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Abstract
In this paper, we review computational approaches to optimization problems of inhomoge-
neous rods and plates. We consider both the optimization of eigenvalues and the localiza-
tion of eigenfunctions. These problems are motivated by physical problems including the 
determination of the extremum of the fundamental vibration frequency and the localization 
of the vibration displacement. We demonstrate how an iterative rearrangement approach 
and a gradient descent approach with projection can successfully solve these optimization 
problems under different boundary conditions with different densities given.
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The study of vibrating rods and plates have attracted a lot of attention since the eight-
eenth century. Euler (April 15, 1707 – September 18, 1783) used calculus of variation 
technique to determine the critical axial compressive load with which a cylindrical column 
has lateral deflection [19]. Later Lagrange (January 25, 1736 – April 10, 1813) formu-
lated the problem to maximize the critical load of a rod of variable cross-sectional area 
with given length and volume, but he did not succeed in getting the correct solution [25]. 
Chladni (November 30, 1756 – April 3, 1827) discovered different nodal lines pattern of a 
vibrating plate when he spread sand on the plate and stroke it with a violin bow [11]. This 
experiment became publicly known at that time. The king Napoleon was also fascinated by 
the beauty of patterns and decided to give a prize for the underlying mathematical theory. 
The prize was awarded to Germain (April 1, 1776 – June 27, 1831) in 1816 [34] who pro-
vided the first satisfactory solution. Later, the theory was completed by Kirchhoff (March 
12, 1824 – October 17, 1887) who found that Chladni figures on a square plate correspond 
to nodal lines of eigenfunctions of the bi-Laplacian operator with free boundary conditions 
[18, 22].

Nowadays, one can easily generate Chladni figures at home with a medal plate attached 
to a mechanical wave driver which provides designated frequency and amplitude. Spread 
sand on a medal plate and tune the frequency until it resonates. The sand will move toward 
the nodal lines which correspond to the locations with the least amount of vibration. See 
Fig. 1 with three different vibrating frequencies.

Let � be a bounded open set in ℝd with the Lipschitz boundary �� . For ease of exposi-
tion, the dimension d is chosen to be one or two here, even though the study can be easily 
extended to higher dimensions. The inhomogeneity of the rods and plates (i.e., d = 1 and 
d = 2 , respectively) is characterized by a non-constant mass density function � . The gov-
erning equation of a vibrating rod or a square plate with uniform thickness is

where D is the flexural rigidity and Δ2 = ΔΔ is the bi-Laplacian operator in the spatial 
variables. Assuming the natural vibration solution to be periodic, i.e.,

where u is the transverse displacement which only depends on the position coordinates and 
k is the circular frequency. Substituting (2) into (1) leads to the eigenvalue problem

(1)�(�)
�2�(t, �)

�t2
+ DΔ2�(t, �) = 0, � ∈ �,

(2)� = u(�)eikt,

Fig. 1   The sand patterns of a plate which vibrates at three different frequencies (photos taken by authors)
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where � = k2∕D.
Here, we consider two types of boundary conditions: the clamped boundary that both 

the displacement and its slope are zero, i.e.,

or the hinged boundary

where � is the Poisson’s ratio satisfying −1 ⩽ � ⩽ 0.5 , un = n̂ ⋅ ∇u , n̂ is the outward unit 
normal vector, and � is the curvature at the boundary [32]. On the straight boundary of 
𝛺 ⊂ ℝ2 , i.e., � = 0 , the hinged boundary can be reduced to

We will focus on problems on an interval or a square plate, so only (4) or (6) will be used. 
For other shapes of plates and their corresponding boundary conditions, see [17, 27, 35] 
for governing equations and solutions.

The spectrum of (3) with aforementioned boundary conditions is discrete and the eigen-
values can be enumerated, counting multiplicity, in an increasing order

In this paper, we review approaches to design the mass density to optimize objective func-
tions that depend on bi-Laplacian eigenvalues and eigenfunctions. Assume that the density 
function is in the class of the admissible density with a fixed total mass:

where � , � , and � are nonzero given constants with 0 < 𝛼 < 𝛽 and �|�| ⩽ � ⩽ �|�| . We 
consider the extremum problem

where J(⋅) represents a function of a specific eigenvalue and its corresponding eigenfunc-
tion. Other possible admissible sets will be discussed later. In particular, we will focus on 
two different problems: one is to optimize eigenvalues [9, 30] while the other is to localize 
eigenfunctions [10, 16]. These two kinds of problems are motivated by physical problems. 
One is to determine the minimum and maximum of the fundamental vibration frequency 
while the other is to localize the vibration displacement.

