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ON THE RELATIVE MINIMAL MODEL PROGRAM FOR

THREEFOLDS IN LOW CHARACTERISTICS

CHRISTOPHER HACON AND JAKUB WITASZEK

Abstract. We show the validity of the relative dlt MMP over Q-
factorial threefolds in all characteristics p > 0. As a corollary, we
generalise many recent results to low characteristics including: WO-
rationality of klt singularities, inversion of adjunction, and normality of
divisorial centres up to a universal homeomorphism.

1. Introduction

One of the fundamental tools used in the study of algebraic varieties is
theMinimal Model Program (MMP), which is a higher-dimensional analogue
of the classification of surfaces. This program has been a topic of intense
research in the last decades and a major part of it is known to hold for
projective varieties defined over a field of characteristic zero (see [BCHM10]).

Moreover, in recent years, there has been substantial progress in the MMP
in positive characteristic. In particular, it has been shown that the program
is valid for surfaces over excellent base schemes (see [Tan14,Tan18]) and for
three-dimensional varieties defined over perfect fields of characteristic p > 5
(see [HX15,CTX15,Bir16, BW17,GNT16]). This has led to many striking
applications, for example, Gongyo, Nakamura, and Tanaka used the MMP
to show the existence of rational points on log Fano threefolds defined over
finite fields Fpn for p > 5.

The goal of this article is to extend some of the foundational results on the
MMP for threefolds, and applications thereof, to low characteristics. Our
main result is the following.

Theorem 1.1. Let (Y,∆) be a three-dimensional Q-factorial dlt pair defined

over a perfect field of characteristic p > 0. Assume that there exists a

projective birational morphism π : Y → X over a normal Q-factorial variety

X such that Exc(π) ⊆ ⌊∆⌋. Then π-relative contractions and flips exist for

KY +∆, and we can run a (KY +∆)-MMP over X which terminates with

a minimal model.

Theorem 1.1 allows us to study three-dimensional singularities by means
of the MMP. In particular, it can be used to construct Kollár components.

The proof of the existence of flips for threefolds in positive characteristic
p > 5 relies on the fact that pl-flipping contractions are purely relatively
F-regular. Although this is not true in general when p ≤ 5, we show that
pl-flipping contractions occurring in the relative dlt-MMP over Q-factorial
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threefolds, as in the theorem above, do satisfy this property. Therefore, we
can make use of the same strategy as in [HX15] to conclude the construction
of such pl-flips.

In order to show the existence of pl-contractions, it was proven in [HX15,
Proposition 4.1] that divisorial centres of three-dimensional plt pairs are
normal in characteristic p > 5, so the main theorem of [Kee99] could be
invoked. However, this result about divisorial centres is false in characteristic
p = 2, in general, as shown in [CT16] (cf. [Ber18]). Nevertheless, Gongyo,
Nakamura, and Tanaka observed that in order to use [Kee99], it is enough to
show that divisorial centres are normal up to a universal homeomorphism;
moreover, they proved that this property of divisorial centres is stable under
the MMP. Therefore, they were able to show that the existence of pl-flips
in low characteristic implies the existence of minimal models (cf. [GNT16,
Theorem 3.15]). The same strategy concludes the proof of Theorem 1.1 and
implies the validity of the following results (cf. [GNT16, Theorem 3.14]).

Theorem 1.2 (Normality of divisorial centres up to a universal homeomor-
phism). Let (X,S + B) be a Q-factorial three-dimensional plt pair defined

over a perfect field of characteristic p > 0, where S is an irreducible divisor.

Then the normalisation f : S̃ → S is a universal homeomorphism.

In fact, we show that all log canonical centres of Q-factorial three-dimensional
dlt pairs are normal up to a universal homeomorphism (see Remark 3.9).

Furthermore, we obtain the following applications of Theorem 1.1.

Corollary 1.3 (WO-rationality, cf. [GNT16, Theorem 3.16]). Let X be

a klt three-dimensional Q-factorial variety defined over a perfect field of

characteristic p > 0. Then X has WO-rational singularities.

Corollary 1.4 (dlt modification). Let (X,∆) be a three-dimensional Q-

factorial log pair defined over a perfect field of characteristic p > 0. Then a

dlt modification of (X,∆) exists, that is, a birational morphism π : Y → X
such that (Y, π−1

∗ ∆+ Exc(π)) is dlt, Q-factorial, and minimal over X.

Corollary 1.5 (Inversion of adjunction, cf. [Das15, Theorem A]). Consider
a Q-factorial three-dimensional log pair (X,S+B) defined over a perfect field

of characteristic p > 0, where S is an irreducible divisor. Then (X,S + B)

is plt on a neighborhood of S if and only if (S̃, BS̃) is klt, where S̃ is the

normalisation of S and BS̃ is the different.

Moreover, using Theorem 1.1, we may generalise some other results pre-
viously known only when p > 5.

• divisorial contractions of extremal rays exist in the category of Q-
factorial three-dimensional varieties for p > 0,

• the tame fundamental group of three-dimensional Q-factorial klt sin-
gularities is finite when p > 0, and

• minimal log canonical centres of Q-factorial lc pairs (X,∆), with X
being klt, are normal up to a universal homeomorphism for p > 0.

