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ON BIRATIONAL BOUNDEDNESS OF FOLIATED SURFACES

CHRISTOPHER D. HACON AND ADRIAN LANGER

ABSTRACT. In this paper we prove a result on the effective generation of pluri-canonical
linear systems on foliated surfaces of general type. Fix a function P : Z>o — Z, then there
exists an integer N > 0 such that if (X,.%) is a canonical or nef model of a foliation of general
type with Hilbert polynomial x (X, Ox(mKz)) = P(m) for all m € Z>, then |mK #| defines
a birational map for all m > N.

On the way, we also prove a Grauert-Riemenschneider type vanishing theorem for foliated
surfaces with canonical singularities.

INTRODUCTION

In recent years a powerful theory for the birational classification of foliated algebraic
surfaces has been developed by Brunella, McQuillan and others (see [McQO8], [Br15] and
references therein). This theory extends the classical results of the birational classification of
algebraic surfaces in terms of their canonical bundle to the case of foliated surfaces in terms
of the canonical bundle of their foliation K 2. This classification is particularly precise for
foliated surfaces of non-maximal Kodaira dimension x(K#) < 2. In the case of maximal
Kodaira dimension k(K4 ) = 2, by work of Brunella and McQuillan, it is known that smooth
foliated surfaces with canonical singularities admit unique minimal, nef and canonical mod-
els. In light of the existence of canonical models, one may even hope that there is a well
behaved moduli functor for these canonical models of general type. Note however that by
a result of McQuillan, for any canonical model (X,.#) with cusp singularities, K & is not a
Q-Cartier divisor. In particular, the canonical rings R(K #) of canonical models (X,.%) with
cusp singularities are not finitely generated or equivalently K & is not ample. Therefore, if
such a moduli functor exists, it is expected not to be algebraic.

With a view to further understanding the birational geometry of foliated surfaces of general
type and in particular issues related to the existence of a moduli functor, the first most natural
question to address is the boundedness of this functor. To this end we ask the following

CONIECTURE 0.1. For any integer valued function P : 7>y — 7, does there exist an integer
mp such that if (X, F) is a canonical model of a complete foliated surface with kod(.F ) = 2
and (X, Ox(mK z)) = P(m) for allm > 0, then for all m > 0 divisible by mp, |mK z | defines
a birational map which is an isomorphism on the complement of the cusp singularities?
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Notice that as observed above, mK 2 is not Cartier at the cusp singularities and hence these
singularities are necessarily contained in the base loci of |mK 4| for all integers m > 0. In
this paper, we prove an important first step towards this conjecture (see Theorems 3.6 and
4.3).

THEOREM 0.2. For any integer valued function P : Z>o — Z, there exists an integer mp such
that if (X,.%) is a canonical or a weak nef model (see Definition 3.1) of a complete foliated
surface with kod(.#) =2 and x(X,0x(mK z)) = P(m) for all m > 0, then for all m > mp,
|mK # | defines a birational map.

As an immediate consequence, following [Per02], we have

COROLLARY 0.3. For any integer valued function P : Z>o — Z and any integer g > 0,
there exists an integer d > 0 such that if (X,.7) is a weak nef model of a complete foliated
surface with kod(#) =2 and x(X,0x(mK %)) = P(m) for all m > 0, and if (X, %) has a
meromorphic first integral whose general fiber has geometric genus g, then the general leaf
C has bounded degree C-K z < d.

Proof. The proof is identical to the one in [Per02]. We include a sketch for the convenience
of the reader. Let f : X’ — X be aresolution such thatif %’ = f*.%, then there is a morphism
to a curve g : X’ — B where Tz = ker (Tys — g*Tp). Notice that K g/|c» = K¢ and we have
a surjection Oy:(mK z1) — Oc(mKer), where C' is a general fiber of g. Since h%(mK¢) =
(2m—1)(g—1) for m > 2 and h°(mK z/) = %mz + O(m), it follows easily that there
exists an integer mg (depending only on P and g) such that |moK z — C’| is non-empty.
Let C = f(C’). Then |moK # — C| is also non-empty and as K z is nef, we have Kz -C <
mOKzg;. 0

We remark that even though the hypothesis x (X, Ox(mKz)) = P(m) for all m > 0 is very
natural from the point of view of moduli spaces, one could hope that (analogously to the case
of SLC models cf. [HMX18]), the behaviour of pluricanonical maps is determined simply
by the volume vol(K #). It would also be interesting to understand the structure of the set of
canonical volumes. The most natural question is.

Question 0.4. Let V = {vol(K#)} where (X,.%#) are canonical models of foliated surfaces
of general type. Is V well ordered and in particular does it admit a positive minimum?

Next we recall an example (which was communicated to us by F. Bernasconi [Ber19])
which shows that the set V is not discrete and in fact it has accumulation points from below.
Jouanolou’s foliation. Let _# be the Jouanolou’s foliation on P? defined by the vector field
on C3\ {0} given by

d d d
=z — 4 x4yl
Th T oy T oz

A direct computation shows that _#,; has reduced singularities, K s, = Op2(d — 1) and the
automorphism group of the foliation is the following (see [J079, p. 160-162])

Aut( Z4) =7/(d* +d+1)ZxZL/3Z
and is generated by
T(X:Y:Z)=[Y:Z:X], w(X:Y:Z)=[X:¢r:{%"7]
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where ( is a primitive (d2 +d + 1)-th root of unity. Ford > 2, ¢, is a foliation on P? with
ample canonical class and we consider the quotient of P> by the cyclic group generated by
y
fa: (P, _24) = (X, Fa).-

The foliation .%, is singular with reduced singularities at f;(Sing(_#;)) and with terminal
singularities at the points f4([1:0:0]), fz([0:1:0]), and f4([0: 0:1]). Since K 5, = f; K7,
the foliation .%, has ample canonical class and

d—1)* _1
ﬁ > -, and nylig;K;\d =1.
In particular we see that the set V is not discrete and in fact 1 is an accumulation point from
below.

Finally, we prove a Grauert-Riemannschneider type vanishing theorem for foliated sur-
faces with canonical singularities (see Theorems 6.1 and 6.2).

1>K5 =

THEOREM 0.5. Let f: (X,.%) — (Y,9) be a proper birational morphism of foliated surfaces
with only canonical singularities, then

(1) fuOx(mKz) = Oy(mKg) for allm > 0,

() R'f.Ox(Kz) =0, and

(3) if Kz = f*Ky, then R' f,Ox(mK z) = 0 for all m # 0.

As a consequence we see that the Hilbert function y (X, Ox (mK #)) of the canonical model
determines the Hilbert function of any almost minimal model (in the same birational class).
It is natural to ask if similar results hold in higher dimensions. In particular we ask:

Question 0.6. Let f: (X,.7) — (Y,%) be a proper birational morphism of foliated varieties
with only canonical singularities, then does R’ f, Ox (K &) vanish for all i > 0?

Notation. All varieties and spaces in this paper are defined over the complex numbers. Un-
less stated otherwise, by a surface we mean a 2-dimensional algebraic space. We will work
exclusively with complete normal algebraic spaces of finite type over C and with their lo-
calizations at closed points x € X. Occasionaly, we will consider the analytic germ of an
algebraic space at closed points x € X.

1. PRELIMINARIES

1.1. Normal surfaces. In this subsection we recall several basic results on normal surfaces
that will be used throughout the paper. When considering canonical models of foliations we
will necessarily need to work with algebraic spaces. However, in many cases such surfaces
will be projective due to the following basic result of Artin (see [Ar62, Theorem 2.3]).

THEOREM 1.1. Let X be a normal complete surface with at most rational singularities. Then
X is projective.