For the optimization of eigenvalues, the density to minimize (or maximize) the first eigen-
value, �1 , is found to be the same for a clamped rod and a hinged rod [4–6, 33]. For a higher 
eigenvalue, �j ( j ⩾ 2 ), only the extremal density for a hinged rod is known analytically. In 
[20, p.183], the determination of the optimal density distribution for the clamped rod problem 
with j ⩾ 2 was listed as an open question. Later, motivated by numerical results, it was proved 
that the optimal density that minimizes �j ( j ⩾ 2 ) for a clamped rod must be distinct from the 
one for a hinged rod [9]. The existence and properties of optimal densities for plates were 

(3)Δ2u(�) = ��(�)u(�),

(4)Bc∶
{
u(t, �) = un(t, �) = 0, � ∈ ��

}
,

(5)B�

h
∶
{
u(t, �) = Δu(t, �) − (1 − �)(�un) = 0, � ∈ ��

}
,

(6)B0
h
∶ {u(t, �) = Δu(t, �) = 0, � ∈ ��}.

0 < 𝜆1 ⩽ 𝜆2 ⩽ ⋯ ⩽ 𝜆j ⩽ ⋯ → ∞.

A�,�,� (�) =

{
�(�) ∈ L∞(�); � ⩽ �(�) ⩽ � a.e. in �, ∫�

�(�)d� = �

}
,

(7)min
�(�)∈A�,�,�

J(�(�(�)), u(�(�))),
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considered recently in [1, 13–15]. In spite of these nice theoretical results, the optimal density 
distribution can only be precisely identified when � is a ball [13, 30]. For the localization of 
eigenfunctions for rods and plates [3, 10, 24, 28], theoretical results are quite scattered. To 
find solutions to these inhomogeneous optimization problems, numerical approaches become 
necessary.

This paper is organized as follows. In Sect. 2, the variational characterization of eigen-
values is reviewed and the variations of eigenvalues and eigenfunctions with respect to 
the mass density are derived. In Sect. 3, we introduce the classical theoretical results of 
optimization of j-th bi-Laplacian eigenvalue problems and an iterative rearrangement algo-
rithm to minimize the first eigenvalue. In Sect. 4, we discuss a gradient descent approach 
with projection to localize the chosen eigenfunctions. In Sect. 5, the discrete approximation 
based on finite difference methods is discussed in detail. The numerical implementation 
of aforementioned approaches is provided. In Sect. 6, we demonstrate that the numerical 
approaches successfully solve both optimization problems over rods and plates. A brief 
conclusion of our paper with a discussion is given in Sect. 7.

2 � Variational Formulas

In this section, several variational formulas involve eigenvalues and eigenfunctions 
will be discussed. Consider the space ℍ(�) = H2

0
(�) for the clamped boundary (4) or 

ℍ(�) = H1
0
(�) ∩ H2(�) for the hinged boundary (6). Multiplying (3) by � ∈ ℍ(�) and 

integrating by parts, one obtains the corresponding variational formulation of (3): find 
� ∈ ℝ and u ∈ ℍ(�) , u ≠ 0 such that

for all � ∈ ℍ(�).
Denote 

(
�j, uj

)
 as the j-th eigenpair. The variational formulations of the eigenvalues [1] 

are

and

for higher eigenmodes j ⩾ 2 . To solve the optimization problem (7), we first derive the 
dependence of the eigenvalues and eigenfunctions on the variation of the mass density. By 
the min-max principle, it is clear that �j is a locally Lipschitz continuous function of � [26]. 
Since eigenfunctions are defined up to a constant, we normalize the eigenfunction by the 
condition

(8)∫
�

Δu(�)Δ�(�)d� = �∫
�

�(�)u(�)�(�)d�

(9)�1(�) = min
�∈ℍ(�),�≠0

∫
�
(Δ�)2d�

∫
�
��2d�

,

(10)𝜆j(𝜌) = min
Ej⊂ℍ(𝛺),

subspace of dim j

max
𝜓∈Ej,𝜓≠0

∫
𝛺
(Δ𝜓)2d�

∫
𝛺
𝜌𝜓2d�

(11)∫
�

�(�)u2(�)d� = 1.
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Proposition 1  Let (�, u) be a simple bi-Laplacian eigenpair, satisfying (3) with the bound-
ary condition (4) or (6), normalized so that ∫

�
�u2d� = 1 . Consider a perturbation 

� ↦ � + �� . Then, (a) the functional � ↦ �(�) is Frechét differentiable with derivative

and (b) the derivative of u satisfies

with the corresponding clamped or hinged boundary condition.

Proof  (a) We take a derivative of the formula � = ∫
�
(Δu)2d� and use Green’s identity to 

obtain

where un = n̂ ⋅ ∇u and n̂ is the outward unit normal vector.
From the normalization condition, ∫

�
�u2d� = 1 , we obtain

which gives the desired result.
(b) Taking a derivative of (3) leads to

By using the equality obtained in (a), we have

The derivative of the boundary condition (4) or (6) leads to the corresponding clamped or 
hinged boundary condition for u̇.