Lastly, we show the validity of the (KX + ∆)-MMP in the setting of
dlt reductions. In particular, this allows for the construction of canonical
skeletons of degenerations of varieties with non-negative Kodaira dimension
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(see [NX16]). Here R is a local ring of a curve C defined over a perfect field
k of characteristic p > 0. We denote the special point s ∈ SpecR and the
generic point η ∈ SpecR. Let (X ,Φ) be a Q-factorial dlt pair of dimension
three and projective over C and let (X,∆) := (X ,Φ)×C Spec(R).

Theorem 1.6. Let (X,∆) be a dlt pair as above so that in particular X is

three-dimensional Q-factorial projective over SpecR. Let φ : X → SpecR
be the natural projection and suppose that Suppφ−1(s) ⊆ ⌊∆⌋. Then we can

run a (KX +∆)-MMP over SpecR which terminates with a minimal model

or a Mori fibre space.

This article is organised as follows. In Section 2 we gather prelimi-
nary results on F-regularity, the MMP in positive characteristic, and WO-
rationality. In Section 3 we show Theorem 1.1, Corollary 1.3, Corollary 1.5,
and Corollary 1.4. In Section 4 we show Theorem 1.6. Section 6 pertains to
the study of other applications of the main theorem.

2. Preliminaries

A scheme X will be called a variety if it is integral, separated, and of
finite type over a field k. Throught this paper, k is a perfect field of charac-
teristic p > 0. We refer to [KM98] for basic definitions in birational geom-
etry, to [BCE+02] for the theory of nef reduction maps and nef dimension,
and to [Kol96] for results pertaining to MRCC (maximally-rationally-chain-
connected) fibrations. We remark that in this paper, unless otherwise stated,
if (X,B) is a pair, then B is a Q-divisor.

We advise the reader to consult [GNT16, Remark 2.7] in regards to the
subtleties of birational geometry over a perfect field. Let us just recall that
being klt, plt, lc, or normal is preserved under taking a base change to an
uncountable algebraic closure. Similarly for the ampleness, semi-amplenes,
nefness and bigness of a line bundle. The same also holds for rational chain
connectedness (see [GNT16, Remark 4.6]). However, this is not the case
with Q-factoriality.

2.1. Relative F-regularity. The study of relative F-regularity plays a vi-
tal role in the proof of the existence of flips for threefolds in characteristic
p > 5, acting as a replacement for vanishing theorems (see [HX15]).

For the convenience of the reader, we recall the basic definitions and
results. This section is based on [HW17].

Definition 2.1. For an F-finite scheme X of characteristic p > 0 and an
effective Q-divisor ∆, we say that (X,∆) is globally F-split if for every
e ∈ Z>0, the natural morphism

OX → F e
∗OX(⌊(pe − 1)∆⌋)

splits in the category of sheaves of OX -modules.
We say that (X,∆) is globally F-regular if for every effective divisor D on

X and every big enough e ∈ Z>0, the natural morphism

OX → F e
∗OX(⌊(pe − 1)∆⌋+D)

splits.



4 CHRISTOPHER HACON AND JAKUB WITASZEK

We say that (X,∆) is purely globally F-regular, if the definition above
holds for those D which intersect ⌊∆⌋ properly (see [Das15, Definition
2.3(2)]).

The local versions of the above notions are called F-purity, strong F-
regularity, and pure F-regularity, respectively. Moreover, given a morphism
f : X → Y , we say that (X,∆) is F-split, F-regular, and purely F-regular
over Y , if the corresponding splittings hold locally over Y (see [HX15, Def-
inition 2.6]).

Let us recall that the relative inversion of F-adjunction holds.

Lemma 2.2 ([Das15] and [HW17, Lemma 2.10]). Let (X,S + B) be a plt

pair where S is a prime divisor, and let f : X → Z be a proper birational

morphism between normal varieties defined over a perfect field of character-

istic p > 0. Assume that −(KX +S +B) is f -ample and (S̄, BS̄) is globally
F -regular over f(S), where S̄ is the normalization of S, and BS̄ is defined

by adjunction KS̄+BS̄ = (KX+S+B)|S̄. Then (X,S+B) is purely globally

F-regular over a Zariski-open neighbourhood of f(S) ⊆ Z.

Furthermore, divisorial centres of purely F-regular pairs are normal.

Proposition 2.3. Let (X,S +B) be a purely F-regular pair defined over a

perfect field k of characteristic p > 0 where S is a prime divisor. Then S is

normal.

Proof. This follows from [Das15, Theorem A] by taking a base change to
the algebraic closure of k. �

2.2. MMP for threefolds in arbitrary positive characteristic. In this
subsection we gather some results on the Minimal Model Program for three-
folds which are valid in any characteristic p > 0.

Firstly, the cone theorem is known for pseudo-effective adjoint divisors.

Theorem 2.4 ([GNT16, Lemma 2.2]). Let (X,∆) be a three-dimensional

Q-factorial log canonical pair which is projective over a separated scheme

U of finite type over a perfect field k of characteristic p > 0. Assume that

KX + ∆ is pseudo-effective over U . Then, for every ample Q-divisor A,
there exist finitely many curves C1, . . . , Cr such that

NE(X/U) = NE(X/U)KX+∆+A≥0 +
r∑

i=1

R≥0[Ci].

Secondly, a variant of the base point free theorem for threefolds is known
in which the contraction is a map onto an algebraic space (see [Kee99, The-
orem 0.5], cf. [HX15, Theorem 5.2]) and in fact the full base point free
theorem for threefolds is valid when k = Fp.