Proof. For any X as above there exists a proper birational morphism ¥ — X from a smooth
projective surface Y (see [Kol07, Corollary 3.43]). So the assertion follows from the last part
of [Ar62, Theorem 2.3]. U
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COROLLARY 1.2. Let (X,.F) be a complete foliated surface with canonical singularities
such that K & is Q-Cartier, then X is projective.

Proof. By McQuillan’s classification of canonical singularities (see [McQOS8] or the discus-
sion in §2), we know that all such singularities are rational. The statement now follows from
Theorem 1.1. U

1.1.1. Intersection theory on normal surfaces. Here we recall Mumford’s intersection pair-
ing on normal surfaces (see, e.g., [Sa84, Section 1]) and some of its basic properties.

Let Y be a normal complete surface. Let f : X — Y is a proper birational morphism from
a smooth surface X and let C =} ; C; be the exceptional divisor of f. If D is a Weil R-divisor
on Y then we define f*D as f. ' D+ Y x;C;, where £ D is the strict transform of D and x; are
the unique real numbers such that (" !D + ¥ x;C;)-C s =0for all j. If D; and D, are Weil
R-divisors on Y we define their intersection number by Dy - D, = (f*Dy) - (f*D;). In case
D is a Cartier divisor and D; is a curve, Dy - D, agrees with the degree of the line bundle
Op,(D1).

We say that D; and D, are numerically equivalent and write D; = D, if for every Weil
divisor C we have D|-C = D, - C. It is sufficient to check this equality in case C is an
irreducible curve.

Note that once we define the intersection pairing on (complete) normal surfaces we can
also define the pull-back f*D for any proper birational morphism f of normal surfaces and
any Weil R-divisor D (see [Sa84, Section 6]).

For any pseudo-effective R-divisor D on a complete normal surface, we define its Zariski
decomposition D = P4 N where P, N are the unique R divisors satisfying

(1) P is nef,

2) N = Zé{:l n;N; where n; > 0, and the N; are prime divisors such that the intersecion

matrix (N; - N;) is negative definite, and

3) P-N;=0forl1 <i<k.
The existence of the Zariski decomposition is standard for projective surfaces. In general,
one can prove the existence of a Zariski decomposition following the proof given in [Sa84,
§7] for complex analytic surfaces. Alternatively one can argue as follows. Let f: X — Y be a
resolution such that X is projective and let P’ + N’ be the Zariski decomposition of f*D. We
set P= f,P' and N = f,N'. Since P is nef, it is easy to see that P" is nef and P' — f*P = —E
where E is an effective, exceptional Q-divisor. Let N = f,N’, then N' = f*N + E. Since
the intersection matrix of N’ is negative definite, it follows that E 2 <0 unless E = 0. Since
E >0 and —E is relatively nef, we have E = 0. Thus N’ = f*N and it follows easily that the
intersection matrix of N is negative definite. Finally, for any component N; of N, we have
P-N;= f*P-f*N;=P'- f*N; = 0 since f*N; is a sum of components of N’ and these intersect
P = f*P trivially.

We need the following version of the Hodge index theorem.

LEMMA 1.3. If D and D, are Weil R-divisors on Y such that (a;D; +a>D5)* > 0 for some
ay,ar € R, then

DiD3 < (D;-D,)?
with equality if and only if some nonzero linear combination of D and D, is numerically
equivalent to 0.
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Proof. The assertion is well known in case Y is smooth (see, e.g., [Re93, D.2.2]). In general,
the assertion follows immediately by passing to the resolution of singularities. U

LEMMA 1.4. Let Y be the localization algebraic surface at a closed pointy €Y. Let f :
(Y,C) — (Y,y) be a resolution of a rational surface singularity and let L| and Ly be line
bundles on Y. If for every irreducible component C; of C we have Ly -C; = L, - C;, then L;
and Ly are isomorphic. In particular, we have ( f.L)** ~ (f.Lp)*™".

Proof. Our assumptions imply that (L; ® L, 1) -C; = 0 for every irreducible component C; of

C. So by [Ar62, Corollary 2.6] we have L1 ® L, I Oy (the assumptions of this corollary are
satisfied, as the condition (a) of [Ar62, Theorem 2.3] holds trivially for rational singularities).
O

1.1.2. Cyclic quotient singularities. Let (Y,y) be a cyclic quotient singularity of type %(1,q)
for some relatively prime positive integers n > 2 and 1 < g < n. So locally analytically
0 _ e 0
(Y,y) = (C#,0)/G and G = << 0 gd
C? — Y be the quotient map and let f : (X,C) — (Y,y) be the minimal resolution of (Y,y).
The exceptional divisor C = U;: 1 Cj is a Hirzebruch—Jung string, i.e., it consists of smooth
rational curves C; such that C? < =2, C;-C; = 1if |i— j|=1and C;-C; = 0'if |i — j| > 1.
The irreducible representations of G are given by the characters ); defined by sending the
chosen generator of G to €' for i =0, ...,n — 1. Each character ; : G — C* = GL(1,V) gives
rise to a reflexive sheaf .4} = (U, Oz @c V)C, where G acts on W, 02 @cV by g(f @v) =
g(f)® (xi(g))(v). Another choice is to consider sheaves .%; defined as the i-th eigensheaves
of the action of G on U, Oz (cf. [Re85, 8.3]), i.e., .Z; is a subsheaf of u,0r formed by
sections f on which the generator of G acts by multiplication by &. These two choices are
related by equality 4] = .Z,_; = .Z/".
Let us write the continued fraction expansion

)>, where € is a primitive n-th root of 1. Let u :

where b; are integers > 2. It is well known that CJZ- =—bjforj=1,..,r.
The following theorem is the main result of [Wu85].

THEOREM 1.5. Let sy, ...,s, be positive integers defined recursively by so :=n, s| = q and
sji=bj 15j1—5j 2 for2< j<r. Forevery(<i<n-—1 there exist uniquely defined
non-negative integers dy,..., d, such that

i=disi+1, 0<n <sy,
ti=dj1sjr1+tjp1, 05t <sjp, 1<j<r-—1

Let M; = f*.N;/torsion. Then #; is a line bundle with #;-Cj=d, for j=1, ..., r.

1.1.3. Riemann—Roch theorem on normal surfaces.
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THEOREM 1.6. Let Y be a normal complete surface and let D be a Weil divisor on Y. Then
there is a formula

1
2(Y,0y(D)) = 5(D* =Ky -D)+ 1 (Y, 0y) + ), a(»D),
yeSing Y
where a(y, D) is a local contribution of Oy (D) at 'y depending only on the local isomorphism
class of the reflexive sheaf Oy (D) at y.

In case Y has only quotient singularities this follows from [Re85, Corollary 8.6]. In gen-
eral, the theorem follows from [La00, Section 3]. Although [La00] assumes projectivity,
none of the proofs use this assumption and the above theorem holds more generally for nor-
mal complete surfaces. Nevertheless, in all the cases that we use the above theorem the
surface is in fact projective. Let us recall that a(y, D) can be computed in the following way.
Let f: (X,C) — (Y,y) be any resolution of the normal surface singularity and let D be any
divisor such that f,D = D. Let c{(y, D) be the unique Q-divisor supported on the exceptional
locus C of £ such that ¢ (y,D) - C; = deg O, (D) for all exceptional curves C;. Let us set

x(y, Ox (D)) = dim (&y (D)/ f.0x (D)), +dim (R' f.Ox(D))y.
By [La00, Definition 2.7] and [La00, Proposition 2.8] we have
1 ~ ~ ~ .
(D a(y7D) = Ecl(%D)(cl(va) _cl(y7KX)) +X(y7 ﬁX<D)) _dlm(le*ﬁX)y'
In particular, if D is a Cartier divisor at y then a(y, D) = 0.

