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Abstract

In this paper, we review computational approaches to optimization problems of inhomoge-
neous rods and plates. We consider both the optimization of eigenvalues and the localiza-
tion of eigenfunctions. These problems are motivated by physical problems including the
determination of the extremum of the fundamental vibration frequency and the localization
of the vibration displacement. We demonstrate how an iterative rearrangement approach
and a gradient descent approach with projection can successfully solve these optimization
problems under different boundary conditions with different densities given.
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1 Introduction
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can never express enough how much we miss her. About ten years ago, we worked on opti-
mization problems involving inhomogeneous rods and plates together at The Ohio State
University. Even though we are in different places now, we hope that this review article
acts like a time machine and brings us all back to the old time when we all lived, laughed,
and loved.
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The study of vibrating rods and plates have attracted a lot of attention since the eight-
eenth century. Euler (April 15, 1707 — September 18, 1783) used calculus of variation
technique to determine the critical axial compressive load with which a cylindrical column
has lateral deflection [19]. Later Lagrange (January 25, 1736 — April 10, 1813) formu-
lated the problem to maximize the critical load of a rod of variable cross-sectional area
with given length and volume, but he did not succeed in getting the correct solution [25].
Chladni (November 30, 1756 — April 3, 1827) discovered different nodal lines pattern of a
vibrating plate when he spread sand on the plate and stroke it with a violin bow [11]. This
experiment became publicly known at that time. The king Napoleon was also fascinated by
the beauty of patterns and decided to give a prize for the underlying mathematical theory.
The prize was awarded to Germain (April 1, 1776 — June 27, 1831) in 1816 [34] who pro-
vided the first satisfactory solution. Later, the theory was completed by Kirchhoft (March
12, 1824 — October 17, 1887) who found that Chladni figures on a square plate correspond
to nodal lines of eigenfunctions of the bi-Laplacian operator with free boundary conditions
[18, 22].

Nowadays, one can easily generate Chladni figures at home with a medal plate attached
to a mechanical wave driver which provides designated frequency and amplitude. Spread
sand on a medal plate and tune the frequency until it resonates. The sand will move toward
the nodal lines which correspond to the locations with the least amount of vibration. See
Fig. 1 with three different vibrating frequencies.

Let Q be a bounded open set in R? with the Lipschitz boundary d£. For ease of exposi-
tion, the dimension d is chosen to be one or two here, even though the study can be easily
extended to higher dimensions. The inhomogeneity of the rods and plates (i.e., d = 1 and
d = 2, respectively) is characterized by a non-constant mass density function p. The gov-
erning equation of a vibrating rod or a square plate with uniform thickness is

2
P(’Q% +DA%P(1,x) =0, x €, ey

where D is the flexural rigidity and A” = AA is the bi-Laplacian operator in the spatial
variables. Assuming the natural vibration solution to be periodic, i.e.,

¢ = u(x)e™, (@)

where u is the transverse displacement which only depends on the position coordinates and
k is the circular frequency. Substituting (2) into (1) leads to the eigenvalue problem

Fig. 1 The sand patterns of a plate which vibrates at three different frequencies (photos taken by authors)
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A%u(x) = Ap(x)u(x), (©)

where A = k?/D.
Here, we consider two types of boundary conditions: the clamped boundary that both
the displacement and its slope are zero, i.e.,

B.: {u(t,x) = u,(t,x) = 0,x € 02}, 4)
or the hinged boundary
BE: {u(t,x) = Au(t,x) — (1 = v)(ku,) = 0,x € 022}, (5)

where v is the Poisson’s ratio satisfying —1 < v < 0.5, u, =7 - Vu, 71 is the outward unit
normal vector, and « is the curvature at the boundary [32]. On the straight boundary of
Q Cc R?,i.e., k = 0, the hinged boundary can be reduced to

BY: {u(t,x) = Au(t,x) = 0,x € 02}. (6)

We will focus on problems on an interval or a square plate, so only (4) or (6) will be used.
For other shapes of plates and their corresponding boundary conditions, see [17, 27, 35]
for governing equations and solutions.