Definition 2.5. We say that a dlt pair (X,∆) has normal divisorial centres

up to a universal homeomorphism if for every irreducible divisor D ⊆ ⌊∆⌋,
the normalisation f : D̃ → D is a universal homeomorphism.

Proposition 2.6 ([GNT16, Lemma 2.4] cf. [HX15, Theorem 5.4]). Let

(X,∆) be a three-dimensional Q-factorial dlt pair admitting a projective
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morphism π : X → U to a scheme U defined over a perfect field of charac-

teristic p > 0. Assume that (X,∆) has normal divisorial centres up to a

universal homeomorphism, and let R be an extremal ray of KX +∆ over U
such that R · S < 0 for an irreducible divisor S ⊆ ⌊∆⌋. Then the contrac-

tion X → Z of R exists as a projective morphism of normal varieties, and

ρ(X/Z) = 1.

2.3. WO-rationality and normality of divisorial centres. In this sub-
section we recall some definitions and results from [GNT16]. First, given a
k-scheme X, over a perfect field k of positive characteristic p > 0, we define
the sheaf W (OX) as follows

W (OX)(U) := W (OX(U)) for an open subset U ⊆ X.

Here W : AlgFp
→ AlgZ is the Witt vector functor (see [GNT16, Subsection

2.5]).
Let A(X) be the abelian category of sheaves of abelian groups on X, and

let A(X)Q be the quotient category

A(X)Q := A(X) / {F ∈ A(X) | nF = 0 for some n ∈ Z>0}.

We set WOX,Q to be the image of WOX in A(X)Q under the natural pro-
jection. Given a morphism of k-schemes f : Y → X, one can define derived
functors Rif∗(WOY,Q) for i ≥ 0.

Definition 2.7. We say that a k-variety X for a perfect field k of positive
characteristic has WO-rational singularities, if there exists a (equivalently,
for any) resolution of singularities φ : Y → X such that Riφ∗(WOY,Q) = 0
for i > 0.

The following result asserts that normality of divisorial centres and WO-
rationality are preserved under pl-contractions.

Proposition 2.8 ([GNT16, Proposition 3.4 and 3.11]). Let (X,∆) be a

Q-factorial three-dimensional dlt pair defined over a perfect field k of char-

acteristic p > 0, with normal divisorial centres up to a universal homeomor-

phism. Let g : X → Z be a projective birational morphism onto a normal

variety Z such that

• −(KX +∆) is g-ample,

• −S is g-ample for an irreducible component S of ⌊∆⌋.

Then the irreducible components of ⌊g∗∆⌋ are normal up to a universal

homeomorphism. Moreover, if X has WO-rational singularities, then so

does Z.

Lastly, let us state the following result which shows that WO-rationality
and normality of divisorial centres up to a universal homeomorphism are
preserved by curve extractions. The proposition will be used to study the
behaviour of these notions under flips as in [GNT16].

Proposition 2.9. Let k be a perfect field of characteristic p > 0, and let

g : Y → Z be a proper birational morphism between normal threefolds over

k such that every fibre of g is at most one-dimensional. Assume that (Y,∆)
is dlt for some effective Q-divisor ∆. Then
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• if R1g∗(WOY,Q) = 0 and irreducible components of ⌊g∗∆⌋ are nor-

mal up to a universal homeomorphism, then (Y,∆) has normal di-

visorial centres up to a universal homeomorphism;

• if Z has WO-rational singularities, then so does Y .

Proof. This follows from [GNT16, Proposition 3.8], [GNT16, Proposition
3.12], and [GNT16, Lemma 2.5]. �

Note that if R1g∗OY = 0, then R1g∗(WOY,Q) = 0 ([GNT16, Lemma 2.19
and Lemma 2.21]).

3. The proof of Theorem 1.1

In this section we prove Theorem 1.1. We begin with the following obser-
vation.

Lemma 3.1. Let (Y,∆) be a Q-factorial dlt pair defined over a field k. As-

sume that there exists a commutative diagram of projective birational mor-

phisms

Y Z

X

π

g

such that X is a normal Q-factorial variety, Exc(π) ⊆ ⌊∆⌋, and g is a small

birational morphism. Let R be a g-exceptional curve. Then there exists an

irreducible effective π-exceptional divisor E′ on Y satisfying R ·E′ > 0.

Proof. Write ∆ = E + B, where B ≥ 0 and E =
∑k

i=1Ei is the union of
all irreducible π-exceptional divisors Ei. Assume by contradiction, that the
statement of the lemma is false, that is R · Ei ≤ 0 for every i ≥ 1. Since X
is Q-factorial, there exists an effective π-exceptional π-antiample divisor on
Y , and hence R is negative on some irreducible exceptional divisor. Thus,
without loss of generality, we may assume R ·E1 < 0, and so R ⊆ E1.

Set L := g∗H for a very ample divisor H on Z such that SuppL and E
have no common components. Since g∗Ei 6= 0 for i = 1, . . . , k, there exists
a π-relative curve C on E1, not contained in

⋃
i≥2 Ei, such that L · C > 0.

