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We prove Grauert–Riemenschneider–type vanishing theorems for excellent divisiorally

log terminal threefolds pairs whose closed points have perfect residue fields of positive

characteristic p > 5. Then we discuss applications to dlt singularities and to Mori fiber

spaces of three-folds.

1 Introduction

The Grauert–Riemenschneider vanishing theorem says that if g : Y → X is a proper

birational morphism over C and Y is smooth then Rig∗ωY = 0 for i > 0. This is known to

fail in positive characteristic, even for three-folds. However, Grauert–Riemenschneider

vanishing holds if Y,X are both regular excellent schemes by [7, Theorem 1], or if Y is an

excellent Cohen–Macaulay scheme and X has rational singularities by [25, Theorem 1.4].

In many applications one would need a similar vanishing theorem where ωY is

replaced by some other line bundle. Our main technical result, Theorem 1.3, gives such

a vanishing for excellent dlt three-folds whose closed points have perfect residue fields

of positive characteristic p > 5.
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Vanishing Theorems for Three-folds 2847

Then in Section 3 we use Theorem 1.3 to derive local rationality properties of

divisorially log terminal (dlt) three-fold pairs in positive and mixed characteristic.

Finally we use the same techniques to obtain liftability and rationality results for Mori

fiber spaces in dimension 3 over perfect fields of positive characteristic; see Section 5.

Definition 1.1 (G-R vanishing). Let (X,�) be a pair, where X is a normal, excellent

scheme with a dualizing complex and � is a boundary on X (i.e., an R-divisor whose

coefficients are in [0, 1]). We assume from now on that log resolutions of singularities

exist for the pairs that we work with.

We say that (strong) G-R vanishing holds over (X,�) if the following is satisfied

for every log resolution g : (X ′,E + g−1∗ �) → (X,�), where E is the exceptional divisor

of g.

Let D′ be a Weil Z-divisor and �′ an effective R-divisor on X ′. Assume that

g∗�′ ≤ �, �Ex(�′)� = 0 (where Ex(�′) denotes the g-exceptional part of �′), and

(a) (for G-R vanishing) D′ ∼g,R KX ′/X + �′,
(b) (for strong G-R vanishing) D′ ∼g,R KX ′/X + �′ + (g-nef R-divisor).

Then Rig∗OX ′(D′) = 0 for i > 0.

We check in Section 2.3 that if G-R vanishing holds for one log resolution of X,

then it holds for every log resolution.

Remark 1.2. G-R vanishing is simpler to handle since the condition D′ ∼g,R KX ′ +�′ is
preserved by contractions and flips. By contrast, being g-nef is not preserved. However,

the two versions might be almost equivalent, though we cannot formulate a precise

statement or conjecture.

If X is essentially of finite type over a field of characteristic 0, then strong

G-R vanishing is a special case of the general Kodaira-type vanishing theorems; see

[17, 2.68]. Recently these vanishing theorems have been extended to general excellent

Q-schemes by Murayama; see [28]. Strong G-R vanishing also holds over 2-dimensional,

excellent schemes by [27]; see [20, 10.4]. In particular, if X is any normal excellent

scheme, then the support of Rig∗OX ′(D′) = 0 has codimension ≥ 3 for i > 0.

However, G-R vanishing is known to fail for three-folds in every positive

characteristic, as shown by affine cones over smooth projective surfaces violating the

Kodaira vanishing theorem. Thus we need some restrictions on the singularities of the

base for G-R vanishing to hold in positive and mixed characteristic. The following is

our main result:
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2848 F. Bernasconi and J. Kollár

Theorem 1.3. Let (X,�) be a 3-dimensional dlt pair, where X is an excellent

scheme with a dualizing complex whose closed points have perfect residue fields of

characteristic p > 5. Then G-R vanishing holds over (X,�).

In Theorem 1.3 the assumption on the characteristics is optimal, as shown by

the examples in [1, 2, 8].

Sketch of the proof. To prove Theorem 1.3, we consider a log resolution g : Y → (X,�)

and we run a suitable Minimal Model Program (MMP) on Y, which will end with (X,�).

Since in Section 2.3 we show that G-R vanishing holds on snc three-fold pairs, we are

left to show that G-R vanishing is preserved under the steps of the MMP. This is done in

Proposition 4.1 (resp. Proposition 4.2) in the case of divisorial contractions (resp. flips).

The case of divisorial contractions is where we need the assumptions on the residue

fields as we use the following vanishing theorem for surfaces of del Pezzo type proved

in [1, Theorem 1.1]:

Theorem 1.4. Let k be a perfect field of characteristic p > 5. Let X be a surface of

del Pezzo type over k. Let D be a Weil divisor on X and suppose that there exists an

effective Q-divisor � such that (X,�) is a klt pair and D − (KX + �) is big and nef. Then

Hi(X,OX(D)) = 0 for i > 0.

