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1. Introduction

We work over the field of complex numbers C.
Shokurov introduced the theory of complements to investigate log flips for threefolds [13], and it turns out 

that the theory plays an important role in birational geometry. The theory of complements has been studied 
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in recent years; for example, see [1,9] for the boundedness of log canonical complements, and [14,11,12] for 
more on the boundedness of complements. We refer the readers to [9,7] for the brief history and applications 
of the theory of complements.

In recent years a new concept of space, generalized pairs, has evolved. Generalized pairs appear naturally 
in the study of birational geometry in higher dimensions. They were first introduced in [5], and we refer 
the readers to [2] for more motivations and applications. It is natural to consider the boundedness of 
complements for generalized pairs. Indeed the boundedness of generalized log canonical complements is 
established; see [1,6]. It is worth mentioning that in [6], the first author has studied the complements in 
a more general setting. More precisely, the nef part of the generalized pair is allowed to have irrational 
coefficients; see Definition 2.7.

However, the above results mainly focus on the boundedness of generalized log canonical complements. It 
is very natural to consider the boundedness of complements with good singularities, that is, generalized ε-log 
canonical complements. In this paper, we deal with the following deep conjecture regarding the boundedness 
of (ε, n)-complements for generalized pairs, which is an analog of [7, Conjecture 1.1] in the context of 
generalized pairs.

Conjecture 1.1. Let d, p be two positive integers, ε a non-negative real number, and Γ ⊆ [0, 1] a DCC set. 
Then there exists a positive integer n divisible by p depending only on d, p, ε and Γ satisfying the following.

Assume that (X/Z, B + M) is a generalized pair of dimension d, X → Z a contraction and z ∈ Z a (not 
necessarily closed) point such that

(1) X is of Fano type over Z,
(2) M ′ =

∑
μjM ′

j, where M ′
j are nef/Z Cartier divisors and μj ∈ Γ,

(3) B ∈ Γ, that is, the coefficients of B belong to Γ, and
(4) (X/Z � z, B + M) is (ε, R)-complementary.

Then there is an (ε, n)-complement (X/Z � z, B+ + M+) of (X/Z � z, B + M). Moreover, if 
SpanQ≥0

(
Γ̄ ∪ {ε}\Q

)
∩ (Q\{0}) = ∅, then we may pick B+ ≥ B and μ+

j ≥ μj, where M+′ =
∑

μ+
j M ′

j.

Remark 1.2. In Conjecture 1.1, M ′ is allowed to have irrational coefficients while in [1] M ′ is a Q-Cartier 
divisor whose Cartier index is fixed. The “Moreover” part is about the monotonicity property of complements 
which is useful in applications especially when Γ̄ ⊆ Q and does not hold in general.

When ε = 0, the conjecture is proved in [6]. When ε is positive, we have some partial results.

Theorem 1.3. Conjecture 1.1 holds in the following cases:

(1) ε = 0;
(2) ε > 0, dim Z = 0 and Γ is a finite set; and
(3) ε > 0, dim Z = 0 and M ′ ≡ 0.

In order to show Theorem 1.3, we study a new class of complements, namely (ε, n, Γ0)-decomposable 
(ε, R)-complements. Note that when ε = εi = 0, (ε, n, Γ0)-decomposable (ε, R)-complements are the same 
as [6, Definition 1.2].

Definition 1.4. Let n be a positive integer, ε, εi non-negative real numbers, and Γ0 ⊆ (0, 1] a finite set. We 
say that (X/Z � z, B+ + M+) is an (ε, n, Γ0)-decomposable (ε, R)-complement of (X/Z � z, B + M) if

(1) (X/Z � z, B+ + M+) is an (ε, R)-complement of (X/Z � z, B + M),
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(2) KX + B+ + M+ =
∑

ai

(
KX + B+

i + M+
i

)
for some boundaries B+

i , nef parts M+′
i and ai ∈ Γ0 with ∑

ai = 1 and 
∑

aiεi ≥ ε, and
(3)

(
X/Z � z, B+

i + M+
i

)
is an (εi, n)-complement of itself for any i.

As an important step in the proof of Theorem 1.3, we show the existence of (ε, n, Γ0)-decomposable 
(ε, R)-complements under the conditions of Theorem 1.3. More precisely, we show the following result.