The spectrum of (3) with aforementioned boundary conditions is discrete and the eigen-
values can be enumerated, counting multiplicity, in an increasing order

0< A <A< 4 < e = oo

In this paper, we review approaches to design the mass density to optimize objective func-
tions that depend on bi-Laplacian eigenvalues and eigenfunctions. Assume that the density
function is in the class of the admissible density with a fixed total mass:

Ayp, () = {p(x) € L®(2);a < p(x) < fae. in 2, / p(x)dx = 7},
Q

where «, f, and y are nonzero given constants with 0 < @ < f and a|2| <y < f|€2|. We
consider the extremum problem

omin TG00, u(p(), o
where J(-) represents a function of a specific eigenvalue and its corresponding eigenfunc-
tion. Other possible admissible sets will be discussed later. In particular, we will focus on
two different problems: one is to optimize eigenvalues [9, 30] while the other is to localize
eigenfunctions [10, 16]. These two kinds of problems are motivated by physical problems.
One is to determine the minimum and maximum of the fundamental vibration frequency
while the other is to localize the vibration displacement.

For the optimization of eigenvalues, the density to minimize (or maximize) the first eigen-
value, 4,, is found to be the same for a clamped rod and a hinged rod [4-6, 33]. For a higher
eigenvalue, 4; (j = 2), only the extremal density for a hinged rod is known analytically. In
[20, p.183], the determination of the optimal density distribution for the clamped rod problem
with j > 2 was listed as an open question. Later, motivated by numerical results, it was proved
that the optimal density that minimizes 4; (j 2 2) for a clamped rod must be distinct from the
one for a hinged rod [9]. The existence and properties of optimal densities for plates were
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considered recently in [1, 13—15]. In spite of these nice theoretical results, the optimal density
distribution can only be precisely identified when €2 is a ball [13, 30]. For the localization of
eigenfunctions for rods and plates [3, 10, 24, 28], theoretical results are quite scattered. To
find solutions to these inhomogeneous optimization problems, numerical approaches become
necessary.

This paper is organized as follows. In Sect. 2, the variational characterization of eigen-
values is reviewed and the variations of eigenvalues and eigenfunctions with respect to
the mass density are derived. In Sect. 3, we introduce the classical theoretical results of
optimization of j-th bi-Laplacian eigenvalue problems and an iterative rearrangement algo-
rithm to minimize the first eigenvalue. In Sect. 4, we discuss a gradient descent approach
with projection to localize the chosen eigenfunctions. In Sect. 5, the discrete approximation
based on finite difference methods is discussed in detail. The numerical implementation
of aforementioned approaches is provided. In Sect. 6, we demonstrate that the numerical
approaches successfully solve both optimization problems over rods and plates. A brief
conclusion of our paper with a discussion is given in Sect. 7.

2 Variational Formulas

In this section, several variational formulas involve eigenvalues and eigenfunctions
will be discussed. Consider the space H(2) = H(z)(.Q) for the clamped boundary (4) or
H(2) = Hy(£2) N H*(£2) for the hinged boundary (6). Multiplying (3) by w € H(£2) and
integrating by parts, one obtains the corresponding variational formulation of (3): find
A€ Randu € H(LQ), u # 0 such that

/ Au(xX)Ay (x)dx = A/ X)) u(X)y (x)dx (8)
Q Q
for all y € H(Q).

Denote (ﬂj, uj) as the j-th eigenpair. The variational formulations of the eigenvalues [1]
are

. (Ay)*dx
Ai(p)=_min fQ— )
ven Qw0 [ py2dx
and
, Jo (Bw)dx
Ap) = min 2 (10)

max ——
ECH(Q), yeEy#0 [, [, pw2dx
subspace of dim j

for higher eigenmodes j > 2. To solve the optimization problem (7), we first derive the

dependence of the eigenvalues and eigenfunctions on the variation of the mass density. By

the min-max principle, it is clear that 4; is a locally Lipschitz continuous function of p [26].

Since eigenfunctions are defined up to a constant, we normalize the eigenfunction by the

condition

/Q p(x)uA(x)dx = 1. (11)
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Proposition 1 Let (A, u) be a simple bi-Laplacian eigenpair, satisfying (3) with the bound-
ary condition (4) or (6), normalized so that /_Q pu*dx = 1. Consider a perturbation
p = p+ 1. Then, (a) the functional p — A(p) is Frechét differentiable with derivative

A= 0,Mp)) 1= 0,A(p+ 1) _ = ~A / P(n(x)dx, (12)
Q

and (b) the derivative of u satisfies

A% — Apit — Zﬁpu/ puidx = Anu (13)
Q

with the corresponding clamped or hinged boundary condition.

