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Melting is a high temperature process that requires extensive sampling of configuration space,
thus making melting temperature prediction computationally very expensive and challenging. Over
the past few years, I have built two methods to address this challenge, one via direct density
functional theory (DFT) molecular dynamics (MD) simulations and the other via deep learning
graph neural networks. The DFT approach is based on statistical analysis of small-size solid-liquid
coexistence MD simulations. It eliminates the risk of metastable superheated solid in the fast-heating
method, while also significantly reducing the computer cost relative to the traditional large-scale
coexistence method. Being both accurate and efficient (at the speed of several days per material), it
is considered as one of the best methods for direct DFT melting temperature calculation. The deep
learning method is based on graph neural networks that effectively handles permutation invariance in
chemical formula, which drastically improves efficiency and reduces cost. At the speed of milliseconds
per material, the model is extremely fast, while being moderately accurate, especially within the
composition space expanded by the dataset. I have implemented both methods into automated
computer code packages, making them publicly available and free to download. The DFT and
deep learning methods are highly complementary to each other, and hence they can be potentially
well integrated into a framework for melting temperature prediction. I demonstrated examples of
applying the methods to materials design and discovery of high-melting-point materials.
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Melting temperature is an important materials prop-
erty, especially in phase diagram construction and in the
design and discovery of high-performance refractory ma-
terials, which serve crucial roles in applications ranging
from gas turbine engines to heat shields for hypersonic
vehicles1–6. Furthermore, high melting temperature
often correlates with desirable thermodynamic and me-
chanical properties, such as high-temperature materials
strength, good ablation, and creep resistance. However,
unlike certain materials properties that can be readily
obtained through simple static calculations at absolute
zero, melting temperature is a high temperature property
that involves an expensive and complex computation
procedure, especially since it requires modeling of the
liquid phase and thus a large amount of configuration
sampling. As a result, melting temperature calculation
is considered very challenging and our capabilities are
still limited throughout the computational community.

Numerous ingenious methods have been devised
in attempt to capture melting temperatures from
computation7. Using empirical potentials is relatively
inexpensive, but it depends on availability and reliability
of the empirical potentials. It is both complicated and
time-consuming to building a new classical interatomic
potential for every new material, not to mention the
issue of reliability regarding accuracy. Density func-
tional theory (DFT) calculations are clearly better in
terms of generalizability and reliability. However, they
remain notoriously expensive, despite increasing power
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and capability of our computers. The large-size coexis-
tence method8,9, which is generally considered the gold-
standard and widely utilized as a benchmark, typically
requires a system size too large for DFT simulations,
rendering this approach prohibitively expensive in prac-
tice. The single-phase small-size Z method10, which heats
a solid until it melts, suffers from hysteresis. Despite
proposed solutions based on homogeneous melting to
alleviate superheating, this approach still lacks a rigorous
physical foundation11. Alternatively, one can compute
melting temperatures via the free energy method8,12,
which locates the intersection of the free energy curves of
the solid and the liquid. This approach requires highly
accurate free energy calculation of the liquid phase,
because the two curves cross at a terribly shallow angle
and thus a small free energy shift will result in a large
error in melting temperature. Unfortunately, all methods
for liquid-state free energy computation are expensive
and challenging, such as thermodynamic integration13,
the particle insertion method14,15, and the two-phase
thermodynamics method16.