�

2 Preliminaries

In this section we gather various results that we use. Most of these have appeared in

the literature, but not stated in the form or generality that we need.

We refer to [20] and [4, Section 2.5] for the basic definitions in birational

geometry and of the singularities appearing in the Minimal Model Program for excellent

schemes.

2.1 A restriction short exact sequence

The following two results are proved, though not explicitly stated, in [14, Section 3].

Lemma 2.1. Let (X, S + �) be an excellent dlt pair where S is a prime divisor with

normalization ν : S̄ → S. Then, for every Weil Z-divisor class DX on X, there are

1. a Weil Z-divisor class DS̄ on S̄,
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Vanishing Theorems for Three-folds 2849

2. a Q-divisor 0 ≤ �D ≤ DiffS̄(�), and

3. a natural left exact sequence

0 → ωX(DX) → ωX(S + DX)
rS−→ ν∗ωS̄(DS̄) → 0, (2.1.3.1)

such that

4. DS̄ ∼Q D|S̄ + �D,

5. the sequence (2.1.3.1) is exact along the regular locus of S, and

6. if ωX(DX) is S3 along S, then (2.1.3.1) is exact.

Proof. Note that S is regular in codimension one by [20, 2.31], but it need not be normal

in positive characteristic (see [3, 8]).

We start by replacing DX with a linearly equivalent divisor not containing S. In

this way DX |S̄ is a well-defined Q-divisor on S̄. We now have the exact sequence

0 → ωX(DX) → ωX(S + DX)
rS−→ Q → 0,

where Q is a sheaf supported on S. Note that Q is a torsion free sheaf of rank one on S

by [20, 2.60] and there is a natural injection into its S2-hull Q ↪→ Q(∗∗) (if S is normal,

the S2-hull equals the reflexive hull; see [21] for the general case.)

Let Q|Sreg be the restriction of Q to the regular locus of S. Since S is regular in

codimension one, Q|Sreg extends naturally to a reflexive divisorial sheaf Q on S̄. Since

ν∗Q is S2 and coincide with Q(∗∗) on a big open set, we conclude they are isomorphic.

We are left to show that Q is isomorphic to OS̄(KS̄ +DS̄), where DS̄ := �DX |S̄�. It is
enough to prove this after localization at generic points of SuppQ. We may thus assume

that dimX = 2, and then π : Y → (X, S + �) has a thrifty log resolution [20, 2.79]. The

proof of [14, Proposition 3.1] now carries over.

If ωX(DX) is S3, we conclude that the sequence (2.1.3.1) is exact because Q is S2
by [20, 2.60]. �

We will use sequences as in (2.1.3.1) to lift vanishing statements from S to X, but

we need a stronger form of vanishing of Kawamata–Viehweg type on S.

Definition 2.2. Let (X, S+�) be an excellent dlt pair and g : X → Z a proper morphism.

By K-V vanishing for g : (X, S + �) → Z we mean the following property.
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2850 F. Bernasconi and J. Kollár

1. Rig∗OX(D) = 0 for i > 0, for every Weil divisor D such that D ∼g,R KX + S +
�′ + L for some 0 ≤ �′ ≤ �, where L is g-ample.

K-V vanishing is known to hold if Z is essentially of finite type over a field of

characteristic 0, if dimX = 2 and g has relative dimension ≤ 1, or if (X, S + �) is a log

del Pezzo surface pair over a perfect field and the characteristic is ≥ 7 by [1].

Proposition 2.3. Let (X, S + �) be an excellent dlt pair, g : X → Z a proper morphism,

and D a Weil Z-divisor on X. Assume that

1. D ∼g,R KX + S + �′ + L for some 0 ≤ �′ ≤ �,

2. OX(D − mS) is S3 along S for every m ≥ 1, and

3. −S is g-nef.

Assume further that one of the following is satisfied.

4. L is an ample Q-Cartier divisor and K-V vanishing holds for g|S̄, or
5. L is a nef Q-Cartier divisor, g|S̄ is birational, and strong G-R vanishing holds

for g|S̄.
Then Rig∗OX(D) = 0 for i > 0 near g(S).

Proof. Set Jm := im[OX(D − mS) → OX(D)]. Applying Lemma 2.1 to Dm := D − KX −
(m + 1)S we get a short exact sequence:

0 → OX(D − (m + 1)S) → OX(D − mS) → ν∗OS̄(Gm) → 0,

where Gm ∼R −mS|S̄ + D|S − �m for some 0 ≤ �m ≤ DiffS̄(�
′) and ν : S̄ → S is the

normalisation morphism. Thus by the snake lemma we get the following short exact

sequence:

0 → ν∗OS̄(Gm) → OX(D)/Jm+1 → OX(D)/Jm → 0.

