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Abstract—In network inference applications, it is often desirable
to detect community structure. Beyond mere adjacency matrices,
many real-world networks also involve vertex covariates that
carry key information about underlying block structure in graphs.
To assess the effects of such covariates on block recovery, we
present a comparative analysis of two model-based spectral
algorithms for clustering vertices in stochastic blockmodel graphs
with vertex covariates. The first algorithm uses only the adjacency
matrix, and directly estimates the block assignments. The second
algorithm incorporates both the adjacency matrix and the vertex
covariates into the estimation of block assignments, and moreover
quantifies the explicit impact of the vertex covariates on the
resulting estimate of the block assignments. We employ Chernoff
information to analytically compare the algorithms’ performance
and derive the information-theoretic Chernoff ratio for certain
models of interest. Analytic results and simulations suggest that the
second algorithm is often preferred: one can better estimate the
induced block assignments by first estimating the effect of vertex
covariates. In addition, real data examples also indicate that the
second algorithm has the advantage of revealing underlying block
structure while considering observed vertex heterogeneity in real
applications.

Index Terms—Spectral graph inference, community detection,
stochastic blockmodel, vertex covariate, chernoff ratio.

I. INTRODUCTION

NETWORK data, which encodes interactions or relation-
ships across entities, often involves more than mere links

or connections across network vertices. For example, a network
dataset may include both an adjacency matrix, which consoli-
dates information about vertices in the network and the edges

between them, as well as additional vertex covariates. For
example, in diffusion MRI connectome datasets [1], vertices
represent sub-regions of the brain defined via spatial proximity,
and edges represent tensor-based fiber streamlines connecting
these sub-regions; such graphs can also have brain hemisphere
and tissue labels for each vertex. Social network datasets [2]–
[4], in which vertices can represent users or web pages and
edges can represent followers or relationships, may come with
ancillary demographic information for each vertex. Since accu-
rate inference on random networks depends on exploiting all
available signal, scalable algorithms that can incorporate both
network connectivity data and any additional insight from ver-
tex covariates are desirable. For instance, in the well-known
k-block stochastic blockmodel (SBM) [5], network vertices
belong to k distinct groups, or communities, called blocks, and
the probabilities of connection across vertices depend on their
block memberships. That is, if ti represents the block associ-
ated to vertex i, the connection probability between vertex i
and j is a function of ti and tj. Typically, a vertex’s block
membership depends on inherent but unobserved (latent) ver-
tex properties. Thus, a classic inference task is to estimate block
memberships from a realization of the resulting network. If,
however, we observe both adjacency matrices and vertex cova-
riates, and if both can contain information about the latent com-
munities or blocks, we need models and scalable algorithms
that can effectively incorporate adjacency structure and covari-
ate data and account for their potentially disparate effects.

In fact, vertex covariates can influence the very number of
communities that are detected in a blockmodel: for example, a
two-block SBM might bifurcate further into a four-block SBM
because of the impact of a binary covariate (with each block split-
ting according to the covariate). Standard estimation on a graph,
then, may yield a four-block assignment, but understanding the
underlying two-block SBM is important in inference applications,
as we show. To get to an estimate of the underlying two-block
assignment, we need to understand the role of the covariates.

Moreover, a problem of interest in network hypothesis test-
ing is to assess the influence of latent communities on down-
stream or outcome variables, controlling for vertex covariate
effects [6], [7]. For instance, assume yi represents some out-
come variable associated to vertex i in a K-block SBM (for
example, in a demographic data set, yi might represent an
individual’s educational attainment or earnings). Suppose this
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outcome variable’s distribution depends on the vertex’s block
assignment within the network, so if ti ¼ k, then yi follows
some distribution Fk that can depend on this block. We
describe this scenario by writing yijðti ¼ kÞ $ Fk. A natural
question to ask is whether the distributions of the outcome var-
iables are the same for different blocks, i.e., to test whether
Fk ¼ F for k 2 f1; . . . ; Kg. To achieve this goal when we
have both adjacency and covariate information, it is crucial to
estimate the underlying block structure btbt—namely, to obtain
an estimate of the block structure after accounting for, and
effectively “netting out” the vertex covariate effect. Here we
write “induced block assignment” to refer to the block assign-
ment after accounting for the vertex covariates.

As a special case of random graph models, SBMs are popular
in the literature for community detection [5], [8], [9]. Many clas-
sical methods consider the adjacency or Laplacian matrices for
community detection; see [10] for an overview. However, these
methods are typically not designed to distinguishing the impact
of covariates from the mechanism of network generation
itself—that is, delineating in the observed data what may be
underlying, or fundamental, network effects from characteristics
that are more properly functions of the covariates. By contrast,
covariate-aware inference in SBMs often relies on either varia-
tional methods [11]–[13] or spectral approaches [14]–[16]. For
example, [14] proposed covariate-assisted spectral clustering
(CASC) where the covariates are first parameterized as in linear
regression, i.e., categorical covariates are represented with
dummy variables and continuous covariates can go through
standardization, and then combined with the graph for subse-
quent spectral clustering. The pairwise covariates-adjusted sto-
chastic blockmodel (PCABM), in which pairwise covariate
information is incorporated with the classical SBM, was intro-
duced in [15]. There, model parameters can be solved via maxi-
mum likelihood estimation (MLE) or spectral clustering with
adjustment (SCWA).