In this work, I review the two methods we have built
over the past few years, to achieve the goal of melting
temperature prediction. In the first method, I built an
accurate and robust first principles approach, together
with Dr. Axel van de Walle. The method, called small-
size coexistence,7,17, is highly accurate and efficient, with
an error generally around 100K and a cost of several
days per material. The DFT approach is based on
statistical analysis of small-size solid-liquid coexistence
MD simulations. It eliminates the risk of metastable
superheated solid in the fast-heating method, while
also significantly reducing the computer cost relative
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to the traditional large-scale coexistence method. I
have also further automated the computational process
into the SLUSCHI (Solid and Liquid in Ultra Small
Coexistence with Hovering Interfaces) package18, which
I have freely distributed and is publicly available at my
group’s website. I have utilized this method to study
hundreds of materials19–27. In the second method, I
have built an extremely fast machine learning model,
via deep learning, to predict melting temperature from
chemical formula. The method is based on graph neural
networks that effectively handles permutation invariance
in chemical formula (e.g., NaCl is equivalent to ClNa),
which drastically improves efficiency and reduces cost.
At the speed of milliseconds per material, the model
is extremely rapid, while being moderately accurate,
particularly within the composition space expanded by
the dataset. I have deployed the model into production,
which is publicly available at our group’s webpage. It is
very easy to run the model, and a user needs to type
in only the chemical formula in order to generate an
estimate of its melting temperature in seconds.

I. DFT: small-size coexistence

While being highly accurate and hysteresis-free, the
traditional coexistence method is prohibitively expensive
in the context of density functional formalism28,29, due to
the large simulation size required. Reducing the system
size would allow much faster speed, as DFT typically
scales around O(N3). However the solid-liquid interfaces
will be too close to each other and thermal fluctuations in
the interface position will have a magnitude similar to the
simulation cell size. Therefore, for a small supercell, the
small size renders the coexistence unstable, and the latter
soon starts to form a single phase, either entirely solid
or entirely liquid, which in practice fails the coexistence
method in small-size applications.

I resolve this problem by introducing the small-cell
coexistence approach. Instead of one single long MD tra-
jectory of a large supercell, the method runs duplicated
solid-liquid coexisting simulations on small-size systems,
which allow me to drastically reduce computational cost.
Melting temperatures are rigorously inferred based on
statistical analysis of the fluctuations in the systems.
As one type of coexistence methods, this approach also
does not suffer from superheating errors (Section IC).
I have shown that finite size errors (Section ID) can
be mostly eliminated if I choose a size sufficiently large
but still feasible for DFT. Overall the method is highly
accurate, achieving an accuracy within 100K in most
materials I study based on DFT PBE calculations30

(Section I E). For certain systems where PBE errors
are relatively large, I suggest making a correction based
on the HSE functional31 (Section I F), which along with
PBE often gives the lower and upper boundaries of the
melting temperatures.

A. Methodology

The overall computation procedure is summarized in
Fig. 1. First, starting from a periodic supercell of
single crystal solid, half of the supercell is heated and
melted, while the atomic positions of the other half are
fixed. In the heating process, I gradually increase the
temperature, until it is sufficiently high that the solid half
melts, typically occurring at well above the material’s
melting temperature. This process generates an unbiased
50-50 distribution of solid and liquid composition. After
half of the supercell is melted, further MD steps are
carried out while the other half is still frozen, in order to
prepare multiple different configurations (or snapshots)
of half-half solid-liquid coexistence. These snapshots
serve as initial starting points of NPT MD duplicates
(these samples differ in liquid configurations), which
then undergoes MD simulations with atomic positions
fully relaxed. These MD duplicates’ trajectories will
statistically reflect the relative phase stability of the solid
and the liquid, i.e., the relative Gibbs free energy at
the simulation temperature. Below melting, the two-
phase coexistence is statistically more likely to solidify,
and vice versa. Thanks to the small system size, the
two-phase coexistence quickly evolves to a single-phase
equilibria, either entirely solid or entirely liquid, with
a probability determined by the system’s temperature
relative to its melting temperatures. The solid-liquid
probability distributions psolid and pliquid follow the
relations

pliquid
psolid

= exp

(
−Gl−s(T )lx

2kBT

)
, (1)

Hs/l(T ) = Hs/l(Tm) + Cs/l
p (T − Tm), (2)

Ss/l(T ) = Ss/l(Tm) + Cs/l
p ln

T

Tm
, (3)

Gl−s(T ) = Gl(T )−Gs(T )

=
(Tm − T )

Tm
H l−s(Tm)− Cl−s

p

(T − Tm)2

Tm
.(4)

Detailed derivation of Eqns. (1)-(4) and the validation
can be found in Ref. 17 and are omitted here. Through
fitting, I obtain melting properties, e.g., melting temper-
atures Tm, solid and liquid enthalpies Hs/l(Tm) at Tm

and heat capacities C
s/l
p . Here G is Gibbs free energy, S

is entropy, and lx is a finite-size parameter.