Consider the induced exact sequence for i > 0:

Rig∗ν∗OS̄(Gm) → Rig∗(OX(D)/Jm+1) → Rig∗(OX(D)/Jm).

The first term vanishes by assumptions (4–5) because Gm ∼g|S̄,R KS̄ + DiffS̄(�
′) − �m +

L|S̄ − mS|S̄, so we conclude by induction that Rig∗(OX(D)/Jm) = 0 for all m ≥ 0. Thus

Rig∗OX(D) = 0 for i > 0 near g(S) by the formal function theorem. �
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Vanishing Theorems for Three-folds 2851

2.2 Fujita transform and CM criteria

One cannot reasonably define the pull-back of an arbitrary Weil Z-divisor by

a birational morphism. Nonetheless, there are two replacements—considered in

[11]—that are very useful for vanishing theorems. We will use these in Section 3.

Definition 2.4 (Fujita transforms). Let π : X → Y be a proper, birational morphism of

normal schemes. Let D be a Weil Z-divisor on Y and �D an R-divisor. (Eventually it will

be a boundary, but for now this is not needed). Assume that D + �D is R-Cartier.

The Fujita transform of (D,�D) is the unique pair
(
πF(D),�X,D

)
such that

1. πF(D) is a Weil Z-divisor on X such that π∗
(
πF(D)

) = D,

2. �X,D is an R-divisor on X such that π∗(�X,D) = �D,

3. �Ex(�X,D)� = 0, and

4. πF(D) + �X,D ∼π ,R 0.

Warning. The notation is slightly misleading since πF(D) also depends on �D. In our

applications, �D will be fixed.

Assume next that KY + � is R-Cartier and 0 ≤ �D ≤ �. Set �c
D := � − �D. The

K-twisted Fujita transform of (D,�D) is the unique pair
(
πKF(D),�c

X,D

)
such that

(1’) πKF(D) is a Weil Z-divisor on X such that π∗
(
πKF(D)

) = D,

(2’) �c
X,D is an R-divisor on X such that π∗(�c

X,D) = �c
D,

(3’) �Ex(�c
X,D)� = 0, and

(4’) πKF(D) ∼π ,R KX + �c
X,D.

Note that the Fujita transform and the K-twisted Fujita transform are both

functors.

The key observations of [11] are the following three claims.

Claim 2.5. π∗OX

(
πF(D)

) = OY(D).

Proof. As −πF(D) ∼g,R �X,D, by Property 3 it is elementary to deduce that

OY(π∗πF(D)) = π∗OX(πF(D)) (we refer to [20, 7.30] for details). We thus conclude by

Property 1. �

To get the second main property, write π∗(KY +�) = KX +�X where π∗(�X) = �.

Then

πKF(D) − πF(D) ∼π ,R −�X + �c
X,D + �X,D.
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2852 F. Bernasconi and J. Kollár

Here �c
X,D and �X,D are effective by definition. If all divisors appear in �X with

coefficients < 1, then all divisors appear in πKF(D)−πF(D) with coefficients > −1. Since

πKF(D) − πF(D) is a Z-divisor, it is then effective. Thus we have proved the following.

Claim 2.6. If (Y,�) is klt or if (Y,�) is dlt and π is thrifty, then πKF(D) − πF(D) is an

effective π-exceptional divisor. Thus π∗OX

(
πKF(D)

) = OY(D).

We get the third property by comparing the definitions.

Claim 2.7.
(
KX − πF(D)

)
and πKF(D) satisfy the assumptions of G-R vanishing (1.1.1.a).

Thus if G-R vanishing holds over (Y,�) for some � ≥ �D, then Riπ∗OX

(
KX − πF(D)

) = 0

and Riπ∗OX

(
πKF(D)

) = 0 for i > 0.

To get a CM criterion out of the above claims, we use the method of two spectral

sequences (see [19] or [20, 7.27]) combined with the duality between local cohomology

and higher direct images. Note that [20, 10.44] states the needed duality for locally free

sheaves. In our case one needs to use the Cohen–Macaulay version as in [17, 5.71]. The

end result is the following.

Theorem 2.8 (CM-criterion). Let π : X → Y be a proper birational morphism between

integral schemes. Let D be a Weil Z-divisor and � an R-divisor on Y such that D + � is

R-Cartier. Assume that

1. X is normal and CM,

2. OX

(
πF(D)

)
and OX

(
πKF(D)

)
are CM.

3. Riπ∗OX

(
KX − πF(D)

) = 0 for i > 0,

4. Riπ∗OX

(
πKF(D)

) = 0 for i > 0, and

5. πKF(D) − πF(D) is effective.

Then OY(D) is CM.

Note that assumptions (1–2) are automatic if X is a regular scheme.