Theorem 1.5. Let d be a positive integer, ε a positive real number and Γ ⊆ [0, 1] a DCC set. Then there 
exist a positive integer n, positive real numbers εi and a finite set Γ0 ⊆ (0, 1] depending only on d, ε and Γ
satisfying the following.

Assume that (X, B + M) is a generalized pair of dimension d such that

(1) B ∈ Γ,
(2) X is of Fano type,
(3) M ′ =

∑
μjM ′

j, where M ′
j are nef Cartier divisors and μj ∈ Γ,

(4) (X, B + M) is (ε, R)-complementary, and
(5) either Γ is a finite set or M ′ ≡ 0.

Then there is an (ε, n, Γ0)-decomposable (ε, R)-complement (X, B+ + M+) of (X, B + M). Moreover, if 
Γ̄ ⊆ Q, then we may pick Γ0 = {1}, εi = ε, B+ ≥ B and μ+

j ≥ μj for any j.

Since we work on (ε, n)-complements, we should be careful with the singularities when we prove The-
orem 1.3. The key observation is the uniform linearity of minimal log discrepancies (MLDs for short) for 
generalized pairs.

Theorem 1.6. Let ε be a positive real number, d, c, m, l positive integers, r0 = (r1, . . . , rc) ∈ Rc a point such 
that r0 = 1, r1, . . . , rc are linearly independent over Q, and s1, . . . , sm+l : Rc → R Q-linear functions. Then 
there exist a positive real number δ and a Q-linear function f(r) : Rc → R depending only on ε, d, r0 and 
si satisfying the following.

Assume that (X, B(r0) + M(r0)) is a projective generalized pair of dimension d such that

(1) X is of Fano type,
(2) B(r) =

∑m
i=1 si(r)Bi, where Bi ≥ 0 are Weil divisors,

(3) M ′(r) =
∑l

j=1 sm+j(r)M ′
j, where M ′

j are nef Cartier divisors, and
(4) (X, B(r0) + M(r0)) is (ε, R)-complementary.

Then there exists a prime divisor E over X such that

mld(X, B(r) + M(r)) = a(E, X, B(r) + M(r)) ≥ f(r)

for any r ∈ Rc satisfying ||r − r0||∞ ≤ δ.

Structure of the paper. We outline the organization of the paper. In Section 2, we recall some definitions, 
introduce the tools and prove certain basic results that will be used in this paper. In section 3, we prove 
Theorem 1.6. In section 4, we prove Theorem 1.5. In section 5, we prove Theorem 1.3.

Acknowledgments. G. Chen would like to thank his advisor Chenyang Xu for constant support and encour-
agement. Q. Xue would like to thank his advisor Christopher D. Hacon for his support. The authors would 
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search grants no: DMS-1952522, DMS-1801851 and by a grant from the Simons Foundation; Award Number: 
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2. Preliminaries

In this section, we collect some definitions and preliminary results which will be used in this paper.

2.1. Generalized pairs

We always assume that all varieties are normal and quasi-projective. For an R-divisor D =
∑

diDi on 
X, we define �D
 =

∑
�di
Di, and {D} =

∑
{di}Di. Assuming that Γ ⊆ [0, +∞) is a set, then by D ∈ Γ

we mean that di ∈ Γ for any i.

Definition 2.1. We say π : X → Z is a contraction if π is a projective morphism and π∗OX = OZ . In 
particular, π is surjective and has connected fibers.

Definition 2.2 (Generalized pairs). A generalized sub-pair (X/Z, B + M) consists of a normal variety X

equipped with projective morphisms

X ′ f−→ X −→ Z,

where f is birational and X ′ is normal, an R-divisor B on X with coefficients ≤ 1, and an R-Cartier 
R-divisor M ′ on X ′ which is nef/Z such that f∗M ′ = M and KX + B + M is R-Cartier. We call B the 
sub-boundary part and M the nef part.

For simplicity, we denote such a generalized pair only by (X/Z, B + M), but we implicitly remember the 
whole generalized pair structure. If dim Z = 0, the generalized sub-pair is called projective, and we will omit 
Z. We omit the prefix “sub” everywhere if B ≥ 0.