Proof (a) We take a derivative of the formula A = fQ(Au)zdx and use Green'’s identity to
obtain

i=2 / AiAudx
Q
=2/ unAudS—2/ Vi - V(Au)dx
02 Q

=2 / it, AudS — 2 / i(Au),dS +2 / A udx
2 2 Q

=2/1/ puidx,
Q

where u,, = 71 - Vu and 7 is the outward unit normal vector.
From the normalization condition, f o pu*dx = 1, we obtain

/ puldx = —2/ pundx,
Q Q
which gives the desired result.

(b) Taking a derivative of (3) leads to
A% = Apu+ Apu+ Apit.

By using the equality obtained in (a), we have

A% — Apit — 2/1pu/ puidx = Anu.
Q

The derivative of the boundary condition (4) or (6) leads to the corresponding clamped or
hinged boundary condition for .
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3 Optimization of j-th Eigenvalue

One of the classical spectrum problems is to determine the range of eigenvalues, e.g., what is
the range of the first eigenvalue of (3) with the clamped or hinged boundary when p € A, ;,?
This corresponds to the determination of the minimal and maximal fundamental frequencies,
ie., J(A,u) := 4, of arod or a plate with a fixed total mass.

In one dimension, the optimal densities p(x) corresponding to the extremal 4, are proved to
be of bang-bang type for both kinds of boundary conditions [4-6, 33]. This means that p takes
the value a or §. Thus, we consider the admissible mass density in the set

Ao p, () = (p(X) = Bap + axop) (14)

where D C Q and f|D| + a(|2| — |D|) = y. This implies that |D| = == aIQ\ . The eigenvalue
problem of an inhomogeneous clamped rod is

u®(x) = Ap(x)u(x), in[-L, L],
u(=L)=u'(-L)y =u(l) =u'(L) =

while the one of a hinged (simply supported) rod is

u®(x) = Ap(x)u(x), in[-L, L],
u(-L)y=u"(-L)y=ull)=u"(L)=0

Then, the unique minimizer g, (x) (maximizer p,(x)) of both clamped and hinged extremal
eigenvalue problems min, A(p) (max, A(p)) in the class of A, 5y 18

a, X€ (_L’ _5)7 ﬂs X e (_L7 _5)9
px) =3 B, x€(=6,0), /x)=13a, x€(-6,6), |
a, x€(6,1L), B, xe€(,L),
where
—2aL —2pL
s=7 _v—2p (15)

28 —2a  2a-28

This optimal distribution is the same as the one for the Dirichlet Laplace eigenvalue
problem

—u" (x) = Apu(x), in [-L,L],
u(-L)=u(lL)=0

which was discovered by Krein [23]. He also found that optimal distributions for general
higher eigenmodes 4; (j > 2) of the Dirichlet Laplace eigenvalue problem are 2L/j-peri-
odic and are defined on each interval

2 L
<_L+2L.L,_L+&>’ n=0,-,j—1
J J

by
pix) = p(Gx—C2n+1-kL), px)=p(x—Cn+1-kL). (16)
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Banks [5] found that the optimal density distributions for 4; for a hinged rod are exactly the
same as (16). However, the optimal density for a clamped rod is unknown. Later, numeri-
cal results that were obtained via a rearrangement algorithm proposed in [9] demonstrate
that the optimal density configuration for the clamped rod must be distinct from the one for
the hinged rod. Furthermore, this was verified analytically via an asymptotic approach for
J=2091

Two-dimensional problems were considered recently in [1, 13—15]. In [1, 14, 15], the
authors studied the minimization and maximization of the first eigenvalue for several given
materials of fixed volumes. The existence of minimizers in the family of all measurable
functions which are rearrangements of a given function was proved for both clamped and
hinged boundary conditions; however, the existence of maximizers can be proved only for
domain  such that the operator is positive preserving, i.e., u > 0 if A%u =f in Q with
clamped boundary conditions for any given f > 0. Assuming that every level set of eigen-
function has measure zero, the extremum occurs when the density function is a monotone
increasing (decreasing) function of the square of the eigenfunction corresponding to the
eigenvalue which is to be minimized (maximized) [1, 14, 15]. This implies that the mate-
rial with the higher (lower) density must be located at places where the magnitude of the
eigenfunction is larger (smaller). In [13], the optimal density p € A, 5, to minimize the
first eigenvalue is shown to be of bang-bang type, i.e., the plate can be made only out of
two materials, whose densities are given by the constants « and f.