Proof. Let p ∈ Y be a closed point and let W := π−1(p). We have the following

commutative diagram of local cohomology groups:
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Vanishing Theorems for Three-folds 2853

Here αi is an isomorphism by hypothesis (4) and the Leray spectral sequence for

local cohomology, and βi is an isomorphism by hypothesis (5). By [20, 10.44] we have

Hi
W(X,OX(πF(D))) � (Rn−iπ∗OX(KX−πF(D)))p, which vanishes by (3) for i < n. From these

we deduce that Hi
p(Y,π∗OX(πF(D))) = 0, and we conclude by noting that π∗OX(πKF(D)) =

π∗OX(πF(D)) = OY(D) by hypothesis (4) and Claim 2.5. �

2.3 Birational invariance of higher direct images

Conjecture 2.9. Let Y be a normal excellent scheme, D a Weil Z-divisor on Y, and �D

a Weil R-divisor whose coefficients are in [0, 1]. Assume that D + �D is R-Cartier. Let

π : X → Y be a proper, birational log resolution of (Y,D+ �D), and πKF(D) the K-twisted

Fujita transform.

Then Rπ∗OX

(
πKF(D)

)
is independent of X.

It is possible that this can be proved by the methods of [25]. Here we have a more

modest aim, to prove that resolution of singularities implies Conjecture 2.9. Let us first

state what we need about the existence of resolutions.

2.10. (Resolution assumption). Fix an integral scheme Y. Let g : X → Y be a proper,

birational morphism. Assume that (X,D) is an simple normal crossing (snc) pair. Let

g′ : X ′ → Y be a proper, birational morphism. Then there is a sequence of blow-ups

Xm
τm→ Xm−1 → · · · → X1

τ1→ X0 = X

such that

1. the center of each blow-up is a non-singular subvariety that has simple

normal crossing with the total transform of D, (these are called non-singular

blow-ups), and

2. the induced map Xm ��� X ′ is a morphism.

The usual Leray spectral sequence argument reduces Conjecture 2.9 to the case

when (Y,D + �D) is an snc pair.

Conjecture 2.11. G-R vanishing holds over snc pairs. That is, using the notation of

(2.9), assume in addition that (Y,D + �D) is snc. Then

Riπ∗OX

(
πKF(D)

) = 0 for i > 0. (2.11.1)
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2854 F. Bernasconi and J. Kollár

Theorem 2.12. Assume the resolution assumption 2.10. Then Conjectures 2.9 and 2.11

are true. In particular, the conjectures hold in the case where Y is an excellent Q-scheme

or Y is an excellent scheme of dimension d ≤ 3.

Proof. By an elementary computation, (2.11.1) holds if π is a non-singular blow-up.

Thus it also holds for compositions of non-singular blow-ups, more generally, for any

birational map that is a composition of non-singular blow-ups and blow-downs. The

Weak Factorization Conjecture asserts that every birational map between non-singular

varieties is such, but this is not known in positive characteristic. We go around this

using an unpublished argument of Hironaka (cf. [13, page 153]).

To simplify notation, let DX denote the K-twisted Fujita transform of D on X. By

induction on j ≥ 1 we prove that

Riσ∗OX

(
DX

) = 0 for j ≥ i > 0, (2.12.1)

for any birational morphism σ : X → X ′ between log resolutions of (Y,D + �D).

For j = 1, given any σ : X → X ′, we use our Resolution assumption 2.10 to get

τ : Z
π→ X

σ→ X ′,

where τ is a composition of non-singular blow-ups.

We know that (2.11.1) holds for τ . The Leray spectral sequence

Rpσ∗(Rqπ∗OZ

(
DZ

)
) ⇒ Rp+qτ∗OZ

(
DZ

)

gives the inclusion R1σ∗(π∗OZ(DZ)) = R1σ∗(OX(DX)) ↪→ R1τ∗OZ(DZ) = 0. So we

prove 2.12.1 for j = 1.

Now assume 2.12.1 holds for j and we prove it for j + 1. Again by the Leray

spectral sequence we have the inclusion

Rj+1σ∗OX

(
DX

) = Rj+1σ∗(π∗OZ

(
DZ

)
) ↪→ Rj+1τ∗OZ

(
DZ

) = 0.

Thus (2.12.1) also holds for j + 1.
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Vanishing Theorems for Three-folds 2855

Finally, Assumption 2.10 is known to hold for varieties in characteristic 0 by [13]

and for excellent three-folds [6]. �

2.4 Rational singularities

We recall the definition of rational singularities, following [25].

Definition 2.13. A scheme X has rational singularities if

1. X is a normal, excellent, Cohen–Macaulay scheme admitting a dualising

complex;

2. for every locally projective, birational morphism π : X̃ → X where X̃ is an

excellent Cohen–Macaulay scheme, the natural morphism OX → Rπ∗OX̃ is

an isomorphism.

If X has a resolution of singularities, then, by [25, Corollary 9.11], it is enough to

check condition (2) in Definition 2.13 for a resolution, recovering the traditional notion

of rational singularities.