Note that the definition is flexible with respect to X ′ and M ′. More precisely, if g : Y → X ′ is a projective 
birational morphism from a normal variety Y , then we can replace X ′ and M ′ by Y and g∗M ′ respectively.

Let (X/Z, B + M) be a generalized pair. We may write

KX′ + B′ + M ′ = f∗(KX + B + M)

for some uniquely determined R-divisor B′. The generalized log discrepancy of a prime divisor E on X ′ with 
respect to (X, B + M) is defined as

a(E, X, B + M) = 1 − multE B.

The minimal log discrepancy of the generalized pair (X/Z, B + M) is

mld(X/Z, B + M) = inf{a(E, X, B + M) | E is a prime divisor/X}.

We say that (X/Z, B + M) is generalized ε-lc (resp. generalized klt, generalized lc) for some ε ≥ 0 if 
mld(X, B + M) ≥ ε (resp. > 0, ≥ 0).

Definition 2.3. We say that X is of Fano type over Z if (X, B) is klt and −(KX + B) is ample over Z for 
some boundary B.
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Remark 2.4. Assume that X is of Fano type over Z. Then we can run the MMP/Z on any R-Cartier 
R-divisor D on X which terminates with some model Y (cf. [12, Corollary 2.7], [4]).

Definition 2.5 (Generalized dlt). Let (X/Z, B + M) be a generalized pair. We say that (X/Z, B + M) is 
generalized dlt if it is generalized lc and there is a closed subset V ⊆ X such that

(1) X \ V is smooth and B|X\V is an snc divisor, and
(2) if a(E, X, B + M) = 0 for some prime divisor E over X, then CenterX E � V and CenterX E \ V is a 

non-klt center of (X, B)|X\V .

We remark that if (X/Z, B + M) is a Q-factorial generalized dlt pair, then X is klt. For any generalized 
lc pair, there always exists a generalized dlt modification (see [8, Proposition 3.9]).

Definition 2.6 (Generalized a-lc thresholds). Let (X/Z, B + M) be a generalized pair which is generalized 
a-lc for some a ≥ 0. Assume that D is an effective R-divisor and N ′ is an effective R-Cartier R-divisor on 
X ′ which is nef/Z, such that D + N is R-Cartier, where N = f∗N ′. The generalized a-lc threshold of D + N

with respect to (X/Z, B + M) is defined as

a- lct(X/Z, B + M ; D + N) := sup{t ≥ 0 |(X/Z, (B + tD) + (M + tN))

is generalized a-lc}.

When M ′ = N ′ = 0, we just call a- lct(X/Z, B; D) the a-lc threshold of D with respect to (X, B).

2.2. Complements

We then recall the definition of complements for generalized pairs.

Definition 2.7 (Complements). Let ε be a non-negative real number and n a positive integer. Let (X/Z, B +
M) be a generalized pair and z ∈ Z a point such that M ′ =

∑
μjM ′

j , where μj ≥ 0 and M ′
j is a nef/Z

Cartier divisor for any j. We say that (X/Z � z, B+ + M+) is an (ε, R)-complement of (X/Z � z, B + M)
if (X/Z, B+ + M+) is generalized ε-lc, B+ ≥ B, μ+

j ≥ μj , and KX + B+ + M+ ≡ 0 over a neighborhood of 
z, where M+′ =

∑
j μ+

j M ′
j .

We say that (X/Z � z, B+ + M+) is an (ε, n)-complement of (X/Z � z, B + M), if over a neighborhood 
of z, we have

(1) (X, B+ + M+) is generalized ε-lc,
(2) nB+ ≥ n�B
 + �(n + 1){B}
,
(3) nμ+

j ≥ n�μj
 + �(n + 1){μj}
 for any j, and
(4) n(KX + B+ + M+) ∼ 0 and nM+′ is Cartier,

where M+′ =
∑

μ+
j M ′

j . If additionally we have B+ ≥ B and μ+
j ≥ μj for any j, then we say that 

(X/Z � z, B+ + M+) is a monotonic (ε, n)-complement of (X/Z � z, B + M).

We say that (X/Z � z, B + M) is (ε, R)-complementary (resp. (ε, n)-complementary) if it has an (ε, R)-
complement (resp. (ε, n)-complement). If dim Z = 0, we will omit Z and z. If for any z ∈ Z, (X/Z � z, B+M)
is (ε, R)-complementary, then we say that (X/Z, B + M) is (ε, R)-complementary.