(12)𝜆̇ = 𝜕𝜌𝜆(𝜌)(𝜂) ∶= 𝜕𝜌𝜆(𝜌 + 𝜏𝜂)
𝜏=0

= −𝜆∫
𝛺

u2(�)𝜂(�)d�,

(13)Δ2u̇ − 𝜆𝜌u̇ − 2𝜆𝜌u∫
𝛺

𝜌uu̇d� = 𝜆𝜂u

𝜆̇ = 2∫
𝛺

Δu̇Δud�

= 2∫
𝜕𝛺

u̇nΔudS − 2∫𝛺

∇u̇ ⋅ ∇(Δu)d�

= 2∫𝜕𝛺

u̇nΔudS − 2∫𝜕𝛺

u̇(Δu)ndS + 2∫𝛺

u̇Δ2ud�

= 2𝜆∫
𝛺

𝜌uu̇d�,

∫
𝛺

𝜌̇u2d� = −2∫
𝛺

𝜌uu̇d�,

Δ2u̇ = 𝜆̇𝜌u + 𝜆𝜌̇u + 𝜆𝜌u̇.

Δ2u̇ − 𝜆𝜌u̇ − 2𝜆𝜌u∫
𝛺

𝜌uu̇d� = 𝜆𝜂u.
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3 � Optimization of j‑th Eigenvalue

One of the classical spectrum problems is to determine the range of eigenvalues, e.g., what is 
the range of the first eigenvalue of (3) with the clamped or hinged boundary when � ∈ A�,�,� ? 
This corresponds to the determination of the minimal and maximal fundamental frequencies, 
i.e., J(�, u) ∶= �1 , of a rod or a plate with a fixed total mass.

In one dimension, the optimal densities �(�) corresponding to the extremal �j are proved to 
be of bang-bang type for both kinds of boundary conditions [4–6, 33]. This means that � takes 
the value � or � . Thus, we consider the admissible mass density in the set

where D ⊂ 𝛺 and �|D| + �(|�| − |D|) = � . This implies that |D| = �−�|�|
�−�

 . The eigenvalue 
problem of an inhomogeneous clamped rod is

while the one of a hinged (simply supported) rod is

Then, the unique minimizer 𝜌̌1(x) (maximizer 𝜌̂1(x) ) of both clamped and hinged extremal 
eigenvalue problems min� �(�) ( max� �(�) ) in the class of A�,�,� is

where

This optimal distribution is the same as the one for the Dirichlet Laplace eigenvalue 
problem

which was discovered by Krein [23]. He also found that optimal distributions for general 
higher eigenmodes �j ( j ⩾ 2 ) of the Dirichlet Laplace eigenvalue problem are 2L∕j-peri-
odic and are defined on each interval

by

(14)Ā𝛼,𝛽,𝛾 (𝛺) = {𝜌(�) = 𝛽𝜒D + 𝛼𝜒𝛺�D},

{
u(4)(x) = ��(x)u(x), in [−L, L],

u(−L) = u�(−L) = u(L) = u�(L) = 0,

{
u(4)(x) = ��(x)u(x), in [−L, L],

u(−L) = u��(−L) = u(L) = u��(L) = 0.

𝜌̌1(x) =

⎧
⎪⎨⎪⎩

𝛼, x ∈ (−L,−𝛿),

𝛽, x ∈ (−𝛿, 𝛿),

𝛼, x ∈ (𝛿, L),

⎛
⎜⎜⎜⎝
𝜌̂1(x) =

⎧
⎪⎨⎪⎩

𝛽, x ∈ (−L,−𝛿),

𝛼, x ∈ (−𝛿, 𝛿),

𝛽, x ∈ (𝛿, L),

⎞
⎟⎟⎟⎠
,

(15)� =
� − 2�L

2� − 2�
=

� − 2�L

2� − 2�
.

{
−u��(x) = ��(x)u(x), in [−L, L],

u(−L) = u(L) = 0,

(
−L +

2nL

j
,−L +

2(n + 1)L

j

)
, n = 0,⋯ , j − 1

(16)𝜌j(x) = 𝜌̌1(jx − (2n + 1 − k)L), 𝜌j(x) = 𝜌̂1(jx − (2n + 1 − k)L).
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Banks [5] found that the optimal density distributions for �j for a hinged rod are exactly the 
same as (16). However, the optimal density for a clamped rod is unknown. Later, numeri-
cal results that were obtained via a rearrangement algorithm proposed in [9] demonstrate 
that the optimal density configuration for the clamped rod must be distinct from the one for 
the hinged rod. Furthermore, this was verified analytically via an asymptotic approach for 
j = 2 [9].

