )) r g >  ( x k ) r f v k  (yk )k2 )

2
E(krF (x k )k 2 )  +  (L2 )E(kyk  g(xk )k2 ):

Take expectation on both sides of (22) and substitute E(T ) by its upper bound:

(Lemma 7)

2 
k r F ( x k ) k 2

E (F ( x k ) )  E (F (x k + 1 ) )  +  (L2
k )E(ky k  g(xk )k2 ) +  (2 )

E (F ( x k ) )  E (F (x k + 1 ) )  +  Lg (L2
k )(k  4a+4b ) +  (L2

k k  b) +  (2 )

E (F ( x k ) )  E (F (x k + 1 ) )  +  L2 Lg (k  5a+4b ) +  L2 (k  a b) +  (k 2a)

which suggests that

E(k rF (x k ) k 2 )
     2k 

1 E(F (x k ) )  2k 
1 E(F (x k + 1 ) )  +  L2 Lg (k  4a+4b ) +  L2 (k  b) +  (k a)

     2ka E(F (xk )) 2k a E(F (xk + 1 ))  +  L2 Lg (k  4a+4b ) +  L2 (k  b) +  (k a): (23)

Sum Eq. (23) from k =  1 to K  and obtain
P

k = 1  E (k r F ( x k ) k 2 )
K

     2 K  1
1 

1 F (x1 )  +  K  1 
X

( ( k  +  1)a k a )E(F (xk ))
k = 2

+ K  1 
X

L 2 L g ( k  4a+4b ) +  K  1 L2  
X

( k  b) +  K  1 
X

( k  a) k = 1

k = 1 k = 1

     2 K  1 F (x0 )  +  K  1 
X

a k a  1 E(F (x k ) )
k = 2

+ K  1 
X

L 2 L g ( k  4a+4b ) +  K  1 L2  
X

( k  b) +  K  1 
X

( k  a)
k = 1 k = 1 k = 1
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     O (K a  1 +  L 2 L g K 4 b  4aI4a 4b=1 +  L 2 K  b +  K  a);

where the second inequality uses the fact that h(t) =  ta is a concave function suggesting
(k +  1)a  ka +  aka 1, and the last inequality uses the condition E (F (x k ) )   (1).

Letting a =  5=9 and b =  4=9, we obtain the desired convergence rate O ( K  4=9).

B .  Proof to Theorem 2

In this section, we provide the detailed proof for Theorem 2. The proof is based on the
following key lemma, which provides a “contraction” property of (E (H ( x k + 1 ) )    H )  and
E(kx k + 1  PX (xk + 1 )k2 ) .

Lemma 8 Assume that both F ( x )  and R ( x )  are convex. Under Assumptions 1, 2, 3, and 4,
the iterates generated by Algorithm 1 satisfies for any sequence of positive scalars fk g:

2 k (E(H (x k + 1 ) )  H )  +  E(kx k + 1  P X (x k + 1 )k 2 ) (24)

(1 +  k )E(kxk  P X (x k )k2 )  +  (k ) +  (L f k =k )E(ky k       g(xk )k2 ) +  (k ):

Proof Following the line of the proof to Lemma 4, we have

x k + 1  x k  =   k ( r g w k  
( x k ) r f v k  (yk )  +  sk +1 ) (25)

where sk +1 2  @ R(xk+1 ) is some vector in the sub-differential set of R ( )  at xk + 1 .  Then we
consider kxk + 1  PX (x k + 1 )k2 :

kxk + 1  P X (x k + 1 )k 2

kxk + 1  x k  +  x k  P X (x k )k 2

= kxk P X (x k )k 2  kxk + 1  xk k2 +2hxk +1 x k ; x k + 1  P X ( x k ) i
(25)     

kxk  P X (x k )k 2  kxk + 1  xk k2  2 k hrg >  ( x k ) r f v k  (yk )  +  sk+1 ; x k + 1  P X ( x k ) i