The following lemma is well-known to experts (cf. [7, Lemma 3.13]). We will use the lemma frequently 
without citing it in this paper.
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Lemma 2.8. Let ε be a non-negative real number, and (X, B + M) a generalized pair as in Definition 2.7. 
Assume that g : X ��� X ′′ is a birational contraction and B′′, M ′′ are the strict transforms of B, M on X ′′

respectively.

(1) If (X/Z � z, B + M) is (ε, R)-complementary, then (X ′′/Z � z, B′′ + M ′′) is (ε, R)-complementary.
(2) Let n be a positive integer. If g is −(KX + B + M)-non-positive and (X ′′/Z � z, B′′ + M ′′) is 

(ε, R)-complementary (resp. monotonically (ε, n)-complementary), then (X/Z � z, B + M) is (ε, R)-
complementary (resp. monotonically (ε, n)-complementary).

2.3. Bounded families

Definition 2.9. A couple (X, D) consists of a normal projective variety X and a reduced divisor D on X. 
Two couples (X, D) and (X ′, D′) are isomorphic if there exists an isomorphism X → X ′ mapping D onto 
D′. A set P of couples is bounded if there exist finitely many projective morphisms V i → U i of varieties and 
reduced divisors Ci on V i such that for each (X, D) ∈ P, there exist i and a closed point t ∈ U i such that 
the two couples (X, D) and (V i

t , Ci
t) are isomorphic, where V i

t and Ci
t are the fibers over t of the morphisms 

V i → U i and Ci → U i respectively.
A set C of projective pairs (X, B) is said to be log bounded if the corresponding set of couples {(X, Bred)}

is bounded. A set D of projective varieties X is said to be bounded if the corresponding set of couples 
{(X, 0)} is bounded. A log bounded (resp. bounded) set is also called a log bounded family (resp. bounded 
family).

We will need the following theorem.

Theorem 2.10 (BBAB Theorem, [3, Theorem 1.1]). Let d be a positive integer and ε a positive real number. 
Then the projective varieties X such that

(1) (X, B) is ε-lc of dimension d for some boundary B, and
(2) −(KX + B) is nef and big,

form a bounded family.

The following lemma is an easy consequence of Theorem 2.10.

Lemma 2.11. Let d be a positive integer and ε a positive real number. Then the projective varieties X such 
that

(1) dim X = d,
(2) X is of Fano type, and
(3) (X, B +M) is an (ε, R)-complementary projective generalized pair with data X ′ f−→ X and M ′, for some 

boundary B and nef part M ′,

form a bounded family.

Proof. Possibly replacing (X, B + M) by an (ε, R)-complement, we may assume that (X, B + M) is an 
(ε, R)-complement of itself. Since X is of Fano type, there exists a boundary C such that (X, C) is klt and 
−(KX + C) is ample. It follows that (X, D + M/2) is generalized ε

2 -lc, and − (KX + D + M/2) is ample, 
where D = B+C

2 . Let A ∼R −(KX + D + M/2)/2 be a general ample R-divisor such that (X, D + A + M/2)
is generalized ε -lc. We may write
2
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KX′ + D′ + M ′/2 + f∗A = f∗(KX + D + M/2 + A)

for some R-divisor D′ on X ′. As M ′

2 + f∗A is big and nef, there exists an effective R-divisor E such that 
for each positive integer k, we have

M ′/2 + f∗A ∼R E/k + Ak

for some ample R-divisor Ak. We can choose k sufficiently large and Ak general enough such that (X ′, D′
k)

is sub- ε
4 -lc, where D′

k = D′ + E/k + Ak. Let KX + Dk = f∗ (KX′ + D′
k). Then (X, Dk) is ε

4 -lc and

−(KX + Dk) ∼R −f∗(KX′ + D′ + M ′/2 + f∗A)

∼R −(KX + D + M/2 + A) ∼R A

is ample. According to Theorem 2.10, X belongs to a bounded family. �
3. Uniform linearity for minimal log discrepancies

3.1. Uniform linearity for MLDs

We show the following result on the uniform linearity for MLDs for generalized pairs. For any point 
v = (v1, . . . , vm) ∈ Rm, we define ||v||∞ = max1≤i≤m{|vi|}.