3.1 Iterative Rearrangement Algorithm for Minimization of First Eigenvalues

Here we discuss two important properties that will be used to generate an iterative rear-
rangement algorithm.

Proposition 2 Assume (4,, u,) and (A, u,,) are first eigenpairs satisfying (3) with the bound-
ary condition (4) or (6) corresponding to mass densities p, and p,, respectively. If

/pauidx>/pbul27dx, (17)
Q Q

Ay < Ay (18)

then the first eigenvalues satisfy

Proof First, normalize the eigenfunctions such that /,, (Au,)’dx = Jo (Au,)’dx = 1. By
using the variational characterization of the first eigenvalue (9),

o JoAw)dx 1
Ay = inf =
ven Qw0 [ pw2dx [, puldx
1
< 2
Jo paudx

(inequality (17)).
dx

/.Q p,,u

Definition 1 Two Lebesgue measurable density functions, p,: @ c R‘ > Rand p,: @ c R? > R,
are said to be density rearrangements of each other if
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l(x € Q: p,(x) > c}| = [{x € 2: p,®) > e}, VeeR. (19)

Proposition 3 Let P be the set of all possible density rearrangements of a fixed mass den-
sity function p, € A, 5, of bang-bang type. Denote (4, u,) as the first eigenpair of (3) with
the mass density p, and the boundary condition (4) or (6). Then, the maximization problem

sup / puidx (20)
Q

peEP
is uniquely solved by p = f xp + a yo\p such that

D={xeQ:u >1}, (21)

where t = Sur)s{l{x €Q:uy =5} 2 —y;‘ﬂf' }

Proof See [30, Theorem 2.1 and Lemma 5.4] for a proof.

Based on Propositions 2 and 3, one can generate a sequence of mass density functions
{p} such that their corresponding first eigenvalues {/l(li)} form a monotone decreasing
sequence. Since the first eigenvalue is bounded below, this sequence converges and it was
observed numerically that it converges to the minimizer p. At the i-th iteration, we first
solve (3) with the density function p® to obtain the first eigenpair Y, ugi)). By applying
Propositions 3 to u(ll), we can find a new density function such that the high density region

2
1 )”and

/p(i+l)(u(li))2dx>/p(i)(u(li))zdx.
Q Q

Proposition 2 guarantees that the eigenvalue AC*D corresponding to pU*+D satisfies
AG+D < 40

is a sup-level set of (u

4 Localization of Eigenfunctions

The optimal localization of eigenfunctions in an inhomogeneous medium has raised in the
design of mechanical vibration and optical devices [2, 16]. Here we consider the following
function which is the one proposed in [10, 16] to measure the degree of location by the
moment:

Tp) := % /Q wpu;(p)*dx, (22)

where u; is the normalized j-th eigenfunction, and w is the weight function which penalizes
the nonlocalization, e.g., w = (x — xo)z. The density function is assumed to be bounded

Aqp(82) = {p(x) € L¥(Q2);a < p(x) < f ace. in Q2}.

The goal is to localize the eigenfunction u; that corresponds to the vibration displacement
at the given location x,. One can also design the localization of an eigenfunction along an
arbitrary curved boundary by changing the weight function. See [10] for examples.
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As it is unknown whether the optimal density is of bang-bang type, we use a gradient
descent approach with projection. Here we discuss the derivative of the objective function
first.

Proposition 4 Let (A;, u;) be the simple j-th bi-Laplacian eigenpair, satisfying (3) with the

boundary condition (4) or (6), normalized so that fQ puzdx = 1. Consider a perturbation
p — p+ tn. Then, the derivative of (22) is

J= /Qn(éwu + ijujvj>dx (23)
where v; satisfies the adjoint equation
A%y — Apy — Z/lpuj /Q pujvdx = pwil; (24)
with the corresponding clamped or hinged boundary condition.

Proof Taking derivative of the energy function (22) and plugging the formula (12) lead to
Tp) = 1 / whu?dx + / wpu;i; xdx.