Spectral methods [17] that promise applicability to large
graphs have been widely used in random graph models for a
variety of subsequent inference tasks such as community detec-
tion [18]–[21], vertex nomination [22], nonparametric hypoth-
esis testing [23], and multiple graph inference [24]. Two
particular spectral embedding methods, adjacency spectral
embedding (ASE) and Laplacian spectral embedding (LSE),
which are spectral decompositions of the graph adjacency and
graph Laplacian matrices, respectively, are popular, since they
provide consistent [25] and asymptotically normal [26], [27]
estimates of underlying graph parameters, such as block mem-
berships. To compare the performance of these two embedding
methods, the concept of Chernoff information is employed for
SBMs [8], [27] and then extended to consider the underlying
graph structure [28]. The Chernoff information between two
distributions F1 and F2 is related to the exponential rate of
decay of the Bayes risk in the simple hypothesis test comparing
F1 against F2, as the sample size increases. As such, because of
asymptotic normality of the adjacency and Laplacian spectral
embedding for stochastic blockmodels, the Chernoff informa-
tion between two normal distributions (with different mean
vectors and covariance matrices) can be adopted to derive the

large sample optimal error rate for recovering block assign-
ments in a SBM.
In this work, we investigate two spectral algorithms for

clustering vertices in stochastic blockmodel graphs with ver-
tex covariates. Analytically, we compare the algorithms’ per-
formance via Chernoff information and derive the Chernoff
ratio for certain models of interest. The notion of Chernoff
information for comparing algorithms will be addressed in
detail in Section IV. Practically, we compare the algorithms’
empirical clustering performance by simulations and real data
examples on diffusion MRI connectome and social networks.
The structure of this article is as follows. Section II reviews

relevant models for random graphs and the basic idea of spec-
tral methods. Section III introduces our spectral algorithms for
clustering vertices in stochastic blockmodel graphs with ver-
tex covariates. Section IV analytically compares the algo-
rithms’ performance via Chernoff information and derives the
Chernoff ratio expression for certain models of interest.
Section V provides simulations and real data examples on dif-
fusion MRI connectome and social networks to compare the
algorithms’ performance. Section VI discusses the findings
and raises questions for further investigation. Appendices pro-
vide technical details for latent position geometry and analytic
derivations of the Chernoff ratio as well as the details of simu-
lations. The implementation of our algorithms can be found at
https://github.com/CongM/sbm-cov.

II. MODELS AND SPECTRAL METHODS

To ground our analysis and results, we begin with a particu-
lar class of random network models known as latent position
models [29], [30] for edge-independent random graphs. In
these models, each network vertex i is associated with a latent
position Xi 2 X where X is some latent space such as Rd, and
edges between vertices arise independently with probability
Pij ¼ kðXi;XjÞ for some kernel function k : X % X ! ½0; 1'.
This is an appealing model to consider not only because of its
wide applicability—after all, the kernel can be any reasonable
regular function—but because it is easily interpretable. For
example, social network connections are often a function of
individual participants’ (potentially unobserved) interests in a
core set of topics or hobbies, and levels of interest can be eas-
ily encoded in a low-dimensional space. Moreover, the kernel
and this lower-dimensional space can possess intuitive geome-
try, wherein collinearity or other “closeness” of latent posi-
tions increases the probability of a connection between the
associated vertices. The core model we focus on here, the gen-
eralized random dot product graph (GRDPG), has precisely
such a property: the kernel function is taken to be the (indefi-
nite) inner product. As the name suggests, this model general-
izes the random dot product graph (RDPG) by relaxing the
restriction that the kernel function be the inner product, and
this relaxation permits SBM with dissassortative structure,
and in fact subsumes all SBMs as special cases.
Definition 1 (Generalized RandomDot Product Graph [31]):

Let d ¼ dþ þ d) with dþ * 1 and d) * 0. Let Idþd) ¼
diagð1; . . . ; 1;)1; . . . ;)1Þ, i.e., a d% d diagonal matrix with
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1 in first dþ entries and )1 in the next d) entries. Let A 2
f0; 1gn%n be an adjacency matrix and X ¼ ½X1; . . . ;Xn'> 2
Rn%d where each Xi 2 Rd denotes the latent position for
vertex i satisfying X>

i Idþd)Xj 2 ½0; 1' for all i; j 2 f1; . . . ; ng.
Then we say ðA;XÞ $ GRDPGðn; dþ; d)Þ if for any i; j 2
f1; . . . ; ng

Aij $ BernoulliðPijÞ;
Pij ¼ X>

i Idþd)Xj: (1)

As mentioned above, the SBM, which encapsulates block
structure in independent-edge networks, is a special case of
the GRDPG.
Definition 2 (K-block Stochastic Blockmodel Graph [5]):

The K-block stochastic blockmodel (SBM) graph is an inde-
pendent-edge random graph with each vertex belonging to one
of K blocks. It can be parameterized by a block connectivity
probability matrix B 2 ½0; 1'K%K and a nonnegative vector
of block assignment probabilities pp 2 ½0; 1'K summing to
unity. Let A 2 f0; 1gn%n be an adjacency matrix and tt 2
f1; . . . ; Kgn be a vector of block assignments with ti ¼ k if
vertex i is in block k (occurring with probability pk). We say
ðA; ttÞ $ SBMðn;B;ppÞ if for any i; j 2 f1; . . . ; ng

Aij $ BernoulliðPijÞ;
Pij ¼ Btitj : (2)

The SBM can be thought of as the GRDPG with locations
fixed in each block. Formally, let ðA; ttÞ $ SBMðn;B;ppÞ as in
Definition 2 where B 2 ½0; 1'K%K with dþ strictly positive
eigenvalues and d) strictly negative eigenvalues. To represent
this SBM in the GRDPG model, we can choose nn1; . . . ; nnK 2
Rd where d ¼ dþ þ d) such that nn>k Idþd)nn‘ ¼ Bk‘ for all k; ‘ 2
f1; . . . ; Kg. For example, we can take nn ¼ UjLLj1=2 where B ¼
ULLU> is the eigendecomposition of B after re-ordering. Then
we have the latent position of vertex i as Xi ¼ nnk if ti ¼ k.
Example 1 (Two-block Rank One Model): As an illustra-

tion, consider the prototypical two-block SBM with rank one
block connectivity probability matrix B where B11 ¼
p2;B22 ¼ q2;B12 ¼ B21 ¼ pq with 0 < p < q < 1. Let Xi

be the latent position of vertex i where Xi ¼ nn1 ¼ p if ti ¼ 1
and Xi ¼ nn2 ¼ q if ti ¼ 2. Then we can represent this SBM in
the GRDPG model with latent positions nn ¼ p q½ '> as