Theorem 3.1. Let ε be a non-negative real number, d, c, m, l positive integers and r0 = (r1, . . . , rc) ∈ Rc

a point such that 1, r1, . . . , rc are linearly independent over Q. Let s1, . . . , sm+l : Rc → R be Q-linear 
functions. Then there exist a positive real number δ and a Q-linear function f(r) : Rc → R depending only 
on ε, d, r0 and si satisfying the following.

(1) f(r0) ≥ ε, and if ε ∈ Q, then f(r) = ε for any r ∈ Rc.
(2) Assume that (X, B(r0) + M(r0)) is a projective generalized pair of dimension d such that

• X is of Fano type,
• B(r) =

∑m
i=1 si(r)Bi, where Bi ≥ 0 are Weil divisors,

• M ′(r) =
∑l

j=1 sm+j(r)M ′
j, where M ′

j are nef Cartier divisors, and
• (X, B(r0) + M(r0)) is (ε, R)-complementary.
Then for any r ∈ Rc satisfying ||r − r0||∞ ≤ δ, the following hold:
(a) (X, B(r) + M(r)) is (f(r),R)-complementary.
(b) If ε is positive, then there exists a prime divisor E such that

mld(X, B(r) + M(r)) = a(E, X, B(r) + M(r)) ≥ f(r).

Proof. If ε = 0, then we can take f(r) = 0 and the existence of δ follows from [6, Theorem 3.17]. In the 
following, we may assume that ε is positive.

By [6, Theorem 3.15], there exists a positive real number δ0 depending only on d, r0 and si such that 
(X, B(r) + M(r)) is generalized lc for any r ∈ Rc satisfying ||r − r0||∞ ≤ δ0. In particular, there exist finite 
sets Γ1 = {ai} ⊆ (0, 1] and Γ2 ⊆ [0, 1] ∩ Q such that

KX + B(r0) + M(r0) =
∑

ai

(
KX + Bi + M i

)
,

and 
(
X, Bi + M i

)
is generalized lc for some Bi ∈ Γ2 and (M i)′ =

∑
j μijM ′

j with μij ∈ Γ2 for any i, j. More-
over, by [6, Theorem 1.1] and [1, Lemma 2.24], there exists a positive integer I0 such that I0

(
KX + Bi + M i

)
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is Cartier for any i. Then by the same arguments as in [7, Lemma 4.7] and [6, Theorem 3.17], one can find 
a positive real number δ < δ0 with the required properties. �
Proof of Theorem 1.6. The statement follows from Theorem 3.1(2). �
3.2. Han type polytopes for (ε, R)-complementary generalized pairs

We will need the following result on Han type polytopes for (ε, R)-complementary generalized pairs.

Theorem 3.2. Let ε be a positive real number, d, m, l positive integers, and v0 =
(
v0

1 , . . . , v0
m+l

)
∈ Rm+l a 

point. Then there exist positive real numbers ak, positive real numbers εk and points vk =
(
vk

1 , . . . , vk
m+l

)
∈

Rm+l depending only on ε, d and v0 satisfying the following.

(1)
∑

ak = 1, 
∑

akvk = v0, and 
∑

akεk ≥ ε. Moreover, if ε ∈ Q, then εk = ε for any k.
(2) Assume that 

(
X,

(∑m
i=1 v0

i Bi

)
+

(∑l
j=1 v0

m+jMj

))
is a projective generalized pair of dimension d such 

that
• X is of Fano type,
• B1, . . . , Bm ≥ 0 are Weil divisors on X,
• M ′

j is nef Cartier for any 1 ≤ j ≤ l, and
•

(
X,

(∑m
i=1 v0

i Bi

)
+

(∑l
j=1 v0

m+jMj

))
is (ε, R)-complementary.

Then 
(

X,
(∑m

i=1 vk
i Bi

)
+

(∑l
j=1 vk

m+jMj

))
is (εk, R)-complementary for any k.

Proof. The result follows from the same arguments as in [9, Theorem 5.16] but with [9, Theorem 5.15]
replaced by Theorem 3.1. �
4. Decomposable complements

4.1. Reduce DCC sets to finite sets

The proof of Theorem 4.1 is quite similar to the proof of [9, Theorem 5.18 and Theorem 5.20].