= kxk P X (x k )k 2  kxk + 1  x k k2 +2 k hrg >  ( x k ) r f v k  ( y k ) ; P X (x k )  x k + 1 i
+2k hsk+1 ; P X ( x k )  x k + 1 i
kxk  P X (x k )k 2  kxk + 1  x k k2 +2 k hrg >  ( x k ) r f v k  ( y k ) ; P X (x k )  x k + 1 i
+ 2 k ( R ( P X ( x k ) )  R ( x k + 1 ) ) (due to the convexity of R ( ) )

kxk  P X (x k )k 2  kxk + 1  xk k2 +2k h r F ( x k ) ; P  
{  

(x k )  x k + 1 i

T 1

+ 2 k  hrgw k  
( x k ) r f v k  (yk )  r F ( x k ) ;  P X ( x k )  x k + 1 i

T 2

+ 2 k ( R ( P X ( x k ) )  R ( x k + 1 ) ) (26)

where the second equality follows from ka + bk2 = kbk2 kak2+2ha; a + b i  with a =  x k + 1  x k
and b =  x k  P X ( x k ) .  We next estimate the upper bound for T1 and T2 respectively:

T1 =      h rF ( x k ) ;  x k  x k + 1 i  +  hrF ( x k ) ;  x k  +  P X ( x k ) i
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     F ( x k )  F ( x k + 1 )  +  
2 

kxk + 1  xk k2 +  F ( P X ( x k ) )  F (x k )

due to Assumption 4                                  due to the convexity of F ( )

=      F ( P X ( x k ) )  F ( x k + 1 )  +  
2 

kxk + 1  xk k2

F ( P X ( x k ) )  F ( x k + 1 )  +  (k );

where the last inequality uses Lemma 4.

T2 =      h r F ( x k )  r g w k  
( x k ) r f v k  (yk ); x k  P X ( x k ) i

+ h r F ( x k )       r g >  ( x k ) r f v k  (yk ); x k + 1  x k i

     h r F ( x k )  r g >  ( x k ) r f  
z

(g(xk )); x k  P X ( x k ) i

T2 ; 1

+ h r g w k  
( x k ) r f v k  (g (xk )) r g  

{  
( x k ) r f v k  (yk ); x k  P X ( x k ) i

T2 ; 2

+  
2 

k r F ( x k )  r g  
{  

( x k ) r f v k  (yk )k
}

+
2 k  

kxk  xk +1 k2

T2 ; 3

where the last line is due to the inequality ha; bi   1 kak2 + k  kbk2. For T2;1, we have
E(T2;1) =  0 due to Assumption 1. For T2;2, we have

T2;2

(Lemma 5)
2 

k r g >  ( x k ) r f v k  (g (xk )) r g >  ( x k ) r f v k  (yk )k2 +
2 

kxk  P X (x k )k 2

 L 2  k kyk g (xk )k2 +
2k 

kxk  xk +1 k2 :

T2;3 can be bounded by a constant

T2;3  2 k r F ( x k ) k 2 + 2 k r g >  r f v k  (yk )k2
(Assu tion 3) 

(1):

Take expectation on T2 and put all pieces into it:

E(T2 )           L 2  

k
kyk g (xk )k2 +

2k 
(k kxk  P X (x k )k 2 +kx k  xk +1 k2 ) +  (k ):

Taking expectation on both sides of (26) and plugging the upper bounds of T1 and T2 into
it, we obtain

2 k (E(H (x k + 1 ) )  H )  +  E(kx k + 1  P X (x k + 1 )k 2 )

 (1 +  k )E(kxk  P X (x k )k2 )  +  (k ) +  (L f k =k )E(ky k  g(xk )k2 ) +  (k );

which completes the proof.
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Then, we prove the Theorem 2 based on the previous lemma.