In case (Y,y) is a cyclic quotient singularity of type %(1,(1), the local contributions a(y, %)
for reflexive sheaves of type .Z; were computed in [La00, Example 5.6] and for 0 <i <n we

have
) i(n—
a(y,-%-):%(zc_j— ( 5 1)>,

where ¢ denotes an integer such that gc = —1 modn and X denotes the remainder from
dividing x by n. Let us remark that @y is of type £ 11, so by [La00, Proposition 2.10] we
have

n—1
2n

1.1.4. Modified Euler characteristic. Let f: X — Y be a proper birational morphism be-
tween normal complete surfaces. Similarly as in Subsection 1.1.3, for a Weil divisor D on X
and a point y € Y we can consider

2(y,6x(D)) = dim 6y (f.D)/ f.Ox(D))y+dim (R' . Ox (D).

For simplicity we omit f in the notation as it is implicitly contained in the fact that D is a
divisor on X. We also set

a(y7$q> :a(%gl) ==

x(f,0x(D)) =Y x(y,Ox(D)).

yeY
Then the Leray spectral sequence implies the equality

x(X,0x(D)) = x(Y, 0y (f.D)) — x(f, Ox(D)).
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Let f: X — Y and g : Y — Z be proper birational morphisms between normal complete
surfaces. Applying the above equality to f, g and g o f we obtain

x(gof,0x(D)) = x(f,O0x(D))+x(g, Ov(fD)).
This equality has an obvious local analogue that can be proven using the Leray spectral
sequence:
x(z,0x(D)) = x(z, 0y (f.D)) + Zi x(y, Ox(D)).
yef~'(2)

1.1.5. Adjoint linear systems on normal surfaces. Let us recall the following special case of
[LaO1, Theorem 0.1, (0.3.2), and Remark (3), p. 60].

THEOREM 1.7. Let L be a pseudoeffective divisor on a normal complex projective surface
Y. Let L= P+ N be the Zariski decomposition of L and let { be a O-dimensional subscheme
of Y contained in its smooth locus. If P*> > 4deg { and the restriction H*(Y, Oy (Ky + L)) —
O¢(Ky + L) is not surjective then there exists a curve C containing  and such that P-C <
2deg{.

Let us remark that the proof of the above theorem uses existence of ample divisors on Y,
so it is not sufficient to assume that Y is a normal complete surface.

1.2. Birational geometry of foliated surfaces. We refer the reader to [McQO8] and [Br15]
for a detailed account of results on the birational geometry of foliated surfaces. Unfortu-
nately, [Br15] deals only with smooth surfaces and [McQO8] does not contain the definitions
that would suit our presentation, so we collect a few of the notations, definitions and results
that will be most important for us.

A foliation on a normal surface X is a rank 1 saturated subsheaf 7's of the tangent sheaf
Tx. A singular point of a foliation is either a singular point of X or a point at which the
quotient Tx /T is not locally free. Note that our definition implies that .% has only isolated
singularities.

A foliated surface is a pair (X,.%#) consisting of a normal surface X and a foliation ..

Note that T is reflexive as it is isomorphic to Homg, (Qx, Ox). Therefore Tz is also
reflexive and we can define the canonical divisor K & of the foliation as a Weil divisor on X
satisfying Ox (—K ) ~ Tz. In particular, we have Ox(Kz) ~T.

If f:Y — X is a proper birational morphism of normal surfaces and .# is a foliation
on X then we can define the pull-back foliation f*.# as follows: let U C X be the largest
open subset such that V := f ’I(U ) — U is an isomorphism and set f*.% to be the unique
saturated subsheaf of Ty such that (f*.#)|y = Z|y C Ty. If ¢ is a foliation on Y then we
can also consider the push-forward foliation f,%¥ by taking the saturation of the image of the
composition

[Ty — [Ty — (f*TY)** =Tx.
Let us note that f*f,% =¥ and f.f*% = .#. These equalities follow from the following
easy lemma.

LEMMA 1.8. Let X be a normal irreducible algebraic space of finite type over some field
and let 1 be the generic point of X. Let %1 and %, be saturated subsheaves of a torsion free
coherent sheaf & on X. If (F1)n = (F2)n C &y then F1 = .F, C &.
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Proof. By assumption the canonical map .#; — & — & /%, is zero at the generic point
n. Since both .#| and &/.%, are torsion free, this map is zero everywhere. Therefore
F1 C Fy C &. Similarly, #, C % C &, which implies the required assertion. d

The following definition follows [McQO8, I.1.2 and Fact 1.2.15].

Definition 1.9. Let (X,.%) be a foliated normal surface and let f : ¥ — X be a proper bira-
tional morphism. For any divisor E on Y we define the discrepancy of % along E

aE(?) = OrdE(Kf*gz —f*ng),

where f*K 4 is defined as in §1.1.1. We say that x is a canonical point (resp. a terminal
point) of (X,.F) if ap(.F) > 0 (resp. ag(-#) > 0) for every divisor E over x.

Note that unlike in the case of canonical singularities of normal surfaces, K # need not be
Q-Gorenstein at a canonical point of (X,.%#) and cusps provide examples where K & is not
Q-Gorenstein (see [McQO08, Theorem 1, I11.3.2]).

If i%(mK z) > 0 for some m > 0, then we let ¢, : X --» PV be the m-th pluricanonical
map defined by the sections of H’(mK 7). The Kodaira dimension of .7 is defined by

kod(.#) = k(K ) = max{dim ¢,,(X)|m € N}

where by convention we let kod(.%) = —oo if h%(mK ) = 0 for all m > 0. We say that .% is
of general type if kod(.#) = dimX. It is well known that .% is of general type if and only if
K 7 is big or equivalently vol(K ) = lim,, . h'°(mK 7 )d!/m? > 0, where d = dimX.

Definition 1.10. A foliated surface (X,.%) is called a canonical model if .% is a foliation
with canonical singularities on a complete normal surface X, Kz is nef and Kz -C =0
implies C? > 0 for any irreducible curve.

LEMMA 1.11. Let (Y,¥9) be a canonical model. Ifkod(¥) = 2 then Ky is numerically ample,
ie., Ké > 0 and Ko - C > 0 for every irreducible curve C on'Y.

Proof. Let us assume that Ko - C = 0 for some irreducible curve C. By the Hodge index
theorem (see Lemma 1.3) we have

KZC* < (Ky-C)*=0.

Since Ké > 0 this implies C> < 0. Since (¥,%) is a canonical model, this implies C> = 0.
Then again by the Hodge index theorem the class of C is proportional to the class of K.
Since Ké > 0 this implies that C is numerically trivial, which gives the required contradic-
tion. U

Let X be a complete normal surface X and let .% be a foliation with canonical singularities.
If K #z is pseudoeffective then by [McQO8, Theorem 1, I11.3.2] there exists a proper birational
morphism f : X — Y to a normal complete surface Y such that (Y,% = f,..%) is a canonical
model.

LEMMA 1.12. Let f: (X, F) — (Y,9) be a proper birational morphism of complete foliated
surfaces with canonical foliation singularities. If K z is nef then Ky is nef and Kz = f*Kqy.



ON BIRATIONAL BOUNDEDNESS OF FOLIATED SURFACES 9

Proof. Note that equality K& = f*Ky and nefness of Kz imply nefness of Ky, so it is
sufficient to prove this equality. Since (¥,¥) has canonical singularities, we have Kz =
f*Ky + E where E is an effective and exceptional (Q-divisor. Since K4 is nef we have
Kz-E>0.ButKz E=E?<0,s0E? =0, which implies E = 0. O

THEOREM 1.13. Let (X,.%) be any foliation with at most canonical singularities. If K #
is nef and big then there exists a unique morphism f : (X, %) — (X', #") such that K3 =
f*Kgrand (X', F') is a canonical model.