In Fig. 2, I illustrate the implementation of
Eqns. (1)-(4) in melting temperature fitting. I de-
note that SLUSCHI runs solid-liquid coexistence at
multiple s temperatures T = {T1, T2, · · · , Ts} with
n = {n1, n2, · · · , ns} samples, which yield k =
{k1, k2, · · · , ks} liquids and {n1−k1, n2−k2, · · · , ns−ks}
solids, as well as their corresponding enthalpies during
MD simulations. I plot the final enthalpies of the n =
{n1, n2, · · · , ns} samples vs. the temperatures, which
clearly form a binary outcome, either entirely solid or
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FIG. 1. Left: Schematic illustration of how small-size coexistence method is executed in practice. Starting from n × n × l
supercell with atoms at their ideal solid positions, I heat and melt the right half of the supercell to obtain solid-liquid coexistence
configurations. Then multiple parallel NPT MD simulations (here a total of N = Nsolid + Nliquid) are performed, in order
to measure the probability distribution. I then infer the melting temperature based on the distribution I observed. Right:
Final states of sixteen MD duplicates, which all started from 50-50 solid-liquid coexistence. The outcome is five liquids and
eleven solids, as evident from both the structures and the enthalpies (a liquid has a disordered structure and a relatively higher
enthalpy). Thus T = 3100 K, n = 16 and k = 5. Performing similar simulations at various temperatures allows me to collect a
set of vectors (T, n, and k), based on which I then fit the melting temperature.

entirely liquid. Because C
s/l
p is the slope of enthalpy-

temperature curve (assuming C
s/l
p is independent of

temperature), I obtain C
s/l
p through two independent

linear fittings on the enthalpies of the solid and the
liquid, as in Fig. 2. This leaves Tm and lx the only
two independent parameters yet to determine in Eqns.
(1)-(4) (H l−s(Tm) is a function of Tm).

In practice, the purpose of melting temperatures fitting
is to infer the values and the statistical errors of Tm and
lx from the sampled data (T, n, and k). This is achieved
following the principles of the maximum likelihood es-
timation method32,33. From a statistical point of view,
the sampling of solid-liquid coexistence’s final outcome,
at one individual temperature T , follows a binomial
distribution with parameters n and p, i.e., the discrete
probability distribution of the number of successes in a
sequence of n independent yes/no experiments (Bernoulli
trials), each of which yields success with probability p.
The probability function f of getting k liquids (and n−k
solids) in n samples is

f
(
k, n|p

)
= Ck

np
k (1− p)

n−k
, where p =

pl
ps + pl

. (5)

Here ps and pl are functions of the sampling temperature
T , the melting temperatures Tm and the finite-size

parameter lx, according to Eqns. (1)-(4). Hence

f
(
k, n|T, Tm, lx

)
= f

(
k, n|p (T, Tm, lx)

)
= Ck

n

[
p (T, Tm, lx)

]k [
1− p (T, Tm, lx)

]n−k
.(6)

As I sample multiple temperatures T, the joint proba-
bility function for a set of vectors (T, n, and k) is a
multiplication of probabilities at all temperatures.

f
(
k,n|T, Tm, lx

)
=

s∏
i=1

fi
(
ki, ni|Ti, Tm, lx

)
=

s∏
i=1

fi
(
ki, ni|pi (Ti, Tm, lx)

)
. (7)

Given a set of parameters {Tm, lx}, the probability
function f

(
k,n|T, Tm, lx

)
tells how probable the data

(T, n, and k) are. However, what I face in practice is
the inverse problem: I already observe the data (T, n,
and k), and I need to infer {Tm, lx}, i.e., to find the
parameters {Tm, lx} that are likely to have produced the
data.