B ¼ nnnn> ¼ p2 pq
pq q2

! "
: (3)

Since our goal is to examine the impact of covariates on
network inference, we next extend the GRDPG to permit ver-
tex covariates, as follows.
Definition 3 (GRDPG with Vertex Covariates [16]): Con-

sider GRDPG as in Definition 1. Let Z denote the observed
vertex covariate and b denote the effect of the vertex covari-
ate. Then we say ðA;X;Z;bbÞ $ GRDPG-Covðn; dþ; d)Þ for
any i; j 2 f1; . . . ; ng

Aij $ BernoulliðPijÞ;
Pij ¼ X>

i Idþd)Xj þ b11fZi ¼ Zjg: (4)

Remark 1: In the case of an SBM, we have

Pij ¼ Btitj þ b11fZi ¼ Zjg: (5)

Example 2 (Two-block Rank One Model with One Binary
Covariate): As an illustration, consider the rank one matrix B
in Eq. (3) and the SBM model in Remark 1. Let Z 2 f1; 2gn
denote the observed binary covariate. Assume 0 < b < 1
with p2 þ b; q2 þ b; pq þ b 2 ½0; 1'. Then we have the block
connectivity probability matrix with the vertex covariate effect
as

BZ ¼

p2 þ b p2 pq þ b pq
p2 p2 þ b pq pq þ b

pq þ b pq q2 þ b q2

pq pq þ b q2 q2 þ b

2

664

3

775: (6)

Example 3 (Two-block Homogeneous Model with One
Binary Covariate): As a second illustration, consider the rank
two matrix B where B11 ¼ B22 ¼ a;B12 ¼ B21 ¼ b with 0 <
b < a < 1. Assume 0 < b < 1 with aþ b; bþ b 2 ½0; 1'.
We then have the block connectivity probability matrix with
the vertex covariate effect as

BZ ¼

aþ b a bþ b b
a aþ b b bþ b

bþ b b aþ b a
b bþ b a aþ b

2

664

3

775: (7)

Remark 2: The SBMs parameterized by B in Example 3
lead to the notion of the homogeneous model [8], [28]. For
K-block homogeneous model, we have Bk‘ ¼ a for k ¼ ‘ and
Bk‘ ¼ b for k 6¼ ‘.

In Examples 2 and 3, an induced two-block SBM becomes a
four-block SBM via the effect of a binary vertex covariate.
The goal is to cluster each vertex into one of the two induced
blocks after accounting for the vertex covariate effect. To this
end, we need to recover the latent positions of the underlying
GRDPG, using the adjacency spectral embedding.
Definition 4 (Adjacency Spectral Embedding): Let A 2

f0; 1gn%n be an adjacency matrix with eigendecomposition
A ¼ ULLU>. Given the embedding dimension d < n, the
adjacency spectral embedding (ASE) of A into Rd is the n%
d matrix bX ¼ bUdjbLbLdj1=2 where bLbLd is a diagonal matrix with
the d largest eigenvalues in magnitudes and bUd contains the
associated eigenvectors. Here hat notation suggests these
terms estimate the eigenvectors and eigenvalues of the matrix
P as in Eq. (1).
Remark 3: There are different methods for choosing the

embedding dimension [32], [33]; we adopt the well-established
and computationally efficient profile likelihood method [34] to
automatically identify an elbow in the scree plot to select
embedding dimension bd.
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III. MODEL-BASED SPECTRAL INFERENCE

We are interested in estimating the induced block assign-
ments (clustering vertices) in a SBM with vertex covariates.
To that end, we also consider algorithms for estimating the
vertex covariate effect b, which can be further used to estimate
the induced block assignments. Our model-based spectral
algorithms take observed adjacency matrices (and vertex
covariates) as inputs and estimated block assignments for each
vertex as outputs.

In Algorithm 1, the estimation of the induced block assign-
ments, i.e., btbt, depends on the estimated block connectivity
probability matrix bBZ (see Step 4 of Algorithm 1 for details).
This suggests that we may not obtain an accurate estimate of
the induced block assignments if the diagonal of bBZ does not
contain enough information to distinguish the induced block
structure. To address this uncertainty, we consider a modified
algorithm that uses the information from vertex covariates to
estimate the induced block assignments along with vertex
covariate effect b.

As an illustration of estimating b (Step 2 in Algorithm 2),
consider the block connectivity probability matrix BZ as in
Eq. (7). To get b, we can take the difference between two spe-
cific entries of BZ . For example,

BZ;11 ) BZ;12 ¼ ðaþ bÞ ) a ¼ b;

BZ;13 ) BZ;14 ¼ ðbþ bÞ ) b ¼ b: (8)

We can then obtain bb by subtracting two specific entries of
bBZ . However, the ASE and GMM under GRDPG model can
lead to the re-ordering of bBZ . Thus we need to identify pairs
first so that we subtract the correct entries. Two alternative
ways to achieve this are described in Step 2(a) and 2(b).

In Step 2(a), we find pairs in bBZ by first assigning each
block common covariates using the mode. However, it is pos-
sible that we can not find any pairs using this approach, espe-
cially in the unbalanced case where the size of each block is

Algorithm 1: Estimation of induced block assignment using
only the adjacency matrix.

Input: Adjacency matrix A 2 f0; 1gn%n

Output: Induced block assignments as btbt.
1: Estimate latent positions under the effects of both observed covari-

ates and unobserved heterogeneity of vertices as bY 2 Rn%bd using

ASE of A where bd is chosen as in Remark 3.
2: Cluster bY using Gaussian mixture modeling (GMM) to estimate

the block assignments under the effects of both observed covari-
ates and unobserved heterogeneity of vertices as b!b! 2 f1; . . . ; bKgn
where bK is chosen via Bayesian Information Criterion (BIC).