Proof. The existence of f: (X,.7) — (X',.7") is proved in [McQO08, Theorem 1 I11.3.2]. By
Lemma 1.12 we have Kz = f*K z/. Suppose that g: (X,.%) — (X”,.Z") is also a morphism
to a canonical model, then f*K 5 = K4 = g*K #» where both K 2+ and K z» are numerically
ample (see Lemma 1.11). Suppose that C is a curve on X. Then C-Kz = f.C-Kg =
g«C-Kzn and so C is contracted by f if and only if C- Kz = 0, i.e. if and only if C is
contracted by g. Since X’ and X" are normal varieties, it follows that in fact X’ = X”. O

2. CONTRIBUTIONS TO THE RIEMANN—ROCH FOR CANONICAL FOLIATION
SINGULARITIES

In this section we use classification of canonical foliation singularities and we compute the
corresponding contributions to the Riemann—Roch formula (see Subsection 1.1.3). Unfortu-
nately, the current classification as described in [McQO8] describes only canonical singulari-
ties appearing on canonical models of complete foliated surfaces (Y,¥) with pseudoeffective
K. In general, the classification is the same and can be done using McQuillan’s ideas but
the proof requires some additional work and we will deal with it in another paper. Since in
this paper we study canonical models of general type, we will use McQuillan’s classification
without further mentioning this fact.

Let us also remark that the known classification provides only formal description in the
Q-Gorenstein case (see [McQO8, Warning 1.2.7]). However, Q-Gorenstein singularities of
foliations occur only at quotient singularities. At such singularities (Y,%,y) the local type of
the reflexive sheaf Oy (Ky) at y is determined by the formal description, so in these cases we
will ignore the fact that the description is only formal.

2.1. Terminal singularities. Let (Y,%,y) be a terminal foliation singularity. Such a singu-
larity is obtained by contracting an .% -chain on a foliated surface (X,.%#,C) such that X is
smooth and .% has only reduced singularities. Let us recall that an .% -chain is a Hirzebruch—
Jung string C = |JG; satisfying Kz -Cy = —1 and Kz -C; = 0 for i > 1. In particular, the
obtained singularity of Y is cyclic of type %(1,(1) for some pair of coprime integers (n, g) with
0 < g <n (cf. §1.1.2). Therefore terminal foliation singularities are rational and QQ-factorial.

LEMMA 2.1. Ty is locally isomorphic at y to the reflexive sheaf £, _,. Moreover, we have
an isomorphism Tg ~ [*Ty [torsion.

Proof. By Theorem 1.5 the line bundle .#, = f*.4;, /torsion has the same intersections with
C; as T#. To see this, recall that s)o = n and s1 = ¢. Since g = d;s1 +1; it follows that d; =1
and #; = 0. It is then immediate thatt; =d; =0 for i = 2,...,r. So Lemma 1.4 implies that
Tz and f*Ty /torsion are isomorphic line bundles and Ty = (f.T#)** is locally isomorphic
to fully = Ny = Z,—4 on aneighborhood of y. O
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COROLLARY 2.2. We have Oy(mKy) = Lz where X denotes the reminder of dividing x by

n—1

n. In particular a(y,Ky) = —"5.-.

Proof. By Lemma , we have 0y(Ky) = £, and hence Oy (mKy) = ZLyg. The claim now
follows from §2.1. O

Remark 2.3. The above lemma is a slightly stronger version of [McQOS8, Corollary 1.2.2],
which implies that the foliation ¢ is locally formally isomorphic to the quotient of a smooth
foliation on (C2,0) by the cyclic group G, whose generator acts by (x1,x;) — (€x1,€%xy). If
V= Ota%1 +B aixz is the vector field generating a smooth fibration on (C?,0) then it transforms

under the generator of G to v/ = ate™! 8%1 +Be? 3%2 and the assertion that the corresponding

foliation is invariant under G is equivalent to the condition v AV = 0. If ¢ = 1, any non-zero
v as above is G-invariant and it gives rise to a sheaf of type .Z7. However, if ¢ # 1 then we
get the condition a8 = 0. So the corresponding foliation corresponds to either 8%1 or aixz In
the first case the tangent sheaf of the foliation is locally isomorphic to .Z,_1. By the above
lemma this case does not occur if we have an .# -chain. Thus we are in the second case and
¢ corresponds to aixz

2.2. Canonical non-terminal Q-Gorenstein singularities.

PROPOSITION 2.4. Let (Y,9,y) be a canonical foliation singularity, which is Q-Gorenstein
but it is not terminal. Then one of the following holds:

(1) ¢ is Gorenstein and a(y,mKy) = 0 for all m, or
(2) ¥ is 2-Gorenstein and

_ 0  formeven,
a(y,mKy) = { —1 formodd.

Proof. By [McQO8, Fact 1.2.4] we know that (Y,y) has either a cyclic quotient singularity or
a dihedral quotient singularity. The first case corresponds to cases (a)—(d) in [McQOS8, Fact
1.2.4] and in these cases ¢ is Gorenstein so we are in case 1 of the proposition. In the second
case the assertion follows from Lemma 2.5. U

LEMMA 2.5. Let (Y,¥,y) be a canonical foliation singularity and assume that Y has a
dihedral quotient singularity at y. Then for any integer m we have

0 formeven,

a(y,mKg) :{ _% for m odd.

Proof. In the notation of [McQOS8, Fact 1.2.4] let us consider a dihedral quotient singular-
ity (Y,y) = (C?,0)/G, where G C GL(2,C) is a certain dihedral type group of order 4n,
that does not contain any pseudoreflections. It is sufficient to show that 2Ky is Cartier and
a<y ) ch) = _%'

Let us consider case (e’). In this case G C GL(2,C) is generated by

a_82n0 G—Oi
“Lo e ) °Tio)
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where p is a certain integer such that p = —1 mod 2%m and p =1 mod [, the integers [,
m are odd and relatively prime and 2n = 2%/m. In this case the foliation ¢ comes from a
G-invariant foliation on C? generated by the vector field

d d
d=(1 Mx=——(1 —(xy)))y=—
(14 9(() g~ (10— () )y
where @ vanishes at 0. Then one can easily check that G acts on this vector field via
=0 and 09°=-0.
This shows that Ty is the rank 1 reflexive sheaf on (Y,y) associated to the order 2 character
X : G — C* defined by
x(a)=1 and yx(o)=-—1.

In particular, the foliation ¢ is 2-Gorenstein but it is not Gorenstein.
By [La00, Theorem 5.4] we have

( . (K )) 1 Z ] 1 2n—1 1 1 2112:1 1
aly,0y(Kg)) = = —_— = _ = -
TGl g det(l=g) 20 Sy det(l—oa))  2n =y gprl
Let us recall that p2 =1 mod 2n. Therefore ngrl)j = 8271(17 —i ng —1J .
ZnZI 1 —2}’121 1 —2}’121 1 _2}’121 1
P = B = I B = B
Hence i)
2n—1 2n—1 2n—1 p+1)j
1 1 1 &
— T =3 — +t — | =n.
It follows that !
aly, 0y (Kg)) = =3,

Now let us consider the case (€”). In this case G C GL (2,C) is generated by

. &, 0 c— 0 SZZI . 0 Ea+1
N0 g ) T \egr 0 ) g 0)

where p is a certain integer such that p =1 mod2% a > 2, p=1 mod!/ and p = —1
mod m, the integers [/, m are odd and relatively prime and 2n = 2%Im.

In this case the foliation ¢ comes from a G-invariant foliation on C? generated by the
vector field 3

_ 2471 i _ ()2,
9= 1+o()” gz —I+e(=)" Dbz,
where ¢ vanishes at 0. Then one can easily check that
=0 and 0°=-9.