Multiplying (4) by #; and integrating over the domain €2 lead to

/wpuudx—/szjujdx—lj/pvujdx—bli/puujdx/pujvidx.
Q Q Q v ye] Q ’

Multiplying (1) by v and integrating over the domain €2 give

LAzujvjdx—ﬂijujvjdx 2A; /puvdx/puudx- ]/Qnujvjdx. (25)

One can then integrate by parts to obtain

/wpujujdx= Aj/ nu;v,dx. (26)
Q Q

: 1
j(p)z/Q <2wu +Ajujvj>dx

Thus,

The gradient direction is

1
g = Ewu + /ljujvj, 27

and the normalized descent gradient direction is —g/||g||. After each gradient descent step,
we project the density function back to the admissible set Aa,ﬂ(.Q).
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5 Numerical Approaches
5.1 The Finite Difference Forward Solver

Even though there are many different numerical approaches, e.g., finite element approaches
[8, 12, 29, 31] and spectral approaches [7], to solve (3), we review the easiest approach based
on the finite difference methods [9].

In one dimension, without loss of generality, we choose €2 = [—1, 1] and a uniform mesh

X, 1= {x;}oqiev = {=1 + ih}ogqy Where h is the mesh size and N = 2/h. The discretized

eigenfunction is denoted by U in the form of a column vector (UO, U N)T which approxi-
T . L. . .

mates (u(xo), TR u(xN)) numerically. The fourth order derivative at x; is approximated by the

central difference formula

U Ui, —4U;,_ +6U; —4U;, + U,
i~ h4

fori =2,.--,N — 2 which yields a second-order accuracy. To approximate the derivatives
at x; and x,_;, values at ghost points x_; = —1 — h and xy,, = 1 + h are needed and can be
derived by the given boundary conditions. If clamped boundary conditions are imposed,
that is,

u-)=u(l)=u'(-1)=u'(1)=0,

then we choose U, = Uy =0 at two end points and U_; = U, and Uy, = Uy_, at two
ghost points. Thus,
w 1Up —4U, + U,

Ui —— —

and

mnr UN—3 - 4UN—2 + 7UN—1

N-1 h4

The hinged boundary conditions
u-)=u)=u"-D=4"(1)=0

lead to U, = Uy = 0 at the boundaries, U_; = 2U, — U, and Uy, = 2Uy — Uy_, at two
ghost points. Thus,

wm o SU —4U,+ U
U~ 1 2 3’
4
and
o Uy_zs —4Uy_, +5Uy_,
Uy = - .

h4

Consequently, the matrix representing the bi-Laplacian operator on [—1, 1] is formed by
assigning the coefficients in the approximation formula of U;W to the i-th row.

In a two-dimensional rectangle Q =[—a,a] X [-b,b], define a uniform mesh
x, = {(xy;, %)} 1= {—a+ih;,—b+jh,} where h; and h, are mesh sizes in x;- and
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xz-dlrectloné, respectlv.ely. Eor 31@p1101ty, v‘ve assume that i, = h, = h. Let (U ; J)o <N.OSM
be the matrix of the discretized eigenfunction where Nh; = 2a and Mh, = 2b. The second-
order central difference scheme involving 13-point stencils is used to approximate the bi-

Laplacian operator

+ Uijsa
+2Ui i1 = 8Ujju +2U
+20U;; = 8Uy; Uiy,

+2Ui1

1
AU~ | +U2 -8U,_;
+2U,_,;, —8U;,

+U;,

for2 <i<N-2and2 < j< M - 2. With clamped boundary conditions, the bi-Laplacian
operator along i = 1is approximated by

+U
=8U, 1 +2Up 5

AZUIJ-N% £21U,; —-8U,; Us; | 2<j<M-2,
—8U, ;| +2U,,
+Uy
and
. N E
AUy~ 2| —8U, +2Uy,

+22U,,; —8U,; U;,

The approximating formulas alongi =N — 1, j =1, or j = M — 1 can be derived similarly.
All points at the boundaries are taken as zero, Uy ; = Uy ; = U,y = U,y = 0. For the hinged
boundary conditions, the discretization is almost the same, except the approximations for
points near the boundaries (i = lor N — 1, j = 1 or M — 1). For example,

Uy
—8Uy 1 +2Us 0

1 .
AZUuzﬁ +19U,; -8U,; Us; | 2<j<M-2,
=8U, ;. +2Up;,
+U1J~72
and
X | U
AU =~ W =8U,, +2U,,

The discretization along the other sides can be obtained similarly. Each stencil approximat-
ing A? U;; is assigned into a row to form the matrix of the discrete bi-Laplacian operator.
Therefore, the size of the matrix to approximate the bi-Laplacian operator on a rectangle is
WN-DM-1)x(N—-1)(M-1).