Theorem 4.1. Let ε be a non-negative real number, d a positive integer and Γ ⊆ [0, 1] a DCC set. Then there 
exist a finite set Γ′ ⊆ Γ̄, and a projection g : Γ̄ → Γ′ (i.e., g ◦ g = g) depending only on ε, d and Γ satisfying 
the following.

(1) g(γ′) ≥ g(γ) ≥ γ for any γ, γ′ ∈ Γ with γ′ ≥ γ.
(2) Assume that (X, 

∑
biBi) is a d-dimensional (ε, R)-complementary pair such that X is of Fano type, and 

Bi ≥ 0 is a Q-Cartier Weil divisor and bi ∈ Γ for any i. Then (X, 
∑

g(bi)Bi) is (ε, R)-complementary.

Proof. The statement follows from the same arguments as in [9, Theorem 5.18 and Theorem 5.20] but with 
ACC for log canonical thresholds replaced by Lemma 4.2. �
Lemma 4.2. Let S be the set of pairs (X, B =

∑
biBi) satisfying the assumptions in Theorem 4.1 and assume 

that ε is a positive real number. Then the set

Γ′′ =

⎧⎨
⎩ε- lct

⎛
⎝X,

j−1∑
biBi +

s∑
biBi; Bj

⎞
⎠ |

(
X,

s∑
biBi

)
∈ S, 1 ≤ j ≤ s

⎫⎬
⎭

i=1 i=j+1 i=1
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satisfies the ACC.

Proof. We first show that (X, B) belongs to a log bounded family. Let c = min{α > 0 | α ∈ Γ}. By 
Lemma 2.11, X belongs to a bounded family. In particular, there exist a very ample divisor A on X and a 
positive real number r depending only on d and ε such that Ad−1 · (−KX) ≤ r. Since

Bred · Ad−1 = 1
c

(
KX + c

∑
Bi − KX

)
· Ad−1

≤ 1
c

(
KX +

∑
biBi − KX

)
· Ad−1 ≤ r

c
,

(X,
∑

Bi) is log bounded by [1, Lemma 2.20].
Let (X , D) → U be the corresponding log bounded family. Then there exists a stratification U1, . . . , Ul

of U such that, possibly after taking a finite étale cover, each restricted family (XUi
, DUi

) → Ui admits a 
fiberwise log resolution. Therefore there exist two finite sets Γ1 ⊆ (−∞, 1] and Γ2 ⊆ [0, +∞) depending 
only on this log bounded family such that

f∗KX = KY +
∑

k

akEk and f∗Bi =
∑

k

aikEk

for some real numbers ak = a(Ek, X, 0) ∈ Γ1 and aik ∈ Γ2. Hence

mjk = multEk

⎛
⎝f∗

⎛
⎝KX +

j−1∑
i=1

biBi +
s∑

i=j+1
biBi

⎞
⎠ − KY

⎞
⎠

lies in a DCC set depending only on the DCC set Γ and the log bounded family. Thus

ε- lct

⎛
⎝X,

j−1∑
i=1

biBi +
s∑

i=j+1
biBi; Bj

⎞
⎠ = min

k

{
1 − ε − mjk

ajk

}

forms an ACC set. �
4.2. Proof of Theorem 1.5

We first show that Theorem 1.3(3) holds when Γ ⊆ [0, 1] ∩ Q is a finite set.

Proposition 4.3. Theorem 1.3(3) holds when Γ ⊆ [0, 1] ∩ Q is a finite set. Moreover, (X, B + M) has a 
monotonic (ε, n)-complement (X, B+ + M).

Proof. We may run a −(KX+B+M)-MMP and it terminates with a model X ′′ on which − (KX′′ + B′′ + M ′′)
is nef, where B′′ and M ′′ are the strict transforms of B and M on X ′′ respectively. It is clear that 
(X ′′, B′′ + M ′′) is generalized ε-lc, as (X, B + M) is (ε, R)-complementary. Possibly replacing (X, B + M)
by (X ′′, B′′ + M ′′), we may assume that −(KX + B + M) is nef.