So, as above, Ty is the rank 1 reflexive sheaf on (Y,y) associated to the character ) : G — C*
defined by

x(a)=1 and yx(o)=-1.
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Similarly to the previous case we have

1 2n—1 1 1 2n—1 1
2n

a(y, O0y(Kg)) = = )3 (P Dgml
2n

2n & det(1—oa) =R

(

As before we have 825+1)j = 82_,1(17 D7 and a(y, Oy(Kyg)) is real, so we have

2n—1 1 2n—1 1 2n—1 1 2n—1 1
) D—— -y 1y .
=0 1_82(5+1)]+ml = 1_82—n(p—1)j+ml = 1_82(5—1)]—ml = 1_82—n(p+1)]_ml
Therefore

2n21 1 1 1 +2n21 82(5+1)j+ml

— = | ———— — | =n

fr 82(5+1)]+ml 2\ 82(Z—i-l)j—i-ml = 82(5+1)]+ml 1

and we get
1

a(y,0y(Kyg)) = —5

2.3. Canonical non-Q-Gorenstein singularities.

PROPOSITION 2.6. Let (Y,9,y) be a canonical foliation singularity and assume that 4 is
non-Q-Gorenstein at y. Then for any integer m we have

k) ={ O T Zd

Proof. By [McQO8, Theorem III.3.2] Y has a cusp singularity with K & - C; = 0 for all i. Here
f:(X,C)— (Y,y) is the minimal resolution and .% = f*¥. Since Ky = f.K 4 as divisors,
this implies K = f*Ky. By [McQO8, Theorem 1V.2.2] the divisor Kz is not Q-Cartier, so
the assertion follows by applying Lemma 2.7 to mKy. U

Let f: (X,C) — (Y,y) be the minimal resolution of a cusp singularity. Let us set Z =
Y./_; G, the sum of all exceptional curves. Then Ky = f*Ky —Z = —Z as Y is Gorenstein at

.
LEMMA 2.7. Let D be a Weil divisor on Y such that f*D-C; =0 for all i. Then

{ 0 if D is Cartier,

a0:D)Y= 1 ifD is not Cartier

Proof. By assumption we have c|(y, f*D) = 0. Moreover, f,.Ox(f*D) = Oy(D) by Sakai’s
projection formula (see [Sa84, Theorem 2.1]). So by formula (1) we have

a(y,D) = 1y, Ox(f"D)) = X(y, Ox) = dimR' £.Ox (f"D) — 1.
If D is Cartier then Ox (f*D) ~ Ox and the assertion is clear. So in the following we assume
that D is not Cartier.

Let us note that R! f, Ox(f*D—2Z) = le*ﬁX(KX + f*D) =0 (see, e.g., [Sa84, Theorem
2.2]). Using the short exact sequence

0— Ox(f'D—2Z) — Ox(f*D) — Oz(f*D) — 0,
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we get an isomorphism R! f, Ox (f*D) ~ H'(Z, O7(f*D)). Note that H' (Z, O7(f*D)) is dual
to HY(Z,07(Kz — f*D)) = H(Oz(—f*D)). By assumption D is not Cartier, so by [Sa84,
Theorem 4.2] Oz(f*D) # 0.

Assume that H*(0z(—f*D)) # 0. Then we have a nontrivial map ¢ : &7 — Oz(—f*D).
Let F denote its image. If the support of F is equal to C, then the kernel of ¢ is trivial.
But since the Hilbert polynomials of &z and 0z(—f*D) are the same (with respect to any
ample polarization), the cokernel has trivial Hilbert polynomial. But the cokernel of ¢ is a
torsion sheaf, so it must be 0 and ¢ is an isomorphism, a contradiction. This proves that
there exists an exceptional curve C; not contained in the support of F' but intersecting it non-
trivially. But then @|¢, : Oc, = Oc,(—f*D) factors through the torsion sheaf Fc,, so it is the
zero map. Now let us restrict @ to the curve C; intersecting C; and contained in the support
of F. Then @|c, : Oc; — Oc;(—f*D) = O, vanishes at the point C; NCj, so it must also be
the zero map. But (p|cj is a composition of the surjection O¢; — Fc; and a generic injection
Fc; = Oc;(—f*D), a contradiction.

This implies that H(&z(—f*D)) = 0 and hence we have R! f, Ox(f*D) = 0, which im-
plies the required equality. U

3. BIRATIONAL BOUNDEDNESS OF WEAK NEF MODELS

Definition 3.1. A normal complete foliated surface (Y,%) is called a weak nef model if the
following conditions are satisfied:

(1) ¢ has at most canonical singularities,
(2) at singular points of Y the foliation ¢ has only terminal singularities,
(3) Ky is nef.

Let us note that by Theorem 1.1 every weak nef model is projective. By the proof of [Br15,
Proposition 5.1] and by [Br15, Theorem 8.1] if (X,.%) is a smooth projective surface and .%
has only reduced singularities then there exists a morphism (X,.#) — (¥,¥) to a weak nef
model (and such that ¢ has only reduced singularities on the smooth locus of Y). Therefore
every birational equivalence class of foliations on normal surfaces contains at least one weak
nef model. Let us remark that birational equivalence classes of foliations tend to contain
many weak nef models. This follows from the fact that a blow up of a weak nef model at a
point where the surface is smooth but the foliation is singular, is still a weak nef model.

Definition 3.2. Let Y be a normal complete surface. The index i(Y) of Y is the smallest
positive integer m such that for every Weil divisor D on Y its multiple mD is Cartier (if Y is
not Q-factorial, then we set i(Y) = o). The index i(¥) of a foliation ¢4 on Y is the smallest
positive integer m such that mKy is Cartier (if Ky is not Q-Cartier, then we set i(¥) = ).
The Q-index ig(%) of a foliation ¢ on Y is the smallest positive integer m such that mKy is
Cartier at all Q-Gorenstein points of the foliation.

PROPOSITION 3.3. Let us fix a function P : Z>y — Z. Then there exist some constants By, By
and B3 (depending only on P) such that if (Y,9) is a weak nef model with Hilbert function
x(Y,0y(mKy)) = P(m) for all m € Z>o then K = B\, K¢ - Ky = B, and (Y, Oy) = Bs.
Moreover, there exists some constants C1 and Cy such that the number of singularities of Y
is < Cy and the index of Y is < C;.
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Proof. By Theorem 1.6 we have

1
P(m) = % (Y, 0y (mKg)) = smKy(mKyg —Ky) + 1 (Y,0v) + ), a(y,mKy).
yeSing Y

If P is fixed then since Ké is the quadratic term and K« - Ky is the linear term of P, both of
them are fixed. Since x (Y, Oy) = P(0), this number is also fixed.

By assumption ¢ has only terminal singularities at singular points of Y. So if ¥ has a
cyclic singularity of type l(1,(1y) aty € Sing Y, then by Corollary 2.2 we have

ny

_ny—l

a(y,KCj) = 2n *
y

Now let us note that the number
1
— Y a(y,Ky)=—x(Y,0v(Ky))+ EK%(Kg —Ky)+x(Y,0y)
yeSing Y
is also fixed. We have

ny,—1 1 .
— Z a(y,Kg) = Z y2 Zz‘smgﬂa
yeSing Y yeSing Y Iy

so the number of singularities of Y is bounded. Now let us note that

1 .
Y, —=|SingY[+2 ) a(yKy)
yeSing Y ©Y yeSingY

assumes only a finite number of values. The proof of the proposition now follows from
Lemma 3.4. U

LEMMA 3.4. Let us fix an integer m and a rational number c. Then there exists only finitely
many m-tuples (ny,...,ny) of positive integers n; such that YI" | nl, =c.