In positive and mixed characteristics it is necessary to assume that X is Cohen–

Macaulay, but in characteristic 0 it can be deduced from the other properties as an

application of the Grauert–Riemenschneider vanishing theorem.

The following descent property is very similar to [25, Theorem 9.12].

Proposition 2.14. Let π : Y → X be a morphism of normal excellent schemes. Assume

that

1. Y has rational singularities,

2. the natural morphism OX → Rπ∗OY splits in D(X),

3. X is a Cohen–Macaulay scheme admitting a dualising complex.

Then X has rational singularities.

Proof. The proof closely follows [23, Theorem 1.1]. By [25, Corollary 9.11] it is

sufficient to show that X has pseudo-rational singularities, namely that for every

normal scheme X̃ and every projective birational morphism ϕ : X̃ → X, the natural map

ϕ∗ωX̃ → ωX is an isomorphism.

By the existence of a Macaulayfication (see [16, Theorem 1.1]) we can construct a

projective birational morphism Ỹ → Y such that Ỹ is Cohen–Macaulay and the following
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2856 F. Bernasconi and J. Kollár

diagram commutes:

Thus we have the following commutative diagram in D(X):

Since Y has rational singularities and Ỹ is Cohen–Macaulay, the composition

Rπ∗OY → Rϕ∗Rπ̃∗OỸ � Rπ∗Rψ∗OỸ � Rπ∗OY

is a an isomorphism. Therefore by assumption (2) we have a splitting in D(X):

OX → Rϕ∗OX̃ → OX .

Applying RHomX(−,ω•
X) and Grothendieck duality to the above sequence, we

have the following splitting:

ω•
X → Rϕ∗ω•̃

X
→ ω•

X . (1)

Since X is Cohen–Macaulay, we have ω•
X � ωX [−d]. Considering the (−d)-th cohomology

group in sequence (1), we deduce that the composition

ωX → ϕ∗ωX̃ → ωX

is an isomorphism. Note that ϕ∗ωX̃ is a torsion-free sheaf of rank one since ωX̃ is

so. Therefore ϕ∗ωX̃ → ωX is an isomorphism. This means that X has pseudo-rational

singularities. �
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Vanishing Theorems for Three-folds 2857

3 Consequences of Grauert–Riemenschneider Vanishing

We claim that those dlt pairs for which G-R vanishing holds satisfy all the other known

local rationality properties that are known to hold in characteristic 0. This claim is not

really new; the arguments below are at least implicit in many characteristic 0 papers,

especially [19], and in the positive characteristic works of [1, 14]. However, the clearest

statements of such principles are in [23, 25]; see also [24] and [20, Secs. 2.5 and 7.3] for

more introductory treatments.

Theorem 3.1. Let (X,�) be an excellent dlt pair that admits a thrifty log resolution.

Suppose that G-R vanishing holds over it. Then

1. X is Cohen–Macaulay;

2. Let D be a Weil Z-divisor on X such that D + �D is R-Cartier for some

0 ≤ �D ≤ �. Then OX(D) is CM.

3. (X,B) is a rational pair (as in [20, 2.80]) for every B ⊂ ���, in particular X has

rational singularities;

4. Log canonical centers of (X,�) are normal and have rational singularities.

All the above properties hold for excellent dlt pairs defined over Q by [28], and

for dlt three-folds as in Theorem 1.3. Note that, for dlt three-folds pairs over perfect

fields of characteristic at least 7, (1) was proved in [1, 14].

Proof. If (2) holds then applying it to D = �D = 0 we conclude that X is CM.

As for the proof of (2), let π : Y → (X,�) be a thrifty log resolution. Then we can

apply Theorem 2.8 by Claims 2.6 and 2.7 to conclude that OX(D) is CM.

Let g : Y → (X,�) be a thrifty log resolution and let BY denote the birational

transform of B and �′
Y the strict transform of �′ = � − B. We write

KY + BY + �′
Y + F = g∗(KX + �) + E,

where E and F are both effective exceptional divisor without common exceptional

components and �F� = 0. Since �E� − BY ∼g,R KY + �′
Y + F + (�E� − E), we have

that G-R vanishing applies both to OY(�E� − BY) and to ωY(BY), so the same proof of

[20, 2.87] works in this setting, giving (3).

We prove (4) by induction. Let B1, . . . ,Br be the irreducible components of ���.
We now prove that every irreducible component of Bi1∩· · ·∩Bir is normal and has rational
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2858 F. Bernasconi and J. Kollár

singularities. If Bi is an irreducible component of ���, applying (2) to �Bi := Bi shows

that OX(−Bi) is CM. Now the sequence

0 → OX(−Bi) → OX → OBi → 0

shows that OBi is CM (cf. [20, 2.60]). By [20, 2.31] Bi is regular in codimension 1, hence

normal. Thus the pair (Bi, DiffBi(� − Bi)) is dlt by easy adjunction [20, 4.8].