Given that X is Q-factorial, by pushing forward L to X and pulling it
back, we obtain

L ∼π,Q

∑

i≥1

−biEi

for some bi ≥ 0. Since L · C > 0 and Ei · C ≥ 0 for i ≥ 2, we get E1 · C < 0
and b1 > 0. Therefore,

L ·R = −b1E1 · R−
∑

i≥2

biEi ·R ≥ −b1E1 ·R > 0,

which is a contradiction since L · R = 0 by our choice of R and L; here we
used the ad absurdum assumption that R ·Ei ≤ 0 for all i ≥ 1. �

Remark 3.2. The above lemma holds forX being a normal integral separated
Q-factorial algebraic space of finite type over k (see [Sta14, Tag 083Z]). Here,
we call an algebraic space Q-factorial if every Weil divisor is Cartier (that
is Cartier up to a surjective étale cover by a scheme, cf. [Sta14, Tag 083C]).
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The key case we will use in this article is when X admits a projective bira-
tional morphism φ : X ′ → X such that X ′ is a normal Q-factorial variety,
ρ(X ′/X) = 1, and Exc(φ) is a divisor. To verify that X is Q-factorial, we
can replace it by an étale cover and assume that it is a variety, in which case
the Q-factoriality follows by a standard argument.

3.1. Flips. In this subsection, we tackle the existence of flips. The following
lemma is a key ingredient in the proof of Proposition 3.4.

Lemma 3.3. Let (S,C + B) be a two-dimensional plt pair defined over an

infinite perfect field k of characteristic p > 0, where C is an irreducible

curve, and let f : S → T be a projective birational morphism onto a surface

germ (T, 0) such that −(KS +C +B) and C are f -nef. Then (S,C +B) is
relatively purely F-regular over a neighbourhood of f(C) ⊆ T .

Proof. By [HW17, Remark 2.6] and Stein factorisation, we can assume that
T is normal. By the relative base point free theorem, −(KS + C + B)
is semi-ample over T , and hence there exists an effective Q-divisor D ∼Q

−2(KS +C+B) such that (S,C+B+D) is log canonical (this follows from
[Tan17, Theorem 1] after having taken an lc compactification as in the proof
of [HNT17, Proposition 2.10]). Replacing B by B + 1

2
D, we can suppose

that −(KS + C +B) ∼f,Q 0 and (S,C +B) is plt.
Let E := f∗C and BT := f∗B. Since C is irreducible and f -nef, one sees

that E 6= 0 is an irreducible curve. Moreover, we have that KS + C + B =
f∗(KT +E+BT ), and so (T,E+BT ) is plt. In particular, E is normal, and
(E,BE) is klt whereKE+BE = (KT +E+BT )|E . Since dimE = 1, (E,BE)
is log smooth and so it is strongly F-regular. Consequently, F-adjunction
shows that (T,E + BT ) is purely F-regular (see for instance Lemma 2.2),
and [HX15, Proposition 2.11] implies that KS + C + B is relatively purely
F-regular. �

The following proposition in conjunction with Lemma 3.1 gives the exis-
tence of flips as in Theorem 1.1.

Proposition 3.4. Let (X,∆) be a three-dimensional Q-factorial dlt pair

defined over a perfect field k of characteristic p > 0. Let φ : X → Z be a

flipping contraction of a (KX + ∆)-negative extremal ray R. Suppose that

there exist irreducible divisors E,E′ ⊆ ⌊∆⌋ such that R·E < 0 and R·E′ > 0.
Then the flip (X+,∆+) of f exists.

Moreover, if (X,∆) has normal divisorial centres up to a universal home-

omorphism, then so does (X+,∆+).

Remark 3.5. Note that if (X,S+S′+B) is a three-dimensional dlt pair such

that S, S′ are distinct irreducible divisors and ⌊B⌋ = 0, then (S̃,∆S̃) is plt,

where S̃ is the normalisation of S and KS̃ + ∆S̃ = (KX + S + S′ + B)|S̃.
This can be verified on a log resolution of (X,S + S′ +B).

Proof. We work over a neighborhood of the closed point P = φ(R) ⊂ Z
and hence we will frequently replace Z by an appropriate neighborhood of
P ∈ Z. By base change to its algebraic closure, we can assume that k
is algebraically closed. Except for Q-factoriality, all the assumptions are
preserved under this base change (cf. [GNT16, Remark 2.7(1)]). Moreover,
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it is enough to construct a flip after this base change by [GNT16, Remark
2.7(2)]. Although X may not be Q-factorial, the irreducible components of
∆ are Q-Cartier and this is all that we need in the following proof.

Write ∆ = E + E′ +D, where D ≥ 0, and set

∆plt := E + (1− ǫ)(E′ +D)

for some ǫ > 0 sufficiently small so that (KX + ∆plt) · R < 0 and (KX +
∆plt + ǫE′) · R < 0.

We aim to show that (X,∆plt) is relatively purely F-regular over Z. To
this end, write

KẼ +∆Ẽ = (KX +∆plt)|Ẽ , and

KẼ +∆′

Ẽ
= (KX +∆plt + ǫE′)|Ẽ ,

where g : Ẽ → E is the normalisation of E. Since (X,∆) is dlt, the above

remark shows that (Ẽ,∆′

Ẽ
) is plt, and so Lemma 3.3 implies that it is, in

fact, relatively purely F-regular over a neighborhood of P ∈ φ(E). Hence

we may assume that (Ẽ,∆Ẽ) is relatively F-regular.