3: Compute the estimated block connectivity probability matrix
including the vertex covariate effect as

bBZ ¼ bmbmIdþd) bmbm
> 2 ½0; 1'bK%bK;

where bmbm 2 R
bK%bd is the matrix of estimated means of all clusters.

4: Cluster the diagonal of bBZ using GMM to estimate the cluster

assignments of the diagonal as bfbf 2 f1; . . . ; bK2g
bK .

5: Estimate the induced block assignments as btbt by btbtk ¼ c for

k 2 fi j b!b!i ¼ t for t 2 fj j bfbfj ¼ cgg and c ¼ 1; . . . ;
bK
2 .

Algorithm 2: Estimation of induced block assignment incor-
porating both the adjacency matrix and the vertex covariates.

Input: Adjacency matrix A 2 f0; 1gn%n; observed vertex covariates
Z 2 f1; 2gn

Output: Estimated vertex covariate effect as bb; induced block
assignments as etet.

1: Steps 1 - 4 in Algorithm 1.
2: Estimate the vertex covariate effect as bb using one of the

following procedures [16].
(a) Assign the block covariates as ZB 2 f)1; 1gbK for each block
using the mode, i.e.,

ZB;k ¼
)1 if n)1;k * n1;k;
1 if n)1;k < n1;k;

#

where

nz;k ¼
X

i:b!b!i¼k

11fZi ¼ zg:

Construct pair set S ¼ fðk‘; k‘0Þ; k; ‘; ‘0 2 f1; . . . ; bKg j bfbf‘ ¼
bfbf‘0 ;ZB;k ¼ ZB;‘;ZB;k 6¼ ZB;‘0 g. Estimate the vertex covariate
effect as

bbSA ¼ 1

jSj
X

ðk‘;k‘0Þ2S

bBZ;k‘ ) bBZ;k‘0 :

(b) Compute the probability that two entries from bBZ form a pair as

pk‘;k‘0 ¼
n)1;kn)1;‘n1;‘0 þ n1;kn1;‘n)1;‘0

nkn‘n‘0
;

where

nk ¼
Xn

i¼1

11fb!b!i ¼ kg:

Construct pair setW ¼ fð‘; ‘0Þ; ‘; ‘0 2 f1; . . . ; bKg j bfbf‘ ¼ bfbf‘0 g.
Estimate the vertex covariate effect as

bbWA ¼ 1
bKjW j

XbK

k¼1

X

ð‘;‘0Þ2W
pk‘;k‘0 bBZ;k‘ ) bBZ;k‘0

$ %
:

3: Account for the vertex covariate effect by

eAij ¼ Aij ) bb11fZi ¼ Zjg;

where bb is either bbSA or bbWA.
4: Estimate latent positions after accounting for the vertex covariate

effect as eY 2 Rn%ed using ASE of eA where ed is chosen as in

Remark 3.

5: Cluster eY using GMM to estimate the induced block assignments

as etet 2 f1; . . . ; bK2g
n.
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different and/or the distribution of the vertex covariate is dif-
ferent. For example, one block size is much larger than the
others and/or vertex covariates are all the same within one
block.

In Step 2(b), instead of first finding pairs using the mode, we

only compute the probability that two entries of bBZ form a pair.
This will make the estimation more robust to extreme cases or
special structure by giving different weights to pairs [16].

IV. SPECTRAL INFERENCE PERFORMANCE

A. Chernoff Ratio
1) Main Idea: We employ Chernoff information to com-

pare the performance of Algorithms 1 and 2 for estimating the
induced block assignments in SBMs with vertex covariates.
There are other metrics for comparing spectral inference per-
formance such as within-class covariance. The advantages of
Chernoff information are that it is independent of the cluster-
ing procedure, i.e., it can be derived no matter which cluster-
ing methods are used, and it is intrinsically related to the
Bayes risk [9], [27], [35]. In short, there will be a quantity
associated with each algorithm, say r+1 and r+2 are associated
with the Algorithms 1 and 2 respectively. The comparison is
based on the ratio r+ ¼ r+1=r

+
2. If r

+ > 1, then Algorithm 1 is
preferred, otherwise Algorithm 2 is preferred. The following
sections provide the mathematical details of Chernoff infor-
mation and derive r+ for certain model of interest.

2) Mathematical Details: Let F1 and F2 be two continuous
multivariate distributions on Rd with density functions f1 and
f2. The Chernoff information [36], [37] is defined as

CðF1; F2Þ ¼ )log inf
t2ð0;1Þ

Z

Rd
ft
1ðxÞf

1)t
2 ðxÞdx

! "

¼ sup
t2ð0;1Þ

)log

Z

Rd
ft
1ðxÞf

1)t
2 ðxÞdx

! "
: (9)

Consider the special case where we take F1 ¼ N ðmm1;!!1Þ
and F2 ¼ N ðmm2;!!2Þ; then the corresponding Chernoff infor-
mation is

CðF1; F2Þ ¼ sup
t2ð0;1Þ

1

2
tð1) tÞðmm1 ) mm2Þ

>!!)1
t ðmm1 ) mm2Þ

!