The following claim is crucial for the induction argument:

Claim 3.1.5. Let g : Y → X be a proper morphism and {Di : i ∈ I} Cartier divisors

on Y. Let L be an invertible sheaf on Y and for J ⊂ I set DJ := ∪i∈JDi. Assume that

Rmg∗L(−DJ) = 0 for every J ⊂ I and m > 0. Then, for every i ∈ I,

Rm(g|Di
)∗

(
L(−DJ)|Di

) = 0 for every J ⊂ I \ {i} and m > 0.

Proof. Consider the short exact sequence 0 → OY(−Di) → OY → O|Di
→ 0 and tensor

it by L(−DJ) where J ⊂ I \ {i}. For m > 0 we have the following exact sequence:

Rmg∗L(−DJ) → Rm(g|Di
)∗(L(−DJ)|Di

) → Rm+1g∗L(−DJ − Di).

We conclude by hypothesis that Rm(g|Di
)∗(L(−DJ)|Di

) = 0. �

To prove that an irreducible component Bij := Bi ∩Bj of �i = DiffBi(�−Bi) is CM,

it is sufficient to show that OBi(−Bij) is CM. By Claim 2.7 on X, naturality of the Fujita

transforms and Claim 3.1.5 applied to L = OY and
{
Di = gKF(−Bi)

}
(resp. L = ωY and{

Di = gF(−Bi)
}
) the following higher direct images

Rm(g|B′
i
)∗OB′

i
((g|B′

i
)KF(−B′

ij)) and Rm(g|B′
i
)∗OB′

i
(KB′ − gF(−B′

ij)) for m > 0

vanish, so we can apply Theorem 2.8 to conclude OBi(−Bij) is CM. Once we know Bij is

CM, we deduce that Bij is normal so
(
Bij, DiffBij(�i−Bij)

)
is dlt. We can thus proceed with

a straightforward induction process to show that all strata of ��� are Cohen–Macaulay.

Finally, the proof of [20, 4.16] now carries over to show that the lc centers of (X,�)

are exactly the strata of ���. We are only left to prove that the strata have rational

singularities. We start by showing it for codimension one strata Bi. As above we can

show Rm(g|B′
i
)∗OB′

i
and Rm(g|B′

i
)∗OB′

i
(KB′

i
) vanish for m > 0 and so we conclude Bi are

rational. We continue by induction to conclude.
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Remark 3.2. The natural inductive proof of (4) would be to show that G-R vanishing

holds over
(
Bi, DiffBi(�−Bi)

)
. This is quite likely true, but it is not obvious how to prove

it. To see what the difficulty is, fix a log resolution g : X ′ → X and let B′
i ⊂ X ′ denote the

birational transform of Bi. Given D′ ∼g,R KX ′ + B′
i + �′ where g∗�′ ≤ � and �Ex(�′)� = 0,

we get that Ri(g|B′
i
)∗OB′(D′

i|B′) = 0 for i > 0. Not every log resolution of
(
Bi, DiffBi(�−Bi)

)

is of this form, but, as we discussed in Section 2.3, this does not matter. The problem is

that usually not every divisor DBi ∼g|B′ ,R KB′
i
+�′ on B′

i is the restriction of a divisor from

X ′ and we do not know how to overcome this. However, in many applications, we need

G-R vanishing not for all divisors, but only for some that are constructed from (X,�) in

a “natural” way. If we are lucky then the construction of these divisors commutes with

restriction, and the proof goes through. This is exactly the case with the proof of (4).

Remark 3.3. A general result on rationality of dlt singularities in every dimension

similar to Theorem 3.1(2) has been proven in [25, Corollary 10.18], where it is proved

that X has rational singularities if it is Cohen–Macaulay and X is potentially dlt.

4 Grauert–Riemenschneider Vanishing Theorem

The aim of this section is to prove G-R vanishing for dlt three-folds.

Proof of Theorem 1.3. Since the statement of the theorem is local, we can assume X

to be affine. Let g : Y → (X,�) be a projective log resolution such that the exceptional

divisor E := E1 + · · · + En supports a g-ample Q-divisor whose existence is guaranteed

by [26, Corollary 3]. By [22, Theorem 9], (see also [4]), we can run a relative MMP starting

with (X0,�0) := (Y,� := g−1∗ �Y + ∑n
i=1 Ei) over X as in [22, Theorem 2]. Let

φi : (Xi−1,�i−1) ��� (Xi,�i)

be the i-th step of the MMP and gi : X
i → Y the corresponding map to Y.

As we proved in Section 2.3, G-R vanishing holds over the snc pair (X0,�0). We

show the following:

Claim 4.1. If G-R vanishing holds over (Xi−1,�i−1) then it also holds over (Xi,�i).