By inversion of F-adjunction (see Lemma 2.2), this implies that (X,∆plt)
is relatively purely F-regular over Z. In particular, the proof of the existence
of the flip of (X,∆plt) from [HX15, Thereom 4.12] holds without any change
(see Remark 3.6). Since such a flip is also the flip of (X,∆), we obtain
(X+,∆+) sitting inside the following diagram

X X+

Z,
φ

ψ

φ+

where ∆+ := ψ∗∆.
In order to show the normality of divisorial centres of ⌊∆+⌋ up to a

universal homeomorphism, we proceed as follows. First, we have that irre-
ducible components of φ∗⌊∆⌋ are normal up to a universal homeomorphism
by Proposition 2.8.

By [SS10, Corollary 6.4], since X is relatively F-regular, we have that
X+ is relatively F-regular as well. Pick an ample divisor A such that
R1φ+

∗ OX+(A) = 0. Since F e : OX+ → F e
∗OX+(A) splits locally over Z

for some e > 0, we get that

R1φ+
∗ OX+ ⊆ F e

∗R
1φ+

∗ OX+(A) = 0.

In particular, R1φ+
∗ (WOX+,Q) = 0 by [GNT16, Lemma 2.19 and Lemma

2.21]. By Proposition 2.9, this implies that (X+,∆+) has normal divisorial
centres up to a universal homeomorphism. �

Remark 3.6. In the proof of the above theorem, we used the fact that if
φ : X → Z is a (KX + S + B)-flipping contraction of an extremal curve R
for a three-dimensional relatively purely F-regular pair (X,S + B) defined
over a perfect field of characteristic p > 0 with S being an irreducible divisor
such that R ·S < 0, then the flip of φ exists. This has been implicitly proven
in [HX15, Theorem 4.12].
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The statement of [HX15, Theorem 4.12] assumes that the coefficients of
∆plt are standard, but this is only used to show that (X,S+B) is relatively
purely F-regular, which we assume apriori to be true. Moreover, the results
of [HX15] are stated over an algebraically closed field, but it is enough to
show the existence of flips after base-changing to the algebraic closure k of k
(see [GNT16, Remark 2.7(2)]). Here note that the Q-factoriality of X need
not be preserved, but fortunately Q-factoriality is not needed in the proof
of [HX15, Theorem 4.12].

For the convenience of the reader, we recall the general strategy of the
proof.

First, by [HX15, Proposition 4.1] we have that S is normal. Now, fix
an effective Cartier divisor Q ∼ k(KX + S + B) on X for some k > 0
sufficiently divisible such that the support of Q does not contain S, and
define the following b-divisors

Ni := Mob(iQ), Mi := Ni|S , and Di :=
1

i
Mi.

Write KS + BS = (KX + S + B)|S , and let S̄ be the terminalisation of
(S,BS). Then Mi descends to S̄ by [HX15, Lemma 4.4].

Following the strategy depicted in [Cor07], it is enough to show that Di

stabilise for i ≫ 0. To this end, we note that the R-divisor D := limDi

is semiample on S̄ by [HX15, Lemma 4.8]. Let a : S̄ → S+ be the induced
fibration as in [HX15, Discussion after Lemma 4.8]. By [HX15, Corollary
4.11], we have that DS̄ is rational and a∗DS̄ = a∗Dj,S̄ for divisible enough
j ≫ 0.

Let g : Y → X be an appropriately chosen resolution of singularities such
that Ni,Y is free. We replace Y upon changing i. Set Li,j := ⌈ j

i
Ni,Y +AY ⌉

for i, j > 0 and A being the discrepancy b-divisor for (X,S+B). Explicitly:

KY + S′ = f∗(KX + S +B) +AY ,

where S′ is the strict transform of S. Since (S,BS) is relatively purely F-
regular, the proof of [HX15, Lemma 4.13] holds without any change, and
so

(1) S0(S′, σ(S′, ψS′)⊗OS′(Li,j |S′)) = H0(S+,OS+(jDS+))

for j replaced by some multiple and i ≫ 0 divisible by j, where the left
hand side is the subset of sections in H0(S′,OS′(Li,j|S′)) which are stable
under the Frobenius trace map of (S′, ψS′) (see [HX15, Section 2.3] for the
precise definition). Here ψS′ := (ψ − S′)|S′ and ψ is a small perturbation

of {− j
i
Ni,Y − AY } + S′ (see [HX15, Lemma 4.6]). Moreover, the natural

morphism

S0(Y, σ(Y, ψ) ⊗OY (Li,j)) → S0(S′, σ(S′, ψS′)⊗OS′(Li,j|S′))

= H0(S+,OS+(jDS+))

is surjective (see [HX15, Lemma 4.7]). Since

|Li,j | ⊆ |jk(KY + S′ +BY )|+ ⌈AY ⌉,

where BY = (−AY )≥0, this allows for lifting sections and showing the stabil-
isation of Di (see the end of the proof of [HX15, Theorem 4.12] for details).
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To sum up, the relative pure F-regularity of (X,S +B) is used twice: to
show the normality of S, and, more importantly, to establish the identity
(1) which is fundamental in lifting sections.

3.2. Proof of Theorem 1.1 and Theorem 1.2. For inductive reasons
and the sake of clarity, we tackle Theorem 1.1, Theorem 1.2, and Corollary
1.3 simultaneously. Using the following proposition we will show that every
three-dimensional dlt pair has normal divisorial centres up to a universal
homeomorphism, which in turn will conclude the proof of Theorem 1.1.
This approach follows, mutatis mutandis, the strategy laid down in [GNT16,
Theorems 3.14, 3.15, 3.16].