Proof. The proof is by induction on m. For m = 1 the assertion is trivial, so let us assume
that it holds for all (m — 1). Without loss of generality we can assume that n; < ... < n,.
Then ¢ < %, so n; < 7. But then n; can assume only finitely many values and by the

induction assumption for each fixed n; the equation )" , L—c— % has only finitely many

n;
solutions. O

LEMMA 3.5. Let Dy be a nef and big Q-divisor on a normal projective surface Y. Let D, be

another R-divisor such that Dy + oD is nef for some o > 0. Then either —D> = oD is nef
or the R-divisor BD| — D, is pseudoeffective, where

2Dy -D;

ﬁ = T% +a

Proof. By pulling back the relevant divisors to an appropriate resolution of ¥, we may as-
sume that Y is smooth. By [Laz04, Theorem 2.2.15] we know that if

D3 > 2D, - (D2 + aDy)
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then D) —t(D, + aDy) is big. In particular, since the limit of big divisors is pseudoeffective,
we see that if

(%) D} >2tDy- (D, + aD))

then Dy —t(D, + aD) is pseudoeffective.
If Dy - (Dy+ oDy) = 0 then by the Hodge index theorem

(D1 - (D +aDy))? = 0> D}(Dy+aD;)* > 0.

Since D% > 0 this implies that (D, + aD;) is numerically trivial, so —D, is nef. In the
following we can therefore assume that D; - (D, + oDy ) > 0.
In this case let us set
___ b
2D1 . (D2 -+ OCD1> '
Inequality (x) is satisfied for all 0 <7 < ty. In particular, D1 — fo(D> 4+ atDy) is pseudoeffec-

tive. This implies that BD; — D, = lftgoaDl — D, is also pseudoeffective. ]

fo

THEOREM 3.6. Let us fix a function P : Z>o — 7 and consider the family of weak nef models
(Y,¥9) such that 9 is of general type and X (Y,Oy(mKy)) = P(m) for all m > 0. Then there
exists a constant Ny depending only on P such that for all (Y,¥) in the above family, the
linear system |mKy| gives a birational map for all m > Nj.

Proof. Let f: Y — Y' be the morphism to the canonical model of (¥,%) and ¢’ the induced
foliation on Y’. By Lemma 1.12 we have Ky = g*K¢. By Proposition 3.3, the index i(¥)
of Ky is bounded. By Lemma 1.11, K¢/ is numerically ample and so

i(9)Ky - C=i(9)Kgy - f7'C>1

for any curve C C Y’'. We claim that Ky: + 3i(%)Kq is nef. To this end, let v: Y — Y’ be
the morphism obtained by taking the minimal resolution of the cusps of Y’'. By [McQOS,
Theorem II1.3.2] (see also Case 4 in §5), Y has rational singularities and so by Lemma 1.1,
Y" is projective. Note that over each cusp of Y’, the exceptional curve corresponds to a cycle
of smooth rational curves or to a rational curve with one node. We have Ky» + E = v*Ky:
and Ky = v*Kqr. By [Fujl2, Proposition 3.8], every Ky~ negative extremal ray is spanned
by a rational curve C with 0 < —Ky» - C < 3 and therefore Ky~ + 3i(¥¢)Kyn is nef (see [Fuj12,
Theorem 3.2]). But then Ky + 3i(9) Koy = Vi(Kyn + 3i(4)Kyn) is also nef.

Note that K2, = KZ and K¢/ - Kyr = Ky - Ky.

By Lemma 3.5 we know that if

Y = max <2K(f72KY +3i(§4),0)
Kg

then YK« — Ky is pseudoeffective. Let us note that L = (4i(¢) + 1 +a)Ky + ([ Y| Ky — Ky')
is pseudoeftfective for any a > 0. Let L = P+ N be its Zariski decomposition. Thus

P> > (4i(9)Ky)* = (4i(9)Ky)* > 16.

and for any curve C not contained in the negative part N’ of the Zariski decomposition of
YKoy — Kyr we have
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So by Theorem 1.7 the linear system |Ky: + L| = |(4i(9) + [y] + 1 + a)K«| separates any
two (possibly infinitely near) points lying in the smooth locus of ¥ — Supp N’ and, in par-
ticular, the corresponding map is birational. Let us recall that by [Sa84, Theorem 6.2] we
have f.0y(mKy) = Ox(mKy) for any positive m. Therefore |(4i(4)+ [y] + 1+ a)Ky| =
|(4i(¢) + [v] + 1 +a)Ky| and hence this linear system also defines a birational map. [

4. BIRATIONAL BOUNDEDNESS OF CANONICAL MODELS

PROPOSITION 4.1. Let us fix a function P : Z>o — Z.. Then there exist some constants By, B,
B3 and By such that if (Y,%9) is a canonical model with the Hilbert function x (Y, Oy (mKy)) =
P(m) for all m € Z> then K2 = By, Ky - Ky = B, x(Y, Oy) = B3 and the number of cusps
of Y is equal to B4. Moreover, there exists some constants C1 and Cy such that the number of
terminal and dihedral singularities of (Y,¥) is < C|. Moreover, the index of the surface Y
at any terminal foliation singularity is < C,. In particular, 2C3Ky is Cartier at all non-cusp
singularities of ¢, so that ig(¥) < 2C,.

Recall that terminal singularities are discussed in §2.1 and dihedral singularities are canon-
ical singularities of index 2 discussed in §2.2.

Proof. As in proof of Proposition 3.3 the numbers Ké, K« - Ky and x(Y, Oy) can be deter-
mined from the Hilbert function P. It follows that the number ¥y cgine y a(y, Kz ) is fixed. Let
¥ be the set of singular points of ¥ at which (¥,%) is terminal. Similarly, let X, be the set of
dihedral quotient singularities of Y and X3 the set of cusps of Y. Let us set ¥ =X UX; UX3.
Then by the results of Section 2 we have

- T abnk)= T L g D1z

yeSing Y yeL] yeZz yEL3

Therefore |X| is bounded and hence

Z——\EI+\23I+2 Y a(yKy)
yeL] My yeSing Y

assumes only a finite number of values. So by Lemma 3.4 the indices of the surface Y at
terminal foliation singularities are bounded by some constant C; depending only on P. Then
the last assertion follows from Proposition 2.4.

Finally, let us set m = (2C;)!. Note that  depends only on P and it is a multiple of ig(¥).
Let v : Y’ — Y be the minimal resolution of the cusps on Y so that Y’ is projective and let
4" = v*4 so that Koy = v*Ky. Recall that by the proof of Proposition 2.6, we know that
since m > 0, R'v, Oy (mKy) = 0 and v, Oy (mKy) = Oy (mKy). We also have v, Oy = Oy
and length(R' v, 0y:) = |Z3]. Thus, by the Leray spectral sequence,

P(m) = x(Y,0y(mKg)) = x(Y', Oy(mKy)) =

1 1
Eng/(ng/ —Ky) + (Y, Oyr) = Eng(chj —Ky)+x(Y,0y) — %3],

so the number of cusps of Y depends only on the Hilbert function P. U
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Remark 4.2. In case of canonical models we cannot bound the index of Y for fixed Hilbert
function P. The problem is that introducing, e.g., canonical non-terminal singularities of the
foliation at cyclic quotient singularities does not change the Hilbert function of mKg.

THEOREM 4.3. Let us fix a function P : Z>o — Z and consider the family of canonical
models of foliations (Y,9) such that 9 is of general type and X (Y, Oy (mKg)) = P(m) for all
m > 0. Then there exists a constant N\ depending only on P such that for all (Y,9) in the
above family and for all m > Ny, the linear system |mKe| defines a birational map.