At the end of the MMP now we conclude that G-R vanishing holds over (Xm,�m).

Therefore it remains to show Claim 4.1 for each MMP step. If φi : (Xi−1,�i−1) ��� (Xi,�i)

is a divisorial contraction that contracts a divisor Si−1 ⊂ Xi−1, then we use Proposition

4.1. For this we need to check that assumption (4.1.3) is satisfied. If Si−1 is contracted

to a curve, then K-V vanishing holds by [30, Theorem 3.3]. If Si−1 is mapped to a closed
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2860 F. Bernasconi and J. Kollár

point, then we use [1, Theorem 1.1]. This is where we use the assumption that the residue

fields of closed points are perfect of characteristic p > 5.

If φi : (Xi−1,�i−1) ��� (Xi,�i) is a flip, then we apply Proposition 4.2, which

works for any excellent 3-dimensional scheme. �

For divisorial contractions we have the following general result.

Proposition 4.1. Let (X, S + �) be an excellent dlt pair where S is a prime divisor,

g : X → Z a proper birational morphism contracting S. Assume that

1. G-R vanishing holds over (X, S + �),

2. −S is g-ample, and

3. K-V vanishing holds for g|S : (S, DiffS �) → g(S) (as in Definition 2.2).

Then G-R vanishing holds over
(
Z, g∗�

)
.

Proof. We use Proposition 2.3. Choose any log resolution π : Y → X. Assume that we

have DY ∼R KY + �′
Y . Set DX := π∗(DY). Then π∗OY(DY) = OX(DX) by Claim 2.5. Since

(X, S+�) satisfies G-R vanishing, Theorem 3.1 shows that S is normal and OX(DX −mS)

is S3 along S since (DX − mS + (S + � − �′
X)) is R-Cartier.

Set c := coeffS �′
Y . Since S is g-exceptional, we have 0 ≤ c < 1, hence

DX ∼R KX + �′
X = KX + S + (�′

X − cS) + (1 − c)(−S)

shows that assumption (2.3.1) and (2.3.4) are also satisfied. Thus Rig∗OX(DX) = 0 for

i > 0 near g(S) and the Leray spectral sequence gives that Ri(g ◦ π)∗OY(DY) = 0 for i > 0

near g(S). �

Next we show that G-R vanishing is preserved by many 3-dimensional flips.

Proposition 4.2. Let (X, S + �) be a 3-dimensional excellent dlt pair and

(C ⊂ X, S + �)
g−→ Z

g+
←− (C+ ⊂ X+, S+ + �+)

a flip. Assume that

1. G-R vanishing holds over (X, S + �), and

2. −S is g-ample.

Then G-R vanishing holds over (X+, S+ + �+).
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Proof. Choose a common log resolution π : Y → X and π+ : Y → X+ and assume we

have DY ∼R KY +�′
Y . Following the proof of Proposition 4.1, we show that G-R vanishing

holds over
(
Z, g∗(S + �)

)
. Now we show how to deduce G-R vanishing on (X+, S+ + �+).

By G-R vanishing for excellent surfaces, Riπ+∗ OY(DY) is supported on closed

points for i ≥ 1. Since the dimension of the exceptional locus of g+ is one, we conclude

also that Rig+∗ (π+∗ OY(D)) = 0 for i ≥ 2. As G-R vanishing holds on on (X+, S+ + �+) we

can apply Lemma 4.3 to F := OY(DY) and W := X+ to conclude that Riπ+∗ OY(DY) = 0 for

i > 0. �

Lemma 4.3. Let τ : Y → W and π : W → Z be proper morphisms and F a coherent sheaf

on Y. Assume that

1. dimSuppRiτ∗F ≤ 0 for i ≥ 1 and

2. Riπ∗(τ∗F) = 0 for i ≥ 2.

Then the following are equivalent.

1. Ri(π ◦ τ)∗F = 0 for i ≥ 1.

2. Riτ∗F = 0 for i ≥ 1 and R1π∗(τ∗F) = 0.

Proof. The only nonzero terms in the Leray spectral sequence are π∗Riτ∗F and

Rjπ∗(τ∗F) for j = 0, 1. This gives that

Ri(π ◦ τ)∗F = π∗Riτ∗F for i ≥ 2

and we have an exact sequence

0 → R1π∗(τ∗F) → R1(π ◦ τ)∗F → π∗R1τ∗F → 0.

�

5 Applications to Mori Fiber Spaces

In this section we describe some applications of the vanishing theorems proven in

Section 4 to the birational geometry of three-folds in positive characteristic.