Proposition 3.7. Let (Y,∆) be a Q-factorial three-dimensional dlt pair

defined over a perfect field of characteristic p > 0 with normal divisorial

centres up to a universal homeomorphism. Assume that there exists a pro-

jective morphism π : Y → X over a normal Q-factorial variety X such that

Exc(π) ⊆ ⌊∆⌋.
Then we can run a (KY +∆)-MMP over X which terminates with a min-

imal model (Z,∆Z), whose divisorial centres are normal up to a universal

homeomorphism. Moreover, if Y has WO-rational singularities, then so

does Z.

Proof. The cone theorem is valid by Theorem 2.4. Since X is Q-factorial,
there exists a relatively anti-ample effective exceptional divisor. In particu-
lar, there exists S ⊆ ⌊∆⌋ such that S ·R < 0 for a given (KX +∆)-extremal
ray R. Proposition 2.6 implies the existence of the contraction g : X → Z of
R. By Proposition 2.8, the normality of divisorial centres up to a universal
homeomorphism is preserved. By Lemma 3.1 and Proposition 3.4, if g is
a flipping contraction, then the flip exists and the normality of divisorial
centres up to a universal homeomorphism is preserved under g. The termi-
nation of the MMP with scaling holds by standard arguments (cf. [HX15]
and [BW17]). Thus, a minimal model exists.

Each step of the MMP preserves the WO-rationality of singularities by
Proposition 2.8 and Proposition 2.9. Therefore, if Y has WO-rational sin-
gularities, then so does Z. �

In order, to show Theorem 1.1, we need to prove Theorem 1.2 first.

Proof of Theorem 1.2. Let π : Y → X be a log resolution of (X,S +B). By
Proposition 3.7, we can run a (KY + π−1

∗ (S + B) + Exc(π))-MMP over X.
The corresponding minimal model must be (X,S + B) itself. In fact the
plt condition guarantees that all the components of Exc(π) are contracted
and hence the minimal model is isomorphic to X in codimension one. Since
X is Q-factorial, the above minimal model is in fact isomorphic to X. By
Proposition 3.7, the normalisation of S is a universal homeomorphism. �

Proof of Theorem 1.1. By Theorem 1.2 we have that the divisorial centres
of (Y,∆) are normal up to a universal homeomorphism. The theorem now
follows from Proposition 3.7. �

Corollaries 1.3, 1.4 and 1.5 now follow.
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Proof of Corollary 1.3. Let π : Y → X be a log resolution of X. By Propo-
sition 3.7, we can run a (KY + Exc(π))-MMP over X, the minimal model
of which must be X itself, as it is klt and Q-factorial. In particular, X has
WO-rational singularities by Proposition 3.7. �

Proof of Corollary 1.4. Let π : Y → X be a log resolution of (X,∆). Then,
a dlt modification is a minimal model of (Y, π−1

∗ ∆ + Exc(π)) over X (see
Theorem 1.1). �

Proof of Corollary 1.5. By taking a log resolution of (X,S+B) it is easy to

see that if (X,S +B) is plt, then (S̃, BS̃) is klt. Thus, we can assume that

(S̃, BS̃) is klt and aim to show that (X,S +B) is plt near S.
Let π : Y → X be a dlt modification of (X,S+B) (see Corollary 1.4) and

write KY +SY +BY = π∗(KX+S+B). By definition (of a dlt modification)
for any π-exceptional irreducible divisor E we have that E ⊆ ⌊BY ⌋. Write

(π|SY
)∗(KS̃ +BS̃) = (KY + SY +BY )|S̃Y

= KS̃Y
+BS̃Y

,

where S̃Y → SY is the normalisation of SY , and BS̃Y
is the different. Let

E be a π-exceptional divisor intersecting SY . Since E ⊆ ⌊BY ⌋ and (Y, SY +
Exc(π)) is dlt, we must have that E ∩SY ⊆ ⌊BS̃Y

⌋. If E ∩SY 6= ∅, then this

contradicts (S̃, BS̃) being klt.
Therefore we may assume that E ∩ SY = ∅ so that Y = X near S and

hence (X,S + B) is dlt on a neighborhood of S. Since S is irreducible,
(X,S +B) is in fact plt. �

Remark 3.8. Assume that Y is projective. Then Theorem 1.1 holds in a
slightly more general setting: suppose that X, instead of being a normal
Q-factorial variety, is an algebraic space admitting a birational morphism
φ : X ′ → X such that X ′ is a normal Q-factorial variety, ρ(X ′/X) = 1,
and Exc(φ) is a divisor. In view of Remark 3.2, the assertions of Theo-
rem 1.1 hold true by exactly the same proof. Here, the assumption on the
projectivity of Y is needed in order to apply the cone theorem.

Remark 3.9. In fact all log canonical centres of a three-dimensional Q-
factorial dlt pair (X,∆) are normal up to a universal homeomorphism. In-
deed, if the centre is two-dimensional, then this follows from Theorem 1.1.
Thus, we can assume that we have a dlt pair (X,D1 +D2) and we need to
show that every irreducible component of D1 ∩D2, say C, is normal up to
a universal homeomorphism. Let u : Dn

1 → D1 be the normalisation of D1

and let C ′ := u−1(C). By adjunction (cf. Corollary 1.5), (Dn
1 ,Diff) is plt,

where KDn
1
+Diff = (KX +D1+D2)|Dn

1
. By the surface theory, C ′ ⊆ ⌊Diff⌋

is smooth. In particular, the universal homeomorphism u|C′ : C ′ → C is also
the normalisation.