Two-dimensional problems were considered recently in [1, 13–15]. In [1, 14, 15], the 
authors studied the minimization and maximization of the first eigenvalue for several given 
materials of fixed volumes. The existence of minimizers in the family of all measurable 
functions which are rearrangements of a given function was proved for both clamped and 
hinged boundary conditions; however, the existence of maximizers can be proved only for 
domain � such that the operator is positive preserving, i.e., u ⩾ 0 if Δ2u = f  in � with 
clamped boundary conditions for any given f ⩾ 0 . Assuming that every level set of eigen-
function has measure zero, the extremum occurs when the density function is a monotone 
increasing (decreasing) function of the square of the eigenfunction corresponding to the 
eigenvalue which is to be minimized (maximized) [1, 14, 15]. This implies that the mate-
rial with the higher (lower) density must be located at places where the magnitude of the 
eigenfunction is larger (smaller). In [13], the optimal density � ∈ A�,�,� to minimize the 
first eigenvalue is shown to be of bang-bang type, i.e., the plate can be made only out of 
two materials, whose densities are given by the constants � and �.

3.1 � Iterative Rearrangement Algorithm for Minimization of First Eigenvalues

Here we discuss two important properties that will be used to generate an iterative rear-
rangement algorithm.

Proposition 2  Assume (�a, ua) and (�b, ub) are first eigenpairs satisfying (3) with the bound-
ary condition (4) or (6) corresponding to mass densities �a and �b , respectively. If

then the first eigenvalues satisfy

Proof  First, normalize the eigenfunctions such that ∫
�

(
Δua

)2
d� = ∫

�

(
Δub

)2
d� = 1 . By 

using the variational characterization of the first eigenvalue (9),

Definition 1  Two Lebesgue measurable density functions, 𝜌
a
∶𝛺 ⊂ ℝd

→ ℝ and 𝜌
b
∶𝛺 ⊂ ℝd

→ ℝ , 
are said to be density rearrangements of each other if

(17)∫
𝛺

𝜌au
2
b
d� > ∫

𝛺

𝜌bu
2
b
d�,

(18)𝜆a < 𝜆b.

𝜆a = inf
𝜓∈ℍ(𝛺),𝜓≠0

∫
𝛺
(Δ𝜓)2d�

∫
𝛺
𝜌a𝜓

2d�
=

1

∫
𝛺
𝜌au

2
a
d�

<
1

∫
𝛺
𝜌au

2
b
d�

<
1

∫
𝛺
𝜌bu

2
b
d�

(inequality (17)).
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Proposition 3  Let P be the set of all possible density rearrangements of a fixed mass den-
sity function �b ∈ A�,�,� of bang-bang type. Denote (�b, ub) as the first eigenpair of (3) with 
the mass density �b and the boundary condition (4) or (6). Then, the maximization problem

is uniquely solved by 𝜌̌ = 𝛽𝜒D + 𝛼𝜒𝛺�D such that

where t = sups

{
|{� ∈ �∶ u2

b
⩾ s}| ⩾ �−�|�|

�−�

}
.

Proof  See [30, Theorem 2.1 and Lemma 5.4] for a proof.

Based on Propositions 2 and 3, one can generate a sequence of mass density functions 
{�(i)} such that their corresponding first eigenvalues {�(i)

1
} form a monotone decreasing 

sequence. Since the first eigenvalue is bounded below, this sequence converges and it was 
observed numerically that it converges to the minimizer 𝜌̌ . At the i-th iteration, we first 
solve (3) with the density function �(i) to obtain the first eigenpair (�(i)

1
, u

(i)

1
) . By applying 

Propositions 3 to u(i)
1

 , we can find a new density function such that the high density region 
is a sup-level set of (u(i)

1
)2 and

Proposition 2 guarantees that the eigenvalue �(i+1) corresponding to �(i+1) satisfies 
𝜆(i+1) < 𝜆(i).

4 � Localization of Eigenfunctions

The optimal localization of eigenfunctions in an inhomogeneous medium has raised in the 
design of mechanical vibration and optical devices [2, 16]. Here we consider the following 
function which is the one proposed in [10, 16] to measure the degree of location by the 
moment:

where uj is the normalized j-th eigenfunction, and w is the weight function which penalizes 
the nonlocalization, e.g., w = (x − x0)

2 . The density function is assumed to be bounded

The goal is to localize the eigenfunction uj that corresponds to the vibration displacement 
at the given location x0 . One can also design the localization of an eigenfunction along an 
arbitrary curved boundary by changing the weight function. See [10] for examples.

(19)|{� ∈ �∶ �a(�) ⩾ c}| = |{� ∈ �∶ �b(�) ⩾ c}|, ∀c ∈ ℝ.

(20)sup
�∈P ∫�

�u2
b
d�

(21)D = {� ∈ �∶ u2
b
⩾ t},

∫
𝛺

𝜌(i+1)(u
(i)

1
)2d� > ∫

𝛺

𝜌(i)(u
(i)

1
)2d�.

(22)J(�) ∶=
1

2 ∫
�

w�uj(�)
2d�,

A�,�(�) = {�(x) ∈ L∞(�); � ⩽ �(x) ⩽ � a.e. in �}.
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As it is unknown whether the optimal density is of bang-bang type, we use a gradient 
descent approach with projection. Here we discuss the derivative of the objective function 
first.