By Lemma 2.11, X belongs to a bounded family. According to [1, Lemma 2.25], there exists a positive 
integer n0 such that −n0(KX + B + M) is Cartier. Hence | − n(KX + B + M)| is base point free for some 
positive integer n depending only on n0 and d by Kollár’s effective base point free theorem (cf. [10]). Pick a 
general member G ∈ | − n(KX + B + M)|. Then (X, B + G/n + M) is an (ε, n)-complement of (X, B + M). 
We finish the proof. �



10 G. Chen, Q. Xue / Journal of Pure and Applied Algebra 226 (2022) 106988
Proof of Theorem 1.5. We may assume that 1 ∈ Γ. Possibly replacing (X, B + M) by a generalized dlt 
modification, we may assume that X is Q-factorial.

In the case when M ′ ≡ 0, we may apply Theorem 4.1 and thus assume that Γ is a finite set. By 
Theorem 3.2, we can find positive real numbers εi and finite sets Γ0 ⊆ (0, 1], Γ1 ⊆ [0, 1] ∩Q depending only 
on d and Γ such that 

(
X, Bi + M(i)

)
is (εi, R)-complementary, 

∑
ai = 1, 

∑
aiεi ≥ ε and

KX + B + M =
∑

ai

(
KX + Bi + M(i)

)
for some ai ∈ Γ0, Bi ∈ Γ1 and M ′

(i) =
∑

j μijM ′
j with μij ∈ Γ1. Moreover, if Γ ⊆ Q, then we may 

pick Γ0 = {1}, Bi = B and M(i) = M . By Proposition 4.3, there exists a positive integer n depending 
only on Γ1, εi and d such that 

(
X, Bi + M(i)

)
has a monotonic (εi, n)-complement 

(
X, (Bi + Gi) + M(i)

)
for some Gi ≥ 0 for any i. Let B+ :=

∑
ai(Bi + Gi). Then (X, B+ + M) is an (ε, n, Γ0)-decomposable 

(ε, n)-complement of (X, B + M). This completes the proof. �
5. Proof of the main result

Proof of Theorem 1.3. According to [6, Theorem 1.1], we only need to show Theorem 1.3(2) and (3). By 
Theorem 1.5, there exist a positive integer n0, positive real numbers εi and a finite set Γ0 ⊆ (0, 1] depending 
only on d, ε and Γ such that (X, B + M) has an (ε, n0, Γ0)-decomposable (ε, R)-complement 

(
X, B̃ + M̃

)
. 

More precisely, there exist ai ∈ Γ0, boundaries B̃i and nef parts M̃ ′
i such that 

∑
ai = 1, 

∑
aiεi ≥ ε,

KX + B̃ + M̃ =
∑

ai

(
KX + B̃i + M̃i

)
,

and 
(
X, B̃i + M̃i

)
is an (εi, n0)-complement of itself for any i.

By [7, Lemma 6.2], one can find a positive integer n divisible by pn0 depending only on ε, p, n0, Γ0 and 
εi such that there exist positive rational numbers a′

i with the following properties:

•
∑

a′
i = 1, 

∑
a′

iεi ≥ ε,
• na′

i ∈ n0Z for any i,
• nB+ ≥ n�B̃
 + �(n + 1){B̃}
, where B+ :=

∑
a′

iB̃i, and
• n 

∑
i a′

iμij = n�
∑

i aiμij
 + �(n + 1){
∑

i aiμij}
 for any j.

Let μ+
j =

∑
i a′

iμij for any j, and M+′ =
∑

i a′
iM̃

′
i =

∑
j μ+

j M ′
j . Then

n
(
KX + B+ + M+)

= n
∑

a′
i

(
KX + B̃i + M̃i

)
=

∑ a′
in

n0
· n0

(
KX + B̃i + M̃i

)
∼ 0.

We conclude that (X, B+ + M+) is an (ε, n)-complement of (X, B + M), since 
(
X, B̃ + M̃

)
is an (ε, R)-

complement of (X, B + M).
Moreover, if SpanQ≥0

(
Γ̄ ∪ {ε}\Q

)
∩ (Q\{0}) = ∅, then we may pick B+ ≥ B and μ+

j ≥ μj by [7, Lemma 
6.2] and [9, Lemma 6.3]. �
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