4. Minimal Model Program for dlt reductions

In this section we show Theorem 1.6. The main ingredient of the proof is
the following result.

Proposition 4.1. Let (X,S+B) be a three-dimensional Q-factorial plt pair

defined over a perfect field k of characteristic p > 0, where S is an irreducible
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divisor. Let g : X → Z be a flipping contraction of a KX + S + B negative

extremal curve R such that R ⊆ S and R · S = 0. Then the flip of g exists.

The proof follows the same strategy as the reduction of the existence of
flips to pl-flips ([Fuj07]). The necessary pl-flips exist by Proposition 3.4.

Proof. It suffices to prove the claim in a neighborhood of the point P :=
g(R) ⊂ Z. Since S · R = 0, we have that S′ := g(S) is Q-Cartier. Set
∆ = S + B and let H ′ be a reduced Cartier divisor on Z containing the
non simple normal crossing locus of (Z, g∗∆) and satisfying the following
conditions (see assumptions (i)-(iv) in [Fuj07, Theorem 4.3.7]):

(1) H := g−1
∗ H ′ contains Exc(g),

(2) for any proper birational morphism h : Y → Z such that Y is Q-
factorial, we have that N1(Y/Z) is generated by the irreducible com-
ponents of the strict transform of H ′ and the h-exceptional divisors,

(3) H and ∆ have no irreducible components in common.

Consider a log resolution of (X,∆+H):

Y X Z.
p

h

g

We claim that we can run a (KY +∆Y +HY )-MMP over Z, where HY is the
strict transform of H, and ∆Y := p−1

∗ ∆+ Exc(h). First of all note that for
any extremal ray R for Y over Z, we may assume that R is contained in the
support of h∗H ′ and by condition (2) there is a component of the support
of h∗H ′ having a non-zero intersection number with R. Since R · h∗H ′ = 0,
there are components E,E′ of the support of h∗H ′ such that E ·R < 0 and
E′ ·R > 0. Divisorial centres are normal up to a universal homeomorphism
by Theorem 1.2, and so contractions exist by Proposition 2.6. The cone
theorem holds by Theorem 2.4, and special termination is valid by the stan-
dard argument (see [Fuj07, Theorem 4.2.1]). The necessary flips exist by
Proposition 3.4.

Let us replace (Y,∆Y +HY ) by its minimal model over Z. Note that, after
this replacement, Y need not admit a map to X, but it still admits a map
to Z, which as above we denote by h : Y → Z. Write ∆Y = D +BY , where
BY = h−1

∗ g∗B so that ⌊BY ⌋ = 0 and D =
∑m

i=1Di is a sum of irreducible
divisors not contained in HY with D1 = SY being the strict transform of S
and D2, . . . ,Dm are the h-exceptional divisors. Since h∗H ′ ≡h 0, we have
that

HY ≡h −
∑

j

bjDj , where bj ∈ Q≥0.

Run a (KY + ∆Y )-MMP with scaling of HY . Let 0 < λ ≤ 1 be such that
KY +∆Y + λHY is h-nef, and there exists a (KY +∆Y )-extremal curve R
satisfying (KY +∆Y +λHY ) ·R = 0. Since (KY +∆Y ) ·R < 0, we have that
HY ·R > 0, and the above numerical equivalence implies that there exists j
for which Dj ·R < 0. Arguing as above, in order to show that such an MMP
can be run, it is enough to show that flips exist. Hence we suppose that the
associated contraction is flipping, and so in particular h(R) = P . We have
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h∗S′ · R = 0 and g(R) = P , and thus there exists j′ for which Dj′ · R ≥ 0
and Dj′ ∩ R 6= ∅. We claim that Dj′ · R > 0. Indeed, otherwise R ⊆ Dj′ ,
and since (Y,Dj +Dj′) is dlt, we get that R = Dj ∩Dj′ . Then

R ·Dj′ = R|Dj
·Dj′ |Dj

= λ(R|Dj
)2 < 0,

for some λ > 0, which is a contradiction. Given that Dj · R < 0 and
Dj′ · R > 0, the flip of R exists by Proposition 3.4.

Now, replace (Y,∆Y ) by the output of this MMP. Then KY +∆Y is nef
over X. Notice that h is small (by the negativity lemma since (X,S+B) was
plt) and (Y,∆Y ) is the flip of (X,∆). It is then easy to see that ρ(Y/X) = 1
(cf. [AHK07, Lemma 1.6]) and so KY +∆Y is in fact ample over X. �

Proof of Theorem 1.6. Note that X is not of finite type over k and hence is
not a variety. In what follows, when we invoke results about varieties, we
implicitly refer to the base change of (X ,Φ) with respect to an appropriate
open neighbourhood of s ∈ C.

We run a (KX +∆)-MMP with scaling of A, a sufficiently ample divisor
over S := Spec(R). We need to show that the cone theorem and the base
point free theorem are valid for (X,∆), that the flips exist, and that the
MMP terminates. Let A be an ample Q-Cartier Q-divisor on X.

Cone theorem LetXs =
⋃m

j=1Ej be the reduced special fibre of π, where
Ej are irreducible components, and let Ẽj → Ej be the normalisations. Take
{Γj,k}k≥0 to be the finite collection of images of

KẼj
+∆Ẽj

+A|Ẽj
= (KX +∆+A)|Ẽj

negative extremal curves in Ẽj. Since R is a DVR, NE(X/S) is generated
by curves contained in Xs, and so

NE(X/S) = NE(X/S)KX+∆+A≥0 +
∑

j,k

R[Γj,k].

