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We develop new computational and experimental methods to determine materials properties at
high temperature, such as melting temperature, heat of fusion, heat capacity, and lattice constant.
From density functional theory, we construct the small-size coexistence method and the SLUSCHI
package to compute the properties accurately, as well as to fully automate the computation process.
From experiment, we build experimental approaches, including ultra-high-temperature Drop-n-
Catch (DnC) calorimetry and synchrotron X-ray diffraction on solid laser-heated aerodynamically

levitated samples.

Employing deep learning techniques, we build an ensemble graph-neural-

networks model that predicts materials properties in milliseconds. The simultaneous development
of computational and experimental approaches allows us to integrate these methods and the data

generated by them.
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High temperature materials properties, such as melting
temperature, heat of fusion, and heat capacity, are very
challenging to compute or measure!, thus impeding the
design and discovery of refractory materials and high
temperature materials research. The chief reason for
the meager data on the structure and thermodynamics
of refractory materials above 2000 °C is the lack of
well-established tools and methods for measurements
and the complexity of ab initio calculations at these
temperatures. For experiment, measuring materials
properties at high temperature is often hindered by issues
such as temperature gradient, sample contamination,
and sample containment challenge. For computation,
in particular density functional theory? (DFT) calcula-
tions, these high temperature properties are evidently
different from static calculations at absolute zero, as
high temperature properties often require an extensive
sampling of configurational space and hence expensive
DFT molecular dynamics (MD)?8.

Our goal is to establish the accuracy and limita-
tions of our new experimental and computational ap-
proaches. The experimental approaches include ultra-
high-temperature Drop-n-Catch (DnC) calorimetry and
synchrotron X-ray diffraction on solid laser-heated aero-
dynamically levitated samples. The new computational
approaches include molecular dynamics methods to effi-
ciently obtain high temperature thermodynamic proper-
ties, such as melting points and absolute free energies in
the presence of large deviations from harmonic behavior,
as well as their implementation as automated software
tools. Given the large amounts of time and resources
associated with current experimental and computational
methods, we also seek to develop machine learning
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approaches that are more amenable to high-throughput
exploration or screening.

I. Deep learning and integration

A. Deep learning

From both experimental and computational data, we
build deep learning models? !, aiming to predict ma-
terial properties, such as melting temperature. More
specifically, we seek a mapping to materials properties
from the chemical formula only. No other materials or
structural features are required. Once this mapping is
determined, it allows us to predict melting temperature
for any chemical formula without further additional input
from any experiment or computation. In our view,
relying on input features would reduce the broad ap-
plicability of the method, especially in high-throughput
exploration or screening applications, where chemistry is
typically the only a prior: known input.

We first build a melting temperature database that
contains mostly experimental melting temperatures, as
well as DFT values based on SLUSCHI calculations (See
Section II). This training database currently has approx-
imately 9400 entries, while each entry is the chemical
compositions, i.e., elements and their concentrations, or
equivalently chemical formula, and the corresponding
melting temperature. We then build a deep learning
model with graph neural networks'? (GNN) and residual
neural networks!® (ResNet). GNN allows us to encode
and incorporate the physics of the elements and chemical
formula into the neural network connections. The com-
munication among the GNN nodes is capable of detecting
binary, ternary, and higher-order interactions among the
elements. Our unique design of the GNN also imposes
the so-called permutation invariance of chemical formula
(e.g., ZrOg and OoZr are the same material), which
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FIG. 1. The ensemble model of 30 GNN models is based
on bootstrap aggregating. The benefits include (1) further
overfitting reduction, (2) uncertainty estimate, and (3) outlier
detection. Therefore the model facilitates integration of the
experiment and computation.

TABLE I. Outlier data points detected by the ensemble model

Materials® MT? [K] Correction

100%Fe + 0%C 4099 Composition: 100%C
0%Fe + 100%C 1809 Composition: 100%Fe
H5035-MoyO3 2053 Material: HooO3-MoO3
CdFes0y4 181.3 Melting point: 1813 K

@ Data outliers from ASM database and ChemNet.
These data points are inaccurate, with wrong
composition, chemical formula, or melting temperature.
We review these issues and manually correct them.