In summary, at the discrete level, (3) with the specified boundary is approximated
by
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AU = BUA,

where A, B, U, and A are discrete approximations of the bi-Laplacian operator with speci-
fied boundary condition, the mass density function p, the eigenfunction u, and the eigen-
value A, respectively. Note that B and A are diagonal matrices.

5.2 Optimization Solver
5.2.1 Iterative Rearrangement Algorithm for Minimization of Eigenvalues

As described in the aforementioned section, for any given mass density function p(x),
we form the discrete bi-Laplacian operator A and the matrix B with its diagonal ele-
ment p(x,) where X, are gridpoints of a mesh. The Arnoldi iteration is used to solve
the forward eigenvalue problem AU = BUA to obtain approximated eigenvalues which
are diagonal elements of A and corresponding approximated eigenfunctions which are
columns of U.

At the i-th iteration, denote p as the mass density function and (4%, U(li)) as the cor-
responding first eigenpair. To look for the new density p@*D, we determine the set
D™V such that (21) is satisfied. This implies that the high density region is a sup-level
set of (u(ll))z. On a uniform mesh, it is extremely easy to implement this numerically.
One can simply first estimate the number of grid that takes the high density by comput-

ing N := [i %IaQIJ where Ax is the grid size, i.e., AXx = Ax in one dimension and

Ax = Ax;Ax, in two dimensions. Then, sort (Ui"))2 in the descending order and assign
the high density f# to the points corresponding to first A" largest of (Ugi))z.

Compared with the gradient descent approach, this rearrangement of the density
approach is far more efficient. Usually, the rearrangement algorithm converges in a few
iterations unlike the gradient descent approach which usually takes hundreds of itera-
tions [21].

Remark 1 The algorithm described here for the first eigenvalue can be applied to
minimize simple 4; for j = 2. However, it is possible that the j-th eigenvalue becomes
multiple, that is, it collides with its neighboring eigenvalues. When this happens, mul-
tiple eigenfunctions need to be considered while updating the density function: instead
of the order of (Uj(.'))2, we should arrange p; in the order of the convex combination
hI ocS(Ug.)_s))2 where the real numbers a;’s satisfy a, > 0 and Y7 o, = 1if 4;_, -, 4,
collide. One can perform an optimization algorithm to find the optimal «,’s which give
the largest integral (20) or simply choose a combination such that the integral increases
at each iteration.

We summarize the minimization algorithm in Algorithm 1.
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Algorithm 1 A rearrangement algorithm for minimization of A;

Require Input: given «a, 3, and «, choose an initial p(®) € Aa,gﬁ(.@).
Set i = 0.
Solve the bi-Laplacian eigenvalue problem (3) by the finite difference method
discussed in Sect.5.1
while p( is not optimal do
if the eigenvalue ); is colliding with its neighbors A\j_¢, -+, Aj—; then
sort the linear combination 7 := Y 5_, as(Uy_)s)2 with Y75 _jas =1
inadescending order

else _
sort 7 1= (ng))2 in a descending order
end if
1 y—al@
Compute N = {H%LIJ

Assign the high density 3 to the points corresponding to first N largest of n
if |[p® — pl+D| = 0 then
Stop
else
solve the bi-Laplacian eigenvalue problem (3) with p(i+1)
set i:=1+1
end if
end while

5.2.2 Gradient Descent Method

We discuss a similar approach to the one in [10, 16] to minimize the energy (22). Here
we directly work with the eigenfunction u instead of defining a new variable p2u that
are used in [10, 16]. At the i-th iteration, assume p® is the mass density. We first com-
pute the eigenpair (4;, 1), 1 < k < n. Next, the adjoint equation (4) is discretized as

AV, — 4BV, - 2ABU,BU)'V,Ax = BWU,, (28)

where A is a discrete bi-Laplacian operator, B is a diagonal matrix with its diagonal ele-
ment p(X,), V is the adjoint variable, (4;,U;) is the j-th eigenpair, W is a discrete weight
matrix with its diagonal element w(x, ), and Ax is the grid size. We solve for V; for each U,.
The gradient direction can be computed via (27) which leads to