Proposition 4  Let (�j, uj) be the simple j-th bi-Laplacian eigenpair, satisfying (3) with the 
boundary condition (4) or (6), normalized so that ∫

�
�u2

j
d� = 1 . Consider a perturbation 

� ↦ � + �� . Then, the derivative of (22) is

where vj satisfies the adjoint equation

with the corresponding clamped or hinged boundary condition.

Proof  Taking derivative of the energy function (22) and plugging the formula (12) lead to

Multiplying (4) by u̇j and integrating over the domain � lead to

Multiplying (1) by v and integrating over the domain � give

One can then integrate by parts to obtain

Thus,

The gradient direction is

and the normalized descent gradient direction is −g∕‖g‖ . After each gradient descent step, 
we project the density function back to the admissible set A�,�(�).

(23)J̇ = ∫
𝛺

𝜂

(
1

2
wu2

j
+ 𝜆jujvj

)
d�,

(24)Δ2v − ��v − 2��uj ∫
�

�ujvd� = �wiuj

J̇(𝜌) =
1

2 ∫
𝛺

w𝜂u2
j
d� + ∫

𝛺

w𝜌uju̇j�d�.

∫
𝛺

w𝜌uju̇jd� = ∫
𝛺

Δ2vju̇jd� − 𝜆j ∫
𝛺

𝜌vu̇jd� − 2𝜆j ∫
𝛺

𝜌uu̇jd� ∫
𝛺

𝜌ujvjd�.

(25)∫
𝛺

Δ2u̇jvjd� − 𝜆j ∫
𝛺

𝜌u̇jvjd� − 2𝜆j ∫
𝛺

𝜌ujvjd� ∫
𝛺

𝜌uju̇jd� = 𝜆j ∫
𝛺

𝜂ujvjd�.

(26)∫
𝛺

w𝜌uju̇jd� = 𝜆j ∫
𝛺

𝜂ujvjd�.

J̇(𝜌) = ∫
𝛺

𝜂

(
1

2
wu2

j
+ 𝜆jujvj

)
d�.

(27)g ∶=
1

2
wu2

j
+ �jujvj,
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5 � Numerical Approaches

5.1 � The Finite Difference Forward Solver

Even though there are many different numerical approaches, e.g., finite element approaches 
[8, 12, 29, 31] and spectral approaches [7], to solve (3), we review the easiest approach based 
on the finite difference methods [9].

In one dimension, without loss of generality, we choose � = [−1, 1] and a uniform mesh 
�� ∶= {xi}0⩽i⩽N = {−1 + ih}0⩽i⩽N where h is the mesh size and N = 2∕h. The discretized 
eigenfunction is denoted by � in the form of a column vector 

(
U0,⋯ ,UN

)T which approxi-
mates 

(
u(x0),⋯ , u(xN)

)T numerically. The fourth order derivative at xi is approximated by the 
central difference formula

for i = 2,⋯ ,N − 2 which yields a second-order accuracy. To approximate the derivatives 
at x1 and xN−1 , values at ghost points x−1 = −1 − h and xN+1 = 1 + h are needed and can be 
derived by the given boundary conditions. If clamped boundary conditions are imposed, 
that is,

then we choose U0 = UN = 0 at two end points and U−1 = U1 and UN+1 = UN−1 at two 
ghost points. Thus,

and

The hinged boundary conditions

lead to U0 = UN = 0 at the boundaries, U−1 = 2U0 − U1 and UN+1 = 2UN − UN−1 at two 
ghost points. Thus,

and

Consequently, the matrix representing the bi-Laplacian operator on [−1, 1] is formed by 
assigning the coefficients in the approximation formula of U′′′′

i
 to the i-th row.

In a two-dimensional rectangle � = [−a, a] × [−b, b] , define a uniform mesh 
�g = {(x1i, x2j)} ∶= {−a + ih1,−b + jh2} where h1 and h2 are mesh sizes in x1 - and  

U
����

i
≈

Ui−2 − 4Ui−1 + 6Ui − 4Ui+1 + Ui+2

h4

u(−1) = u(1) = u�(−1) = u�(1) = 0,

U
����

1
≈

7U1 − 4U2 + U3

h4
,

U
����

N−1
≈

UN−3 − 4UN−2 + 7UN−1

h4
.

u(−1) = u(1) = u��(−1) = u��(1) = 0

U
����

1
≈

5U1 − 4U2 + U3

h4
,

U
����

N−1
≈

UN−3 − 4UN−2 + 5UN−1

h4
.
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x2-directions, respectively. For simplicity, we assume that h1 = h2 = h . Let 
(
Ui,j