® MT = melting temperature.

reduces training complexity and improves efficiency by n!
times, where n is the number of elements in a compound.
The ResNet effectively handles the issue of diminishing
gradient in model training, thus allowing deep neural
networks and complex non-linear mappings. We prevent
overfitting by heavily employing dropout layers in the
GNN model.

The deep learning model gives us predictive capability
for melting temperatures, with a root-mean-square error
(RMSE) of 160K and an R? score of 0.933, for a hold-
out test set. Furthermore, the model is extremely fast,
at a speed of milliseconds per material. In Ref. 10, we
have utilized the model to explore the entire chemical
space and search for high-melting-point materials. We
also employed the model to rapidly calculate melting
temperatures on thousands of complex minerals, which
led to the exciting discovery of clear trends in the melting
points of minerals arising from different periods of the
earth’s geological history.10:14716,

B. Ensemble and integration

We have been improving the models by adding more
data points, from both computation and experiment,
into the databases. During the process, we face various

challenges, particularly the inconsistency between exper-
imental and computational data, such as data quality
issues, data outliers, and systematic mismatch between
experiment and computation.

To resolve these issues, we require a system that is able
to estimate error and uncertainty. A large uncertainty at
a certain chemical composition suggests that the current
database, upon which the model is built, fails to converge
to a precise value, and thus more data points are needed
in the vicinity. A large error (i.e., an outlier) generally
indicates two possible causes: Either (1) the data point
is wrong due to data issues (so we should correct or
simply remove the data point), or (2) the data point
is correct and thus crucial to the mapping (so more
sampling is needed to describe the function in the vicinity
accurately).

We design a system that reshuffles the database to
achieve these goals. By employing bootstrap aggregating
(bagging)!”, we build an ensemble model, aggregating a
collection of 30 GNN models, as shown in Figure 1. Com-
pared to the original GNN model, the ensemble model
has three distinct benefits. First, the ensemble model
is capable of estimating uncertainty of the computation,
in addition to melting temperature. For each chemical
formula, the 30 separate GNN models independently
generate 30 different melting temperature values, from
which we compute the mean and standard error. Second,
the ensemble model further guards against overfitting.
As bootstrap reshuffles the dataset, it generates random
data populations for training, and these individual GNN
models are later aggregated to the ensemble model,
outperforming a single learner. Thanks to bootstrap and
reshuffling, the excellent performance of the ensemble
model (R? = 0.99 and 0.98, RMSE=60 and 100 K
for in-the-bag and out-of-bag sets, respectively) directly
proves our control of overfitting in our model. Third, the
ensemble model is capable of detecting outliers, as each
data point will fall in the testing sets for a portion of
the 30 random bootstraps, thus allowing us to evaluate
its out-of-bag error and detect outliers, i.e., data points
that are far away from the trend of others. Indeed,
we have found several outliers with data issues, though
the number is minimal (fewer than 5 out of more than
9,000), as shown in Table I. The correction of outliers
significantly improves the model’s performance, as these
outliers were the major contributors to errors previously,
accounting for a significant portion of the RMSE.

All models are already deployed online and publicly
available'®.

C. Application: materials design and discovery

We have already completed the models for melting
temperature®!® and bulk modulus. Employing these
two models, we explore all ternary chemical space (for
any chemical formula of any ternary compound) and
search for high-melting-point materials, which leads to
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FIG. 2. Materials design and discovery of approximately 100 ternary carbides, nitrides, oxides, borides, and silicides, based on
simulated annealing Monte Carlo simulations and the deep learning models of melting temperature and bulk modulus. Each
dot represents a top candidate of high-melting-point material, with its melting temperature and bulk modulus predicted by the
models. Each dot is a ternary compound, with two elements marked on the two axes, while the third element is determined by
the figure caption, i.e., carbides, nitrides, oxides, borides, or silicides.
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FIG. 3. DFT computation of melting temperature, heat of
fusion, and heat capacity, based on the small-size coexistence
method and the SLUSCHI package.

the discovery of approximately 100 ternary carbides,
nitrides, oxides, borides, and silicides, as summarized in
Figure 2. These computational materials discoveries will
guide us in the synthesis and experimental validation of
the materials.