1
8:= {EWUJ' # Ui+ 4U;. V_,-}. 29
Here the dot multiplication . * means the element-wise multiplication for two vectors

which results in a vector. We summarize the gradient descent approach with projection to
the admissible set to localize eigenfunctions in Algorithm 2.
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Algorithm 2 A gradient descent algorithm for localization of the j-th eigenfunc-
tion
Require Input: given «, 8, xg, j, and the stepsize 7, > 0, choose an initial
P € Aq 5(R).
Set ¢ = 0.
(i) Solve the bi-Laplacian eigenvalue problem (3) by the finite difference
method discussed in Sect. 5.1.
(ii) Solve the adjoint equation (28).
(iii)Compute the normalized descent gradient direction —g/ |g|| with g defined
in (29).
(iV) Compute p = p() — 7¢g/||g|| with 7 = 79 and J(p).
while J7(p) > J(p®) and 7 > 1071 do
Set 7 = 7/2 and compute p = p¥ —7g/||g|| and J(p).
end while
p = min (max(p,®),)
Set p't! = p and i: = i + 1 and check for convergence. If no convergence and
T is not too small, continue with Step (i).

6 Numerical Tests

In this section, we demonstrate that the iterative rearrangement method and the gradient
descent method with projection can successfully solve optimization problems including the
minimization of eigenvalues and the localization of eigenfunctions for rods and plates with
hinged or clamped boundary conditions.

6.1 Minimization of Eigenvalues for Rods

We consider the minimization of eigenvalues on an interval [—L, L] with L = 1 for a rod
consisting of two different materials, i.e., p = « or p = f§, described in Sect. 3. The itera-
tive rearrangement algorithm is applied to achieve the optimal density distribution of a
bang-bang type. For simplicity, we let y = (a + )L be the fixed total mass. The analyti-
cal formula (15) for the hinged rod implies that 6 = L/2 which is independent of mate-
rial densities @ and f. This is true for any other choices of y once the area of regions with
different densities is fixed. We have also observed this behavior numerically. For a hinged
rod, the minimizers of A; for i = 1,---,6 are identical for § = 8 (Fig. 2) and 16 (Fig. 3).
For a clamped boundary rod, since the analytical formulas of minimizers are not available,
numerical study of the optimal density distributions is performed. In particular, it has been
discovered that the optimal density distributions for a clamped rod are not periodic as the
optimal ones for a hinged rod [9]. Here, the outmost subregions with the higher density
have larger areas than the inner subregions. See the optimal density distributions for § = 8
and 16 in Figs. 2 and 3, respectively. More specifically, we measure the length of each
subregion in minimizers and the results are shown in Tables 1 and 2. For all computed
eigenmodes, the lengths of subregions in the minimizers are almost identical, suggesting
the optimal density distributions with clamped boundary conditions are also independent
of densities.
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Fig.2 The optimal density distributions (red (p(x) = ) and blue (p(x) = @ = 1)) and their corresponding
eigenfunctions for the minimization of the first six eigenvalues with hinged (left) or clamped (right) bound-
ary conditions for f = 8
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Fig.3 The optimal density distributions and their corresponding eigenfunctions for the minimization of the
first six eigenvalues with hinged (left) or clamped (right) boundary conditions for g = 16
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Table 1 Lengths of subregions in the minimizers with clamped boundary conditions for § = 8

Lengths of subregions

A [0.50 1.00 0.50]L

Ay [0.33 0.500.35 0.50 0.33]L

A [0.24 0.350.27 0.30 0.27 0.35 0.24]L

Ay [0.190.27 0.21 0.23 0.21 0.23 0.21 0.27 0.19]L

As [0.150.21 0.17 0.190.18 0.19 0.17 0.19 0.17 0.21 0.15]L

Ag [0.130.18 0.150.16 0.150.16 0.15 0.16 0.15 0.16 0.15 0.18 0.13]L

Table 2 Lengths of subregions in the minimizers with clamped boundary conditions for § = 16

Lengths of subregions

A [0.50 1.00 0.501L

Ay [0.330.50 0.35 0.50 0.33]L

A3 [0.24 0.350.26 0.31 0.26 0.35 0.24]L

Ay [0.190.27 0.21 0.23 0.21 0.23 0.21 0.27 0.19]L

As [0.150.21 0.17 0.19 0.17 0.19 0.17 0.19 0.17 0.21 0.15]L

Ag [0.130.190.150.16 0.150.16 0.15 0.16 0.15 0.16 0.15 0.19 0.13]L

6.2 Minimization of Eigenvalues for Plates

For a square plate, the optimal density distributions to minimize the first five eigenvalues
are shown in Figs. 4 and 5 for f = 8 and § = 16, respectively. As uncovered in [9], opti-
mal density distributions with hinged and clamped boundary conditions followed similar
patterns with different locations for high density subregions. We further explore different
values for the higher density and measure areas of subregions at the higher density. For
f =8 and 16, the optimal density distributions for the corresponding eigenmode are not
distinguishable from each other. Areas of subregions at the higher density are also more or
less the same, suggesting the optimal density distributions are independent of density val-
ues when fixing areas of subregions with the lower and higher densities in two dimensions.
This is consistent with the one dimensional case.