þ 1

2
log

j!!tj
j!!1jtj!!2j1)t

#

;

where !!t ¼ t!!1 þ ð1) tÞ!!2. For a given embedding method
such as ASE in Algorithms 1 and 2, comparison via Chernoff
information is based on the statistical information between the
limiting distributions of the blocks and smaller statistical
information implies less information to discriminate between
different blocks of the SBM. To that end, we also review the
limiting results of ASE for SBM, essential for investigating
Chernoff information.
Theorem 1 (CLT of ASE for SBM [31]): Let ðAðnÞ;XðnÞÞ $

GRDPGðn; dþ; d)Þ be a sequence of adjacency matrices and
associated latent positions of a d-dimensional GRDPG as in
Definition 1 from an inner product distribution F where F is a

mixture ofK point masses in Rd, i.e.,

F ¼
XK

k¼1

pkdnnk with 8k; pk > 0 and
XK

k¼1

pk ¼ 1; (11)

where dnnk is the Dirac delta measure at nnk. Let Fðz;!!Þ denote
the cumulative distribution function (CDF) of a multivariate
Gaussian distribution with mean 00 and covariance matrix !!,

evaluated at z 2 Rd. Let bX
ðnÞ

be the ASE of AðnÞ with bX
ðnÞ
i as

the i-th row (same for XðnÞ
i ). Then there exists a sequence of

matrices Mn 2 Rd%d satisfying MnIdþd)M
>
n ¼ Idþd) such

that for all z 2 Rd and fixed index i,

P
ffiffiffi
n

p
Mn
bX
ðnÞ
i ) XðnÞ

i

$ %
, z

'' XðnÞ
i ¼ nnk

n o
! Fðz;!!kÞ;

(12)
where for nn $ F

DD ¼ E nnnn>
( )

;

GGk ¼ E nn>k Idþd)nn
* +

1) nn>k Idþd)nn
* +

nnnn>
( )

;

!!k ¼ Idþd)DD
)1GGkDD

)1Idþd) : (13)

Remark 4: If the adjacency matrix A is sampled from an
SBM parameterized by the block connectivity probability
matrix B in Eq. (3) and block assignment probabilities pp ¼
ðp1;p2Þ with p1 þ p2 ¼ 1, then as a special case for Theo-
rem 1 [27], [35], we have for each fixed index i,

ffiffiffi
n

p bXi ) p
$ % d

!N 0; s2
p

$ %
if Xi ¼ p;

ffiffiffi
n

p bXi ) q
$ % d

!N 0; s2
q

$ %
if Xi ¼ q: (14)

where

s2
p ¼

p1p4ð1) p2Þ þ p2pq3ð1) pqÞ
½p1p2 þ p2q2'2

;

s2
q ¼

p1p3qð1) pqÞ þ p2q4ð1) q2Þ
½p1p2 þ p2q2'2

: (15)

Now for a K-block SBM, let B 2 ½0; 1'K%K be the block
connectivity probability matrix and pp 2 ½0; 1'K be the vector
of block assignment probabilities. Given an n vertex instantia-
tion of the SBM parameterized by B and pp, for sufficiently
large n, the large sample optimal error rate for estimating the
block assignments using ASE can be measured via Chernoff
information as [27], [35]

r ¼ min
k 6¼l

sup
t2ð0;1Þ

1

2
ntð1) tÞðnnk ) nn‘Þ>!!)1

k‘ ðtÞðnnk ) nn‘Þ
!

þ 1

2
log

j!!k‘ðtÞj
j!!kjtj!!‘j1)t

#

(16)

where !!k‘ðtÞ ¼ t!!k þ ð1) tÞ!!‘, !!k and !!‘ are defined as in
Eq. (13). Also note that as n ! 1, the logarithm term in
Eq. (16) will be dominated by the other term. Then we have
the Chernoff ratio as
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r+ ¼ r+1
r+2

!
min
k 6¼‘

sup
t2ð0;1Þ

tð1) tÞðnn1;k ) nn1;‘Þ>!!)1
1;k‘ðtÞðnn1;k ) nn1;‘Þ

h i

min
k 6¼‘

sup
t2ð0;1Þ

tð1) tÞðnn2;k ) nn2;‘Þ>!!)1
2;k‘ðtÞðnn2;k ) nn2;‘Þ

h i : (17)

Here r+1 and r+2 are associated with the Algorithms 1 and 2
respectively. If r+ > 1, then Algorithm 1 is preferred, other-
wise Algorithm 2 is preferred.

B. Two-Block Rank One Model With One Binary Covariate

As an illustration of using Chernoff ratio in Eq. (17) to com-
pare the performance of Algorithms 1 and 2 for estimating the
induced block assignments, we consider the two-block SBM
with one binary covariate as in Example 2.
Proposition 1: For two-block rank one model with one

binary covariate as in Example 2 with the assumption that
ni ¼ npi and nZ;j ¼ npZ;j for i 2 f1; 2g and j 2 f1; 2; 3; 4g
where pp ¼ ð12 ;

1
2Þ and ppZ ¼ ð14 ;

1
4 ;

1
4 ;

1
4Þ, there is no tractable

closed-form for Chernoff ratio as in Eq. (17) but numerical
experiments can be used to obtain r+1 and r+2 can be derived
analytically as

r+2 ¼
ðp) qÞ2ðp2 þ q2Þ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2fp þ q2fpq

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2fq þ p2fpq

qh i2 ; (18)

where s2
p; s

2
q are defined as in Eq. (15) and

fp ¼ p2ð1) p2Þ;
fq ¼ q2ð1) q2Þ;
fpq ¼ pqð1) pqÞ: (19)

Technical details of Proposition 1 can be found in the appen-
dices. Figure 1 shows the Chernoff ratio when we fix p ¼ 0:3
and take q 2 ð0:3; 0:7Þ;b 2 ð0:1; 0:5Þ in the two-block rank
one models with one binary covariate. r+ < 1 for most of the
region while r+ > 1 only when q and b are relatively large.
Recall that the performance of Algorithm 1 highly depends on
the estimated block connectivity probability matrix bBZ . Large
q and b lead to a relatively well-structured bBZ and thus Algo-
rithm 1 can have better performance in this region.