II. DFT calculation

In addition to ML-based approaches to the exploration
of high-temperature thermodynamic properties, we also
utilize more targeted methods to characterize specific
materials. These methods also provide very valuable
input to our ML framework for chemistries where few
data are available.

DFT melting temperature calculations are considered
extremely expensive. We have built a method, called
the small-size coexistence method, to accurately calculate
melting temperature directly from DFT. Along with
melting temperature are other materials properties also
available after the calculation, including fusion enthalpy,

4500
4000
3500
3000 -
=
2
s
S 2500 -
=
g
1S
© 2000 -
1500 -
1000+, 9%acl .
y — melting temperature
, - =
500 ’ . . . . ~ with 100 K, error
500 1000 1500 2000 2500 3000 3500 4000 4500

Experiment [K]

FIG. 4. Computational melting temperature based on DFT
versus experiment. Error bars of 100 K were plotted as red
dash lines for eye guide. Plotted are materials at ambient
pressure (unless marked) that meet the requirements that (1)
we have studied the materials using the method and that
(2) there are existing experimental values to compare with.
The GGA-PBE functional is employed unless elaborated in
the label. PBE tends to underestimate melting temperature,
most likely due to its under-binding nature. On the other
hand, PBE-HSE often provides lower and upper boundaries
of the melting temperature.

fusion entropy, and heat capacity, as illustrated in Figure
3. The method"!? is highly accurate and efficient.
As shown in Figure 4, the error is generally under
100K, reaching the limit of DFT functional accuracy.
In terms of cost, it usually takes several days to com-
pute one material, with a typical total cost of several
thousand to tens of thousand CPU hours. Given the
prohibitively high cost of other approaches (such as the



large-size coexistence method* and the particle insertion
method®2%), the method is one of the fastest for DFT
melting temperature calculation.

This DFT formalism features small-size solid-liquid
coexistence MD simulations, with the melting tem-
perature inferred from statistical analysis of the time
evolution in the solid-liquid phase fractions. It elimi-
nates the risk of metastable superheated solids in the
fast-heating method®?2!, while significantly reducing the
computational cost relative to the traditional large-scale
coexistence method®. We have utilized this method to
study hundreds of materials?®?> 3%, all based on direct
DFT2%3! MD simulations via the VASP package??.

We have automated the computational process into the
SLUSCHI (Solid and Liquid in Ultra Small Coexistence
with Hovering Interfaces) package3?, which we freely dis-
tribute and is publicly available on our group’s website.

III. Experiment

Our experimental efforts to characterize the high-
temperature thermodynamic properties of refractory
materials include ultra-high-temperature Drop-n-Catch
(DnC) calorimetry and synchrotron X-ray diffraction
on solid laser heated aerodynamically levitated sam-
ples. Splat quenching techniques provide the highest
possible cooling rates and were originally developed
for quenching liquid alloys into metallic glasses. The
splat quenching of five component (“high-entropy”)
rare earth oxide melts was tested using splittable
nozzle aerodynamic levitator.>6 Drop-n-catch (DnC)
calorimeter3”(Fig. 5) relies on heating with COy laser
and aerodynamic levitation and provides previously not
realized measurements of fusion enthalpies of refractory
oxide compositions?®26:29:38 ' The main limitations of the
current DnC approach are in the thermal gradient in the
samples and propensity for transition into an ablation
regime since the levitating bead is surface heated from
the top with laser but cooled from the bottom with gas
flow required for aerodynamic levitation. The necessity
of flowing gas to maintain levitation also complicates
the design for operation at higher pressures to reduce
evaporation. Refractory carbides, borides, and nitrides
of transition metals, including predicted hafnium car-
bonitride composition, are metallic conductors. This
enables bulk heating of these compositions by electric
current to reduce thermal gradient. It also provides a
way for levitation without sample cooling in a gas stream.
Electromagnetic levitation (EML) provides both bulk
induction heating and levitation, which can be realized
from vacuum to hyperbaric conditions. The feasibility
of electromagnetic levitation for electrically conductive
ceramics was demonstrated. It has profound implications
for the collection of thermophysical data3” for ultra-
high temperature ceramics and was proposed as sample
environment for neutron diffraction beamline*®. This
will provide benchmarking of computational data for re-
fractory carbides, borides, and nitrides, which are under
investigation as components of ultra-high temperature

ceramics and nuclear fuels.