I define the likelihood function

L
(
Tm, lx|k,n,T

)
= f

(
k,n|T, Tm, lx

)
. (8)
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FIG. 2. Melting temperature fitting (upper) and the computed likelihood L (Tm, lx) (lower). (Left) Simulation and fitting were
performed on a Ta empirical potential with a 6 × 6 × 12 b.c.c. supercell. I was able to sample hundreds of MD trajectories
with different temperatures and initial structures, achieving a high precision and a smooth curve. The calculated melting
temperature is benchmarked with the standard large-size coexistence method shown as the pink bar, using the same empirical
potential. (Right) For DFT, I carry out only a limited number (typically a few dozens) of MD simulations on a small 3× 3× 6
b.c.c. supercell, due to the high cost. The small number of samples leads to a relatively large uncertainty of the melting
temperature. However, a few dozen are sufficient to achieve a precision of 100 kelvin.

I note the difference between the probability function
and the likelihood function. The probability function is
a function defined on the data scale, given a particular
set of parameter values. On the contrary, the likelihood
function is a function defined on the parameter scale,
given a particular set of observed data. In practice, I
create a 2-D grid of Tm and lx and evaluate the likelihood
function L

(
Tm, lx|k,n,T

)
at each grid point {Tm, lx},

while the observed data (T, n, and k) are kept constant,
as illustrated in Fig. 2. The likelihood allows us to obtain
the value and statistical error of Tm.

B. SLUSCHI

I have automated the computational process into the
SLUSCHI (Solid and Liquid in Ultra Small Coexistence
with Hovering Interfaces) package18, which I have freely
distributed and is publicly available at my group’s web-
site. SLUSCHI is fully automated, with interface to
VASP.34 A user needs to input the crystal structure and a
list of calculation parameters, and SLUSCHI will handle

the rest of the calculations, including all the simulation
steps in Fig. 1, deciding which temperature range to
sample and run simulations, and submission and analysis
of all VASP jobs. Typically it takes between several days
to weeks to complete melting temperature calculation on
one material. Thanks to this automation capability, I
have studied hundreds of materials by utilizing the small-
size coexistence method and SLUSCHI.

C. Superheating error

Superheating is the phenomenon when melting is
somehow suppressed by an energy penalty, e.g., solid-
liquid transition barrier, high interfacial energy, or short
DFT MD time scale, resulting the solid phase to persist
in its metastable solid form. Heterogeneous melting
involves solid to be partially melted into liquid, forming
solid-liquid coexistence and interface, which is a large
energy penalty if the cell size is relatively small.

While methods that start from a single phase typically
suffer from superheating, this type of error is mostly elim-
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FIG. 3. Computational melting temperature based on DFT
versus experiments. Error bars of 100 K were plotted as
red dash lines for eye guide. Plotted are materials at
ambient pressure that meet the requirements that (1) I have
studied the materials using the method, and that (2) there
exist experimental values to compare with. The GGA-PBE
functional is employed unless elaborated in the label. PBE
tends to underestimate melting temperature, most likely due
to its under-binding nature. PBE-HSE often provides lower
and upper boundaries of the melting temperature.

inated in solid-liquid coexistence methods, because solid-
liquid interfaces are already present starting from the
very beginning of the simulation, and there is no need of
creating an interfaces. The small-size coexistence method
and the SLUSCHI package do not suffer from this type of
error. I note that in practice SLUSCHI PBE calculations
tend to underestimate melting temperature, as suggested
in Fig. 3, with no observation of superheating.

D. Finite size error

Finite size error is another type of error in melting
point calculations. MD simulations are carried out under
the constraint of small periodic cells in VASP. Under
the constraint, each atom and its periodic images are
required to move in the exactly same manner during MD
simulations, thus limiting the degree of freedom to 3N ,
where N is the number of atoms in the cell. When the
cell size is small, this limit could result in a large bias
from real solid or liquid.