Proof. Let g: (Z,.5¢) — (Y, %) be the minimal resolution of the cusps. In particular there
are no —1 curves over Y and hence K7 is nef over Y. Since Z has only rational singularities,
by Lemma 1.1, Z is projective. We have K ;» = g*Ky and by Proposition 4.1, i(¢) = igp(¥)
where i(.#) < 2C,. For any curve C on Y we have K - g, 'C = Ky - C > 0. Therefore we
have ig(9)K s - g5 'C > 1. As in the proof of Theorem 3.6 this implies that Kz + 3ig(4)K
is nef.

By Lemma 3.5 we know that if

2Ky Ky .
Y = max (Té +31Q(§¢),O)
then YK ,» — K7 is pseudoeffective. Let us note that L = (4ig(¥) + 1 +a)Kp» + ([ V| K —
K7) is pseudoeffective for any a > 0. Let L = P+ N be the Zariski decomposition. Then we
have

P? > (4ig(9)K »)* > 16.

If C is a curve not contained in the negative part of the Zariski decomposition of YK ,» — Kz
then

P-C> (4ig(%)+ 1)K -C > 4.

By Theorem 1.1 Z is projective so we can apply Theorem 1.7 to the linear system |Kz +L| =
|(4i(¥4) + [y] +14+a)Ky|. As in the proof of Theorem 3.6 we conclude that it defines a
birational map. Moreover, by [Sa84, Theorem 6.2] we have |(4ig(¥) + [y] +1+a)K x| =
|(4ig(¥) + [ 7] +1+a)Ky|, so this linear system also defines a birational map. O

5. PARTIAL CREPANT RESOLUTION OF A CANONICAL FOLIATION SINGULARITY

Let (Y,¥,y) be a canonical foliation singularity. As mentioned in §2 we only consider
canonical singularities arising on canonical models of foliated surfaces of general type (see
Sections 2.1, 2.2, 2.3 as well as [McQO08, Corollary 1.2.2, Fact 1.2.4 and Theorem II1.3.2]
for a description of terminal and canonical singularities). Let ' : (Y',C") — (Y,y) be the
minimal resolution of (Y,y) and ¢’ = (f’)*4. Let us consider the normal surface (X,C)
obtained by contracting all maximal ¢’-chains contained in C’ (see §2.1 for the definition
of ¢'-chains). We say that (X,C) — (Y,y) is the minimal partial crepant resolution. Note
that as we will see below, X may have singularities of type %(1, 1) which are contained in
C (see cases (2) and (3) below). [McQO08, Theorem III.3.2] implies that we get an induced
morphism f: (X,C) — (Y,y) such that K-y = f*Ky. Let F = f*9.
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THEOREM 5.1. With the notation above, we have f,Ox(mKgz) = Oy(mKg) for all m and
R'f,O0x(mK ) = 0 for m # 0. In particular, we have

I ifm=0andyisa cusp,
x (v, Ox(mKz)) :{ 0 ({therwise. ’ g

Proof. Note that if y € Y is terminal, then f is an isomorphism and there is nothing to prove.
If f is not an isomorphism at y € Y then by [McQO08, Theorem II1.3.2] we have four possi-
bilities for the exceptional curve C = f~!(y) (we caution the reader that our enumeration
of these cases is presented differently than that of [McQOS8, Theorem I11.3.2]). In all theses
cases the irreducible components of C are rational curves C; satisfying K4 - C; = 0.

5.1. Case 1. In this case Y has a cyclic quotient singularity at y and ¢ is Gorenstein at y.
The curve C consists of a chain of smooth rational curves.

Since ¢ is Gorenstein we have
Xy, Ox(mKz)) =0
for all integers m.
5.2. Case 2. In this case Y has a cyclic quotient singularity at y and ¢ is Gorenstein at y.

The curve C is smooth rational and it passes through 2 singular points of type %(1, 1). By
Lemma 2.1, Ox (K #) is of type £ at both these points.

2(1L1)

(1,1)

Do —

As in the first case we have
Xy, Ox(mKz)) =0

for all integers m.

5.3. Case 3. In this case Y has a dihedral quotient singularity at y and ¢ is 2-Gorenstein
at y. The curve C is consists of a chain of smooth rational curves, in which the first curve
passes through 2 singular points of type %(1, 1). As in the previous case Ox (K #) is of type
£ at both these points.
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(1,1)

Since 2Ky is Cartier we have

0 if m is even,
x(y,ﬁx(mKﬁf))—{ 2, Ox(K5)) if mis odd.

Let g : Z — X be the blow up at two singular points x, x; lying on C. By the results of
§1.1.4 we have

X Ox(Kz)) =X (y,02(Kgo7)) — X (x1,07(Kg= 7)) — X (%2, Oz (Kg7)).
Using the definition of the Riemann—Roch contributions (see (1) in §1.1.3) we get
X0 02(Ke 7)) = aly.Ky) — 50100 Ko 7) (€102 Ky 7) — Ko)
and
131, 02(Ke: 7)) = i, K7) — 1, K 2)(e1 (31, Ky 7) ~ Ko)
fori=1, 2. Since Kz = f*Ky we have
c1(0,Kyo7) = c1(x1,Kge 7) +¢1(x2, Ko 7)

as can be easily seen by intersecting both sides with all irreducible components of the excep-
tional divisor of f o g. So using the results of Section 2 we have

Xy, 0x(K#)) = a(y,Ky) — a(x1,Kz) — a(x,Kz) = -

This shows that
Xy, Ox(mKz)) =0
for all integers m.

5.4. Case 4. In this case Y has a cusp at y and ¢ is not Q-Gorenstein at y. The curve C is
either a cycle of smooth rational curves or a rational curve with one node.

or
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In this case we have
1 ifm=0,
X(y,ﬁx(me))—{ 0 ifm;«éO.

This follows immediately from formula (1) in §1.1.3 and Lemma 2.7 (or from the proof of
Lemma 2.7).

Since K7 = f*Ky, the equality f,Ox(mK z) = Oy(mKy) follows from [Sa84, Theorem
6.2]. So for m # 0 we have

dimR! £, Ox (mK 7) = x(y, Ox(mK #)) = 0.

6. VANISHING THEOREMS FOR FOLIATIONS
The main aim of this section is to prove the following theorems.

THEOREM 6.1. Let (X,.%) and (Y,9) be foliated surfaces with only canonical singularities.
If f: (X, 7)— (Y,9) is a proper birational morphism then f.Ox(mK z) = Oy(mKy) for
any non-negative integer m and we have
R'f.0x(Kz)=0

fori> Q.
THEOREM 6.2. Let (X,.%) and (Y,9) be foliated surfaces with only canonical singularities.
Iff:(X,7)— (Y,9) is a proper birational morphism and K z = f*Ky then

R'f.Ox(mKz) =0
for any m # 0.

The main ingredients in the proofs of the above theorems are Theorem 5.1 and the follow-
ing lemmas.

LEMMA 6.3. Let (Y,y) be a germ of a smooth surface and let 4 be a foliation with canon-
ical singularity aty. Let f: (X,C) — (Y,y) be the blow up at y and set % = [*9. Then
R'f.0x(Kz) =0.