C. Two-Block HomogeneousModel With One Binary Covariate

Now we consider the two-block SBM with one binary
covariate parameterized by the block connectivity probability
matrix BZ as in Eq. (7).
Corollary 1: For two-block homogeneous model with one

binary covariate as in Example 3 with the assumption that
ni ¼ npi and nZ;j ¼ npZ;j for i 2 f1; 2g and j 2 f1; 2; 3; 4g
where pp ¼ ð12 ;

1
2Þ and ppZ ¼ ð14 ;

1
4 ;

1
4 ;

1
4Þ. The Chernoff ratio as

in Eq. (17) can be derived analytically as

r+ ¼ r+1
r+2

!
b2ðfaþfbÞ

ða)bÞ2ðfaþfbþfbÞ
if b , a) b

faþfb
faþfbþfb

if b > a) b
;

8
<

: (20)

where

fa ¼ að1) aÞ;
fb ¼ bð1) bÞ;
fb ¼ bð1) a) b) bÞ: (21)

Technical details of Corollary 1 can be found in appendices.
Figure 2 shows Chernoff ratio when we fix b ¼ 0:1 and take
a 2 ð0:1; 0:5Þ;b 2 ð0:1; 0:5Þ in the two-block homogeneous
models with one binary covariate. Again r+ < 1 for most of
the region while r+ > 1 only when a and b are relatively
large, which agrees with the general expression for Chernoff
ratio as in Corollary 1. According to Eq. (20), we can have
r+ > 1 only when fb < 0 and this can happen only when a
and b are relatively large. This implies that Algorithm 2 is
often preferred for estimating the induced block assignments.

D. K-Block Homogeneous Model With One Binary Covariate

We extend the discussion from the two-block homogeneous
model to the K-block homogeneous model with one binary
covariate.
Theorem 2: For the K-block homogeneous balanced model

with one binary covariate as in Remark 2 with the assumption
that that ni ¼ npi and nZ;j ¼ npZ;j for i 2 f1; . . . ;Kg and j 2
f1; . . . ; 2 Kg where pp ¼ ð 1K ; . . . ; 1

KÞ and ppZ ¼ ð 1
2 K

; . . . ; 1
2 K

Þ.
The Chernoff ratio as in (17) can be derived analytically as

r+ ¼ r+1
r+2

!
K2b2ðfaþfbÞ
2ða)bÞ2D4

if d , 0
faþfb

faþfbþfb
if d > 0

;

8
<

: (22)

Fig. 1. Chernoff ratio as in Eq. (17) for two-block rank one model, p ¼ 0:3;
q 2 ð0:3; 0:7Þ;b 2 ð0:1; 0:5Þ;pp ¼ ð12 ;

1
2Þ;ppZ ¼ ð14 ;

1
4 ;

1
4 ;

1
4Þ.
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where fa;fb;fb are defined as in (21) and

D3 ¼ K ) 2a) 2ðK ) 1Þb)Kb;

D4 ¼ 2fa þ 2ðK ) 1Þfb þ bD3;

d ¼ K2b2ðfa þ fb þ fbÞ ) 2ða) bÞ2D4: (23)

Remark 5: Theorem 2 generalizes Corollary 1 beyondK ¼ 2.
Technical details of Theorem 2 can be found in the appendi-

ces. Fig. 3 shows Chernoff ratio when we fix b ¼ 0:1 and take
a 2 ð0:1; 0:5Þ;b 2 ð0:1; 0:5Þ in the four-block homogeneous
models with one binary covariate. r+ < 1 for most of the
region while r+ > 1 only when a and b are relatively large.
This implies again that Algorithm 2 is often preferred for esti-
mating the induced block assignments.

V. SIMULATIONS AND REAL DATA EXAMPLES

In addition to comparing the two algorithms’ performance
analytically via Chernoff ratio, we also compare Algorithms 1
and 2 by empirical clustering results. Recall that the analytic
comparison via Chernoff ratio is based on the limiting results
of ASE for SBM when the number of vertices n ! 1. The
comparison via empirical clustering results can measure the
performance of these two algorithms for finite n. The imple-
mentation of Algorithms 1 and 2 can be found at https://github.
com/CongM/sbm-cov. Details about the experiments can be
found in appendices.

As an illustration of this correspondence, we start with the
setting related to “A” (p ¼ 0:3; q ¼ 0:668;b ¼ 0:49 with
r+ ¼ 1:1 > 1) and “B” (p ¼ 0:3; q ¼ 0:564;b ¼ 0:49 with
r+ ¼ 0:91 < 1) in left panel of Figure 4 for two-block rank
one model with one binary covariate Z 2 f1; 2gn. We con-
sider the balanced case where n1 ¼ n2 ¼ n

2 and nZ;1 ¼ nZ;2 ¼
nZ;3 ¼ nZ;4 ¼ n

4 . For each n 2 f100; 140; 180; 220; 260g, we
simulate 100 adjacency matrices with n

2 vertices in each block

and generate binary covariate with n
4 vertices having each

value of Z within each block. We then apply Algorithms 1
and 2 (with b and bb in Step 3 respectively) using embedding
dimension bd ¼ 3 to estimate the induced block assignments
where adjusted Rand index (ARI) [38] is used to measure the
performance (ARI can take values from )1 to 1 where larger
value indicates a better alignment of the empirical clustering
and the “truth”). The upper right panel in Figure 4 shows that
although r+ > 1 and Algorithm 1 should be preferred in
terms of Chernoff ratio, the ARI suggests that Algorithm 2 is
preferred. While the Chernoff ratio is, in fact, a limit (com-
puted as the sample size n increases to infinity), the region for
which r+ > 1 is so easy for clustering—e.g., q ) p is large
for “A”—that both algorithms are essentially perfect even for
small n. The lower right panel in Fig. 4 shows that Algorithm 2
tends to have better performance than Algorithm 1, which
agrees with the Chernoff ratio as in left figure where r+ < 1
and Algorithm 2 is preferred.

To further investigate the flexibility of our models and algo-
rithms, we also discuss categorical vertex covariate.