At its first glance, this constraint appears worrisome,
especially for the liquid phase which is naturally long-
range disordered. However, our investigation confirms
that a reasonably large supercell (e.g., a size of 100
atoms) will not only be feasible in terms of DFT MD
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FIG. 4. Finite-size error of Gibbs free energy of two liquids,
copper and tantalum. This study15 was carried out using
the particle insertion method14 on two empirical potentials in
LAMMPS. Even if cell size is reduced to ∼ 100 atoms, the
finite size error is only 10-20 meV, which corresponds to a
∼100 K error in melting temperature.

speed, but also eliminate most of the finite size error.
As shown in Fig. 4, when the size is sufficiently large
at ∼ 100 atoms, the finite size error is typically reduced
to 10 meV/atom in terms of Gibbs free energy, which
converts to approximately 100K in melting temperature
calculations.
Error cancellation is another factor that works in favor

of the method. Note that, by simulating solid-liquid
coexistence, the method compares the relative stability of
solid and liquid, so error cancellation will further improve
accuracy if the errors are towards the same direction.
Imposing periodic image constraint reduces the accessible
phase space and penalizes stability for both the solid
and the liquid. Partial error cancellation is expected,
though the errors are not of the same magnitude (liquid
error is larger). In addition to periodic image, lattice
constant mismatch in solid-liquid coexistence will put
strains on the cell and thus penalties on both phases.
The solid phase generally suffers more from this type of
penalty, while the liquid structure is more flexible and
less susceptible to lattice constant changes. Combining
these two mechanisms, I expect a considerable portion
of error cancellation in the small-size solid-liquid coex-
istence method, compared to the absolute error of the
entirely liquid phase, thus further reducing the finite size
error.

E. DFT functional error

As illustrated in Fig. 3, the method tends to under-
estimate melting temperature, as the PBE melting tem-
peratures are lower than the experimental ones for most
of the materials. I believe that DFT functional error is
responsible for the underestimation. Unless additionally
elaborated, melting temperature calculations in Fig. 3
were carried out based on the GGA-PBE functional. One
well known issue of GGA is that it tends to underestimate
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bond strength35. Since there are more bonds in the solid
phase than in the liquid, the binding energies of the solid
phase are underestimated by a larger amount than those
of the liquid phase, thus making the solid phase relatively
unstable. Therefore, an unstable solid phase results in an
early melting, i.e., a lower melting temperature compared
to experiment.

In practice, we make an HSE correction, as discussed
in the next section, which always increases the melting
temperature and often leads to an overestimate. Thus,
PBE simulation and HSE correction can respectively
serve as the lower and upper boundaries of the melting
temperature.

F. HSE correction

We evaluate the HSE functional’s impact on melting
temperature as

THSE
m

TPBE
m

=
∆HHSE

∆HPBE
, (9)

where ∆H is heat of fusion and Tm is melting temper-
ature. Since it is prohibitively expensive to compute
∆HHSE directly, which would require MD simulation
with the HSE functional, we calculate the energy cor-
rection as a first-order perturbation,

HHSE −HPBE =
〈
HHSE −HPBE

〉
PBE

. (10)

The bracket ⟨· · · ⟩PBE means that we randomly choose
snapshots from MD trajectories of PBE, to calculate the
energy differences between the two functionals.

This correction Eq. (9) assumes that enthalpy is the
dominant factor in this correction, while the impact
from entropy is negligible, i.e., melting temperature is
proportional to heat of fusion, ∆H = ∆S · Tm, while the
entropy change of melting ∆S is a constant for different
functionals such as PBE and HSE. This turns out to be
a good approximation from the perspective of potential
energy surface (PES). A constant ∆S corresponds to the
situation where the relative landscape of the PES remains
the same, while a change in ∆H points to a shift of the
PES from PBE to HSE. As the shifts are different for
solid and liquid, the heat of fusion ∆H HSE correction
is a non-zero term. In practice, this correction often
well captures the impact of different DFT functionals on
melting temperature calculations, thus offering us a range
of values to serve as the lower and upper boundaries of
the melting temperature.