6.3 Localization of a Single Eigenfunction in One Dimension

Next, we study the localization of some specific eigenfunction at some specific location.
In this example, we consider localizing the 6th eigenfunction at a single point. Notice
that, with the homogeneous density, the 6th eigenfunction has a small magnitude at 0.15
and a large magnitude at 0.25 [9]. Therefore, we try to localize the 6th eigenfunction
at a single point for those two scenarios and obtain the optimal density distributions,
respectively. The results are shown in Fig. 6. For the case with x, = 0.15, since the
eigenfunction does not have a big vibration displacement with the homogeneous den-
sity, in the optimizer two nearest amplitude peaks are brought to the chosen location to
achieve a higher displacement there. For the case with x, = 0.25, the eigenfunction has
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Fig.4 The optimal density distributions and their corresponding eigenfunctions for the minimization of the
first five eigenvalues with hinged (the first row) or clamped (the second row) boundary conditions for f = 8
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Fig.5 The optimal density distributions and their corresponding eigenfunctions for the minimization of
the first five eigenvalues with hinged (the first row) or clamped (the second row) boundary conditions for
p=16

a big vibration displacement originally when the density is homogeneous and this peak
is kept in the optimizer. In addition, one neighboring vibration peak with the homo-
geneous density is also amplified in the optimizer to achieve a larger displacement at
the chosen location. We also test the optimization problems with different values of
the higher density, § = 8 or 16. The optimized density profiles are quite similar to each
other with only minor changes (See Fig. 6).

6.4 Localization of a Single Eigenfunction in Two Dimensions
We also study the localization problems in two dimensions. In particular, we try to

localize the 11th eigenfunction at (0, 0) with different boundary conditions and differ-
ent values of the higher density. The optimal density distributions are shown in Fig. 7.
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Fig.6 The optimal density distributions and pu? (curves in black) for localizing the 6th eigenfunction at
0.15 or 0.25 with hinged or clamped boundary conditions and for = 8 (top) or 16 (bottom), respectively

In general, hinged boundary and clamped boundary conditions give rise to similar opti-
mal distribution patterns. Subregions with the higher density are located more tightly
and closer to the center with the clamped boundary conditions. By increasing the
higher density, subregions at the higher density are shrunk with locations unchanged.

Fig.7 The optimal density
distributions for localizing the
11th eigenfunction at (0, 0) with
hinged or clamped boundary
conditions for # = 8 and 16,
respectively
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7 Conclusion and Discussion

In this paper, we review briefly the history of the optimization problems of inhomogene-
ous rods and plates, and computational methods to optimize eigenvalues or localize eigen-
functions with hinged or clamped boundary conditions. Variational formulas are derived
for both types of optimization problems with different boundary conditions. Numerical
discretization of the forward problem is described in detail. To optimize eigenvalues, the
iterative rearrangement algorithm is applied for efficiency. To localize eigenfunctions, a
gradient descent method is applied. We test those two numerical approaches on different
optimization problems with different boundary conditions. Both are shown to be numeri-
cally effective and accurate. The numerical results are consistent with theoretical formulas
or previously published ones. The effect of the boundary conditions is quite consistent with
what have been reported. In both cases, optimal density distributions with clamped bound-
ary conditions have subregions with the higher density more concentrated near the center
of the entire domain, compared with those obtained under hinged boundary conditions.
Moreover, we test those methods on problems with different values of the high density f.
For minimization of eigenvalues, it is observed that the optimal density distributions are
independent of densities once the areas corresponding to different densities are fixed, no
matter what boundary conditions are imposed. For localization of eigenfunctions, optimal
density distributions have some small changes on the size of subregions with different den-
sities. The framework discussed in this paper can be easily applied to more complicated
objective functions depending on eigenvalues and eigenfunctions. We hope to investigate
more and report numerical results in the near future.
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