)
0⩽i⩽N,0⩽j⩽M

 
be the matrix of the discretized eigenfunction where Nh1 = 2a and Mh2 = 2b . The second-
order central difference scheme involving 13-point stencils is used to approximate the bi-
Laplacian operator

for 2 ⩽ i ⩽ N − 2 and 2 ⩽ j ⩽ M − 2 . With clamped boundary conditions, the bi-Laplacian 
operator along i = 1 is approximated by

and

The approximating formulas along i = N − 1 , j = 1 ,  or j = M − 1 can be derived similarly. 
All points at the boundaries are taken as zero, U0,j = UN,j = Ui,0 = Ui,M = 0. For the hinged 
boundary conditions, the discretization is almost the same, except the approximations for 
points near the boundaries ( i = 1 or N − 1 , j = 1 or M − 1 ). For example,

and

The discretization along the other sides can be obtained similarly. Each stencil approximat-
ing Δ2Ui,j is assigned into a row to form the matrix of the discrete bi-Laplacian operator. 
Therefore, the size of the matrix to approximate the bi-Laplacian operator on a rectangle is 
(N − 1)(M − 1) × (N − 1)(M − 1).

In summary, at the discrete level, (3) with the specified boundary is approximated 
by

Δ2Ui,j ≈
1

h4

⎡
⎢⎢⎢⎢⎢⎣

+ Ui,j+2

+ 2Ui−1,j+1 − 8Ui,j+1 + 2Ui+1,j+1

+Ui−2,j − 8Ui−1,j + 20Ui,j − 8Ui+1,j Ui+2,j

+ 2Ui−1,j−1 − 8Ui,j−1 + 2Ui+1,j−1

+ Ui,j−2

⎤
⎥⎥⎥⎥⎥⎦

Δ2U1,j ≈
1

h4

⎡
⎢⎢⎢⎢⎢⎣

+U1,j+2

−8U1,j+1 + 2U2,j+1

+21U1,j − 8U2,j U3,j

−8U1,j−1 + 2U2,j−1

+U1,j−2

⎤
⎥⎥⎥⎥⎥⎦

, 2 ⩽ j ⩽ M − 2,

Δ2U1,1 ≈
1

h4

⎡⎢⎢⎣

+U1,3

−8U1,2 + 2U2,2

+22U1,1 − 8U2,1 U3,1

⎤⎥⎥⎦
.

Δ2U1,j ≈
1

h4

⎡
⎢⎢⎢⎢⎢⎣

+U1,j+2

−8U1,j+1 + 2U2,j+1

+19U1,j − 8U2,j U3,j

−8U1,j−1 + 2U2,j−1

+U1,j−2

⎤
⎥⎥⎥⎥⎥⎦

, 2 ⩽ j ⩽ M − 2,

Δ2U1,1 ≈
1

h4

⎡⎢⎢⎣

+U1,3

−8U1,2 + 2U2,2

+18U1,1 − 8U2,1 U3,1

⎤⎥⎥⎦
.
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where � , � , � , and Λ are discrete approximations of the bi-Laplacian operator with speci-
fied boundary condition, the mass density function � , the eigenfunction u, and the eigen-
value � , respectively. Note that � and Λ are diagonal matrices.

5.2 � Optimization Solver

5.2.1 � Iterative Rearrangement Algorithm for Minimization of Eigenvalues

As described in the aforementioned section, for any given mass density function �(�) , 
we form the discrete bi-Laplacian operator � and the matrix � with its diagonal ele-
ment �(��) where �� are gridpoints of a mesh. The Arnoldi iteration is used to solve 
the forward eigenvalue problem �� = ��Λ to obtain approximated eigenvalues which 
are diagonal elements of Λ and corresponding approximated eigenfunctions which are 
columns of �.

At the i-th iteration, denote �(i) as the mass density function and (�(i)
1
,�

(i)

1
) as the cor-

responding first eigenpair. To look for the new density �(i+1) , we determine the set 
D(i+1) such that (21) is satisfied. This implies that the high density region is a sup-level 
set of (u(i)

1
)2 . On a uniform mesh, it is extremely easy to implement this numerically. 

One can simply first estimate the number of grid that takes the high density by comput-
ing N ∶=

⌊
1

Δ�

�−�|�|
�−�

⌋
 where Δ� is the grid size, i.e., Δ� = Δx in one dimension and 

Δ� = Δx1Δx2 in two dimensions. Then, sort (�(i)

1
)2 in the descending order and assign 

the high density � to the points corresponding to first N  largest of (�(i)

1
)2.

Compared with the  gradient descent approach, this rearrangement of the density 
approach is far more efficient. Usually, the rearrangement algorithm converges in a few 
iterations unlike the gradient descent approach which usually takes hundreds of itera-
tions [21].

Remark 1 The algorithm described here for the first eigenvalue can be applied to 
minimize simple �j for j ⩾ 2 . However, it is possible that the j-th eigenvalue becomes 
multiple, that is, it collides with its neighboring eigenvalues. When this happens, mul-
tiple eigenfunctions need to be considered while updating the density function: instead 
of the order of (�(i)

j
)2 , we should arrange �j in the order of the convex combination ∑c

s=0
�s(�

(i)

(j−s)
)2 where the real numbers �s ’s satisfy �s ⩾ 0 and 

∑c

s=0
�s = 1 if �j−c,⋯ , �j 

collide. One can perform an optimization algorithm to find the optimal �s ’s which give 
the largest integral (20) or simply choose a combination such that the integral increases 
at each iteration.