Proof. Let C denote the exceptional divisor of f. By definition of canonical singularities we
have Kz — f*Ky = m(y)C for some m(y) > 0. Note that we have the equality
Ty = [Ty @ Ox((I(y) —1)C),
where [(y) > 0 is the vanishing order of the form f*® along C and @ is the 1-form defining
¢ (see [Brl5, Chapter 2, Section 3, (1)]). Therefore m(y) =1—1(y) <1 and so m(y) =0
orm(y) =1.If m(y) =0, then f*Oy(Ky) — Ox(K z) is an isomorphism. By the projection
formula, we have R f, f* Oy (Ky) = R f,0x ® Oy(Ky) = 0 and so the assertion is clear. If
m(y) = 1 consider the short exact sequence
0— f"Oy(Ky) — Ox(Kz) — Oc(C) — 0.
Pushing this forward, we obtain the exact sequence

0=R'f,f*Oy(Ky) — R f,Ox(Kz) = R f.0c(C) — 0.
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Since R f,0c(C) = H' (P!, Op1(—1)) = 0, then R' f. Ox (K #) = 0. O

LEMMA 6.4. Let (X,.%#,C) — (Y,9,y) be a contraction of an % -chain to a singularity of
type %(1,(]) as in Subsection 2.1. Then

— g —1
20 Ox (mK 7)) = - ((m—qu)(n—l) +m(m2_1>q+ qZ c_j>,
j=0

n
where ¢ denotes an integer such that gc = —1 mod n and X denotes the remainder from
dividing x by n.

Proof. For the exceptional curve C = |JC; we set Ci2 = —b; for some b; > 2. Let us write

c1(y,Kx) = ¥ x;C; and ¢|(y,K#) = ¥ y;C;. The rational numbers x; and y; are uniquely de-
termined by the following systems of linear equations:

(Y xCi)-Cj=Kx-Cj=—Ci—2=b;—2
and
] =1 forj=1,
(Zy,Ci)~Cj— { 0 forj>1.
Solving these systems of equations one can easily see that
g+1

x1=—14+-— and ylzg.
n n
Therefore we have
1
2y, Ox(mK 7)) =a(y,mKy) — 5’"6‘1(% Kz) (mci(y,Kz) —c1(y,Kx))
1
=a(y,mKy) — Em(Zini)(Z(myj —x;)C;)

1
—a(y,mKy) — m(my; —x1).

2
Since by Lemma 2.1 the sheaf O (mKy) is locally of type -Zg, the required formula follows
from the above and the corresponding formula for a(y, %g) from §1.1.3. U

Remark 6.5. Let us note that the formula in Lemma 6.4 gives vanishing of x(y, Ox(Kz)).
However, unlike in Theorem 5.1, x (v, Ox(mK #)) is usually non-zero for m > 2. For exam-
ple, for a terminal foliation on the singularity of type %(1, 1) we have x(y,Ox(2K#)) = 1.
In fact, the vanishing of x(y, Ox(mK #)) fails for m > 2 already in the situation of Lemma
6.3 (if ¢ is regular at y).

Proof of Theorem 6.1. The equality f.Ox(mKg) = Ox(mKy) for m > 0 follows from the
definition of canonical singularities and [Sa84, Theorem 6.2]. Hence vanishing of R' ., Ox (K #)
is equivalent to vanishing of x(y, Ox(K#)) = dimR! f,0x (K #), for all points y € Y.

Let g: (Z,) — (X,.7) be a proper birational morphism such that f o g dominates the
minimal resolution of singularities of Y. By §1.1.4 we have

X0, Oz2(Kp)) = x (3, Oy (K2))+ Y, 2(x,02(Ky)).
xef~1(y)
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Since all the numbers are non-negative, it is sufficient to prove that x (y, 0z(K ,»)) = 0.
Now let us remark that by assumption f o g factors into a composition of maps considered
in Theorem 5.1 and Lemmas 6.3 and 6.4. Since for each of these maps we have vanishing of
the modified Euler characteristics Y (7, 0 (K j)), we have also vanishing of Y (y, Oz(K)).
This finishes the proof of Theorem 6.1. U

Remark 6.6. Since we have a generically surjective map Qy — Ox(K#), the vanishing of
R' f,0x(K 7) would follow from the vanishing of R! £,Qy. Unfortunately, this last group is
usually non-zero. For example if f is the minimal resolution of a quotient singularity then
one can show that the dimension of the stalk of R! f,Qy at the singularity is equal to the
number of exceptional curves in the resolution.

COROLLARY 6.7. Let (X,.%#) and (Y,%9) be foliated complete surfaces with only canonical
singularities. If (X,.% ) and (Y,9) are birationally equivalent then

K (X, 0x(mKz)) = h°(Y, Oy (mKy))

forallm >0, and _ '
WX, Ox (K)) = (Y, O (Kq))
for all i. In particular, we have (X,0x(Kz)) = x(Y,Oy(Ky)).

Proof. There exists a foliated complete surface (Z,.7#’) with only canonical singularities and
proper birational morphisms f : (Z,7) — (X, %) and g : (Z,) — (Y,%). Therefore the
required assertions follow by applying Theorem 6.1 to the morphisms f and g. U

Remark 6.8. When X is smooth, the above Corollary is proven in [Men98, Theorem 3.1.1].

Remark 6.9. Let us note that for m # 1, x(X,O0x(mK %)) is not a birational invariant of
foliations with canonical singularities (not even for m = 0).

Proof of Theorem 6.2. The proof is similar to that of Theorem 6.1. By Theorem 6.1 the
required assertion is equivalent to vanishing of y(y,Ox(mKz)) =0 for m # 0. Let g:
(Z,7¢) — (X,.7) be the minimal partial crepant resolution of singularities of (X,.#) (see
Section 5). By §1.1.4 we have

X0, Oz(mKyr)) = x (v, Oy(mK 7))+ Y, x(x,02(mK z)).
xef~1(y)
Since all the numbers are non-negative, it is sufficient to prove that x (x, Oz(mK ,»)) = 0 for
m # Q.

We claim that f o g factors into a composition of the minimal partial crepant resolution of
singularities of (Y,%) and blow ups at smooth points of the surface that are not regular for
the foliation. At such points m(y) from the proof of Lemma 6.3 is equal to zero and the same
proof as that of Lemma 6.3 shows that at such points R' f, &' (mK #) = 0 form # 0. Therefore
the required assertion follows from Theorem 5.1.

To prove the claim let us first remark that f is an isomorphism over points y at which ¢ is
terminal. Indeed, this follows immediately from the fact that for every prime divisor E over
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such y we have ag (%) > 0 and hence if f is not an isomorphism over y we get a contradiction
with Kz = f*Ky. Since the claim is local on Y, we can therefore assume that ¥ does not
contain any singular points at which ¢ is terminal. In this case we consider the minimal
resolution of singularities 4 : Z’ — Z. Then f o goh can be factored as f’ o g’ o h’, where
f': T —Y is the minimal partial crepant resolution of singularities of (Y,¥4)and g’ : T’ — T
is the minimal resolution of 7. Let us note that

where {E;} are disjoint curves with self intersection —2 (these curves arise when resolving
singularities in Cases 2 and 3 in the proof of Theorem 5.1). We can also write

1
K(f’og’)*% = (f/ Og/)*K{jf + EZEZ/’
where {E!} are disjoint curves with self intersection —2. It follows that

Y Ei= (W)Y E.

Therefore (A')*YE/ contains no curves of self intersection —1 and hence 4’ does not blow
up any points lying on {E/} and hence we have an induced morphism Z — T”, which finishes
proof of the claim and hence also of the theorem. U

Theorem 6.2 together with Proposition 4.1 implies the following corollary.

COROLLARY 6.10. The Hilbert function of a canonical model of a foliation determines the
Hilbert function of any weak nef model. More precisely, if (X ,.F) is a weak nef model, (Y,9)
is a canonical model and (X ,.%) and (Y,¥9) are birationally equivalent, then

x(X,0x(mKgz))—x(Y,0y(mKy)) = { _()C ZZZ;&

where c denotes the number of cusps of Y. In particular, any two birationally equivalent
weak nef models have the same Hilbert function. Similarly, any two birationally equivalent
canonical models have the same Hilbert function.

Proof. To prove the required equality it is sufficient to compute ¥ (y, Ox(mK #)) at all points
y of Y and apply the results of §1.1.4. U
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