A. Two-Block Rank One Model With One Five-Categorical
Covariate

Consider the two-block rank one model with one five-cate-
gorical covariate Z 2 f1; 2; 3; 4; 5gn, i.e., we have the block
connectivity probability matrix BZ 2 ½0; 1'10%10 with similar
structure as in (6).

We first fix p ¼ 0:3;b ¼ 0:4 and consider q 2 f0:35;
0:375; 0:4; 0:425; 0:45g. For each q, we simulate 100 adjacency
matrices with 1000 vertices in each block and generate five-cat-
egorical covariate with 200 vertices having each value of Z
within each block. We then apply Algorithms 1 and 2 (with b
and bb in Step 3 respectively) using embedding dimension bd ¼
6 to estimate the induced block assignments. Fig. 5(a) shows
that both algorithms estimate more accurate induced block

Fig. 2. Chernoff ratio as in Eq. (17) for two-block homogeneous models.
b ¼ 0:1; a 2 ð0:1; 0:5Þ; b 2 ð0:1; 0:5Þ;pp ¼ ð12 ;

1
2Þ;ppZ ¼ ð14 ;

1
4 ;

1
4 ;

1
4Þ.

Fig. 3. Chernoff ratio as in Eq. (17) for four-block homogeneous models.
b ¼ 0:1; a 2 ð0:1; 0:5Þ;b 2 ð0:1; 0:5Þ;pp ¼ ð14 ;

1
4 ;

1
4 ;

1
4Þ;ppZ ¼ ð18 ; . . . ;

1
8Þ.
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assignments as the latent positions of two induced block move
away from each other, i.e., two induced blocks tend to be more
separate, and Algorithm 2 can have better performance than
Algorithm 1.

Next we fix p ¼ 0:3; q ¼ 0:375 and consider b 2 f0:1; 0:15;
0:2; 0:25; 0:3g. For each b, we simulate 100 adjacency matri-
ces with 1000 vertices in each block and generate five-cate-
gorical covariate with 200 vertices having each value of Z
within each block. We then apply both algorithms (with b
and bb in Step 3 of Algorithm 2 respectively) using embedding
dimension bd ¼ 6 to estimate the induced block assignments.
Fig. 5(b) shows Algorithm 1 can only estimate accurate
induced block assignments when b is relatively small while
Algorithm 2 can estimate accurate induced block assignments
no matter b is small or large. Intuitively, as Algorithm 1

directly estimates the induced block assignments, when b is rel-
atively large, i.e., vertex covariates can affect block structure
significantly, it lacks the ability to distinguish this effect. How-
ever, Algorithm 2 can use additional information from vertex
covariates to estimate b, taking this effect into consideration
when estimating the induced block assignments. Again, the
overall performance of Algorithm 2 is better than that of
Algorithm 1.

B. Two-Block HomogeneousModel With One Five-Categorical
Covariate

We now consider the two-block homogeneous model with
one five-categorical covariate Z 2 f1; 2; 3; 4; 5gn, i.e., we have
the block connectivity probability matrix BZ 2 ½0; 1'10%10 with

Fig. 4. Correspondence between Chernoff analysis and simulations.

Fig. 5. Simulations for two-block rank one model with one five-categorical covariate, balanced case.
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the similar structure as in (7). Note that we can re-write B like
(3) as

B ¼ nnnn> ¼ a b
b a

! "
with nn ¼

ffiffiffi
a

p
0

bffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða)bÞðaþbÞ

a

q
" #

: (24)

With these canonical latent positions, the distance between
two induced blocks can be measured by

ffiffiffi
a

p
) bffiffiffi

a
p

, -2

þ 0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða) bÞðaþ bÞ

a

r !2

¼ 2ða) bÞ: (25)

We first fix b ¼ 0:1;b ¼ 0:2 and consider a 2 f0:12; 0:125;
0:13; 0:135; 0:14g. For each a, we simulate 100 adjacency
matrices with 1000 vertices in each block and generate five-
categorical covariate with 200 vertices having each value of Z
within each block. We then apply both algorithms (with b and
bb in Step 3 of Algorithm 2 respectively) using embedding
dimension bd ¼ 6 to estimate the induced block assignments.
Fig. 6(a) shows that both algorithms estimate more accurate
induced block assignments as the latent positions of two
induced block move away from each other, i.e., two induced
blocks tend to be more separate as measured by (25), and Algo-
rithm 2 can have much better performance. Recall that Algo-
rithm 1 tries to estimate the induced block assignments by
clustering the diagonal of bBZ and re-assigning the block assign-
ments including the vertex covariate effect. For the homoge-
neous model, the diagonal of BZ are all the same, which can
make it hard for Algorithm 1 to accurately estimate the induced
block assignments. But Algorithm 2 is not affected by the
homogeneous structure since it estiamtes the vertex covariate
effect first and then estimates the induced block assignments by
clustering the estimated latent positions like the canonical ones
in (24).

Next we fix a ¼ 0:135; b ¼ 0:1 and consider b 2 f)0:09;
)0:08;)0:07;)0:06;)0:05g. For each b, we also simulate
100 adjacency matrices with 1000 vertices in each block and
generate five-categorical covariate with 200 vertices having

each value of Z within each block. We then apply both algo-
rithms (with b and bb in Step 3 of Algorithm 2 respectively)
using embedding dimension bd ¼ 6 to estimate the induced
block assignments. Fig. 6(b) shows that both algorithms are
relative stable for this homogeneous model if we fix a and b,
due to the special structure. Still, Algorithm 2 can have much
better performance than Algorithm 1.

C. Connectome Data

We consider a real data example on diffusion MRI connec-
tome datasets [1]. There are 114 graphs (connectomes) esti-
mated by the NDMG pipeline [39] in this data set where
vertices represent brain sub-regions defined via spatial prox-
imity and edges represent tensor-based fiber streamlines con-
necting these sub-regions. Each vertex in these graphs also
has a {Left, Right} hemisphere label and a {Gray, White} tis-
sue label. We treat one label as the induced block and the other
one as the vertex covariate.