We summarize the minimization algorithm in Algorithm 1.

�� = ��Λ,
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Ω

Ω

givenp

. . .

5.2.2 � Gradient Descent Method

We discuss a similar approach to the one in [10, 16] to minimize the energy (22). Here 
we directly work with the eigenfunction u instead of defining a new variable �

1

2 u that 
are used in [10, 16]. At the i-th iteration, assume �(i) is the mass density. We first com-
pute the eigenpair (�j, uj) , 1 ⩽ k ⩽ n . Next, the adjoint equation (4) is discretized as

where � is a discrete bi-Laplacian operator, � is a diagonal matrix with its diagonal ele-
ment �(�g) , � is the adjoint variable, (�j,�j) is the j-th eigenpair, � is a discrete weight 
matrix with its diagonal element w(�g), and Δ� is the grid size. We solve for �j for each �j . 
The gradient direction can be computed via (27) which leads to

Here the dot multiplication . ∗ means the element-wise multiplication for two vectors 
which results in a vector. We summarize the gradient descent approach with projection to 
the admissible set to localize eigenfunctions in Algorithm 2.

(28)��j − �j��j − 2�j��j(��)
T
j
�jΔ� = ���j,

(29)g ∶=
{
1

2
��j. ∗ �j + �j�j. ∗ �j

}
.
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(i)

(ii)
(iii)

(i)

given

(iv)

g g
 = min (max(  ,  ),   )ρ ρ α β

6 � Numerical Tests

In this section, we demonstrate that the iterative rearrangement method and the gradient 
descent method with projection can successfully solve optimization problems including the 
minimization of eigenvalues and the localization of eigenfunctions for rods and plates with 
hinged or clamped boundary conditions.

6.1 � Minimization of Eigenvalues for Rods

We consider the minimization of eigenvalues on an interval [−L, L] with L = 1 for a rod 
consisting of two different materials, i.e., � = � or � = � , described in Sect. 3. The itera-
tive rearrangement algorithm is applied to achieve the optimal density distribution of a 
bang-bang type. For simplicity, we let � = (� + �)L be the fixed total mass. The analyti-
cal formula (15) for the hinged rod implies that � = L∕2 which is independent of mate-
rial densities � and � . This is true for any other choices of � once the area of regions with 
different densities is fixed. We have also observed this behavior numerically. For a hinged 
rod, the minimizers of �i for i = 1,⋯ , 6 are identical for � = 8 (Fig. 2) and 16 (Fig. 3). 
For a clamped boundary rod, since the analytical formulas of minimizers are not available, 
numerical study of the optimal density distributions is performed. In particular, it has been 
discovered that the optimal density distributions for a clamped rod are not periodic as the 
optimal ones for a hinged rod [9]. Here, the outmost subregions with the higher density 
have larger areas than the inner subregions. See the optimal density distributions for � = 8 
and 16 in Figs.  2 and 3, respectively. More specifically, we measure the length of each 
subregion in minimizers and the results are shown in Tables  1 and 2. For all computed 
eigenmodes, the lengths of subregions in the minimizers are almost identical, suggesting 
the optimal density distributions with clamped boundary conditions are also independent 
of densities.
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Fig. 2   The optimal density distributions (red ( �(x) = � ) and blue ( �(x) = � = 1 )) and their corresponding 
eigenfunctions for the minimization of the first six eigenvalues with hinged (left) or clamped (right) bound-
ary conditions for � = 8
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Fig. 3   The optimal density distributions and their corresponding eigenfunctions for the minimization of the 
first six eigenvalues with hinged (left) or clamped (right) boundary conditions for � = 16
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6.2 � Minimization of Eigenvalues for Plates

For a square plate, the optimal density distributions to minimize the first five eigenvalues 
are shown in Figs. 4 and 5 for � = 8 and � = 16 , respectively. As uncovered in [9], opti-
mal density distributions with hinged and clamped boundary conditions followed similar 
patterns with different locations for high density subregions. We further explore different 
values for the higher density and measure areas of subregions at the higher density. For 
� = 8 and 16, the optimal density distributions for the corresponding eigenmode are not 
distinguishable from each other. Areas of subregions at the higher density are also more or 
less the same, suggesting the optimal density distributions are independent of density val-
ues when fixing areas of subregions with the lower and higher densities in two dimensions. 
This is consistent with the one dimensional case.