G. Summary

The small-size coexistence method is one of the best
methods available for melting temperature prediction.
As an approach based on direct DFT MD simulations,

the method is robust and flexible, suitable for a wide
range of materials. The small system size allows rapid
speed, as DFT typically scales near O(N3) and this
strategy drastically reduces computational cost. In
addition, the MD duplicates are perfectly paralleled,
as they are separate and independent MD runs. The
method is carefully designed to reduce various types of
errors. As a coexistence method, it is free of superheating
error. The system size is properly selected to balance
the finite size error and computational cost. While DFT
functional error is inevitable, the HSE correction provides
an option to generate the lower and upper boundaries
of the actual melting temperature. An attractive fea-
ture of this general approach is that it can relatively
quickly deliver approximate results whose accuracy can
be systematically improved by simply running the code
for longer time.

Despite the progress, there remain challenges and
hurdles to achieve rapid melting temperature prediction.
At the pace of several days per material, the speed of
DFT melting temperature calculation is still very limited,
which puts a serious constraint on its predictive power.
In the next section, I introduce an alternative approach
via deep learning.

II. Deep learning: graph neural networks

In this work, I built a machine learning (ML) model to
predict melting temperature from chemical formula36,37.
The design, that no other input is required in addition to
chemical formula, allows me to build a model extremely
easy to use for everyone in the community. I first
built a melting temperature database that contains 9375
materials. Based on the database, I built a ML model,
which is capable of predicting melting temperature in
milliseconds per material. The model features graph
neural network and residual neural network architecture.
The root-mean-square errors of melting temperature are
75 and 138 Kelvin for training and testing, respectively.
I have deployed model online and made it publicly
available. A user may type in a chemical formula and
receive the computational results in seconds.

A. Database and model

In order to utilize ML to predict melting tempera-
ture, I first build a melting temperature database via
web crawling. Experimental melting temperatures are
collected, mostly from Ref. 38, and included in my
database, and my DFT melting temperature calculations
from SLUSCHI are added as well. My current database
contains 9375 materials, out of which 982 compounds are
high-melting-temperature materials with melting points
above 2000 Kelvin. The database consists of chemical
compositions, i.e., elements and concentrations of the
materials, or equivalently chemical formula, and their
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FIG. 5. Architecture of the GNN model for ML melting
temperature prediction. Up to four elements and composi-
tions (denoted as circles A, B, C and D) are connected in
this graph. Each element and composition are first converted
to features and then encoded and fed to the ResNet input
layer. The circles are connected in the GNN to exchange
information in order to count for higher order contributions.
In other words, each circle (element and composition) pulls
information from and communicates with other circles via
the GNN. The outputs of the GNN encoders are also fed to
the ResNet input layer. The ResNet consists of four fully
connect layers (fc1-4) with skipping connections and leads to
the regression analysis for melting temperature prediction.

corresponding melting temperatures.

Based on the database, I then build a deep learning
model to predict melting temperature. I employ the
Graph Neural Networks (GNN)39 architecture, along
with residual neural network (ResNet)40, as illustrated
in the architecture in Fig. 5. The GNN architec-
ture allows me to incorporate physics into the neural
network connections. This particular design of GNN
architecture imposes permutation invariance of chemical
formula, which drastically reduces training complexity
and improves efficiency. The ResNet architecture effec-
tively handle the issue of diminishing gradient in model
training.