Proof to Theorem 2 Apply the optimally strong convexity in (7) to Lemma 8, yielding

(1 +  2k )E(kxk + 1  P X (x k + 1 )k 2 )

 (1 +  k )E(kxk  P X (x k )k2 )  +  (k ) +  (L f k =k )E(ky k  g(xk )k2 ) +  (k ):

It follows by dividing 1 +  2k on both sides

E(kx k + 1  P X (x k + 1 )k 2 )

 
1 +  2k 

E(kx k  P X (x k )k2 )  +  (3 ) +  (L2 2 =k )E(kyk g(xk )k2 ) +  (2 ):

Choosing k =  k      222  0:5k yields

E(kx k + 1  P X (x k + 1 )k 2 )

     (1 k )E(kxk  P X (x k )k2 )  +  (2 ) +  
(L2

k )
E(kg (xk )  yk k2 )

     (1 k )E(kxk  P X (x k )k2 )  +  (k 2a) +  (Lg L2 k  5a+4b +  L2 k  a b):

Apply Lemma 6 and substitute the subscript k by K  to obtain the first claim in (8)
E ( k x K  P X ( x K ) k 2 )   O K  a +  L 2 L g K  4a+4b +  L 2 K  b:

The followed specification of a and b can easily verified.

C. Proof to Theorem 3

In what follows, we provide the detailed proof to Theorem 3.

Proof to Theorem 3 Let Pk  =  2 k (E(H (x k + 1 ) )  H )  +  E(kx k + 1  PX (xk + 1 )k2 ),  which
is the left hand side of inequality (24). Summing P k  up from k =  1 to k =  K  and taking
k =  (k c) yields

2
X

k ( E ( H ( x k + 1 ) )  H )  +  E ( k x K + 1  P X ( x K + 1 ) k 2 )
k = 1

     (1 +  1 )E(kx1 PX (x1 )k2 )  +  
X

k E ( k x k  P X (x k )k2 )
k = 2

+
X

( L 2 2 = k ) E ( k y k  g(xk )k2 ) +  (2 ) k = 2

     (1) +  
X

k +  ( K 1  2a) +  
X

( L 2 2 = k ) E ( k y k  g(xk )k2 )
k = 2                                                       k = 2
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c=1

K

f      k

K

f      k

K

f f

f log K f log K

K

K

P K

 
c=1

K

log K
2

log K

+ f
P K

f

c=1
log K

f
log K

c=1 f 6a 4 f
log K

k = 1

P K

P K2
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     (1) +  K 1  c Ilog K
 
+  O (K 1  2a) +  

X
( L 2 2 = k ) E ( k y k  g(xk )k2 ): (27)

k = 2

Note that the second inequality holds by the condition that the feasible set X  is bounded,
and thus kxk PX (x k )k2  is bounded.

We continue to bound the last term on the right hand side of (27):

(Lemma 7)

X
( L 2 2 = k ) E ( k y k  

g (xk )k2 )
k = 2

X
L 2 L g ( k  6a+4b c) +  L2 (k  2a b c) 

k = 2

L 2 L g ( K 1  6a+4b c I6a 4b c=1 ) +  L 2 ( K 1  2a b c I2a+b c=1 ): (28)

Plugging (28) into (27) and dividing 2
P

k = 1  k  on both sides:

2
P

k = 1  k H (x k + 1 )  H

2 k = 1  k

(1) +   K 1  c Ilog K +  ( K 1  2a)

                         
2

P
k = 1

 
k

L 2 L g ( K 1  6a+4b+c I6a 4b c=1 ) +  L f ( K 1  2a b+c I2a b + c = 1 )

2 k = 1  k

O (K a  1) +  O (K a  c Ilog K )  +  O ( K  a)

+ O ( L 2 L g K  5a+4b+c I6a 4b c=1 ) +  O ( L 2 K  a b +c I2a+ b  c=1 )

=      O K a  1 +  K a  c Ilog K  +  K  a +  L 2 L g K  5a+4b+c Ilog K
b  c=1  +  L 2 K  a b +c I2a+ b  c=1     

 :

where the last inequality uses the fact 
P K

k  ( K 1  a). To  finish the proof of (11), we use
Jensen’s inequality

2 k = 1  k H (x k + 1 )  
 H ( x K ) :  k = 1

k
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