Each of the 114 connectomes (the number of vertices n
varies from 23728 to 42022) is represented by a point in Fig. 7
with x ¼ ARI(Algo2, LR))ARI(Algo1, LR) and y ¼
ARIðAlgo2;GWÞ ) ARI(Algo1, GW) where ARI(Algo1,
LR) denotes the ARI when we apply Algorithm 1 and treat
{Left, Right} as the induced block (with analogous notation
for the rest). We see that most of the points lie in the (+,+)
quadrant, indicating ARI(Algo2, LR) > ARI(Algo1, LR)
and ARI(Algo2, GW) > ARI(Algo1, GW). That is, Algo-
rithm 2 is better at estimating the induced block assignments for
this real application. Note that this claim holds no matter which
label is treated as the induced block. This again emphasizes the
importance of distinguishing different factors that can affect
block structure in graphs. Algorithm 2 is able to identify particu-
lar block structure by using the observed vertex covariate infor-
mation. That is, it is more likely to discover the {Left, Right}
structure after accounting for the effect of {Gray, White} label
and more likely to discover the {Gray, White} structure after
accounting for the effect of {Left, Right} label.

Fig. 6. Simulations for two-block homogeneous model with one five-categorical covariate, balanced case.
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D. Social Network Data

We also utilize three social network datasets to compare our
methods with several existing methods that also incorporate
vertex covariates and can be scaled to deal with relatively
large networks. Specifically, we compare with spectral cluster-
ing with adjacency matrix only (SCA) and covariates only
(SCC) [17], pairwise covariates-adjusted stochastic blockmo-
del via maximum likelihood estimation (PCABM.MLE) and
spectral clustering with adjustment (PCABM.SCWA) [15],
covariate-assisted spectral clustering (CASC) [14].

- LastFM asia social network dataset [2], [4]: there are
7624 vertices that represent LastFM users from asian
countries and 27806 edges that represent mutual fol-
lower relationships. We treat the location of users,
which are derived from the country field for each user,
as the induced block. For the vertex covariate, we focus
on the number of artists liked by users, which is discre-
tized into four categories {0–200, 200–400, 400–
600, 600+}.

- Facebook large page-page network dataset [2], [3]: there
are 22470 vertices that represent official Facebook pages
and 171002 edges that represent mutual likes. We treat
four page types {Politician, Governmental Organization,
Television Show, Company}, which are defined by Face-
book, as the induced block. For the vertex covariate, we
focus on the number of descriptions created by page own-
ers to summarize the purpose of the site, which is discre-
tized into two categories {0–15, 15+}.

- GitHub social network dataset [2], [3]: there are 37700
vertices that represent GitHub developers and 289003
edges that represent mutual follower relationships. We
treat two developer types {Web, Machine Learning},
which are derived from the job title of each developer,
as the induced block. For the vertex covariate, we focus
on the number of repositories starred by developers,
which is discretized into two categories {0–18, 18+}.

Table I summarizes the algorithms’ comparative perform-
ances. Algorithm 2 is better at estimating the induced block
assignments for all 3 datasets. This again suggests that we can
better detect the block structure after accounting for the infor-
mation contained in vertex covariates with our methods.
In real data, we may not have ground truth for the block

structure. Our findings suggest that we are able to discover
block structure by using observed vertex covariates, which
can lead to meaningful insights in widely varying applications.
That is, we can better reveal underlying block structure and
thus better understand the data by accounting for the vertex
covariate effect.

VI. DISCUSSION

We study the problem of community detection for SBMs
with vertex covariates. Specifically, we consider two model-
based spectral algorithms to assess the effect of observed and
unobserved vertex heterogeneity on block structure in graphs.
The main difference of these two algorithms in estimating the
induced block assignments is whether we estimate the vertex
covariate effect using the observed covariate information. To
analyze the algorithms’ performance, we employ Chernoff
information and derive the Chernoff ratio expression for
homogeneous balanced model. We also simulate multiple
adjacency matrices with varied type of covariates to compare
the algorithms’ performance via empirical clustering accuracy
measured by ARI. In addition, we conduct real data analysis
on diffusion MRI connectome datasets and social network
datasets. Analytic results, simulations, and real data examples
suggest that the second algorithm is often preferred: we can
better estimate the induced block assignments and reveal
underlying block structure by using additional information
contained in vertex covariates. Our findings also emphasize
the importance of distinguishing between observed and unob-
served factors that can affect block structure in graphs.
We focus on the model specified as in Definition 3 and

Remark 1 where indicator function is used to measure the ver-
tex covariate effect and identity function is used as the link
between edge probabilities and latent positions. We also inves-
tigate the flexibility of our models and algorithms by consider-
ing categorical vertex covariates. The extension from discrete
vertex covariates to continuous vertex covariates is under
investigation, for instance, via latent structure models [40].
The indicator function is used to measure the vertex covariate

Fig. 7. Algorithms’ comparative performance on connectome data.

TABLE I
ALGORITHMS’ PERFORMANCE ON SOCIAL NETWORK DATA VIA ARI
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effect for binary and generally categorical vertex covariates
under the intuition that vertices having the same covariates are
more likely to form an edge between them and different func-
tions can be adopted for the continuous vertex covariates fol-
lowing the similar intuition. For example, similarity and
distance functions can be chosen according to the nature of dif-
ferent vertex covariates to measure how they can influence
graph structure. One other extension is to replace the identity
link with, say, the logit link function. The idea of using Chern-
off information to compare algorithms’ performance can be
adopted for all the above generalizations and numerical evalua-
tions can be obtained in the absence of closed-form expres-
sions, which in turn can reveal how graph structure will affect
our algorithms and provide guidelines for real application.
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