6.3 � Localization of a Single Eigenfunction in One Dimension

Next, we study the localization of some specific eigenfunction at some specific location. 
In this example, we consider localizing the 6th eigenfunction at a single point. Notice 
that, with the homogeneous density, the 6th eigenfunction has a small magnitude at 0.15 
and a large magnitude at 0.25 [9]. Therefore, we try to localize the 6th eigenfunction 
at a single point for those two scenarios and obtain the optimal density distributions, 
respectively. The results are shown in Fig.  6. For the case with x0 = 0.15 , since the 
eigenfunction does not have a big vibration displacement with the homogeneous den-
sity, in the optimizer two nearest amplitude peaks are brought to the chosen location to 
achieve a higher displacement there. For the case with x0 = 0.25 , the eigenfunction has 

Table 1   Lengths of subregions in the minimizers with clamped boundary conditions for � = 8

Lengths of subregions

�
1

[0.50 1.00 0.50]L

�
2

[0.33 0.50 0.35 0.50 0.33]L

�
3

[0.24 0.35 0.27 0.30 0.27 0.35 0.24]L

�
4

[0.19 0.27 0.21 0.23 0.21 0.23 0.21 0.27 0.19]L

�
5

[0.15 0.21 0.17 0.19 0.18 0.19 0.17 0.19 0.17 0.21 0.15]L

�
6

[0.13 0.18 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.18 0.13]L

Table 2   Lengths of subregions in the minimizers with clamped boundary conditions for � = 16

Lengths of subregions

�
1

[0.50 1.00 0.50]L

�
2

[0.33 0.50 0.35 0.50 0.33]L

�
3

[0.24 0.35 0.26 0.31 0.26 0.35 0.24]L

�
4

[0.19 0.27 0.21 0.23 0.21 0.23 0.21 0.27 0.19]L

�
5

[0.15 0.21 0.17 0.19 0.17 0.19 0.17 0.19 0.17 0.21 0.15]L

�
6

[0.13 0.19 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.19 0.13]L
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a big vibration displacement originally when the density is homogeneous and this peak 
is kept in the optimizer. In addition, one neighboring vibration peak with the homo-
geneous density is also amplified in the optimizer to achieve a larger displacement at 
the chosen location. We also test the optimization problems with different values of 
the higher density, � = 8 or 16. The optimized density profiles are quite similar to each 
other with only minor changes (See Fig. 6).

6.4 � Localization of a Single Eigenfunction in Two Dimensions

We also study the localization problems in two dimensions. In particular, we try to 
localize the 11th eigenfunction at (0, 0) with different boundary conditions and differ-
ent values of the higher density. The optimal density distributions are shown in Fig. 7. 

Fig. 4   The optimal density distributions and their corresponding eigenfunctions for the minimization of the 
first five eigenvalues with hinged (the first row) or clamped (the second row) boundary conditions for � = 8

Fig. 5   The optimal density distributions and their corresponding eigenfunctions for the minimization of 
the first five eigenvalues with hinged (the first row) or clamped (the second row) boundary conditions for 
� = 16
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In general, hinged boundary and clamped boundary conditions give rise to similar opti-
mal distribution patterns. Subregions with the higher density are located more tightly 
and closer to the center with the clamped boundary  conditions. By increasing the 
higher density, subregions at the higher density are shrunk with locations unchanged.

Fig. 6   The optimal density distributions and �u2 (curves in black) for localizing the 6th eigenfunction at 
0.15 or 0.25 with hinged or clamped boundary conditions and for � = 8 (top) or 16 (bottom), respectively

Fig. 7   The optimal density 
distributions for localizing the 
11th eigenfunction at (0, 0) with 
hinged or clamped boundary 
conditions for � = 8 and 16, 
respectively
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7 � Conclusion and Discussion

In this paper, we review briefly the history of the optimization problems of inhomogene-
ous rods and plates, and computational methods to optimize eigenvalues or localize eigen-
functions with hinged or clamped boundary conditions. Variational formulas are derived 
for both types of optimization problems with different boundary conditions. Numerical 
discretization of the forward problem is described in detail. To optimize eigenvalues, the 
iterative rearrangement algorithm is applied for efficiency. To localize eigenfunctions, a 
gradient descent method is applied. We test those two numerical approaches on different 
optimization problems with different boundary conditions. Both are shown to be numeri-
cally effective and accurate. The numerical results are consistent with theoretical formulas 
or previously published ones. The effect of the boundary conditions is quite consistent with 
what have been reported. In both cases, optimal density distributions with clamped bound-
ary conditions have subregions with the higher density more concentrated near the center 
of the entire domain, compared with those obtained under hinged boundary conditions. 
Moreover, we test those methods on problems with different values of the high density � . 
For minimization of eigenvalues, it is observed that the optimal density distributions are 
independent of densities once the areas corresponding to different densities are fixed, no 
matter what boundary conditions are imposed. For localization of eigenfunctions, optimal 
density distributions have some small changes on the size of subregions with different den-
sities. The framework discussed in this paper can be easily applied to more complicated 
objective functions depending on eigenvalues and eigenfunctions. We hope to investigate 
more and report numerical results in the near future.
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