5.1 Vanishing for log Fano contractions

We prove the vanishing of higher direct images of the structure sheaf for log Fano

contractions in characteristic p ≥ 7.
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2862 F. Bernasconi and J. Kollár

Theorem 5.1. Let k be a perfect field of characteristic p ≥ 7. Let f : X → Z be a proper

contraction morphism between quasi-projective normal varieties over k. Suppose that

there exists an effective Q-divisor � ≥ 0 such that

1. (X,�) is a klt three-fold pair;

2. −(KX + �) is f -big and f -nef;

3. dim(Z) ≥ 1.

Then the natural map OZ → Rf∗OX is an isomorphism.

Proof. It is sufficient to prove Rif∗OX = 0 for i > 0. By [30, Theorem 3.3] and

[5, Corollary 1.8], there exists an open subset U ⊂ Z such that (Rif∗OX)|U = 0 and Z \ U

is a finite set of points. Let z be a closed point in Z \ U. By [12, Proposition 2.15], there

exists a contraction π : Y → Z and an effective Q-divisor �Y on Y such that

(i) (Y,�Y) is a Q-factorial plt pair (in particular, Y is klt),

(ii) S := (π−1(z))red is an irreducible component of ��Y�,
(iii) −(KY + �Y) is π- ample and −S is π-nef.

Let us consider the following diagram

where ϕ and ψ are log resolutions. Since X and Y have rational singularities by [1,

Corollary 1.3], to prove Rif∗OX = 0 in a neighbourhood of z, it is sufficient to prove

Riπ∗OY = 0 for i > 0. This follows from Proposition 2.3 and [1, Theorem 1.1]. �

The lifting of birational contractions between klt pairs was treated in

[14, Corollary 5.1]). Combining Theorem 5.1 with [9, Theorem 3.1] we get the following

analog for log Fano contractions.

Corollary 5.2. Let k be a perfect field of characteristic p ≥ 7. Let (X,�) be a klt three-

fold pair and let f : X → Z be a proper contraction morphism over k between quasi-

projective varieties. Assume that

1. X lifts to Wm(k) (resp. formally lifts to W(k)),

2. −(KX + �) is f -big and f -nef,

Then the morphism f : X → Z lifts to Wm(k) (resp. formally lifts to W(k)).
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5.2 Three-fold conic bundles

By [29, Theorem 3.8], the base scheme of a three-fold conic bundle has WO-rational

singularities over perfect fields of characteristic p ≥ 7. The same holds for p = 5

using [15]. We show that the base of a three-fold conic bundle has rational singularities

for p ≥ 7.

Theorem 5.3. Let k be a perfect field of characteristic p ≥ 7. Let (X,�) be a klt three-

fold log pair and let π : X → S be a proper contraction morphism onto a surface S over k.

If −(KX + �) is π-big and π-nef, then S has rational singularities.

Proof. By [1, Corollary 1.3], X has rational singularities and OS → Rπ∗OX is a quasi-

isomorphism by Theorem 5.1. Since S is a normal surface, it is Cohen–Macaulay and

thus we conclude by Proposition 2.14. �

It would be natural to expect that S has klt singularities, at least for sufficiently

large p > 0. It is easy to see that S is smooth if the total space is smooth, see [18, 4.11.2].

5.3 Pathological examples in higher dimension

The aim of this section is to show new examples of Mori fibre spaces whose bases have

non-lc singularities in characteristic p > 0. The first examples where the singularities

of the bases were non-klt (but still log canonical) were constructed for p = 2, 3 in

[31, Theorem 1.1]. Our construction is based on the work of Yasuda on wild quotient

singularities [32, 33].

Fix an algebraically closed field k of characteristic p > 0 and the cyclic

group Cp := Z/pZ. The Jordan normal form theorem says that every Cp-representation

decomposes as a direct sum of indecomposable representations V = ⊕
i Vi where

dimVi ≤ p. Yasuda introduces the invariant

DV := ∑
i

(dimVi
2

)
,

and proves that if DV ≥ 2, then the quotient variety X := V/Cp is terminal (resp.

canonical, log canonical) if and only if DV > p (resp. DV ≥ p, DV ≥ p − 1).

Example 5.4. Assume that p ≥ 5 and let V3 denote the indecomposable

Cp-representation of dimension 3. Then Y := V3/Cp is not log canonical.
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2864 F. Bernasconi and J. Kollár

Next consider (P1
k)

p with the cyclic permutation Cp-action. Set X :=(
(P1)p×V3

)
/Cp

where the action of Cp on
(
(P1)p × V3

)
is the diagonal one. At the fixed points, in local

affine charts, the action is the sum of two irreducible representations Vp ⊕ V3. Thus X

has terminal singularities by Yasuda’s theorem.

Note finally that Pic
(
(P1)p

)Cp � Z. We thus conclude that the coordinate

projection

π : X = (
(P1)p × V3

)
/Cp → V3/Cp = Y

is a Mori fiber space, X has terminal singularities, and Y is not even log canonical.

Note that Y is a hypersurface singularity by [32, Example 6.23] while X is not

Cohen–Macaulay by [10].
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