When a material (its elements and compositions) is fed
to the neural network, each element that constitutes the
material is first converted to 14 features, such as atomic
radius, electronic negativity, electron affinity, valence
electrons, position in the periodic table, etc. These
features are encoded and passed to the next layer, a
process considered as the individual contribution to the
melting temperature from each element. In addition,
elements communicate to each other through the net-
work connections in the GNN architecture, thus leading
to impacts from the binary and ternary (and higher-
order) combination of the elements. These encoded
impacts are fed to the next layer as well. This layer,
consisting of singular, binary, and ternary interaction
of the elements and compositions of the material, then
goes through a 4-layer ResNet, which leads to the
regression and the estimation of melting temperature.
Currently the number of elements are limited to four
(i.e., up to quaternary compounds), in order to control
model complexity and reduce overfitting. However I can
increase this number in case of more elements. The
GNN architecture undergoes two iterations of network

communication among elements, as we find more rounds
do not further improve performance.
The 9375 materials are randomly assigned to training

and testing sets, with 8635 materials in the training
set, and 740 materials for testing. The neural network
model is built with the Tensorflow system41. The
training process takes approximately 2000 epochs of
optimization. The root-mean-square errors (RMSE) of
melting temperature are 75 and 135 K for the training
and testing sets, respectively.

B. Deployment

We deploy the model at my group’s website42, so other
researchers, especially those without the knowledge of
machine learning, may use the Application Programming
Interface (API) to estimate the melting temperatures for
the materials of their interests. The model is currently
hosted at Microsoft Azure and the ASU Research Com-
puting facilities. To use the model, a user may visit our
group’s website and input the chemical formula. After
submission, the model will respond in seconds with the
predicted ML melting temperature, as well as the actual
experimental melting temperatures of the “nearest neigh-
bors”, i.e., the most similar materials, in the database.
Thus this model serves as not only a predictive ML
model, but a handbook of melting temperature as well.
A user may also run bulk calculations via command line
with much shorter latency, by sending an HTTP POST
request to the API server and providing JSON data
(that contains elements and compositions of multiple
materials) in the body of the POST message. Detailed
instruction is available at the website.

C. Summary

At first glance, this model appears remarkably accu-
rate, in addition to its extremely rapid speed, compared
to other complex and expensive methods, such as DFT
calculations. However I would like to point out that,
as a machine learning model, while it may perform well
in certain composition space, which is typically well
sampled, it may fail in under-explored space, where the
model relies on extrapolation. In the latter scenario,
DFT will provide robustness and reliability, which not
only complements the GNN model but also expands its
dataset into new composition space for learning. The
small-size coexistence method and SLUSCHI perfectly
fit in this role, as the automated tool generates accurate
DFT melting temperatures. A larger dataset that
covers a broader chemical composition space will further
improve the accuracy of the GNN model. An integration
of the GNN model and the DFT tool will allow me
to build an iterative and self-consistent framework for
melting temperature prediction and materials design and
discovery of high melting temperature materials. We
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annealing. Shown in the figure are top ternary compounds
that have the highest melting temperatures. Each triangle
represents one ternary compound, with the three corners
being the elements. The top candidates are dominated by
carbides and nitrides. The only exception is a carbonitride,
the Hf-C-N system, which is exactly the material of the
highest melting temperature we predicted in 2015 based
on DFT MD simulations19. Note that the DFT melting
temperatures of Hf-C-N are excluded in the ML model, in
order to test its predictive capability.

can also utilize the GNN model, along with approaches
such as simulated annealing as demonstrated, to solve

the optimization problem of melting temperature maxi-
mization, as illustrated in Fig. 6.
To summarize, I have built a melting temperature

database and a machine learning model for melting
temperature prediction. The database so far contains
approximately 10,000 materials, and the GNN model
achieves high accuracy with 75 and 138 K root-mean-
square error of melting temperature for training and
testing, respectively. The model is deployed online and
publicly available. Future integration of the database,
the ML model, and the DFT tool will create a framework
for melting temperature prediction and materials design
and discovery based on melting temperature related
properties.

In this work, I reviewed two methods I have built over
the past few years, with an ultimate goal of melting tem-
perature prediction. The methods are complementary to
each other: the deep learning model is extremely fast
and easy to use, while SLUSCHI is highly accurate and
robust, with a solid track record of application to a wide
range of materials. An integration of DFT and deep
learning in the future will bring within reach our goal
of accurate and rapid prediction of material’s melting
temperature.
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