Most of the rare earth ceramic formulations include
zirconia and hafnia. Their melting temperatures are well
constrained: 2710 and 2800 °C, respectively; however,
their fusion enthalpies have never been measured. The
multiple thermodynamic assessments of phase diagrams
with ZrO; relied on the value from the JANAF thermo-
chemical tables, which can be traced to estimation from
liquidus slopes in an early phase diagram.?® The estima-
tion for HfO, fusion enthalpy relied on the same estimate
and assumption of the same entropy of fusion. There
were no data on volume change on tetragonal to cubic
phase transformation and on thermal expansion of cubic
zirconia and hafnia phases. Thus, after the construction
and validation of the new drop-and-catch calorimeter,
Zr0O5 and HfO, were chosen for joint computational and
experimental investigation, including measurements of
fusion enthalpies of in situ high temperature synchrotron
diffraction experiments on solids at APS. Both methods
employ aerodynamic levitation with laser heating, which
is still under active development.

The agreement in fusion enthalpies from experiment
and computation was remarkable, e.g., 55 £ 7 kJ/mol
vs. 54 £+ 2 kJ/mol, respectively, for ZrO,. We also
observed good correspondence in thermal expansion of
cubic ZrOg from XRD and DFT MD modeling. These
results validate the reliability of high temperature heat
capacity data obtained exclusively from computations,
which are critical for thermodynamic modeling but are
not currently accessible by experimental means. On
the other hand, the value for fusion enthalpy of ZrO,
from our measurements and computations is significantly
lower than the estimated value (87 kJ/mol) included in
JANAF table of thermochemical data. The reason is that
we include the dynamic disorder on oxygen sublattice
in high temperature cubic ZrOs and HfOs in both our
experiment and computation, while the JANAF values
are obtained via extrapolation of early phase diagrams
and do not include disordering effects, which is evident
from our high temperature diffraction data and computed
structure, heat capacities, and oxygen diffusion coeffi-
cients. This joint work demonstrated the capabilities of
the new integrated computational and experimental ap-
proaches in providing a full set of high temperature ther-
modynamic properties.?® We employed the same strategy
of combined experimental-computational investigation??
of high temperature structure and thermodynamics to
two of the most refractory rare earth oxides: LusOg
and YbyO3 with melting temperatures of 2490 and 2435
°C, respectively. We also demonstrated good agreement
between experiment and computation on the negative
volume change on high temperature cubic to hexagonal
transformation in EroO3, HooO3, and TmyOg3. As shown
in Figure 6, the computational results are now being
correlated with experimental data to yield a combined
set of high temperature thermodynamic properties for
RE5O3 phases, including thermal expansion, which is
needed for the 3rd generation Calphad database.
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FIG. 5. Combined computational and experimental investigation of ZrOs above 2000 °C. (A) Experimental measurement of
fusion enthalpy by drop-and-catch calorimetry. (B) High temperature synchrotron X-ray diffraction experiments to the melting

temperature, (C) Density of cubic and liquid ZrOs from experiment and computations.
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IV. Summary

We have built new computational and experimental
methods to determine material properties at high tem-
peratures. From DFT calculations, we built the small-
size coexistence method to compute melting temper-
ature, fusion enthalpy and entropy, and heat capac-
ity. From experiment, we built ultra-high-temperature
Drop-n-Catch (DnC) calorimetry and synchrotron X-
ray diffraction on solid laser heated aerodynamically
levitated samples to measure fusion enthalpy, melting
temperature, and crystal structure. From deep learning,
we have built databases and models to predict melting
temperature and heat capacity. We utilize bootstrap
aggregating to build an ensemble model, which enables

34,35

us to integrate data points from these computational and
experimental methods.
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The machine learning data are available
https://faculty.engineering.asu.edu/hong/melting-

temperature-predictor/. The experimental data will be
made available on request.
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