Base point free theorem Suppose thatKX+∆+A is nef and (X,∆+A)
is dlt. We aim to show that it is semiample. By [CT17, Theorem 1.1]),
it is enough to check that (KX + ∆ + A)|Xs and (KX + ∆ + A)|Xη are
semiample where Xs and Xη are the reduced special fibre, and the generic
fibre, respectively. The latter Q-divisor is semiample by the base point free
theorem for surfaces (see [Tan16a, Theorem 1.1]). Thus, it is enough to
show that (KX +∆+A)|Xs is semiample.

Let π : W → Xs be an S2-fication (cf. [Wal18, Proposition 2.6]) of Xs.
By Remark 3.9, all the log canonical centres of (X,Xs) are normal up to
a universal homeomorphism, and so the proof of [Wal18, Proposition 5.5]
holds in our setting, showing that π is a universal homeomorphism and W is
demi-normal. Therefore, (W,∆W ) is slc, whereKW+∆W = π∗(KX+∆)|Xs .

By abundance for slc surfaces (see [Tan16b, Theorem 0.1]), KW + ∆W

is semiample, and, since π is a universal homeomorphism, (KX + ∆)|Xs is
semiample as well.

Existence of flips Let g : X → Z be a pl-flipping contraction of a (KX+
∆)-extremal curve C. In particular, C is contained in the special fibre of
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φ : X → S, that is there exists an irreducible divisor E ⊆ φ−1(s) such that
C ⊆ E.

If C · E 6= 0, then, given C · φ−1(s) = 0, we get that there exists an
irreducible divisor E′ ⊆ φ−1(s) satisfying sgn(C · E′) = −sgn(C · E). Thus
the flip of g exists by Proposition 3.4. If C · E = 0, then the flip exists by
Proposition 4.1.

Termination All the flipped curves are contained in Suppφ−1(s) ⊆ ⌊∆⌋,
and so the MMP terminates by special termination (see [Fuj07]). �

5. Other applications

In this section, we gather some other results on three-dimensional bira-
tional geometry that can be extended to low characteristic.

Proposition 5.1 (cf. [HX15, Theorem 5.6]). Let (X,∆) be a projective Q-

factorial three-dimensional dlt pair defined over a perfect field k of positive

characteristic p > 0. Let R be a (KX +∆)-negative extremal ray. Assume

that the closure of the locus of curves which are numerically equivalent to a

multiple of R is two-dimensional. Then the contraction of R exists.

Proof. Given Remark 3.8, the proof is exactly the same as that of [HX15,
Theorem 5.6]. �

We can also generalise the main results of [XZ18].

Proposition 5.2 (cf. [XZ18, Theorem 3.2]). Let (X,x) be a three-dimensional

Q-factorial klt singularity defined over a perfect field of characteristic p > 0.
Then the tame fundamental group πtame

1 (X,x) is finite.

Proof. It follows by exactly the same proof as that of [XZ18, Theorem 3.2].
The reason for that proof to require the assumption p > 5, was the use of
the existence of a Kollár component, which now follows from Theorem 1.1
and the standard argument. �

Proposition 5.3 (cf. [DH16, Theorem 3.6]). Let (X,∆) be a Q-factorial

three-dimensional log canonical pair defined over a perfect field of character-

istic p > 0 and such that X has klt singularities. Then minimal log canonical

centres of (X,∆) are normal up to a universal homeomorphism.

Proof. Let W be a minimal log canonical centre of (X,∆). By the tie-
breaking trick, up to perturbing ∆, we can assume that W is a unique log
canonical centre with a unique divisor over X of discrepancy −1 (cf. the
proof of [DH16, Theorem 3.6]). If codimX(W ) = 1, then (X,∆) is plt,
and the proposition follows by Theorem 1.2. Thus, we can assume that
codimX(W ) = 2.

Let f : Y → X be a dlt modification of (X,∆). By construction, f
extracts exactly one divisor S and we have that

KY + S +∆′ = f∗(KX +∆),

where ∆′ := f−1
∗ ∆. Since (Y, S + ∆′) is plt, S is normal up to a universal

homeomorphism, and so there exists an integer e > 0 and a factorisation

OS → OSn → F e
∗OS ,
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where Sn is the normalisation of S. The proof of [DH16, Theorem 3.5]
does not require any assumptions on the characteristic (it only needs S to
be normal in codimension one which follows by means of localisation and
surface theory), hence R1f∗OY (−S) = 0 and the sequence

0 → f∗OY (−S) → OX → f∗OS → 0

is exact. Note that f∗OY (−S) = IW , where IW is the ideal sheaf of W .
The surjective morphism on the right factors as OX → OW → f∗OS ,

which implies that OW ≃ f∗OS . Thus, we have a sequence of injective
morphisms

OW → OWn → f∗OSn → f∗F
e
∗OS ≃ F e

∗OW .

In particular, the normalisation of W factors through the Frobenius F e, and
so it is a universal homeomorphism. �

One can also show that [DH16, Lemma 2.1] holds for p > 0. The only
issue is that the techniques of our paper do not allow for extracting arbitrary
divisors with discrepancies smaller than zero. However, by using the tie-
breaking trick as above, the requisite divisors in the proof of [DH16, Lemma
2.1] can be extracted with the help of dlt modifications (see Corollary 1.4).
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